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FEASIBILITY STUDY OF THE NUMERICAL INTEGRATION

OF SHELL EQUATIONS USING THE FIELD METHOD

By Gerald A. Cohen
Structures Research Associates, Laguna Beach, California

SUMMARY

The "field method" for the numerical solution of even order linear
boundary value problems in ordinary differential equations is formulated.
In essence, the field method converts the boundary value problem; into
two successive initial value problems, each defined over the same one-
dimensional domain as the boundary value problem. In the first of these
problems the dependent variables are the "field functions", which appear
in linear algebraic relations (the "field relations") satisfied by the
dependent variables of the original boundary value problem. In general,
for open branch domains the number of (scalar) field relations is equal
to one-half the order of the boundary value problem. The field functions
are obtained over the domain of the independent variable by a standard
forward integration technique. In the second initial value problem the
dependent variables are one-half of the original dependent variables, the
remaining variables being given in terms of these by the field relations.
The field functions appear as known terms in the differential equations
of this problem, which is more properly termed a final value problem
since it is solved by a backward integration over the domain of the
independent variable.

In this report the field method is developed for arbitrary open
branch domains subjected to general linear boundary conditions. Although
closed branches are within the scope of the method, they are not treated
here. The numerical feasibility of the method has been demonstrated by
implementing it in a computer program for the linear static analysis of
open branch shells of revolution under asymmetric loads. For such problems
the field method eliminates the well-known numerical problem of "long
subintervals" associated with the rapid growth of extraneous, solutions.
Also, the method appears to execute significantly faster than other
numerical integration methods.



INTRODUCTION

Most problems in the response of axisymmetric shell structures may
be reduced to the solution of equivalent linear statics problems. The
earliest known application of numerical integration techniques to the
solution of such problems was presented by Goldberg, et al. (ref. 1).
In its most rudimentary form the mathematical problem is formulated as a
two-point linear boundary value problem in ordinary differential equations.
A set of linearly independent complementary solutions and a particular
solution of the differential equations are obtained by a forward integra-
tion scheme (such as Runge-Kutta). Linear algebraic equations for super-
position constants are then solved so that superposition of these auxiliary
solutions gives the solution satisfying the boundary conditions. This
method is, of course, nothing more than an attempt to use a well-known
analytical approach for such problems as the basis of a numerical analysis.

Although this approach works well when the auxiliary solutions are
obtained in closed form, it is numerically ill-conditioned in the sense
that for sufficiently long intervals of integration the superposition of
the auxiliary solutions involves the small difference of large numbers
at points remote from the initial point.* This problem of "long subinter-
vals" was subsequently circumvented by Cohen (ref. 2) and Kalnins (ref. 3),
who divided the range of integration into suitably small subintervals.
By using fresh initial values for the auxiliary solutions at the initial
point of each subinterval, the growth of these functions is held to
reasonable limits. Also, by allowing rings and other discontinuities to
exist at the end points of each subinterval (i.e., the "boundaries"), the
problem was simultaneously generalized to a multi-point boundary value
problem. One difficulty with this approach is that the limit on sub-
interval length depends on factors in addition to the properties of the
structure itself, e.g. the circumferential wave number and, for eigenvalue
problems, the eigenvalue shift. Also some problems may not be treatable
simply because more subintervals are required than allowed by computer
storage limitations.

Later, Zarghamee and Robinson (ref. 4) further improved the method
by proposing the use of initial values for the auxiliary solutions which
imply satisfaction of the boundary conditions. Although this idea reduces
the number of complementary solutions required by a factor of two, it
does not eliminate the long subinterval problem. Their method was
subsequently generalized to an arbitrary open branch domain [known as a
"tree" in the terminology of geometric graph theory (ref. 5)] and general
linear boundary conditions by Anderson, et al. (ref. 6). Cohen (ref. 7)
further refined this method by improving the treatment of general boundary

*If, instead, a numerical reintegration for the desired solution is
attempted, the rapid growth of extraneous solutions associated with
round-off errors will have the same effect.



conditions and generalizing it to domains which include a single closed
branch.

About the same time as the Zarghamee method was being developed,
Jordan and Shelly (ref. 8) demonstrated a numerical integration technique
for two-point boundary value problems which eliminates the long sub-
interval problem. This method, which they termed the "field method",
does not use complementary and particular solutions at all, but replaces
the boundary value problem by two initial value problems to be solved in
succession. The field method was later formulated by Miller (ref. 9) for
two-point boundary value problems governed by a general ordinary linear
differential equation of even order.

The purpose of the present study is twofold: 1) to formulate the
field method for a general even order multi-point boundary value problem
defined on an arbitrary tree, and 2) to demonstrate the numerical
feasibility of the method by implementing it in a computer program for
static response of open branch shells of revolution subjected to arbitrary
boundary conditions.

