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angular‘moméntum vectpr'in inertial co:ordinates
principal moments of inertia

mass of each moving mass

moment due to viscous shear in ring

circumference of ring cross saction

parameters of moving mass system, defined in Figure 8
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. " . ° INTRODUCTION

It is a well documented facﬁfthat rotating semi~rigid bodies
("rigid" bodies experiencing energy aissipation)'are stable only
when the rotation is about the axis ;f maximum moment of ineftia.
This has been demonstrated analytically,l‘and,verified in flights

3

Shch as Explorer I2 and ATS-V satglliﬁes. The proBIem‘arises,frqm

the two potential orientations ﬁhféh‘the final épin vector can take
after large angle reorientation from minor to major axis, i.e.,

along the positive or negétive axis of the maximum inértia.-
Reorientation of a séfellite initially spinning about the minor axis
using an energy dissipation device may require that the final spin
orientation be controlled. Examples of possible applications are the.
Aéogeé Motor Assemﬁiy with>Péiréd Safeliites CAMAfS) configﬁratioﬁ,a |
wvhere proper orientation of the thruster is required; and reorientation
of ATS-V, where the spin sensitive nature of the despin device ('yo-yo'
mechanism) requires that the final spin vector point ;n a specified
direction. Tﬁe primary purpose of this work is to investigate
techniques for eliminating suchjgéin orientation ambiguities through
active controls. This control capability would be useful in controlling
orientation of tumbling bodies for retrieval purposes, and for éctively
reorienting sﬁin stabilized satellites which could be initially spun

up by the launch veﬁicle (either earth launch or shuttle deployment)

about the minor axis of inertia.
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treatments.

.

SUMMARY OF PAST WORK

Effects of ehergy dissipation on satellite dynamics have been

2,3,5

experienced in actual flights and discussed in several analytical’

1,6,7,8,9 These efforts: have, in general, dealt with
discussions of the effect of dissipation on the precession rates and
the tétal time required for a sﬁzellite.to'go from oné spin state to
anéther. References 1 and 6 descfibe attitude drift for single and
dual-spin symmetric bodies. Reference 7 discusses the effect of
flexible appendages as;energy dissipators on symmgtric satellite
dynamics. .Non—symmetric body motion in body fixed and inertial
coordinates is discussed in Reference 8 while Reference 9 illustrates
several methoés of modeling the-energy dissipation ﬁrocgss gnd dgscribe§
effects on nén—symmetriclbodies;

Control of attitude drift is discussed in References 10, 11, and
12, .Axisymmetric spacecraft controi is proposed in Reference 10, in

which a3 method is presented for maintaining a satellite on a

configuration other than spinning about the axis of maximum inertia.

'This is done by addition of energy.into the system to compensate for

energy diﬁsipation. Reference 11 touches briefly on non-symmetric
satellite precession control with controlled energy dissipation, and
presents numerical examples for symmetric satellites. Control of a
non~-symmetric satellite is studied in Reference 12, but only for small
nutation angles, i.e., active energy dissipation is used tojreturn the
satellite to the desired stable position after it has been perturbed.

None of the control systems proposed to date have considered. the



question of whether the spin vector will align itself with the positive
or negative axis of maximum moment of inertia when the spin axis is

initially about the minor axis.



- DYNAMICS ANALYSIS

Constant energy motion of a non-symmetric, rigid body, in'a
torque-free environment is geometrically described by Poiﬁsot's motion.
This is the motion of an inertia eliipsoid (having dimensions

-proportional to the moments 'of inertia of the body) that rolls without
slipping on an "invariable plane" while its center is a fixed distance
v2T/H from the plane.9 This s¥twation is illustrated in Figure 1.

The allowable paths for this motion in the body fixed coordinate frame
are closed curves called polhodes, each having a fixed discrete energy
level for given anguiér momentum. Figure 2 shows several polhodes on
the inertia ellipsoid for a fixed angular momentum and several different
energy levels.

A ldgicalvéxgension 6f fﬂis motioﬁ fér dissipggivé‘bodiés ié a
change in the distance from the center of the ellipsoid toAthe
invariable plane, résulting in a continuous change in polhode curves.
Figure 3 illustrates this process along with a geomet;ic interpretation

~

of the critical point of the tumbling motion, i.e., whether w has a

~

. positive or negative component.along d, when the energy passes HZ/ZI

3 2

determines the final spin orientation.

