Effects of Propagation Parallel to the Magnetic field on the Type I Electrojet Irregularity Instability

K. Lee* and C. F. Kennel

Department of Physics

and

Institute of Geophysics and Planetary Physics

PPG-137 November 1972
Effects of Propagation Parallel to the Magnetic field on the Type I Electrojet Irregularity Instability

K. Lee* and C. F. Kennel

Department of Physics

and

Institute of Geophysics and Planetary Physics

PPG-137 November 1972

This work was supported by NASA grant NGL 05-007-190 S4
and NSF grant GA-34148X.

*Present address: Los Alamos Scientific Laboratory, Los Alamos,
New Mexico 87544
EFFECTS OF PROPAGATION PARALLEL TO THE MAGNETIC FIELD
ON THE TYPE I ELECTROJET IRREGULARITY INSTABILITY

K. Lee* and C.F. Kennel
Institute of Geophysics and Planetary Physics
University of California
Los Angeles, California 90024

ABSTRACT

A simple analysis indicates that Type I irregularities which have a slight component of propagation along the magnetic field may be more unstable than those which propagate across the field. Since these waves have very large group velocities, detailed ray tracing would be required to establish their true convective amplification. Nevertheless, there remains the possibility that significant irregularity amplitudes may occur at the northern or southern extremities of the equatorial electrojet from those modes with large north-south group velocity, and furthermore, they could significantly change our understanding of nonlinear solutions of the electrojet instability.

Publication No. 1076, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.

*Present address: Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544.
The purpose of this note is to point out several interesting features of the instability commonly thought responsible for Type I irregularities in the equatorial electrojet (Buneman, 1963; Farley, 1963) when propagation parallel to the magnetic field lines is allowed for. The dispersion relation is derived in Appendix A using fluid theory

\[\omega = \frac{k \cdot V_{ed}}{1 + \alpha} + \frac{\hat{\alpha} k}{1 + \alpha} V_{id} + i \frac{k^2 c_T^2}{\nu_i} \frac{\hat{\alpha}}{1 + \alpha} \left[\frac{Q^2}{(1 + \alpha)^2} - 1 \right] \]

(1)

where the notation is defined in Appendix A. \(Q^2 = \left[\frac{k (V_{ed} - V_{id})}{k c_T} \right]^2 \)

parameterizes the strength of the instability. Equation (1) differs from the \(k_{||} = 0 \) result in a transparent fashion, since the effective electron collision frequency \(\hat{\nu}_e \) is

\[\hat{\nu}_e = \nu_e \left[1 + \frac{2 \Omega_e}{k^2} \right] \]

\[\alpha = \frac{\nu_e \nu_i}{\Omega_e \Omega_i} \left[1 + \frac{2 k^2}{\nu_e} \right] \]

(2)

Since \(Q^2/\nu_e^2 \gg 1 \) in the E-region even small \(k_{||}/k \) leads to \(\hat{\nu}_e \gg \nu_e \).

Most investigations of the electrojet instability have assumed \(k_{||} = 0 \), because the instability threshold for \(k_{||} \neq 0 \) requires a larger electrojet drift \(Q \).

Of course, eq. (1) indicates that the threshold for instability, given by \(Q^2 = (1 + \alpha)^2 \) increases with \(k_{||} \), and has a minimum, \(Q^2 = 1 + \alpha \), when \(k_{||} = 0 \). However, when \(Q^2 \) exceeds \((1 + \alpha) \) it is not true that the most rapidly growing modes occur for \(k_{||} = 0 \). Figure 1, which shows a plot of \(\frac{\nu_i \text{ Im} \omega}{k^2 c_T} \) as a function of \(\alpha \), must be interpreted...
as follows. \(\hat{a} \) must exceed \(a \), and \(Q \) must exceed \((1+\alpha)\) for instability. Therefore, if the positive maximum growth rate occurs at \(\hat{a} > a \), the fastest growing mode has \(k_{\parallel} \neq 0 \). A convenient approximate expression for \(\hat{a}_m \) is