SYMBOLS

a,b,c,d P * P matrix coefficients of linear differential
equations [eqs. (1)]

B,D p x p matrix coefficients of linear boundary
conditions [eqv'» (2)]

GI »Ci meridional stretching and bending stiffnesses

e p x p diagonal scaling matrix [eq. (14b)]

f ,g inhomogeneous p x i matrices of linear differential
equations [eqs. (1)]

I p x p identity matrix

L inhomogeneous p x 1 matrix of linear boundary
conditions [eq. (2)]

£ cylindrical length

Mj meridional stress couple

n circumferential harmonic number

P,Q,S shell forces per unit of circumferential length in
axial, radial, and circumferential directions



p

R

R2

r

SCj ,

s

t

u,w

half -order of boundary value problem

spherical radius of curvature

circumferential radius of curvature

small circle radius

scale factors used as elements of e matrix

arc distance

meridional, circumferential, and normal coordinates
of shell reference surface

effective wall thickness

p x p and p x 1 field function matrices [eq. (6)]

axial and radial coordinates

generalized force and displacement p x 1 response
matrices

net change across a vertex [eqs. (3) and (7)]

shell displacements in axial, radial, and circum-
ferential directions

meridional rotation

Subscripts:

0

Superscripts:

T

value at initial shell edge

matrix transpose

d( )/ds

value at vertex on exiting arc

value at vertex on entering arc

modified variable for singular arcs



ANALYTICAL FORMULATION

In order to formulate the field method in a general context, it will
be convenient to introduce some elementary concepts from the theory of
geometric graphs. Figure 1 shows the reference meridian of a hypothetical
shell of revolution. The heavy dotted points depict boundaries of the
shell, which are defined as one of the following types of points:

(1) branch points
(2) branch extremities
(3) ring or ring load points
(4) shell property or load discontinuity points

The boundaries thus divide the meridian into a number of subintervals.
In contrast to other numerical integration methods, no additional
(artificial) boundaries are required simply to reduce subinterval length.

^ , ,-,.•

A geometric graph (ref. 5) is defined as a set of points, called
vertices, and a set of non-self-intersecting curves, called arcs,
satisfying the following requirements:

(1) Each closed arc contains precisely one vertex.
(2) Each open arc contains precisely two vertices, viz. its end

points.
(3) The arcs have no common points, except for the vertices.

It.' is clear from figure 1 that if we identify the boundaries as vertices
and the subintervals as arcs, the reference meridian of a shell of
revolution is nothing more than a geometric graph.

The following graph terminology will be used:

(1) Chain - a continuous sequence of arcs from an initial vertex
to a terminal vertex. (A non-self-intersecting chain is said
to be simple.)

(2) Circuit - a chain whose initial and terminal vertices coincide.
(3) Connected graph - a graph for which every pair of vertices is

joined by at least one chain.
(4) Tree - a connected graph which contains no circuits.

In the present formulation of the field method, we shall confine
our attention to boundary value problems defined over one-dimensional
domains representable as (i.e., isomorphic to) a tree (fig. 2). It is :
important to recognize that every pair of distinct vertices of a tree
is joined by precisely one chain, since connectivity implies the
existence of at least one chain, whereas the absence of circuits implies
the existence of at most one chain. It therefore follows that the cutting
of any arc of a tree will disconnect the tree into two separate parts, a
fact which is used in setting up the one-dimensional coordinate of the tree.



For each arc, the arc distance s will be used as the independent variable.
Let us assume that the arcs have been ordered and oriented (with respect
to the direction of increasing s), but defer for the time being the manner
in which this was done.

Definition of Boundary Value Problem

A system of ordinary differential equations of order 2p may always
be written as a system of 2p first-order equations. If we group one-half
of the dependent variables in the p x 1 matrix y and the other half in
the p x 1 matrix z, the system of first-order equations may be written,
for linear systems, as two matrix differential equations, viz.

y' + ay + bz = f (la)

z' -hey + dz = g (Ibi)

where prime-denotes differentiation with respect to s; a, b, c, and d are
p x p matrix functions of s; and f and g are p x 1 matrix functions of s.

