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LIST OF SYMBOLS

A,C fluid slug moments of inertia
*» «* *M

(Ld̂ d unit vectors along principal body axis

D diameter of ring cross section

f Darcy-Wiesbach resistance coefficient

h • angular momentum vector in body fixed co-ordinates
** ' ' \

H angular momentum vector in inertial co-ordinates

!-,!„,I principal moments of inertia

m mass of each moving mass

N- moment due to viscous shear in ring

P circumference of ring cross section

r,R parameters of moving mass system, defined in Figure 8

R scan radius of viscous ring
ad

R Reynolds number
n

T rotational kinetic energy

•
a angular velocity of fluid slug relative to the damper

ring

V, p kinematic viscosity and density of damper, respectively

T shear stress
0

0) angular velocity vector of the satellite

ip, 6, <f> Euler's angles

Subscripts

A, B after and before weight shift, respectively

a, b above and below the separatrix, respectively

u, i upper and lower limits, respectively



INTRODUCTION

It is a well documented fact that rotating semi-rigid bodies

("rigid" bodies experiencing energy dissipation) are stable only

when the rotation is about the axis of maximum moment of inertia.

This has been demonstrated analytically, and. verified in flights

2 3such as Explorer I and ATS-V satellites. The problem.arises from

the two potential orientations which" the final spin vector can take

after large angle reorientation from minor to major axis, i.e.,

along the positive or negative axis of the maximum inertia.

Reorientation of a satellite initially spinning about the minor axis

using an energy dissipation device may require that the final spin

orientation be controlled. Examples of possible applications are the
4

Apogee Motor Assembly with Paired Satellites (AMAPS) configuration,

where proper orientation of the thruster is required; and reorientation

of ATS-V, where the spin sensitive nature of the despin device ('yo-yo*

mechanism) requires that the final spin vector point in a specified

direction. The primary purpose of this work is to investigate

techniques for eliminating such-spin orientation ambiguities through

active controls. This control capability would be useful in controlling

orientation of tumbling bodies for retrieval purposes, and for actively

reorienting spin stabilized satellites which could be initially spun

up by the launch vehicle (either earth launch or shuttle deployment)

about the minor axis of inertia.



SUMMARY OF PAST WORK

Effects of energy dissipation on satellite dynamics have been

2 3 5
experienced in actual flights * ' and discussed in several analytical

1 6 7 8 9
treatments. ' ' * * These efforts, have, in. general, dealt with

discussions of the effect of dissipation on the precession rates and

the total time required for a satellite to go from one spin state to

another. References 1 and 6 describe attitude drift for single and

dual-spin symmetric bodies. Reference 7 discusses the effect of

flexible appendages as energy dissipators on symmetric satellite

dynamics. Non-symmetric body motion in body fixed and inertial

coordinates is discussed in Reference 8 while Reference 9 illustrates

several methods of modeling the energy dissipation process and describes

effects on non-symmetric bodies.

Control of attitude drift is discussed in References 10, 11, and

12. .Axisymmetric spacecraft control is proposed in Reference 10, in

which a method is presented for maintaining a satellite on a

configuration other than spinning about the axis of maximum inertia.

This is done by addition of energy.into the system to compensate for

energy dissipation. Reference 11 touches briefly on non-symmetric

satellite precession control with controlled energy dissipation, and

presents numerical examples for symmetric satellites. Control of a

non-symmetric satellite is studied in Reference 12, but only for small

nutation angles, i.e., active energy dissipation is used to return the

satellite to the desired stable position after it has been perturbed.

None of the control systems proposed to date have considered., the



question of whether the spin vector will align itself with the positive

or negative axis of maximum moment of inertia when the spin axis is

initially about the minor axis.



DYNAMICS ANALYSIS

Constant energy motion of a non-symmetric, rigid body, in a

torque-free environment is geometrically described by Poinsot's motion.

This is the motion of an inertia ellipsoid (having dimensions

proportional to the moments 'of inertia of the body) that rolls without

slipping on an "invariable plane" while its center is a. fixed distance

9
/2T/H from the plane. This sHrisation is illustrated in Figure 1.