~

Sigce the nutation angle 8 (instantaneous position of the d3
axis with respect to the angular momentum vector) is the parameter of
concern, equations giving 9 as a function of time and/or rotational
energy are desirable. Although the equations of motion for a non-sym-
metric body are elliptical in nature and, therefore, not readily

reduced to an analytic solution, limits on the nutation angle can be

developed as straightforward functions of the energy state. For
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Polhodes for T < H2/212

s (T = H?/21,)

Separatrice

e 2. Rigid Body Polhodes

Figur
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-8
T < HZ/ZIZ, Reference 9 develops these bounds in the following manner.
Extreme values of 9 exist when w lies in either the 2-3 ‘or 1-3 plane,

as explained in Appendix A and illustrated in Figure 4. This results

- in the angular momentum and energy taking on the following values:

at»eu- : ' . ',atez
2 __ 2 2 2 2 2 _ -2 2 2 2
B” = L0, + 1w, H . I w4 1%,
L2 2 _ 2 2
2T = 12w2 '+ I3w3 ‘_2T = Ilwl + I3w3

1 2, 2 I zw 2
sinze = -2 22 sin292 =1 21
u H H
1 I
- 2 2, R § 2
- (2T - I5u37) - 7 (2T - I3u30)
H )
I I ‘
© o2 onT -2 + 1,59 =L orr-u?+1.%3%
1 m2 3 2 2 2 3 171
I.H
3 3
Manipulation of these equations™leads to
2 12(213T'H2) Iz2 2 2 '
sin“6 = + { -2I1.T+H +1Iw,” (1.-I.) }
u Hz(I 1) I Hz(I L) '3 272 3 72
372 3 372
) 11(213T-nz) 112 ) )
sin“0, = + { - 213T_+ H® + Lw, (13-11) }

2, 2,
H (13—11) I3H (13 Il).
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- 10
" Keeping in mind the particular energy and momentum conditioms that

exist at the respective extremes, the terms in brackets reduce to

zero, leaving 9
12(2I3T—H )

sinze =
Hi(13'12)
I.(21.T-H2)
2 1471 ‘
sin®0, = S—"—r
o - (13-11)

With the energy above the separatrix level (T > HZ/ZIé) thevfollowing

parallel development can be made. Figure 5 shows the inertia

~. .

ellipsoid with the d3 1

never equals zero (the elliptic solution for wl with T > HZ/ZI2 never

changes signl3), the upper and lower limits must both exist where wz

axis in one of its extreme positions. As &

' equals zero. At this point ml and w3 determine the nutation angle 0.

For a given energy state, every zero of the w, function coincides with

the same value for w,, with w, having the same absolute value but

1 3
alternating sign. Thus the d3 axis must oscillate about 90° with the
maximum angle of the oscillation giving both the upper and lower

bounds on 6. Defining this angle. as eex results in the following

equations:
2 2
I,7w I _
s1n26x=—3—23—=—3(zr—11m12)
ex .y H ,
1
3 2 2
=~ (2I.T ~ H° + I w.°)
I H3 1 373

1
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The aboVe relations take into account the fact that at this point in

the motion

’ 2 2
2T = Ilml ;+ I3w3
w, =0
2 2 2 2 2

H I1 W, + 13 Wy

Further manipulation yields
2 13(211T’H2) I32 2. 2
sin eex =3 + 7 { I3w3 (11-13) - (211T-u ) }
H (11-13) IlH (Il—I3)

Again, bearing in mind the particular energy and momentum conditions
at this point, the final term in brackets equals zero. Therefore,
21113 I

sin29 = - T -
ex 'HZ(I

3

1713 171,

To provide as general an interpretation as possible, introduce the

following terms:

13 1

12 1

T* B e——
max

where Tm_x is the maximum possible energy state for a given angular
=9
momentum., Thus, Tmax = HZ/ZIl. Making the above suBstitutions, the

bounds on the nutation angle reduce to the following forms:
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a. Motion above the separatrix (T >AH2/ZIZ)

"1-T*

l—T13

[T
92 = 90° - arcsin [EE= .
1-113

‘b. Motion below the separatrix (T < HZ/ZIZ)

= 90o 4+ arcsin

D
L

ua

ub

W -

- At this stégga two relaticnships are to be:néted: - oo
1) The infermediate moment of inertia (contained in.the term
112) has no effect on the nutation angle range above the
.separatrix, and né effect on the lower limit of 6 below the
separatrix,

2) At the separatrix

| )

T*:»—-]-'-=I

2 12
For a specific body having a minimum to maximum inertia ratio of one
half (I13 = 0.5) the range of T* is given by 0.5 < T# < 1.0. Figure 6
shows a plot of the bounds on € vs T#*, assuming that 112 = I13°