Equations (1) are defined at every interior point of each arc of the
tree. They are supplemented by linear boundary conditions, defined at
the vertices of the tree, of the form

BAy + Dz = L (2)

where B and D are p x p matrices, L is a p x i matrix, and

Ay = I y+ - I y~ (3)

Here, y and y represent the values of y at the vertex on exiting (s
increasing away from the vertex) and entering (s increasing towards the"
-vertex).'.arcs respectively. As implied by the form of eq. (2), it is
assumed that z is continuous at vertices.* A vertex and its boundary
condition are said to be singular if the matrix B is singular; otherwise
they are called regular.t

majority of boundary value problems in mechanics are self-
adjoint. This property is synonymous with being derivable from a

*It is assumed on physical grounds that one-half of the dependent variables
are continuous at vertices, and these shall be grouped in the vector z.
The vector y may be viewed as a generalized "force" vector corresponding
to the generalized "displacement" vector z, and -Ay represents the net
external force entering the vertex.

tA singular boundary condition implies a relationship between the
components of the displacement vector z, i.e., kinematic constraint.



variational principle. Physically, this corresponds to systems which
do not involve energy losses. For the system defined by eqs. (1) and
(2), the conditions of self-adjointness may be shown to be

b = bT (4a)

c = cT (4b)

d = -aT (4c)

T
K = K (4d)

where K = B-1D (5)

and the superscript T denotes matrix transpose. Although condition (4d)
strictly applies only to regular vertices, it may be used also for
singular vertices if a singular vertex is viewed as a limiting case of
a sequence of regular vertices. Thus, for self-adjoint problems a
singular vertex is the limit of a., sequence of regular vertices, for
each of which eq. (4d) holds true.*

The Field Method

Since a cut at an interior point of any arc of a tree disconnects
the tree into two separate parts, it is clear that the value of z at
the cut can serve as a boundary condition which, along with the differen-
tial equations (1) and boundary conditions (2) over one of the parts,
determines y and z over that part independently of the corresponding
data over the remaining part.t/ In particular, the value of z determines
y at the cut, which in view of the linearity of the problem is expressed by

y = uz + w (6)

where u is a p x p matrix and w is a p x 1 matrix. Equation (6) is called
a field relation since it is satisfied by the "field" of all possible
solutions y,z (depending on the unused data on the remaining part).

*Physically speaking, kinematic constraint may be approximated as close as
one pleases by a sufficiently stiff spring.

tit is assumed that giving z at the cut determines a unique solution,
i.e., no nontrivial solution of the homogeneous forms of eqs. (1) and
(2) satisfying the cut condition z = 0 exists. This is certainly the
case if y = 0 for all solutions of the homogeneous forms of eqs. (1) and
(2) subject to an(-arbitrary homogeneous cut condition. Physically, this
corresponds to a* situation where the only possible response under no
load is a rigid-body displacement.



Correspondingly, u and w are called field functions. It follows that if
we order and orient the arcs of the tree so that for every such cut all
of one part is described by s before any of the other part, then the
determination of u and w will be an initial value problem. Such an.arc
ordering and orientation will be achieved if at each interior vertex
(i.e., one incident with two or more arcs):

(1) there is precisely one exiting arc,
(2) all entering arcs are ordered (i.e., described by .s) before

the exiting arc, and
(3) the exiting arc is ordered immediately after the last entering

arc.

Implicit in these conditions is the requirement that one of the vertices
of the first (last) arc is incident with no other arc, i.e., represents
a branch extremity, and this arc is oriented away from (towards) this
vertex. Assuming that the s-coordinate is set up in this manner, it is
clear that, for a tree, eq. (3) reduces to

AY = y+ - I y~ (7)

since there will be at most one exiting arc for each vertex.

Although u and w exist at interior points of each arc, this is not
true at the initial vertex of an arc if the vertex is singular. (Such
an arc itself will be called singular; otherwise an arc is regular.)
The condition |B| = 0 is equivalent to the specification of a linear
combination of the components of z at the vertex. This relationship
plus eq. (6) would constitute initially on a singular arc p + 1 equations
in the p unknown components of z. Compatibility of these equations
implies a linear relationship between the components of y+. Since,
however, y depends on as yet unused data on the remaining part of the
tree, it follows that eq. (1), i.e., u and w, cannot exist initially on
singular arcs. From the foregoing, it is clear that singular arcs
require special treatment. The discussion of singular arcs is postponed
until after the next section, in which the basic method is presented.

Trees without singular arcs.- Let us assume for the moment that all
vertices are regular, except possibly one vertex corresponding to a
branch extremity. In this case, the arcs can be ordered so that the
sole arc incident with the singular vertex (if it exists) is the final
arc, which is then oriented towards the vertex. Since the initial vertex
of every arc is then regular, no singular arcs exist. This leads to the
simplest form of the field method.

In order to derive the differential equations for u and w, differen-
tiate eq. (6) with respect to s, use eqs. (1) to eliminate y1 and z',
and eq. (6) to eliminate y to obtain

(u* - ucu + au - ud + b)z + w' ->_ucw:+ :aw-+ ug -: f-= 0 (8)



Since eq. (8) must be satisfied identically for all z (which depends on
data at points of greater s, whereas u and w do not), it follows that

u' - ucu + au - ud + b = 0 (9a)

w1 - ucw + aw + ug - f = 0 (9b)

Equations (9) are the differential equations for u and w.

