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ABSTRACT
The 118 + 115 elastic and 115 + 215 and 115 + 2!P excitation
cross sections of Helium atoms by collision with a charged particle are
obtained as analytic functions of incident veloéity‘ The first order time
dependent scattering tﬁeory is used. Numerical values of e -He cross
sections are obtained for incident energies in the range (30 ev - 800 eV)
and compared w1th earller Born approx1mat10n calculations and with avail-

able experimental data. It is found that at 100 eV and above, the present

results are in good agreement with the experimental results of Vriens et al

(1968) for elastic scattering, of Lassattre (1965) for 11s » 215 and of

Vriens et al (1968) for 11S - olp excitations. They are also closer to the.

experimental results than the corresponding Born calculations.
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1. Introduction

In this paper we use the first order time dependent scattering
theory to evaluate optically allowed and forbidden transition cross sections
in atomic He by collision with a charged particle. This method was first
used in atomic collision problems by Seaton! (1963) who pointed out the
superiority of the_crqss seétions thus obtained over that given by the usual
Born épproxiﬁation§ Subsequently other auﬁhors have used the method to
calculate cross sections for many optically allowed trgnsitions2 and for
transitions mediated by the quadrupole force3.

These early works are characterized by two further approximations
within the framework of a first order theory. First, the exact Coulomb
interaction is replaced by an outer expénsion in terms of multipole moments
and second, a cut off parameter is introduced on plausible physical grounds
to prevent the cross sections from growing indefinitely at small impact
parameters. These:itwo approximations are related in the sense that the
miltipole potential, valid for felatively larger distances, necessarily .
diverges when extended down to the origin. It is‘this divergence which the
cut off parameter is designed to prevent. The use of multipole expansion
also limits the kind of cross sections that can be calculated by this method.
For example, the optically forbidden 1S + 25 transitiohs in H or 1is + 218
in He cannot be evéluated from such a potential (due to the vanishing of_the
_relevant matrix elements). Recently the semiclassical method has been ex-
tended to calculations of such and other cross sections by the more eléborate
and in principle more accurate method of solving the (time dependent) close’
coupling equations“. As is well known, unlike the first order theory, this

involves extensive numerical computations. We therefore, consider it worthwhile
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to investigate the use of the first order theory in predicting analytically
optically forbidden as well as allowed transitiéns in He: Reexamining the
first order theory in the line indicated above we find ihat if no approxima-
tion is made of the interaction potential, then the unsatisfactory diver-
gences (and the associated problem of choosing a (nbn-unique) cut off para-
meter) can be eliminated. At the same time, the cross sections for all
_transitions; including the optically forbidden ones, can still be obtained
directly as analytic functions of the incident energy. in this work, to
illustrate the procedure we have evaluated the elastic ils -+ 115 and the
inelastic 118 + 2lS and 115 > 21P cross sections in He (for electron impact)
and compared them with the available experimental results and with calcula-

- tions under Born approximation,



2, Theory
The transition probability in the first order time dependent pertur-

bation theory is given by

1 ® iwt 2
Pirg gin e 1 f_w e Vi+J(t)dt| _ (1)
i _
- where
2 2 )
. (Z Ze Z Zge -
V. .(t) = fd? 6. (*.) -3 ¢ (r )
i p % T (T T HOEA.

¢i and ¢J are initial and final wavefunctions, Si is the statis;ical weight
of the state i and the summation is over the degenerate initial and final
states of the target; fw = Ei“Ef’ Zo is the charge on the incident‘particle
“and Z is the nuclear charge of the atom. The motion of the incident
particlé is described by the classical trajectory ;(t) which we assume to

be a straight line along the z-axis.

i) = b2+ (vt ®3)
o
where b is the impact parameter v is the velocity and t stands for time,
" We have adopted the following analytic Hartree-Fock wave functions for

the He atom4’s.

N
"115(;1’;2) = o oggréig(ny) (4)



" where
¢15(r) = exp (-ar) + B exp(-Br) (5)
with
N1 = 1,6966 B = 0,7990
a = 1.41 | =261
> - NZS { 2
wzls(rl,rz) = _TT—— exp (' rl) ¢zs(r2)
(6)
+ eXp ('zrz) ¢25(r1)} )
where
$,5(r) = exp (-yr) + Dr exp (-6r) @)
with st~ = 0.70638 D= -0.26832
y = 1.1946 § = 0,4733

which is orthogonal to the ground state wave function (4).