__Iherefore,_the first pair of equations holds. for the entire range

of T*. This case corresponds to a thin rod, initially spinning about
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A ls
its axis of nininum moment of ingr;ia.. As any transverse axis has
the same (maximuﬁ) moment of inertia, the final nutation angle can
take on any value between 0° ard 180°. Figure 7 shows the bounds on

6 for a body having the same I,., but with an intermediate ratio,

13

IiZ = 0.8. This value for T# (T* =j112 = 0,8) can be seen as the -

critical point in the motion, as the bounds on 8 divide into two

regions: one ending in a final nutation angle of zere, the other
c . . o . N
ending in a final 6 of 180, i.e.z; d

-~ ~

3 pointing in the opposite
direction as w and h.
Noting the continuity of the minimum values for © at the

transition point, the following relations can be written:

1-T*
8, = 90° - arcsin
fLa l-I13
r —T*
= arccos
1—113
T%—
sz = arecsin izlel
13
o T*-1
2 1-T* - 13
cos 0O = yosin (o) = e—
La 1 113 £b l—I13
: 1-1
2,. 2 _ 13 _
cos eza + sin sz =11 =1
13
6, =6

La b
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12

b’ Bub,'and.eza,'as the value for I

effect on these portions of the curve.

Thisuis gbnsiStént with the earlier observation that I did not

affect the bounds 0 2 has no

1

From the above description of tumbling motion it is apparent

that the critical point in the motion is where the energy satisfies
2 o
T=H /212 .

At this point either the nutation.aﬁgle‘or the sign of Wy identifiés
which direction the final spin vector will assume. As the nutation

angle is rather difficélt to measure, the sign of wq will be used to
determine the need for a control device. Assuming the control

algorithm outlined in Figure 8, magnitudes of the three components of

w, along with the sign of w,, must be known. Sensors are readily

3
available for-such appiication. Thus, it will be assumed that such
equipment will be included in the satellite.

~

With the rotation vector w known, real time calculations of the
energy state and the dimensionless energy parameter T* can be made.

Comparison of T* with the constant I_, then determines when the

12

criticaL energy state has been reached, as T* = I12 at the critical

point.
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© Y2 ©3
' 2
T = 393 }
Tes No Action
Yes No Action
No Control
* Required

Activate Lertrol System

Figure 8. Algorithm for Elimination of Spin Ambiguity.
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‘CONTROL SYSTEM ANALYSIS

Assuming that some control is required, three methods are
discussed here. Moving masses in such a way as to lower the ratio

I_., results.in .T* again being greater than 1 Thus, the motion

12 - 12°

continues with w lying above the separatrix level. -When w, becomes
positive, the masses are.retﬁrned to their original positions, and
112 is raised to its original value. While some enérgy is added in
Athis process the net effect still leaves ; crossing the separatrix
in the desired area. Starting an electric motcr within the satellite
increases the energy, and therefore T#*, again allowing more time for
; to move around until Q3 is positive. At this point, the motor is
stopped, and again ; crosses the separatrix in the desired area.
Both cf the zbove systems are attractive in that they ave completely
internal in nature. Thus, tﬁe angularbmomentum vector remains
unchanged, i.e., given the initial conditions, the final state is
dictateq. Hoyever, the size and orientation of the control elements

must be such that sufficient change in I or T* must be generated

12
- to insure that w does not cross the separatrix a second time before

w, becomes positive. Depending on the size of the satellite and the

3
énergy dissipation rates, this may require excessive size or volume
requirements to effectively control the spin.

In these cases it may be necessary to go to an external torque
to control the spin, i.e., reaction jets. These could be applied to
iﬁcrease the energy should the need arise, and decrease it again at
the appropriate time. This, however, will result in some shifting of

the final .angular momentum vector. A final choice of a control system

will depend on the individual situation.
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.

For the first method suggested, motion of the masses could
result in some loss of energy (see Appendix B). Thus, some criteria

are required to verify that the change in I 2 is sufficient to over-

1

come any loss in energy. TFor the configuration shown in Figure 9,

I. + A+ 2mr?

Ig=1h
I =1, +B+ 2uR>
2B " 2
: ' ’ 2, 2
I 'I3+C+2m(R‘+r)

where the subscript 'B' denotes before the weight shift. Similarly,

with 'A' denoting after the weight shift,

} _ 2

o | Ijp = Iyp — 2ur
I2A = IZB + 2mr (2R + 1)