\[
\hat{a}_m = \frac{1}{2} \frac{Q^2 - 1}{Q^2 + 1}
\]

so that the fastest growing mode has \(k_{\parallel} \neq 0 \) if \(\frac{1}{2} \frac{Q^2 - 1}{Q^2 + 1} > \alpha \). Since \(\alpha \approx 0.1 \) at 110 km in the equatorial electrojet, it is easy to destabilize \(k_{\parallel} \neq 0 \) modes in the upper electrojet. The parallel wavenumber of the maximally growing wave is given by

\[
k_{\parallel}^2/k^2 = \left(\frac{\nu_i}{\Omega_e} \right)^2 \left[\frac{1}{2\pi} \left(\frac{Q^2 - 1}{Q^2 + 1} \right) - 1 \right]
\]

which is ordinarily very small. As Kaw (1972) has pointed out, the electrojet must be treated as convectively unstable. To determine convective amplification lengths we must compute the group velocity parallel to the magnetic field

\[
\frac{\Delta \omega}{\Delta k_{\parallel}} = -2 \frac{\nu_i}{\Omega_e} c_T \frac{Q}{(1+\alpha)^2} \frac{k_{\parallel}}{k} \frac{\Omega_e}{\nu_i}
\]

\[
= -2 \left(\frac{\nu_i}{\nu} \right) \frac{\cos \theta}{p} \left(k_{\parallel} \frac{\Omega_e}{\nu} \right)
\]

In a completely polarized vertically stratified electrojet model, appropriate only to very near the magnetic dip equator, the vertical ion and electron drifts are equal and the vertical group velocity \(\Delta \omega/\Delta k_v \) is given by

\[
\frac{\Delta \omega}{\Delta k_v} = \alpha V \frac{\nu_e}{p} \left(\frac{\Omega_e}{\nu_e} \frac{k_{\parallel}}{k} \right) \sin \phi + \frac{\Delta \omega}{\Delta k_v} (k_{\parallel} = 0)
\]

\[
= \frac{\alpha V}{p} \left(\frac{\nu_e}{\nu_e} \frac{k_{\parallel}}{k} \right) \sin \phi + \frac{\nu_i}{\nu} \frac{\Omega_e}{p}
\]
where $\frac{\partial \omega}{\partial k_v}$ $k_\parallel = 0$ denotes the vertical group velocity when $k_\parallel = 0$, which is ordinarily an order of magnitude smaller than V_p, the magnitude of the horizontal east-west electron drift velocity. In Eq. (5) above, $\varphi = \tan^{-1}\left(\frac{k_v}{k_n}\right)$, where k_n denotes the horizontal component of the wave vector. Thus, when \(\frac{\Omega_e}{v_e} k_\parallel^2 \approx 1 \)

\[
\frac{\partial \omega}{\partial k_v}(k_\parallel = 0) < \frac{\partial \omega}{\partial k_v}(k_\parallel \neq 0) << \frac{\partial \omega}{\partial k_\parallel}
\]

(6)

with $\frac{\partial \omega}{\partial k_\parallel}$ larger than $\frac{\partial \omega}{\partial k_v}(k_\parallel \neq 0)$ by about an order of magnitude. Therefore, while the growth rate can peak at $k_\parallel \neq 0$, the group velocities may also increase, which increases the convective amplification length. Since the electrojet scale lengths in the vertical direction and along the magnetic field differ by an order of magnitude, for $\left(\frac{\Omega_e}{v_e}k_\parallel/k > 1\right)$ the increase with increasing $k_\parallel \neq 0$ of the vertical group velocity is as significant as that of the parallel group velocity. Careful ray tracing in good models of the electrojet with latitude structure included (Untiedt, 1967; Sugiura and Poros, 1969) is required to determine the actual convective amplification of these models. However, these simple estimates lead to the speculations that: (1) not all the unstable models in the electrojet have $k_\parallel = 0$; and (2) since observations of the electrojet indicate that $Q^2 > 1 + \alpha$ much of the time, there could be amplitude maxima of irregularities at the north-south extremities of the equatorial electrojet arising from waves with small k_\parallel/k propagating along the field lines. Finally, since the interesting $k_\parallel/k - v_e/\Omega_e << 1$, the waves discussed here will be essentially indistinguishable.
experimentally from those with $k_\parallel = 0$; however, they might significantly change our understanding of the nonlinear solutions of the electrojet instability. For example, unstable waves with $k_\parallel \neq 0$ could carry off considerable wave energy otherwise available for saturation.
REFERENCES