The corresponding initial conditions for regular arcs are derived
by substituting eq. (6) into eq. (2) to obtain

(Au + B~1D)z + Aw - B"1!. = 0 (10)

+ v -
where the symbol A has the same meaning as in eq. (7), viz. Au = u - £ u
and Aw = w+ -. £ w~. Since eq. (10) is also an identity with respect to
z, one obtains the initial values

u+ = -B-1D + I u~ (lla)

w+ = B-1! + I w~ (lib)

After integrating the initial value problem (9), (11) over the
whole tree and storing the field functions u and w, eqs. (2) and (6)
at the final vertex are solved simultaneously to give z there, viz.

z = (D - Bu)-1(L + Bw) (12)

With this value as an initial condition, a backward integration of eqs. (Ib)
and (6), i.e.

z' + (cu + d)z-=£,g---cw (13)

is performed over the whole tree, using z-continuity at interior vertices.
From the values of z so obtained, y is calculated from eq. (6), completing
the solution.

If the boundary value problem is self-adjoint, the numerical work
is considerably reduced. In this case, the matrix u is symmetric so
that only p(p + l)/2 of its component functions are independent.* This
fact follows from eqs. (9a) and (lla) in view of eqs. (4). Thus in this
common case, the total number of independent scalar differential equations
contained in eqs. (9) and (13) is p(p + 5)/2, which compares with
2p(p + 1) scalar first-order equations which must be integrated in the
Zarghamee method.

*In this case, u may be viewed as a "stiffness" matrix for that part of
the tree, produced by a cut at s, which is fully described by smaller
s-values.



Singular arcs.- Initially on singular arcs, the field relation (6)
does not exist. Roughly speaking, one may say that the field functions
u,w are infinite at such points. As discussed previously, the essential
reason for this behavior is that a singular boundary condition implies
a relationship between the components of z at the corresponding vertex.
One is therefore motivated to make a transformation of variables to a
modified z-vector. whose components are independent at the vertex.
Consequently, on singular arcs new variables y and z are defined by*

y = y (14a)

z = z + ey (14b)

where e is a constant diagonal p x p matrix required for dimensional
homogeneity of eq. (14b). Substitution of eqs. (14) into eq. (6) shows
that y,z satisfy the modified field relation

y = uz + w (15)

where u = (I + ue)-1u (16a)

w = (I + ue)-1w (16b)

Because of the symmetry of the transformation (14), eqs. (16). are inverted
simply by replacing e by -e, i.e.

u = (I - ue)-̂  (17a)

w - (I - ue)-1w (17b)

In terms of these modified variables, eqs. (1) become

y1 + 3y + bz = f (18a)

2' + £y + d2 = g (18b)

where 3 = a - be

b = b

C = c + e3 - de
(19)

d = d + eb

f = f

g = g + ef

*An alternate transformation for singular arcs is given in Appendix A.
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Equations (15) and (18) can be used to derive differential equations for
u and w in exactly the same way as eqs. (1) and (6) were used to derive
eqs. (9). Since eqs. (18) and (15) are identical in form to eqs. (1)
and (6), respectively, the differential equations for u and w are in
the same form as eqs". (9) with all variables replaced by corresponding
tilde variables.

The initial values of u and w on singular arcs may be obtained from
eqs. (11) and (16). Considering the singular vertex as the limit of a
sequence of nonsingular vertices, one has from eqs. (11) and (16)

u+ = lim [I 4- .(I u~ - B-^e]-1^ u~ - B-1D)
|¥hO

= -B̂ D (20a)

w+ = lim [I'+.(̂  u~ - B-1D)e]-1-(^ w~ + B-1L)
!Bh°

= B-1L (20b)

where B = B - De (21a)

D = D - B I u~ (21b)

L = L + B I w" (21c)

the modified field functions u and w are calculated (and stored)
on singular arcs by forward integration of eqs. (9) written for tilde
variables, starting with the initial values (20). At the terminal vertex
of singular arcs, it is convenient to replace u,w by u,w according to
the reversion formulas (17). This is done so that the initial-values of
the field functions for all arcs [eqs. (11) for regular arcs and eqs. (20)
for singular arcs], as well as the terminal value of z [eq. (12)], may
be computed the same way, regardless of whether preceding arcs are
regular or singular.

The backward integration on singular arcs is also done in terms of
tilde variables, i.e., eq. (13) written for tilde variables is integrated.
For this purpose, the value of z at the terminal vertex of a singular arc
is replaced by z by first computing y there from eq. (6) (recall that u
and w have been stored there) and then z from eq. (14b). After so doing,
u and w at the terminal vertex are changed back to u and w [by using eqs.
(16)], as required for the integration of the tilde form of eq. (13).
From the values-'of'J z obtained by the backward integration, y = y is
computed from eq. (15) and z is computed from eq. (14b).