I3A = I3B 4+ 2mRr

From these, the following momentum and energy relationships can be

written:
hy = wypT gl FW,pTopd + wyplogk
1, 2 2 2
Tp =5 {L1p%p  + Tpp¥p + I3p%35 )
W2
T = .——B—-
maxB . 211B
T I .
B 1B 2 2 2
T*k === {1I_ + 1.0 + I, w, “}
BTT T2 i 28Y28 38%38
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L T TR TR INE B TAE TR
_ 1 2 2 .2
Ta =2 (I + Topipy + Tapay !
_ h.2
T =-A
‘maxA 211A
T I
A 1A 2 . 2 2
* - =
=1 2 UL a0 ¥ L0, + 1305, )
maxA hA .
The magnitudes of hA and hB must be equal. If the masses are assumed

to move quickly with fespect to the

-~

the components of h, cdn be assumed

A
hB' These -conditions yield:

hA = hB =h
I
1B
w,, ===uw
lA_ I1A 1B
I
2B
w,, =7 W
2A I2A 2B
1
38
w,, =—"—Ww
3A I3A, 3B
4 =
At Fhe crossover point, T B 1123.
I, w 2 + I, w
1B"1B 2B 2B

rotation rates of the satellite,

to be equal to the components of

t‘;r-ﬂ

12A

[

2A



It T 4 X > I
The desired result is for T A Lo

I,

h2

2 2

{1 .+ IZA@ZA +

1A%1A

2, w'z
22024

La%a 7

+

Substitution of h2 from the equation for T*

‘results in:

I

- 2
b SRR {-

T4 Toa

To insure that this is true (thus T*A >

I, I

28T1a > 0

LigToa = TopTia

TipTon = Tpplsy > O

18524 TopT1a e 1w 2 {13312A'121313A
38%3B

22

2 1A
1,0, 1> =
3A73A I2A
: 2
2 _h
I,.w > -
3A°3A IZA

B at the crossover point

}>o0
T3a Toa

L1042

Substituting for IlA’ IZA’ and I3A yields:

IlB(ZR + r) +r I2B

IBB(ZR fAr) - R IZB

The first condition is always satisfied.

rewritten as:

I

5 2B
I

3B

r
2 + R

>

>0

0

The second can be
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As IZB < I3B (by definition of the problem), this condition is

satisfied for any positive values for r and R. Thus, the motion of
any masses. in the configuration illustrated in Figure 9 will result

in the motion subsequent to the weiéht shift being above the
> .
A I12 ).

Use of the momentum wheel, the second methed pfoposed, is the

separatrix (T#*

simple addition of energy to the system. For the simulation case used,

B

the motor was aligned with thé«vdi axis, to produce as large an effect

as possible on the angular velocity vector w. The reasoning behind

-~

this choice is shown in Figure 10 where it can be seen that the

-~

easiest way to physically move w above the separatrix is to increase

wl.

accordingly.

Thus, the control motor for the simulation was mounted

The final method considered is the-straight forward applicatioﬁ
of an external torque through ihe use of attitude control thrusters.
As mentioned previously, this is probably the least desirable of the
potential control methods, as it rgsults in a éhifting of the angular
momentum vector in inertial space. However, it is a possible means
of controlling the final spin?hj“the simple addition of energy
(positive torque) should'; cross the‘sepafatrix at the incorrect

interval, and the reduction of energy (negative torque) when the

des}red state has been reached.



-~

4

Figure 9,

24

Simulated Control

a

Mass Orientation

-1
wl(sec )

Figure 10.

-~

Projection of w in d, - d

~

1 3 Plane:
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SIMULATIONS AND RESULTS

The dynamic simulation used is very close to that used in

- Reference 4. This_@onsists of a rigid satellite with a fluid ring

damper mounted around the axis of maximum moment of inertia, in the

" 4 plane of the transverse axes of inertia. Partially filling this ring

with-damping‘fluid results in some motion of the center of gravity of

CERD T

the satellite.b Use of the characteristics fof the partially filled
. damper with Euler's equations (for motion about a fixéd point) results
in some oscillétion in the inertial angular momentum. Since the
principal concern of this study is the relationship between the
spaéecraft‘orientation and the inertial angular momentum, two alterna-
‘f#ves were'conéidered for correcting this problem: (1) usé of
: ‘equations derived in Reférence 14 for motion of a body with moving
masses, and, (2) use of a fully filled fluid damper, eliminating the
moving mass center., Use of the first method would involve considerably
more computer time to handle the complex differential equations arising
from the motion of the center of mass. This added time and effort
would add little or no information concerning the point of interest
“heére, ccntrol of the final sﬁin vector. The second method, while
. seldom used in practical applications due to very low dissipation
rates ds steady spip'is approached, does provide realistic energy
dissipation in the region of interest, with the advantage of a simple,
reiatively accurate mathematical model. Thus, the second method was
chosen and the equations of motion derived accordingly (See Appendix
C). For thgiweight shift control method, these equations (before the

weight shift).are:
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‘ 2 .
Wttg(Ly + A = Iy - 2or) - Qu,(wy +0)