N .
1 > -+ _ 2 -+
vy ey (rphrp) = ;I;é.{exP (-2ry) ¢2pm(?2)
| (8)
+ exp (-2r2) ¢2p (;l)}
m

where

‘3 -
¢2pm (r) = r exp (-Ar) Ylm-(r) (9)
with
sz = 0.37831 A = 0.485,
and Yo (r) is a spherical harmonic

Fbr the eigen energies we have adopted the experimental values5

E = 2,90372 Bl = 2.14597

lls 2

1 =51 .
E)}, 2.1238L, N

First, using the ebove wave functions the trensition potentials (2) are

_gglculated{ . Substituting these (time dependent) potentials in (1) the
integratioh over time is performed analytically to obtain the expressions
for the transition probabilities which are given in the appendix. The Té-
' spective cross sections are then obtained from the expression

Vv -3
=L
0, ¢(E) = J P, ; (b) 2mbdd. ) (10)
i (o}
It is to be noted that the above definition of transtion cross sections
automatically satisfies the quantum - mechanical reciprocity relation,

provided the velocity of the projectile in its entire trajectory is taken to

be an average of the velocities before and after the collision, which we



set simply equal to the mean velocity

Vi + Vf

V=S L (11)

This choice further fulfills the réquirement that the transition cross sections
(10) vanish at the thresholds.

We now carry out the‘ihtegrations over the impact parameters in (10)
and obtain the o1lg 4 1l 01lg > 2l and'olls - 21p cross sections in terms
of the well known Gauss - hypergeometric functions. The method of obtaining
the final refults are described in the appendix and the full expressions are
obtainable from.the authors on request. Iﬁspite of their lengths the
expressibﬁs are basically simple.

3. Discussion:

In Tables 1, 2.and 3 we give representative values for the elsastic

1

1°s » lls cross sections and the inelastic lls > 213 and lls'+21p Cross

sections in ‘He by e  impact. To compare ve also quote results of previous
}brn calcula‘cions5 using the same wave functions and several experimental

measurementsT—ll.



Energy
(ev)

50
100
150
200
300 .
Loo

500

Teble 1. Cross sections for the

elastic scattering of electrons by He-(in‘ﬂai)

Present: Experimenta First Bornb Simplifiedb

Results _ Second Born
(complete)

0.9598 ,

0.4799 0.76 0.k11 , 0.893

0.3199 0.Lk 0.288 ~0.51k4

0.2399 1 0.31 : 0.222 0.352

1 0.1600 0.19 0.152 . 0.211

0.1200 0.1k2 0.115k 0.1489

0.0960 0.0931 0.1146

8yriens et.al., (ref. T)

buolt et. al. (Ref. 5)



Table 2. Cross Sections for the

Excitation 1l's -+ 2's of He by electrons.

(in 10_3ﬂai)

Energy Present Expt® Expt® First® Simplified®
in ev ~ Results ’ Born Second Born
(complete)

30 - o hh.22

soA . 36.2k

80 : 25.30
100 20.88 21.0 21.8 - 22,8
1501 14,46 "15.0 ' 15.1 15.4
200 11.0L . 11.2 T.7 11.k9 - 11,63
300 7.k49 7.6 6.0 T.79 7.8k
400 5.66 5.7 4.8 5.89 | 5.92
500 L.s55- h.?h\ L.75
700 3.27 3.l 3.h2

®Lassettre (Ref. 9)
Pyriens et.al. (Ref. 8)

®Holt et.al. (Ref. 5)



Energy
ev

50

80

100

150

200

300
ROO
600

800

Present
Results

16.97
16.09
14,96
12.52

10.75

8.45

7.02
5.32
4.33

Table 3. Cross Sections for the

Excitation 1's =+ 2'p of He by

Electrons (in 10"2'rrao

a

Expt

1h,0
11.9
10.L
8.2
6.9
5.2
4,3

8yriens Et.Al. (Ref. 8)

Yhonaldson Et. Al. (Ref. 11)

Ciolt Et.Al. (Ref. 5)

11.

11.

10.

S - A e I

b

Expt

2)

First®
Born

15.09
12,63
10.85

8.55

7.12

5.37
4,38

10

Simplifiedc
Second Born

15.91
12,6k
10.67 -
8.3k
6.9
5.25
k.29
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It would be seen from the tables that the results for all the three
cross sections are in good agreement with experiﬁental measurements above
100 e.v. They are at the same time closer to the experimental results than
the quantal Born éalculations. At energies below 100 e.v the disagreement
with expgriment (in the available case of 1l's + 2'p transition) is marked.
This disagreement at lower epergies is perhaps to be expected, for the
first-order perturbations theory is unlikely to be valid at such energies.
‘Both the influence of exchange processes and the polarisation of the target
atom,:which are neglected in the present calculations, are likely to be
importént.at such energies and the ﬁse of the second order perturbation
theory alone is unlikely to be sufficient (Notice e.g. the difference
between thé second Born results and the experimental values even at 100 e.v)

We expect, howevers that at 100 ev. and above the present analytic.
reshlts would be useful for rapid and reliable calculations of similar
cross sections given here. Finally we note that the above results apply-
directly for colllslons with charged particles other than electrons (e-g-qé+and H+)

when the appropriate centre of mass veloc1t1eq are used for the projectlle.