At a given altitude, \(\alpha = \frac{v_{e}v_{i}}{\Omega_{e}\Omega_{i}} \) is given. Then, \[
\hat{\alpha} = \alpha \left[1 + \frac{k_{\|}^{2}}{\frac{k^{2}}{2} \frac{\Omega^{2}}{v_{e}^{2}}} \right]
\]
must exceed \(\alpha \). Thus, only the right hand portions of these curves are relevant. If \(Q \geq 1 + \alpha \), instability is possible. The maximum growth rate occurs at \(\hat{\alpha}_{m} = \frac{Q^{2} - 1}{Q^{2} + 1} \). If \(\hat{\alpha}_{m} > \alpha \), the fastest growing mode has \(k_{\|} \neq 0 \); if \(\hat{\alpha}_{m} < \alpha \), the fastest growing mode has \(k_{\|} = 0 \)
Appendix A

FLUID DISPERSION RELATION FOR UNIFORM PLASMA

The dispersion relation will be derived from the following fluid equations

\[N_j M_j \left(\frac{\partial}{\partial t} + \mathbf{v}_j \right) \cdot \nabla \mathbf{v}_j = -\nabla P_j + q_j N_j \left(E + \frac{\mathbf{v}_j \times \mathbf{B}_0}{c} \right) \]

\[- \mathbf{v}_j N_j M_j \mathbf{v}_j \]

\[\frac{\partial N_j}{\partial t} + \nabla \cdot N_j \mathbf{v}_j = 0 \]

\[P_j = N_j T_j \]

\[\nabla \cdot \mathbf{E} = 4\pi e (N_i - N_e) \]

\[\mathbf{E} = \mathbf{E}_s + \mathbf{E}'(r, t) \]

The subscript \(j \) (i, e) refers to ions or electrons; \(N_j \) = the number density, \(M_j \) = the mass; \(\mathbf{v}_j \) = the fluid velocity, \(P_j \) = the pressure, \(T_j \) = the temperature, \(q_j \) = the charge, \(\mathbf{E} \) = the electric field, \(\mathbf{B}_0 \) = the magnetic field, and \(\nu_j \) = the neutral collision frequency. The neutrals have been assumed immobile. The steady state solution of the above equations are
\[\mathcal{N}_0 = \text{constant} \]

\[\nu_j = \frac{\varepsilon_j \Omega_j \tau_j c E_s}{1 + \Omega_j \tau_j} \frac{c E_s}{B_0} + \frac{\Omega_j^2 \tau_j^2 c E_s \times B_0}{1 + \Omega_j \tau_j} \frac{c E_s}{B_0^2} \quad (A.1) \]

\[j = i, e \]

\[\varepsilon_i = 1; \quad \varepsilon_e = -1 \]

and where \(E_s \) is the static electric field linearizing the above fluid equations and Fourier transforming in space and time, with \(k = \) wave vector and \(\omega = \) frequency

\[(-i \omega + i k \cdot \nu_j d + \nu_j + \varepsilon_j \Omega_j e_B x^j) \nu_j'(k, \omega) \]

\[= \frac{e \varepsilon_j E'(k, \omega)}{M_j} - \frac{i k c_j^2 N_j'(k, \omega)}{N_0} \quad (A.2) \]