. 3
w, = -
1 I +A+ 2ur?
2 " o
s mlm3(13 4+ 2mR” - I1 - A) + (‘ml(m3 + a) ‘
. 9
2 12 + A+ 2 mR”
| 0.0395 CR_.P %y .
0,0, (1 +20( 2R -1)) + —— 72 daly 52
. SR a
. n-
w3 =

L 2m )

o -0.0395 RadP L&I\ .9
a= i o
SR 7" a
n

- W,
A@éropriate chanées in the moments of inertia and application 6f the
same manipulations provide similar equations for the motion after the
masses have been shifted. These equations are then solved in the
simuiation diagrémmed in Figure 11. For all the simulations, a
fourth order Ruﬁge-Kutta method is used to solve the differential
equ#tioﬁs, using a fime stép of 0.25 sec. Several tiﬁe steps were
tried, but 0.25 sec. gives the best compromise between desirable
aécuracy and reasonable simula;ibn time for a given amount of computer
timet |

Alllequations are solved in the body fixed coo?dinate system,
fo provide the nutation angle ©® and to verify the accuracy of the
entire simulation, ﬁuler's angles (w,¢;6) are calculated using the

following equations.15

s _ 1 .
P = =in © (wl sin ¢ + w, cos ¢)



"Set initial conditions
Prepare output format
Print initial conditions

STATE = 1 .
Start Simulation

27

-1 Increment time and print |

results every 2 seconds

/T\

STATE = 3
Deactivate Control System

STATE = 2 ,
Activate Control System

Figure 11. Flow Chart for Computer Simulation.

,//ACheck.

8> .1

8 <.1

STOP
END
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. cos O
= wSI- sin. §

(leéipv@ + w, cos })
é = w cos 0 - w, sin ¢

again with a fourth order Runge Kutég,method. The values for.Euler's
angles are then used to transform tﬂe,angular momentum from the body
fixed to inertial co-ordinate systems. As this should remain
constant’for.theﬂfirst“two1contfol.systems, it provides an easy check
on the validity of the equations and the adequéc& of the time.step.

The:spacecraft mo@eled is the vehicle presented in Reference 4.

The appropriate physical properties are:

1, = 1785 fr-lb-sec’ (2380 kg - m>
2 2
12 = 5190 ft-lb-sec” (6940 kg - m )
) .y - - 2 men s 2
13 = 6920 ft-lb-sec” (9250 kg - m")

For the fluid damper the following figures apply:

2
p = 1.27 x 1073 2b=sec

in

(1.36 x 10° kg/md)

mercury as
viscous fluid

v=1,8 x 10—4 in2/sec (1.16 x 10_7m2/sec)

Rad

4.35 ft. (1.33 m)
D =0.13 ft. (0.0398 m)

For the control masses, the following values were chosen:

R=1ft. (0.30 m

r=3 ft. (0.91 m)
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m=51b. (2.26 kg)

It should be noted that simuIa;ions“were run with smallér lengths
and lighter masses. However, these‘prgved insufficient for having
the desired effect. With the above figures, the.pérameters.ll2 and
I.. take on the values 0.402 and 0.289, respectively. Figure 12

13

shows the theoretical 1iﬁits on the bounds on 6 for this‘particular
-body; Figure 13 shows the results of the computer_simulation fof

the aﬁgle 6. This case considers an angular momentum equivalent to an.‘
initial spin rate of -~ 10 rpm. The initial conditions are chosen

such that the satellites energy state is relativeiy near the
separatrix, yet far enough away to allow observation of several

cyc;es Befére‘the critical point is reaéhed.‘ It should also be noted
that initially the fluid slug has a body relative veloéity of zero.
Figures 13 and 14 show the nutation énglé, energy state, w3, and
dissipation rate.for the first simulation. " As can be seen from

these figures, nc control is required for this case, as eAis oscillating
towards the final limit of 0°, and w3‘is oscillating towards a final

’

positive value. These calculations are based on the empirical

friction coefficient f = 0.3l6/Rh1/4

for the fluid damper. Changing
this coefficient by 57 has the effect of revérsing the final odtcome
(see Figures 15 and 16). Thus, any attempt to predict the crossover
point and coptrol the final spin orientation by alteratiéﬁ of the
inifial conditions would require knowledge of the energy dissipation
rate, to within at least 5%. Alternatively, Figure 17 shows this

same second case with the moving masses incorporated into the system.