The allowable paths for this motion in the body fixed 'coordinate frame

are closed curves called polhodes, each having a fixed discrete energy

level for given angular momentum. Figure 2 shows several polhodes on

the inertia ellipsoid for a fix.ed angular momentum and several different

energy levels.

A logical extension of this motion for dissipative bodies is a

change in the distance from the center of the ellipsoid to the

invariable plane, resulting in a continuous change in polhode curves.

Figure 3 illustrates this process along with a geometric interpretation

of the critical point of the tumbling motion, i.e., whether u has a

~* 2
positive or negative component ;,along d_ when the energy passes H /2I-

determines the final spin orientation.

Since the nutation angle 9 (instantaneous position of the d.

axis with respect to the angular momentum vector) is the parameter of

concern, equations giving 9 as a function of time and/or rotational

energy are desirable. Although the equations of motion for a non-sym-

metric body are elliptical in nature and, therefore, not readily

reduced to an analytic solution, limits on the nutation angle can be

developed as straightforward functions of the energy state. For
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8
2

T < H /2I7, Reference 9 develops these bo.unds in the following manner.

Extreme values of 8 exist when w lies in either the 2-3 or 1-3 plane,

as explained in Appendix A and illustrated in Figure A. This results

in .the angular momentum and energy taking on the following values:

at 8 : at 60u A

n2 _ 2 2 ̂  _ 2 2 U2 _ 2 2 A , 2 2
2 W2 3 ̂ 3 = 1 Wl 3 U3

2T = I u ) + l w 21 = I o> + I U).

From the geometry of the situation, it is evident that

2 2 2 2
2 ? 7 2 11

sin 6 L z ' .u H2 I R2

-I (2T - IU 2) = -i (2T - I u 2)
H H J

T D^ •* " *• -T U*1 J JI3H I3H

Manipulation of these equations ""i-eads to

I ( 2 1 T-H2) I 2 9 2
sin 8 = -± ^ + f { - 2I.T + r + I u/ (T,-I,) )

T T / " T T \ T IJ f T T \ • fc^ O ^
Q \ ^ o ~" •*• o / *> V * o o /3 2 3 3 2

2 I1(2I3T-H2) I 2 2 2
sin 9, = -i ^ + r± { - 21 T + HZ + I w (I -I ) }

1T(I -I ) I H^(I -I )
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Keeping in mind the particular energy and momentum conditions that

exist at the respective extremes, the terms in brackets reduce to

zero, leaving - .
, I (21 T-1T) .

sin 9 = Z 3

H2(I3-I2)

2 I (21 T-H2)
sin 6n =

 1 -?

2
With the energy above the separatrix level (T > H /2I-) the following

parallel development can be made. Figure 5 shows the inertia

ellipsoid with the d_ axis in one of its extreme positions. As OJ

2
never equals zero (the elliptic solution for to., with T > H /2I« never

changes sign ) , the upper and lower limits must both exist where W9

equals zero. At this point u and w determine the nutation angle Q.

For a given energy state, .every zero of the w? function coincides with

the same value for u , with w, having the same absolute value but

alternating sign. Thus the d_ axis must oscillate about 90 with the

maximum angle of the oscillation giving both the upper and lower

bounds on 9. Defining this angle,, as 6 results in the following
G2£

equations :

2 3 2
9ex - ' <2T - * A

~r (21 T - H2 + I
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The above relations take into account the fact that at this point in

the motion

2T = IU2 + I^2

2 2 2 2 2• riV+ '3 V
o>2 = o

Further manipulation yields

2 I (21 T-IT)
sin^e = -* + j2(IrI3) " <2IiT~u2)

Again., bearing in mind the particular energy and momentum conditions

at this point, the final term in brackets equals zero. Therefore,

2sin 0
2IX

ex T

To provide as general an interpretation as possible, introduce the
I .

following terms:

i -i13 ~ I

T* =
max

where T is the maximum possible energy state for a given angular

momentum. Thus, T = H /2I . Making the above substitutions, themax j.

bounds on the nutation angle reduce to the following forms :
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2
a. Motion above the separatrix (T > H /2I0)

9 = 90° + arcsinua

90° - arcsin

o
•b. Motion below the separatrix (T < H /2I.)