\[\frac{N_j}{N_0} = \frac{k \cdot \nu_j'(k, \omega)}{\omega - k \cdot \nu_j d} \quad (A.3) \]

\[i k E'(k, \omega) = 4 \pi e (N_i' - N_e') \quad (A.4) \]

where \(e_B = \frac{B_0}{B_0} \); \(c_j = \frac{T_j}{M_j} = \frac{T}{M_j} \).
Define $e_\parallel = \frac{k_\parallel}{k}; \quad e_\perp = \frac{k_\perp}{k}; \quad \hat{e}_\perp = e_\perp \times e_{B0}$

$$v_j' = (e_\parallel \cdot v_j')e_\parallel + (e_\perp \cdot v_j')e_\perp + (\hat{e}_\perp \cdot v_j')\hat{e}_\perp$$

where k_\parallel and k_\perp are components of the propagation vector parallel and perpendicular to the magnetic field respectively.

Taking the scalar product of (A.2) with e_\parallel gives

$$-i\omega_j \cdot e_\parallel \cdot v_j' + ik_\parallel c_j \frac{2(k \cdot v_j')}{\omega_j} = \frac{e\epsilon_j}{M_j} e_\parallel \cdot E'$$ \hspace{1cm} (A.5)

where $\omega_j = \omega - k \cdot v_j d; \quad \omega_j' = \bar{\omega}_j + i\nu j$

Taking the scalar product of (A.2) with e_\perp gives

$$-i\omega_j \cdot (e_\perp \cdot v_j') + \epsilon_j n_j (\hat{e}_\perp \cdot v_j')e_\perp \cdot (e_{B0} \times \hat{e}_\perp)$$

$$+ ik_\perp c_j \frac{2(k \cdot v_j')}{\omega_j}$$

$$= \frac{e\epsilon_j}{M_j} e_\perp \cdot E'$$ \hspace{1cm} (A.6)

Taking the scalar product of (A.2) with \hat{e}_\perp gives

$$-i\omega_j \cdot (\hat{e}_\perp \cdot v_j') + \epsilon_j (e_\perp \cdot v_j')e_\perp \cdot (e_{B0} \times e_\perp) = 0$$ \hspace{1cm} (A.7)
Note that $e_\perp \cdot \left[e_0 \times (e_\perp \times e_0) \right] = 1$. (A.7) then becomes

$$\left(e_\perp \cdot v_j \right) = \frac{-e_j \Omega_j}{i\omega_j} (e_\perp \cdot v_j) \tag{A.8}$$

Substituting (A.8) into (A.6)

$$\left[-i\omega_j - \frac{Q_j^2}{i\omega_j} + \frac{ik_\perp c_j^2}{\omega_j}\right] (e_\perp \cdot v_j) + ik_\parallel k (e_\parallel \cdot v_j) \frac{c_j^2}{\omega_j} =$$

$$\frac{ee_j}{M_j} (e_\perp \cdot E') \tag{A.9}$$

Using (A.5) and (A.9) to eliminate $(e_\perp \cdot v_j')$ gives

$$\left\{ \frac{k_\parallel k_\perp c_j^4}{\omega_j^2} + \left[-i\omega_j - \frac{Q_j^2}{i\omega_j} + \frac{ik_\perp c_j^2}{\omega_j}\right] \left[-i\omega_j + \frac{ik_\parallel c_j^2}{\omega_j}\right] \right\} (e_\parallel \cdot v_j')$$

$$= -\frac{ee_j}{M_j} \left(i k_\parallel k_\perp c_j^2 \frac{e_\perp \cdot E'}{\omega_j} + \left[i\omega_j + \frac{Q_j^2}{i\omega_j} + \frac{ik_\parallel c_j^2}{\omega_j}\right] (e_\perp \cdot E') \right) \tag{A.10}$$