As the energy reaches the separatrix level initially, 6 is greater



30

9SB) UOTIBTNWEIS 10J @ U0 spunog °*gT °2an3fd.

(21) z93°weazeg £3xaug
0os* 09 oL 08° 06°

. & N

e
Ll v ¥

b
T

0zt

0ST

08

T

(6) °18uy uotaeiny



31

*31nsay paiayssq 10y £312ug puz 273uy uoTleINN

doe 052 , 00z - 0ST

5 S

*€T 2an3Ty

00T 08

.. .. /

09¢

- ToAoT A3asue Awoﬂuﬂmv.lll\\\\

ToaaT A31vuo UOFIBTNWTS

~——~—— (*298) ouy]

P 08€

{1 00%

L 0ZY

1 0%%

- 099
08Y

%ooa

00€ 052 002 05T

‘ 7
00T\ 05

0¢
0s

0L

g uo spunoq
TeoF33309y]

jutod TedTITI) —

e

0 103 s3Tnsaa =0Huwﬂsaﬁw.||||\\\\

VALYV

4

JOET
0ST

PUTAT

JOTT,

sqT1-33 (1) £3asuy

(g) @18uy uorleINy



32

€

*3Insay paarsaq uou. m pue 938y uotiedIssiq

092 092 .. 0% 002 08T

‘4T @an8TJg

09T

PR | JuFog TPOTITID

0o¢ | 0s2 | 002 0ST

llllllllﬂ.uumv Juyy

Jujod TeOTIFI) —=

1°0
z'0

€°0

(°2s/q1-33) 23ey uorledIssiq

[€°0~
€
VN_.Qucfpv
)
T°0 n
(W



33

*3TNS2y 3091100u] 103 ABasuy pue oT3uy ucyI2InN °GT =2an31g

00T

0S

00g

06¢ . 00¢

—

05T

09¢

19491 hmumcw.HaOﬂuﬂuoLllk\\

.o nnuumwucﬁom TedT3IT1D

13A9T 4A319U2 UOTIBTNUTS

At e —————

} 08¢
00Y
tozy
ony

q1-33 (1) 43asugy

r 09Y

- 08Y
(*o98) auyl .

§ Uo spunoq TedTIPI0dYY,

00¢

052

0ST

\ 50§
0L
. 001 ; 05/ ©

\

fuy uotrieIny

g 103 s3nsaz ¢0ﬁuwﬁssﬂmrllllllll\\\\




082

*3TNSaYy J991a00UY 103

092 042 022 00z - . 08T

€m pue 93wy uofIedissiq

‘9T @andy41

e

3uTog TBITITID

A NNAD)

( uomv i

+2°0
L0
90
8°0
- 0° T
AR
91
9°1
€0~
z°0-
1°0-

‘Juroq ﬁmoﬁuﬂuo.|\\\

GE '
LT Y

VAV VY

11°0
Z°0
'£°0

(°95/q1-13) °38y uorlIRdISSIQ

(. 299) Cm

T




35

e

00€

.

*poYy3a Tor3zuo) ssel Sujaol 103 a9jsweired AJasuy pue oT3uy UoFIeInN /LT Lan3T4

. 052

00

T

8€°0

10%°0

sUOT3ITsod Mau 03 anp TIAIT
£319ua TeOT3ITI2 PITITPOK

sossew TOI3u0d jO

-I3A37 £3x3uy UOTIETNUTS

ToA97 4813uy Hmoﬁuﬂuu

- (*298) ouyj,

rA k)
y%°0
19%°0
L 8%°0
05°'0

lz¢+0

onm

002

A

01

1

4

_vaAummu urede Jujod [EITITI)—e

/

01T
| OET

0ST

suotlysod TeutdTa0
03 pouUINld1 SISSEN

7

P N

Avm>ns.mwmmmav

" AuFod JUIFITAD

TN

L ot

(x1) Jénamelea A3asuy

(6) 218uy uorieiny



LY

36

vchan 900, therefore, it would oscillate towards the final value of

180°. Movemeént of the masses at this point results in the lowering

of the ratio 1 2 and therefore the critical energy level, allowing

1
0 to oscillate below 90°. At this éoint, the masses are returned to

their original positions I returns to its original value. .The

12
energy added by the movement of the masses is quickly dissipated, and
the c;itical energy is again reéched; with © now.oscillating towards
N 4 A .