For self-adjoint problems, it may be seen from eqs. (19) that the
transformation (14) preserves the self-adjoint property of the differential

11



equations (1), i.e., eqs. (4a-c) are satisfied in terms of tilde
variables. Also, it is easily shown from eq. (16a).that the transforma-
tion from u to u (and vice versa) preserves matrix symmetry. For eq. (16a)
may be written, in the case of nonsingular u, as

u = (u'1 + e)-1 (22)

Since the inverse of a symmetric matrix is also symmetric, from eq. (22)
symmetric u implies symmetric u. This result is.valid even if u is
singular since symmetric singular u may be approximated as closely as
one pleases by symmetric nonsingular matrices. In particular, since
the value of u+ [eq. (20a)] was derived as the limit of a sequence of
symmetric matrices, u+ is itself symmetric. As for u on regular arcs,
integration of the differential equations for u preserves the symmetry
of u . Hence, the simplifying conclusions drawn for self-adjoint problems
on page 9 hold as well in the presence of singular arcs.

A common type of boundary value problem originates as the minimization
of a certain positive definite functional over a tree. An example of this
type of problem is one-dimensional static response of an elastic structure.
Such problems are self-adjoint, and the field relation (6) necessarily
exists at all interior points of each arc, since the uniqueness condition
mentioned in the footnote on page 7 is satisfied. To insure that the
modified field relation (15) exists at all points of a singular arc
(i.e., I + ue should be nonsingular), it is necessary to choose the
diagonal matrix e [see eq. (14b)] positive definite, i.e., each of its
nonzero elements should be positive. For such e, specification of z at
a generic point s = s of a singular arc will uniquely determine y = y
there, since this corresponds to cutting the tree at s and the attachment
there of p stable elastic springs (to that part fully described by s < s).
If e is not positive definite, at least one of the springs is unstable,
which could lead to an instability (i.e., infinite u) for some s.

SHELLS OF REVOLUTION

A pilot computer program employing the field method to obtain the
linear elastic response of open branch ring-stiffened shells of revolution
subject to general harmonic mechanical and thermal loads has been written.
For this class of problems, the tree over which the boundary value
problem is defined represents the reference meridian of the shell. The
differential equations (1) are eighth order so that the response matrices
y and z are 4-element column vectors. The equations are ordered so that
y and z are the force and displacement vectors (fig. 3)

yT = r(P,Q,S,M1) (23a)

zT = a,n,v,x) (23b)

12



where P,Q,S are forces per unit of circumferential length-referred to
fixed axial, radial, and circumferential coordinate directions x,y,4>,
5,n,v are the corresponding displacement components, MI is the meridional
bending moment per unit of circumferential length, and x is the corre-
sponding rotation.

The matrices a,b,c,f and g [eqs. (1)], as well as K = B 1D and
B"1!, [eq. (2)] for ring boundaries, are given in Appendix B. Since this
problem is self-adjoint, b,c and K are symmetric and d = -a^ [cf. eqs.
(4)]. Corresponding shell and ring equations have been given previously
(although not in precisely the same form) in reference 7.

Solutions of several problems were obtained by the field method
and compared to solutions obtained by the/Zarghamee method. The purpose
of the numerical calculations was to:

(1) uncover any practical problems in the implementation of the
field method,

(2) show that the "long subinterval" problem does not exist in
the field method, and

(3) compare the execution time of the field method with that of the
Zarghamee method.

Four basic shell configurations were studied:

(1) clamped spherical cap (R/t = 91.4; n = 0)
(2) branched conical shell (rg/t = 100; n = 1)
(3) 140° sandwich cone (r0/t = 25.3; n = 0 and n = 1)
(4) clamped-free cylinder (£/r = 1, r/t =10; n = 0)

Diagrams of the first three configurations are shown in figure 4. Here,
n is the harmonic number considered, R is the spherical radius of curva-
ture, r is a small circle radius, rg is the initial value of r, H is
the cylindrical length, and t is the effective wall thickness (i.e., t/3~
times the core depth for case 3, and the monocoque thickness for the
other cases).

Each of these cases involve singular subintervals. In the .first
and fourth cases, this is due to the kinematic constraint at the initial
edge. The second and third cases are free structures without rigid
body constraint, but artificial rigid body constraint has been provided,
in each case, at interior boundaries. The third case was previously
used as the sample problem for the corresponding Zarghamee program
(SRA 100) in reference 10, in which the variable pressure loading used
is given. In the fourth case, the loading is uniform lateral pressure.