Eliminating $(e_\parallel \cdot v_j')$ from (A.5) and (A.9) gives

$$\left\{ \frac{k_\parallel k_\perp c_j^4}{\omega_j^2} + \left[i\omega_j + \frac{Q_j^2}{i\omega_j} + \frac{ik_\parallel c_j^2}{\omega_j}\right] \left[i\omega_j - \frac{ik_\parallel c_j^2}{\omega_j}\right] \right\} (e_\perp \cdot v_j')$$

$$= \frac{-ee_j}{M_j} \left(i k_\parallel k_\perp c_j^2 \frac{e_\perp \cdot E'}{\omega_j} + \left[i\omega_j - \frac{ik_\parallel c_j^2}{\omega_j}\right] (e_\perp \cdot E') \right) \tag{A.11}$$
Since only electrostatic perturbations are being considered,
$E'(k) = E\frac{k}{k}$, (A.8), (A.10), and (A.11) can be combined to give

$$v_j' = \frac{-e\epsilon_j}{M_j} E' \left\{ \left[\frac{\Omega_j^2 - \omega_j^2}{\omega_j} \right] \frac{k_j^2 c_j^2}{\omega_j \omega_j} + \frac{\omega_j'}{\omega_j k_j^2 c_j^2} \right\}^{-1}$$

$$+ \left\{ - \left[\Omega_j^2 - \omega_j^2 \right] \frac{i k_{||}^2}{k \omega_j^2} + i \omega_j \frac{k_j}{k} - \epsilon_j \Omega_j \frac{k_j \times \epsilon_{B_0}}{k} \right\}$$

(A.12)

Combining (A.3), (A.4), and (A.12)

$$1 = \sum_{j=i, e} w^2_{pj} \left\{ \left[\Omega_j^2 - \omega_j^2 \right] \left[\Omega_j^2 - \omega_j^2 \right] - \omega_j^2 \right\} \left\{ \left[\Omega_j^2 - \omega_j^2 \right] \omega_j v_j - k_j^2 c_j^2 \right\}$$

$$\cdot \left\{ \frac{k_j^2}{k_j^2 \Omega_j^2 - \omega_j^2} \right\}^{-1}$$

(A.13)

where $w^2_{pj} = \frac{4\pi N_0 e^2}{M_j}$

In the ionospheric E-layer $v_i \gg \Omega_i$, so that the ion Hall drift can be neglected to lowest orders. For long wavelengths and low frequencies, unity may be neglected in (A.13). Furthermore, we assume $w_i, \bar{w}_e << v_e, v_i$. Since $v_e \gg v_i$, first order terms in \bar{w}_i/v_i will be kept; those in \bar{w}_e/v_e will be dropped. With these approximations (A.13) reduces to
where \(\hat{v}_e = v_e \left[1 + \frac{k_i^2}{k^2} \frac{\Omega_e^2}{\nu_e^2} \right] \). The quadratic (A.14) has one damped solution, and the growing solution is given by

\[
\omega = \frac{k \cdot \nu_{ed}}{1 + \alpha} + \frac{\alpha}{1 + \alpha} \nu_{ld} + \frac{1}{\Omega_e \Omega_i (1 + \alpha)} \left[\frac{\Omega_e^2}{\nu_e^2} \right] ^2 \left[\left(\frac{Q}{1 + \alpha} \right)^2 - 1 \right] \tag{A.15}
\]

where \(\hat{\alpha} = \frac{\nu_e \nu_i}{\Omega_e \Omega_i} \), \(c_T^2 = \frac{T_e + T_l}{M_l} \) and \(Q = \frac{k \cdot (\nu_{ed} - \nu_{ld})}{kc_T} \).
UCLA PLASMA PHYSICS GROUP REPORTS