| Using the electric motor control method and the initial conditions

used to obtain Figures 15 and 16, the simulation produced the results

shown in Figure 18. Rotor characteristics were tdken as

I, = 0.05 ft-lb-sec? (0.067 kg - m2)
2 2.
T = = - -
Ip = I3z = 0.025 £t-1b sec (05034 kg o),
"h. = 7.5 ft-lb-sec (10.0 ~E—F.)
R : sec

these being the characteristics ofla.large, commercially available
momentum wheel. Three such wheels were required to produce the
desired results., Figure 18 shows the energy state of the satellite,
with a&dition of the rotor energy an obvious platfdrm in the energy
level as the cfitical state is reached with 6 > 90°. Shutting off
the motors as\e reaches 90° again allows 6 to oscillate toward a
final value of 0°.

ﬁsing attitude control thrustérs, assuming a thrust of 5 1lbs.
for 3 seconds at a radius of 6 ft. produces the resﬁlts shown in
Figure l9; Again, the activation of the control system results in an
increase in the energy, allowing 6 to again return to the desired

region (O < 900). Theoretical limits on 6 are not given for this

case after the application of the control torque, as the theory gives
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-~

Q as the angle betwegn d, and the angular momentum vector. In the

3
preceding cases this‘coincidédkwith the z-axis of inertial space.:
The e#ternal torque results in a deviation of the direction of fhe
angular momentum vector of appro*imétely 3.4° while 6 is still being
measured. from the z-axis. This accounts for the irregular nature of
thé-oscillations after the application of the control torques.

Application of the external torque also results in a change in the

magnitude of the angular momentum vector of approximately 17%.
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CONCLUSEONS

The analytical expressions developed for the nutation angle 9,
coupled with the simulation results coinciding with the predictionms,
appear to verify that a tumbling body exhibits two distinct types of

‘motion. For an energy .state greater than h2/212 (where I, < I2 < 13)

1
. the nutation angle oscillates symmetrically about 900, while w3

oscillates through- positive and negative values. At the point where
2 motion is transformed, with 8 and w3 still

: . . o
oscillatory functions; however 9 now oscillates toward either 0  or

the energy equals h2/21

o . . . . . . .
180, while w, remains either a positive or negative function,

3 .
oscillating towards the final stable wvalue in either the positive or
negative sense. Control over this final orientation can be: most
-easily accomplished at the c;itical point T = hZ/ZI2 by varying

either the moments of inertia, the energy state, or both. The work
presented here verifies that the motion can be controlled by the use
of either moving masses, electric motors, or thrusters, along with
minimal sénsing equipment. The most attractive method appears to be
the moveable masses, as relatively large electric motors were required
to handle the sample case presented. Thrusters, while originally felt .
undesirable, may, with further work, prove to have one large advantage.
Tﬁis lies in flexibility of control. While either the maés or the
motors would have to be sized for worst case conditions, it may be
possible to derive an optimum thrust for any particular case, thus,

minimizing both the deviation in the angular momentum vector and the

mass neceded to effectively control the motion.
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APPENDIX A

Definition of extreme values for 0

+
th w, I

. _ 1

1 w,I
s k 272
9=arcsinl 2; 2 21 2 /
L T h o

Orientation of h in Body
Fixed Coordinates

ae _ 36 %1 a0 |
dt . aml dt 3(1)2 dt - Figure A-1
S : 2 |
_ 1 : i i dw,
' . dt
2. 2 2. 2 -
Lot Tt b le202 4 0202
2 141 2. b2
h
' 2
N 1 w212 du.)2
o * dt
2. 2 22 .
Lot Y9t p e 2p 2y, 202
2 1 Tl
i h
* 2 duy )
= = Lo el i}



- For O to be an extreme, 48 _ 0.

dt

2 ' 2 .
15 h™ - ZIlT ' (213T -h )(I2 - Il)
with o = |Taray  deller) I.I,1
: 37371 17273
2 h
QIBT e.hﬁ)(;o - Il)
R o A
dw .
rral 0 where wl. =. 0
dwl
EE—-= 0 where w2 =0
Extreme values of 6 coincide to points where either»ul or

equals zero.

}
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APPENDIX B

Loss of ehergy through mass motion

Consider a simply rotating body as
illustrated with moment of inertia I.