APPENDIX

V.1 fR)= J wx, (r,,7,) [ &~ % ] (T ’r )
l‘s+2-s 2 172 R T% ; T%:%_T- tistd ‘

-> .
where R(t) is the position vector of the incident e~ referred to the Helium

nucleus.
11~+215( R) =32 Ny Ny [T (a+2, a+y)+DIy(a+2,a+s8)
+ B2 {Tj(g+2,8+y) +D Iy (B+ v, B+ é)i
+ B'{Il(a +2,B+Y)+ Il(é +2, a+y)l
+ BD {Ip(a +2, B+8)+ I, (B+2,a+8)}]
where |

_ 2 rexpf~pR) 5y . exp(-aR) >
Il(p,q) = LJQ%YIL_.(l + Sﬁ) + S (1 + Eﬁ)]

I(p,a) = -2 L%% §XP(-pR) (1 + 5%)

+ exp(-qR) (R P Ly 6y,
)

l s+lls(R)

' 2
16le [I;(2a, 2a) + B 11(23, 28)

+

4B2 I,(o + 8, ot B) + 4B I;(20, o + B)

+

483 I (26, a+B)+ 282 1, (2a, 28)]

Vilgsptpn(R) = Mpp Tpg

6L (q)1/2
= (m _Ylm(e,cb)
[I3(a + 2, 0+ 2) + I5(8 + 2, B+ 1)

+ B {13(G +2, B+ )+ 13(8 +2, a+2A)}]



where

8 . L

. g
I(P,Q)’-‘-——-[——————exp(qR){ + — + — + R}]

3 p3¢® o3r° a R2 @R 4
‘Pl's—*Q'S(b) = 32NlSN23 [Ih(a +2; o+ Y) + DIS (a + 2, o+ )

o+

B2 {T),(B + 2, B+ y) + DI(B + v, B + &)

-+

B‘{Iu(o‘+2’S+Y)+Ih(5+2’°‘+Y)

-+

BD {15(a + 2, 8+ 8)+ 15(8 +2, 8+ 68)}]

where b visv the impact parameter defined in eq. 3 and

00

I),(psa) = J I,(p,a) at
+ 551—' {Ko(Blb) + K _(80)}]
with. ' 3
B, = "o + wR/v2
82 = q2+ W2./v2

and - 3
3K, (B1b) K, (Bob)
I(p,a) = % [__3;2_ P S Y S A 1

jole} qgsi‘ _ p? 3 82}
+ __6__ {K_(Byb) + K (8,b))
p3q*
3,2



/%

2 27,2
with g5 =k A A
Q@ + we/v?
Pl\s_)lls(‘b) = 16le [1,(20,20) + BY Ih(28 28)
+ 4B2 L(a+ 8, o+ B) + 4B I)(20,a + B)
+ 4B Ih(és, o+ 8) + 282 1)(20,28)]
Py plpn(®) = Tty (rH2E (T (e w2, a4 )
+Ig(B+2,8+2) +B{Ig (a+2,8+2) +1Ig(B+2,a+1)}]
m m m e
. where
2wl 3_3 18 -
160(p,q) el 342 [(13 {K (B2b) Ko(ﬁuF)}
b1 29
+ (q i + 5 3) Kl(BZb) b
2
2
+ ——“-Z-KO(BQb) ]
Bo 2
with Bh = w/v.
_ _ -2 3 i¢ _3 8
Iéila‘(P,q) =3 g7 ¢ o7 [Eg (8K, (B,0) - 8 %, (8,p)}
' K. (8,b)
Y 172" 2
otz Ko (sz)p+-é-2—— b?]

Flnally, when these expressions for the tran51t10n probabilities are used
in eq. (10) for the cross section, the integrals that arise are of the

forms (a) and (b) where



-

/5

(s J »-} Ky (pb) K (qp) db
(o]
- 2-2—)\ p'-v-H‘“1 gv r(l-)\+u+v )T (l-k—-ﬁ+v)
T(1-1) 2 , 2
1-A+yu-v 1-A-pu-v 1-A4pty  1-A-utv ‘
2
1 -X; 1~ : ”
SYREE-2 : |
for Re A <1 - |Re u| - |Re v]
where 2Fl is the gauss hypergeometric function.
(v) jo (8, K, (8)0) - B, K (8,0)] 85 K (o
6.2 6. - 8.21n6 8. 21nB,-8,"1Ink
3 37 "1 1 "3 37 %2 Po
= 5 5 - =5 3 1f83#610r82
B," - B4 B, - Bg
6.2 1n g, - 8.°1n 8 1 1f 8, =8
I Wil B 1 +1n (8,) + 5 37 P
- 8 2 _ g 2 :
1773
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