T*-I
9 . = arcsin ' 13

ub

At this stage, two relationships are to be noted:

1) The intermediate moment of inertia (contained in the term

I,?) has no effect on the nutation angle range above the

separatrix, and no effect on the lower limit of 9 below the

separatrix.

2) At the separatrix

2I2

T* = — = T
I2 12

For a specific body having a minimum to maximum inertia ratio of one

half (I13 = 0.5) the range of T* is given by 0.5 < T* < 1.0. Figure 6

shows a plot of the bounds on 9 vs T*, assuming that !.._ = 1,3•

.Therefore, the first pair of equations holds for the entire range

of T*.. this case corresponds to a thin rod, initially spinning about
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its axis of minimum moment of inertia. As any transverse axis has

the same (maximum) moment of inertia, the final nutation angle can

take on any value between 0 arid 180 . Figure 7 shows the bounds on

6 for a body having the same I._, but with an intermediate ratio,

!•„ = 0.8. This value for T* (T* = 'I - = 0.8) can be seen as the

critical point in the motion, as the bounds on 9 divide into two

regions: one ending in a final nutation, angle of zerp;, the other

ending in a final 8 of 180 , i.e-;» d_ pointing in the opposite

direction as 0) and h.

Noting the continuity of the minimum values for 6 at the

transition point, the following relations can be written:

6. = 90° - arcsin ~—
xa 1-113

1-T*= arccos

T*-I,.

T*-T2o 1-T* ''' . 20
 L L13cos 90 = • • •• '

la 1~I
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This is consistent with the earlier observation that !-„ did. not

affect the bounds 9n, , 0 , , and 9. , as the value for I 0 has noXD UD xa j.£

effect on these portions of the curve.

From the above description of tumbling motion it is apparent

that the critical point in the motion .is where the energy satisfies

T = H2/2I2 .

At this point either the nutation angle or the sign of u_ identifies

which direction the final spin vector will assume. As the nutation

angle is rather difficult to measure, the sign of 0)« will be used to

determine the need for a control device. Assuming the control

algorithm outlined in Figure 8, magnitudes of the three components of

0), along with the sign of w , must be known. Sensors are readily

available for such application. Thus, it will be assumed that such

equipment will be included in the satellite.
•v

With the rotation vector 0) known, real time calculations of the

energy state and the dimensionless energy parameter T* can be made.

Comparison of T* with the constant I then determines when the

critical energy state has been reached, as T* = I _ at the critical

point.
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'•!
X* =

max

Activate Go&trol System

No Action

No Action
No Control
( Required

Figure 8. Algorithm for Elimination of Spin Ambiguity.



19

CONTROL SYSTEM ANALYSIS

Assuming that some control is required, three methods are

discussed here. Moving masses in such a way as to lower the ratio

I results in .T* again being greater than I..* Thus, the motion

continues with u) lying above the separatrix level. When to. becomes

positive, the masses are.returned to their original positions, and

I is raised to its original value. While some energy is added in

this process the net effect still leaves w crossing the separatrix

in the desired area. Starting an electric motor within the satellite

increases the energy, and therefore T*, again allowing more time for

U) to move around until o)_ is positive. At this point, the motor is

stopped, and again w crosses the separatrix in the desired area.

Both of the above systems are attractive in that they are completely

internal in nature. Thus, the angular momentum vector remains

unchanged, i.e., given the initial conditions, the final state is

dictated. However, the size and orientation of the control elements

must be such that sufficient change in I or T* must be generated
•«*

to insure that u> does not cross the separatrix a second time before •

0)_ becomes positive. Depending on the size of the satellite and the

energy dissipation rates, this may require excessive size or volume

requirements to effectively control the spin.