- The two masses at distance % from center

result in a total IT =1+ 2m2,2

Therefore, the momentum and energy equations are

ey

h = ol + 2u2?)
=1+ md)’
-Allowing the masses to move out to a length 2%, the moment of inertia,

momentum, and energy become:

‘ 2
IT I+ 8m?

h=uw 2

£ (I +: 8ml™~)

1 2 2
T 2 (I + 8mi") We

f

= final rotation vector. To maintain angular momentum,

2
wf - (I + 2m22) ®
I+ 8ml

where wf

I+ 2me?

1, = = EE2 (1 4 om?) W
' I+ 8mf
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APPEND IX ¢

Derivation of €quationg of motion

)
n

by

hl = .“’1(11 + A
h

hy = 53(13 + 2

Euler'g equatjong 15 yield

P 2
wl(IJ. + A+ Zmr?y 4

2
w2w3 (13 + 2n (r

4»

2
=, +A+2mr)

2
2=w2(12+A+2mR)

= w3(I3 + 2m (r2 + Rz)) + c(m3 + o'z)

+ 2mr.2)

, = ‘:’2(12 * A+ o)

(? + Rz)‘) + C(cf;3 + &)

- -2w3 (1, A+ 2ng?y =0

. _' 2
wz(‘12+A+2mR)+w

.513(13 + 2m(r? RZ)) + c(u33 +3d) £y

: 2
lm3 (Il+A+2mr)~ww

19 (I3 + 2pp2 %)

) w3'+c§) =0

lw2(12 + 4+ ZIHRZ)

2
- lwz(Il+A+2mr)-0

46



<
A

2 L e
WAW {12 + A - I3 - 2or°} - Cuw, (w3~ + o)

. 2
-wl(Il + A+ .2mr ) W3

w,w, {I +2mR2-I -A}+le(w3+&)

. 2
wZ(I2 + A + 2mR )‘ 1@y I+ 1

by(1, + C + 2n(r? + D) = w ©, {1 +2m (£2 - R%) - 1,} -Cd
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To find an expression for O, consider the friction force on the wall

as in elementary pipe flow. '

T, = (£/4) ov? /2

where '£' is an empirical resistance coefficient. The torque then
becomes:

N

- L&,
- T, Rad PB (-& )

3

where the term in parenthesis insures that the torque acts opposed
to fluid slug motion. Using an empirical friction coefficient'by
Blassius of

£ = 0.316/Rn1/“

the torque then becomes:

2 X
-0.316 pv RadPB :
Ny = 174 =
8R — a
n
Letting.
v = Rad o
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1574
-0.0395 p & %8 . e
N3 = l/4ad al/‘b (J%J_)
(D/v) A a
 -0.0395 p &, %pg 5) 1/
N =
3. oo &

Writing the kinetic energy of the fluid slug as

1 2
Tsv Z;Awl +.

1 2 1 2
.zsz +26(m3+a)
a Lagrangian formulation can be used to relate & to the motion of the

body. In the following equation, Qu is the retarding torque, therefore

Qu = N3
d 9T T
- -2 =4Q
dt Ja o "o
i . 0395 pr ;% a1
"&'{(C(“’g.'*'a): - 174
(D/v) a
-.0395 p R d15/4 16|31/ .
ca = 7 - Gy
(b/v) o

-.0395 o Rad15/4PB 1| 1L/

1/4 &

.

-

a =
c(d/V) 3
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Combining this with the equations for é results in -the complete
equations of motion for the rigid body

'mm3 {12+A—I -C—2mr2}-:Cwa

) 3
e

2

1

L 2 v
| w ey {13+c Il A+2mR}+Cula
2 12+A+ 2mR2

1)
]

+111/4
.0395 pR_,P8 la]™ /

om4 s

2 2
w0, {Il + 2m (r° - R°) - 12} +

e
]

2 2
13'+ 2n(r™ + R7)

. .0395 pr_p8 |&tt/
a = - W
coom 4 &

3

. .'
For the computer simulation & is treated as the principle varistle.
Thus the preceding are four first order differential equations in

four unknowns. Moving the masses to the axis (the proposed control

1
motidn) results in the following equations:
. B (I, A -1, -0) - Co, &
w=
Il + A
) ' .
: =“’1“’3(I3+C'11'A+ 2m(r+R))+Cwl,a
2

12+13+2m('r+R)2
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S . .O395pRad15/4P-8|'0.L|-l]-'/'4
S ww, (I, -1, = 2m (r + R)7) + 174 «
. T ' _ (d/Vv)~" " a
3 I, + 20 (x + B
15/4 B8’ |&] 174

.. —.0395 pRad .
g = 177 -w
‘C(D/v) o