During the course of the numerical evaluation of the field method,
two practical problems were encountered. These are the choice of:
1) the elements of the scaling matrix e, and 2) the storage locations
for the field functions u and w.

13



Choice of the Scaling Matrix e

In the general discussion of singular arcs, a scaling matrix e was
introduced [eq. (14b)] without explicit definition, other than to say
that it is a constant diagonal p x p (in this case, 4 x 4) matrix. In
addition, it was deduced that for positive definite self-adjoint problems,
to insure the existence of the modified field function u, all of the
diagonal elements of e should be positive. Within this guideline there
are an infinite variety of possible choices for e. Although the precise
values of the diagonal elements of e have no effect on the solution,
their order of magnitude determine the severity of the boundary layer in
u following a singular boundary, and hence the rate at which the numerical
integration will proceed.

The first values tried for the diagonal elements e.^ were based on
the scale factors used in the supplemental initial conditions at singular
boundaries in the Zarghamee method (ref. 7). These are en = e?2 = e33
= SCi - t/rCi"'(P) and 61*4 = SC2 - t/rCi(

2), where GI(°) and Ci(2) are
meridional stretching and bending stiffnesses, respectively. However,
these values caused in sample problem 2 a severe boundary layer for u,
and consequent slow forward integration, immediately following.,the edge
at point 7 (see fig. 4) when (artificial) rigid body constraints were
imposed at that edge. After several empirical changes from these values,
the values SCj - 10/Cx(0) and SC2 - 3t/rCi(

2) were chosen as optimal in
the sense that for the sample problems studied they resulted in the
least number of integration steps. The table below shows the number of
derivative evaluations (four per Runge-Rutta step, whether accepted or
not, plus one extra for each subinterval) during integration for three
different sets of scale factors SCi and SC2. In each case, the upper
value represents the forward integration and the lower value the backward
integration.

Scale factors

SCi = t/rCi<°'>
SC2 = t/rC^

2)

.lOOt/rC^0)
t/rC^2)

10/Ci(°)
3t/rd(2)

Case 1

—
—
376
312

344
312

Case 2a

1441
—

425
249

425
249

Case 2b

——

369
217

361
193

Case 3

—
—

421
373

,405
373

Case 4

274
234

242
194

234
194

Singular edge (point 7 of fig. 4)

Singular branch point (point 25 of fig. 4)

The corresponding numbers for case 2 when the kinematic constraints are
placed at the final edge (so that there are no singular subintervals and
the numerical process therefore does not involve the matrix e) are 377
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and 177. Thus, it is seen that singular subintervals cause a small
penalty when optimal scale factors are used.

Not only is the numerical work reduced by the proper choice of
scale factors for singular subintervals but at the same time an
improvement in accuracy is generally realized. This is illustrated in
the following table, in which the values of the dimensionless transverse
shear stress resultant Q/pt and meridional stress couple Mi/pt2 at the
clamped edge of the clamped-free cylinder (case 4) are shown for the
three field solutions of the preceding table, as well as for the
Zarghamee solution. Here p represents the applied pressure load.

Method Q/pt

Field #1
Field #2
Field #3
Zarghamee

2.5181 (3.16%)
2.4417 (0.03%)
2.4413 (0.02%)
2.4409

-2.8536 (4.22%)
-2.9738 (0.18%)
-2.9803 (0.04%)
-2.9792

In this table the numbers in parentheses are the percent differences
of the field solutions with the Zarghamee solution. Taking the Zarghamee
solution as a standard,* the percent error in the field method is seen
to be directly related to the number of integration steps required for
the different scale factors.

Although the third set of scale factors worked well in these test
cases, no claim of universality is made for them. As programmed they
are constant over the whole meridian, whereas it is only necessary that
they be constant over each subinterval. One can anticipate that, for
shells with large property variations along the meridian, it would be
better to calculate different values of these-' scale factors for each
singular subinterval. Also, for highly orthotropic shells for which the
shear modulus is orders of magnitude different from the normal moduli,
it may be desirable to introduce a third scale factor based on the shell
wall shear stiffness. However, these refinements are not considered
essential to demonstrating feasibility of the field method and are
beyond the scope of the present study.

Storage Locations for Field Functions

When preparing the data deck for the computer program, the user
must specify storage points for the response vectors y and z. The
location of these points is arbitrary within the limitation that they
are equally spaced within each subinterval. The backward integration
for the z-vector is constrained to land on each of these specified points.