In these cases it may be necessary to go to an external torque

to control the spin, i.e., reaction jets. These could be applied to

increase the energy should the need arise, and decrease it again at

the appropriate time. This, however, will result in some shifting of

the final angular momentum vector. A final choice of a control system

will depend on the individual situation.
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*

For the first method suggested, motion of the masses could

result in some loss of energy (see Appendix B) . Thus, some criteria

are required to verify that the change in I._ is sufficient to over-

come any loss in energy. For the configuration shown in Figure 9,

In_ =1, + A + 2mr
2

J..D J-

I-»i» = I-» + c + 2m (* + *)JO J

where the subscript 'B1 denotes before the weight shift. Similarly,

with 'A1 denoting after the weight shift,

I2A = L2B + 2tnr (2R + r)

I 3A = I 3B + 2 m R r

From these, the following momentum and energy relationships can be

written:

^B = "IB̂ B1 r̂ BT2BJ + W3BI3Bk

TB = I {I1BU1B2 + ̂ B̂ B2 + I3BW3B2>

^

T = - -
maxB 21 10

J-D
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TA •" {IIA'W! xA 2 1A 1A

maxA 21, .
1A

T I
T*A " ̂~ " "^T t I AW1A

2 + loA^OA2 + I-JA
W'JA

2AT. ,2 iA 1A 2A 2A 3A 3AmaxA h. x .A

The magnitudes of h. and h must be equal. If the masses are assumed

to move quickly x/ith respect to the rotation rates of the satellite,

the components of h. can be assumed to .be equal to the components of
A

h_. These conditions yield:

hA = hB * h

_
V - "IB '12B

Z2B

3A X3A. 3B 12A

At the crossover point, T* = I100.
O

^ T 2 ^ T 2 h 2

- + I 2 B U 2 B +I3BW3B = IT
Zo
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The desired result is for T*. > I...A 1ZA

"¥ tl1Aoj..
2 + l-.u* + IoAw,A

2> >.2 1A 1A 2A 2A 3A 3A 2A

2 . T 2 . _ 2' h2

I co + I to + I ci) > ~~
.Lz* JLx\ ~ £*\ £f\ ^x\ J*V o *

2
Substitution of h from the equation for. T* at the crossover point

D

results in:

T 2 f
IlBI2A~I2BIlA , . _ 2 f

I3BI2A~I2BI3A , x ..Î O),- {• = } + IORW i ^ ;: > > 0
1" •"* J-i A ^OA JB JB 1_. 1_.1A 2A 3A 2A

To insure that this is true (thus T* > I10A)-,A

Substituting for IIA> I. , and I yields:

Ilfi(2R + r) + r 1^ > 0

I3B(2R + r) - R I2B > 0

The first condition is always satisfied-. The second can be

rewritten as:
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As 1OD < I,_ (by definition of the problem), this condition is
ZiS JD

satisfied for any positive values for r and R. Thus, the motion of

any masses, in the configuration illustrated in Figure 9 will result

in the motion subsequent to the weight shift being above the

separatrix (T*A > 1.̂). - •

Use of the momentum wheel, the second method proposed, is the

simple addition of energy to the system.. For the-simulation case used,

the motor was aligned with the --d. axis, to produce as large an effect
*•

as possible on the angular velocity vector u. The reasoning behind

this choice is shown in Figure 10 where it can be seen that the

easiest way to physically move w above the separatrix is to increase

U . Thus, the control motor for the simulation was mounted

accordingly.

The final method considered is the straight forward application

of an external torque through the use of attitude control thrusters.

As mentioned previously, this is probably the least desirable of the

potential control methods, as it results in a shifting of the angular

momentum vector in inertial space. However, it is a possible means

of controlling the final spin'by the simple addition of energy

(positive torque) should w cross the separatrix at the incorrect

interval, and the reduction of energy (negative torque) when the

desired state has been reached.
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m m

Figure 9, Simulated Control Mass Orientation

0.3 T

0.2 •

0.1 ..

o
0)m
v^
en

-0.1 ••

-0.2

-0.3 1

Figure 10. Projection of u> in d - d Plane.
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. ' SIMULATIONS AND RESULTS

The dynamic simulation used is very close to that used in

Reference 4. This consists of a rigid satellite with a fluid ring

damper mounted .around the axis of maximum moment of inertia, in the

plane of the transverse axes of inertia. Partially filling this ring

wi.th damping flu-id results in some motion of the center of gravity of

the satellite. Use of the characteristics for the partially filled

damper with Euler's equations (for motion about a fixed point) results

in some oscillation in the inertial angular momentum. Since the

principal concern of this study is the relationship between the

spacecraft orientation and the inertial angular momentum, two alterna-

tives were considered for correcting this problem: (1) use of

equations derived in Reference 14 for motion of a body with, moving

masses, and, (2) use of a fully filled fluid damper, eliminating the

moving mass center. Use of the first method would involve considerably

more computer time to handle the complex differential equations arising

from the motion of the center of mass. This added time and effort

would add little or no information concerning the point of interest

•'here, control of th'e final spin vector. The se'cond method, while

seldom .used in practical applications due to very low dissipation

rates as steady spin is approached, does provide realistic energy

dissipation in the region of interest, with the advantage of a simple,

relatively accurate mathematical model. Thus, the second method was

chosen and the equations of motion derived accordingly (See Appendix

C). For the weight shift control method, these equations (before the

weight shift) are:
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2 •

A. - I3 - 2mr ) - Cu2(oj_ + a)
. :

I + A + 2mr

~ Ij_' - A) + Ca)1(u)3 -fa)
2

I2 + A + 2 mR

- , O.C395 CR .P I*) 9

u u (I +2m(r -R?)-I ) +
SR ' an>

a).
3 3*'2m (R2 + r2)

.. -0.0395 R .P .'I 0
0 ad ,|aL- 2

SR •*'•" a J

n

Appropriate changes in the moments of inertia and application of the

same manipulations provide similar equations for the motion after the

masses have been shifted. These equations are then solved in the

simulation diagrammed in Figure 11. For all the simulations, a

fourth order Runge-Kutta method is used to solve the differential

equations, using a time step of 0.25 sec. Several time steps were

tried, but 0.25 sec. gives the best compromise between desirable

accuracy and reasonable simulation time for a given amount of computer

time.

All equations are solved in the body fixed coordinate system.

To provide the nutation angle 0 and to verify the accuracy of the

entire simulation, Euler's angles (>!>,<}>,6) are calculated using the

following equations.

• 1

r (GO., sin d> 4* co_ cos 4*)
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T* > I

Set initial conditions
Prepare output format
Print initial conditions

STATE = 1 .
Start Simulation

Increment time and print

results every 2 seconds

STATE = 3
Deactivate Control System

STATE = 2
Activate Control System

Figure 11. Flow Chart for Computer Simulation.
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sin cos

8 = 0). cos 6 - w sin $

again with .a fourth order Runge Kutta. .method. The values for .Euler's

angles are then used to transform the. angular momentum from the body

fixed to inertial co-ordinate systems. As this should remain

constant .for .the .first ..two ,control-systems, it provides an easy check

on the validity of the equations and the adequacy of the time step.

The spacecraft modeled is the vehicle presented in Reference 4.

The appropriate physical properties are:

• Ix - 1785 ft-lb-sec
2 (2380 kg - m2

12 = 5190 ft-lb-sec
2 (6940 kg - m2)

13 = 6920 ft-lb-sec
2 (9250 kg - m2)

For the fluid damper the following figures apply:

_ -
p - 1.27 x 10 , (1.36 x 10 kg/in )

in

v = 1.8 x 10"4 in2/sec (1.16 x 10~7m2/sec)

mercury as
viscous fluid

Rfld - 4.35 ft. (1.33 m)

D = 0.13 ft. (0.0398 m)

For the control masses, the following values were chosen:

R = 1 ft. (0.30 m)

r - 3 ft. (0.91 m)



29

m - 5 Ib, (2.26 kg)

It should be noted that simulations were run with smaller lengths

and lighter masses. However, these proved insufficient for having

the desired effect. With the above figures, the parameters I.- and

I-_ take on the values 0.402 and 0.289, respectively. Figure 12

shows the theoretical limits on tbe bounds on 9 for this particular

body. Figure 13 shows the results of the computer simulation for

the angle 9. This case considers an angular momentum equivalent to an

initial spin rate of - 10 rpm. The initial conditions are chosen

such that the satellites energy state is relatively near the

separatrix, yet far enough away to allow observation of several

cycles before the critical point is reached. It should' also be noted

that initially the fluid slug has a body relative velocity of zero.