*The Zarghamee solution is considered the most accurate of the four
solutions since it does not require interpolation of calculated functions
as does the field method, (in this regard, see next section.)
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In the field method, it is necessary to store the field functions
u and w at the time they are calculated during the forward integration.
Interpolation of these stored values is then made during the backward
integration of eq. (13). In the initial version of the computer program,
it was convenient to store these functions at the predesignated y,z
storage points. Thus, in this version, the forward integration of eqs.
(9) for u and w is also constrained to land on these points. However,
because the variation of the field functions is of a totally different
character than that of the response functions, this is generally a poor
choice of storage locations for them. In general, the field functions
have a narrow zone of rapid variation immediately following a boundary,
but are otherwise slowly varying. In order to be able to interpolate
accurately for intermediate values of u and w with the minimum number
of storage points, the spacing^ of these points should vary with the
rate of variation of u and w, i.e., the more rapid the variation of u
and w, the closer together their storage points should be. Therefore
the natural place to store them is at the end of each integration step,
the size of which is automatically adjusted during execution according
to their rate of variation. At the same time this would allow the
forward integration to proceed at its own pace without being restricted
by predesignated data points.

In all of the cases studied, excellent agreement with the Zarghamee
method was obtained for forces and displacements at the terminal shell
edge. On the other hand, in some cases small errors of the order of one
percent crept into the field method solution at other points due to the
inadequacy of the specified y,z data points for the description of the
field functions u-and w, resulting in interpolation errors for u and w
during the backward integration. This is illustrated by the following
table giving the dimensionless components of the z-vector obtained by
each method at the initial (point 1 of fig. 4) and final (point 27 of
fig. 4) edges of the branched shell (case 2, singular edge).*

Edge

Initial

Final

Method

Field
Zarghamee

Field
Zarghamee

5/t x IQ2

-0.8352
-0.8055

-2.2100
-2.2096

n/t x io2

-1.4904
-1.4595

-2.8237
-2.8227

v/t x IO3

0.3847
0.3833

4.2476
4.2460

X x IO3

-2.7215
-2.6505

3.1863
3 . 1824

This case showed the greatest loss of accuracy due to inadequate storage
of the field functions of all cases studied. For example, the correspond-
ing results for the n = 1 harmonic of the 140° sandwich cone (case 3),
which has almost twice as many storage points (as well as fewer real
boundaries) as case 2, are given in the following table.

*This and all following comparisons are based on the same relative error
control for the Runge-Kutta integration routine used in both methods.
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Edge

Initial

Final

. . .Method .

Field
Zarghamee

Field
Zarghamee

. C/t x.102.

-0.9268
-0.9353

5.7869
5.7874

. .ri/t.x.102.

0.7079
0.7110

—1.5461
;:-1.5463

v/t *.102

-0.0784
-0.0786

1.4774
. 1.4776

. x.x.io3

4.5021
4.5386

0.5932
0.5933

Long Subintervals and Execution Time

In order to demonstrate that subinterval length has no effect on
the numerical solution obtained by the field method, the clamped-free
cylindrical shell configuration (case 4) was used. However, in order to
put it into the range where several subintervals would be required in
the Zarghamee method (for which the axial'ilength of each subinterval
should be less than approximately 5vrt), the shell dimensions were
changed so that £/r = 2 and r/t = 100. Also, for this case a comparison
of the Zarghamee and field method integration times for the'response
due to uniform;fifth harmonic lateral pressure loading was made. For
the Zarghamee setup, in order to avoid the long subinterval problem, the
meridian was divided into four subintervals, each subinterval having
four interior data points. For the field method only one interior
boundary was used; this was specified at one-eighth the total length
from the initial edge in order to change the spacing of data points
qualitatively in accordance with the change in variation of the field
functions. Four interior data points were specified in the first
subinterval and six interior data points in the second subinterval. In
order to avoid interaction with the choice of the scaling matrix e,
singular arcs were avoided in this comparison by choosing the clamped
edge to be the final edge, the initial edge then being free. Integration
times (CPU times in seconds) for the CDC 6400 computer are shown in the
table below.

Integration

Forward;.!
Backward

Total

Field

>.l. 753 (290)
0.541> (170)
2. 2 94: sec

Zarghamee

5.156 (516)

5.156 sec

The numbers given in parentheses .'are the number of derivative evaluations
(four per Runge-Kutta step plus one extra for each subinterval) made
during each integration.