Figures 13 and 14 show the nutation angle, energy state, u_, and

dissipation rate for the first simulation. As can be. seen from

these figures, no control is required for this case, as 9 is oscillating

towards the final limit of 0°, and co- is oscillating towards a final

positive value. These calculations are based on the empirical

friction coefficient f = 0.316/R for the fluid damper. Changing
n

this coefficient by 5% has the effect of reversing the final outcome

(see Figures 15 and 16). Thus, any attempt to predict the crossover

point and control the final spin orientation by alteration of the

initial conditions would require knowledge of the energy dissipation

rate, to within at least 5%. Alternatively, Figure 17 shows this

sane second case with the moving masses incorporated into the system.

As the energy reaches the separatrix level initially, 9 is greater
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*

than 90°, therefore, it would oscillate towards the final value of

180°. Movement of the masses at this point results in the lowering

of the ratio I , and therefore the critical energy level, allowing

8 to oscillate below 90 . At this point, the masses are returned to

their original positions I . returns to its original value. .The

energy added by the movement of the masses is quickly dissipated, and

the critical energy is again reached, with 9 now oscillating towards

0°.

Using the electric motor control method and the initial conditions

used to obtain Figures. 15 and 16, the simulation produced the results

shown in Figure 18. Rotor characteristics were taken as

I,_ = 0.05 ft-lb-sec2 (0.067 kg - m2)J.K
IOT> " *« = °'025 ft-lb-sec2 (0.034 kg m2)

7.5 ft-lb-sec (10.0vD . .R v sec

these being the characteristics of a large, commercially available

momentum wheel. Three such wheels were required to produce the

desired results. Figure 18 shows the energy state of the satellite,

with addition of the rotor energy an obvious platform in the energy

level as the critical state is reached with 9 > 90°. Shutting off

the motors as 9 reaches 90 again allows 9 to oscillate toward a

final value of 0°.

Using attitude control thrusters, assuming a thrust of 5 Ibs.

for 3 seconds at a radius of 6 ft. produces the results shown in

Figure 19. Again, the activation of the control system results in an

increase in the energy, allowing 9 to again return to the desired

region (9 < 90 ) . Theoretical limits on 9 are not given for this

case after the application of the control torque, as the theory gives
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6 as the angle between d and the angular momentum vector. In the

preceding cases this coincided-with the z-axis of inertial space.

The external torque results in a deviation of the direction of the

angular momentum vector of approximately 3.4 while 6 is still being

measured from the z-axis. This accounts for the irregular nature of

the oscillations after the application of the control torques.

Application of the external torque also results in a change in the

magnitude of the angular momentum vector of approximately 1%.
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CONCLUSIONS

The analytical expressions developed for the nutation ah'gle 9,

coupled with the simulation results coinciding with the predictions,

appear to verify that a tumbling body exhibits two distinct types of

2
motion. For an energy state greater than h /2I. (where I < I» < I_)

the nutation angle oscillates symmetrically about 90 , while w_

oscillates through positive and negative values. At the point where
2

the energy equals h /2I» motion is transformed, with 6 and u still

oscillatory functions; however 9 now oscillates toward either 0 or

180 , while u, remains either a positive or negative function,

oscillating towards the final stable value in either the positive or

negative sense. Control over this final orientation can be most

2
easily accomplished at the critical point T = h /2I~ by varying

either the moments of inertia, the energy state, or both. The work

presented here verifies that the motion can be controlled by the use

of either moving masses, electric motors, or thrusters, along with

minimal sensing equipment. The most attractive method appears to be

the moveable masses, as relatively large electric motors were required

to handle the sample case presented. Thrusters, while originally felt

undesirable, may, with further work, prove to have one large advantage.

This lies in flexibility of control. While either the mass or the

motors would have to be sized for worst case conditions, it may be

possible to derive an optimum thrust for any particular case, thus,

minimizing both the deviation in the angular momentum vector and the

mass needed to effectively control the motion.
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APPENDIX A

Definition of extreme values for 6

2 2 2 2

6 = arcsin —

dt. 3w dt 8o>2 dt

yV^uM.

L/ W

Orientation of h in Body
Fixed Coordinates

Figure A-l

2 2

1-
2 2 2 2

do).

dT

r1
2 2T 2
. + «Q2 I2

2 2 2
L W2 2

dw du

3
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For 9 to. be an extreme, — = 0.

,, |h2 - 2I.T (2I T - h2)(I - I )
with" u- = L , dn{(t-t )- ,T T1 Jl(I-I) o^ III

2I.T - h2 /(2I.T - h2)(I9 - I )
.fT... -T v.. sn{(t-t ) "(I - i) o

-— - 0 where u." = 0
at 1

da)
•5—=- = 0 where w0 = 0at /

Extreme values of 9 coincide to points where either w. or <£,

equals zero.
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APPENDIX B

Loss of energy through mass motion

Consider a simply rotating body as

illustrated with moment of inertia I.

The two masses at distance A "from center

2
result in a total 1 = 1 + 2mA

Therefore, the momentum and energy equations are

h • 0)(] 2mJl2)

T = j (I + 2mA2)u2

Allowing the masses to move out to a length 2A, the moment of inertia,

momentum, and energy become:

IT - I + 8mA
2

h = w (I + 8mA2V

T£ - j u)

where uf = final rotation vector. To maintain angular momentum,

,
0), - (

I + 8mA

N) Q>

_
Tf = 7Z

2mA

I + 8mA

„ 02m£

.
1+ 8mA

T£ < T.
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A ~

.Cl- + A + 2mR ) = u.w. {I- + 2mR - I - A} + Co) (u3 + a)

a>3(I3 + C + 2m(r
2 + R2)) = u^ {^ + 2m (r2 - R2) - 1^ - C a

To find an expression for a, consider the friction force on the wall

as in elementary pipe flow. •

• TQ « (f/A) pv
2/2

where 'f is an empirical resistance coefficient. The torque then

becomes :

N3 ' * To Rad PP 01

where the term in parenthesis insures that the torque acts opposed

to fluid slug motion. Using an empirical friction coefficient by

Blassius of

1 1U
f • 0.316/R -'n

the torque then becomes:

-0.316 PAPS

8R1'"
n

Letting

v = R , aad

R = R . a D/Vn ad
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*

-0.0395 p R

-0.0395 p

Writing the kinetic energy of the fluid slug as

Ts- ' iV + 2 ̂  + 2 C <W3 + ")2

a Lagrangian formulation can be used to relate a to the motion of the

body. In the following equation, Q is the retarding torque, therefore

. .0395 PR ,15/4PB |i|11/4

-.0395 p E ,
15/4PB |

a = a- , ;. 03,
C(D/v)1/4 a 3



49

Combining this with the equations for u results in the complete

equations of motion for the rigid body

2 *
u),.(j). {I. + A - I- - C - 2mr } - .Cu9a

^ _ _£_J - £ - 1 - £__
1 - I + A + 2nr2

+ C - I - A + 2mR2} + GO-oc

I2 + A + 2mR
2

.0395 PR
(1)̂2 (IL + 2m (r - R

Z) - I2} + —
 aa

a

.0395 p R .P0 aad '

2m(r" +

11/4

For the computer simulation a is treated as the principle variable.

Thus the preceding are four first order differential equations in

four unknowns. Moving the masses to the axis (the proposed control

motion) .results in the following equations:
•

+ A

D w (I + C - I - A + 2m(r + R)2) + Co) a
: 2I2 -H B + 2m(r + R)



.0395PR .

+ 2m (r + R)2

-.0395 PR «/* P«- |1r- ad .a = 777 - a)
C(D/v)'iM a
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