In spite of the rather meagre number of data points used to store
the field functions, the accuracy of the field solution is good. The
table below compares the dimensionless displacement components at the
free edge obtained by each of the methods.
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Method. . £/t.* .10. . '.n/t..x IQ^1 . . . . . .v/t. x.* .10

Field
Zarghamee

4.4166
::. 4.4222:

2.2023
: 2:2033;

-4.3587
v. :-4.3595:;

1.9081
1.9232

CONCLUDING REMARKS

The field method of solution of general even order linear ̂ boundary
value problems defined on an arbitrary open branch one-dimensional
domain has been formulated. The method has been implemented in a computer
program for the static elastic response of open branch ring-stiffened
shells of revolution subjected to general asymmetric (harmonic) loads.
By studying specific sample problems the numerical feasibility of the
method for axisymmetric shell problems has been demonstrated. For such
problems the method eliminates the long subinterval problem of other
numerical integration methods. In addition, it executes considerably
faster than the Zarghameet method, which is the fastest numerical
integration method currently in use. Numerical problems associated
with kinematic constraints have been shown to be resolvable by the use
of an "optimum" transformation of variables. It has also been shown
that it is inadvisable to store the field functions at the same locations
used to store the physical response functions. Rather, to obtain the
greatest speed and accuracy for the least'storage, the field functions
should be stored at the end of each integration step, the size of which
is automatically adjusted during execution according to the rate at
which they vary.

Based on the demonstrated advantages of the field method over other
numerical integration methods, it is recommended that the method be
further developed with the object of obtaining a practical set of
axisymmetric shell programs based on it. Such a set of programs should
have the following features:

(1) They should be applicable to shells with many closed branches.
(2) They should be essentially free of numerical ill-conditioning

problems (requiring, for example, double precision calculations).
In particular, the user should not have to concern himself
with questions of ill-conditioning when setting up a data deck.

(3) Data deck preparation should be simple, at least no more
difficult than that for other programs capable of treating the
same problem.

(4) They should execute faster and require less storage than
existing programs for similar .'problems.
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APPENDIX A

ALTERNATE VARIABLES FOR SINGULAR ARCS

In place of eqs. (14) defining y,z on singular arcs, one could use
the transformation

y = y + ez (A-la)

z = z (A-lb)

where e is a constant diagonal p x p matrix required for dimensional
homogeneity of eq. (A-la). In a similar fashion to the development of
eqs. (15)-(21) for the tilde variables, the following analogous relations
for the bar variables may be derived. The field relation is

z = uy + w (A-2)

where u = (u + e)"1 (A-3a)

w = -uw (A-3b)

The inverse of eqs. (A-3) is

u = u"1 - e (A-4a)

w = -u~~^w (A-4b)

The differential equations for y and z are

y1 + ay + bz = f (A-5a)

z' + cy + dz = g (A-5b)

where a = a + ec

b = b - ae + ed

c = c
(A-6)

d = d - ce

f = f + eg

g = g
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The differential equations for the modified field functions u and w are

u' - ubu + du - ua + c = 0 (A-7a)

wf - ubw + dw -f'uf"^ g = 0 (A-7b)

The initial values of u and w on singular arcs are

u+ = -D"1^ (A-8a)

w+ = D-XL (A-8b)

where B = B (A-9a)

D = D - B(£ u~ + e) (A-9b)

L = L + B I w~ (A-9c)

With this modification for singular arcs, the calculation procedure
is similar to that of the tilde modification (see pp. 10-12), except
that in this case the backward_integration on singular arcs is for y.
The differential equation for y is obtained from eq.-- (A-5a), which
in view of the field relation (A-2) may be written as

y' + (a + bu)y = f - bw (A-10)

The integration of eq. (A-10) is started with the value of y, computed
from eq. (A-la), at the terminal vertex of the singular arc.
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APPENDIX B

MATRICES FOR AXISYMMETRIC SHELLS AND RINGS

Symbols

A ring section area

E ring elastic modulus

e ,e,T ring centroidal eccentricitiesx. y

FX,F jFi harmonic amplitudes of ring force loads per unit
of circumferential length

GJ ring torsional stiffness

L, !„, I..,, ring sectiori.-momerits-of'inertia- . - - - . - . . .x.;. y xy , •' - • ~ . . . . . . . .
k ring stiffness matrix

Lj,L2 harmonic amplitudes of shell moment loads per unit
of surface area in meridional and circumferential
directions

He;Sif',Sit ring load vectors

N ,N ,N. harmonic amplitudes of ring moment loads per unit
of circumferential length

X1,X2,X3 harmonic amplitudes of shell force loads per unit
of surface area in meridional, circumferential,
and normal directions

e ring eccentricity matrix

®1 »®2 harmonic amplitudes of meridional and circumferential
thermal force loads

®1 >02 harmonic amplitudes of meridional and circumferential
thermal moment loads

6 harmonic amplitude of ring free thermal strain

A... orthotropic shell wall normal stiffness coefficients
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p.. orthotropic shell wall shear stiffness coefficients

p ring centroidal radius

Shell

For elastic orthotropic shells of revolution subjected to symmetric
n'th harmonic loads-;, the coefficient and load matrices of eqs. (1) are
given below. For the definitions of the stiffness (^ii^i-i) and load
(X.j_,Lj_,0j_(m)) variables in these matrices, see reference 7.
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Ring

-

where

- EA0(0,l,n,0)
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