* Published by Experimental Group
† Published by Theoretical Group

R-1 "Propagation of Ion Acoustic Waves Along Cylindrical Plasma Columns", A.Y. Wong (July 1965)*
R-2 "Stability Limits for Longitudinal Waves in Ion Beam-Plasma Interaction", B.D. Fried and A.Y. Wong (August 1965)*
R-3 "The Kinetic Equation for an Unstable Plasma in Parallel Electric and Magnetic Fields", B.D. Fried and S.L. Osakow (November 1965)†
R-5 "Effects of Collisions on Electrostatic Ion Cyclotron Waves", A.Y. Wong, D. Judd and F. Hai (December 1965)*
R-7 "Observation of Cyclotron Echoes from a Highly Ionized Plasma", D.E. Kaplan and R.M. Hill (May 1966)*
R-8 "Excitation and Damping of Drift Waves", A.Y. Wong and R. Rowberg (July 1966)*
R-9 "The Guiding Center Approximation in Lowest Order", Alfredo Baños, Jr. (September 1966)†
R-10 "Plasma Streaming into a Magnetic Field", S.L. Ossakow (November 1966)†
R-11 "Cooperative Effects in Plasma Echo Phenomena", A.Y. Wong (March 1967)*
R-12 "A Quantum Mechanical Study of the Electron Gas Via the Test Particle Method", M.E. Rensink (March 1967)
R-14 "The Expansion and Diffusion of an Isolated Plasma Column", J. Hyman (May 1967)
R-17 "Parametric Coupling Between Drift Waves", F. Hai, R. Rowberg and A.Y. Wong (October 1967)*
R-18 "Cyclotron Echoes from Doppler Effects", A.Y. Wong (March 1968)
R-21 "Test Particle Theory for Quantum Plasmas", M.E. Rensink (October 1967)†
R-23 "Landau Damping of Ion Acoustic Waves in a Cesium Plasma with Variable Electron-Ion Temperature Ratio", K.B. Rajangam (October 1967)
R-24 "The Inhomogeneous Two-Stream Instability", G. Knorr (September 1967)
R-26 "Small Amplitude Waves in High Beta Plasmas", V. Formisano and C. Kennel (February 1968)†
R-60 "Efficient Modulation Coupling Between Electron and Ion Resonances in Magnetoactive Plasmas", A. Wong, D.R. Baker, N. Booth (December 1969)*
R-63 "Perturbed Ion Distributions in Ion Waves and Echoes", H. Ikezi and R. Taylor (January 1970)*
R-67 "Dispersion Discontinuities of Strong Collisionless Shocks", F.V. Coroniti (March 1970)+
R-68 "An Ion Cyclotron Instability", E.S. Weibel (April 1970)+
R-72 "A Note on the Differential Equation g'' + x^2 g = 0", E.S. Weibel (April 1970)
R-76 "Laminar Wave Train Structure of Collisionless Magnetic Slow Shocks", F.V. Coroniti (September 1970)+
R-78 "Spatial Cyclotron Damping", Craig Olson (September 1970)
R-79 "Electromagnetic Plasma Wave Propagation Along a Magnetic Field", C.L. Olson (September 1970)+
R-83 "Nonlinear Collisionless Interaction Between Electron and Ion Modes in Inhomogeneous Magnetoactive Plasmas", N. Booth (December 1970)*
R-84 "Observations of Parametrically Excited Ion Acoustic Waves", R. Stenzel (March 1971)
R-85 "Remote Double Resonance Coupling of Radar Energy to Ionospheric Irregularities", C.F. Kennel (January 1971)+
R-86 "Ion Acoustic Waves in a Multi-Ion Plasma", B.D. Fried, R. White, T. Samec (January 1971)+
R-87 "Current-Driven Electrostatic and Electromagnetic Ion Cyclotron Instabilities", D.W. Forslund, C.F. Kennel, J. Kindel (February 1971)
R-88 "Locating the Magnetospheric Ring Current", C.F. Kennel and Richard Thorne (March 1971)
R-89 "Ion Acoustic Instabilities Due to Ions Streaming Across Magnetic Field", P.J. Barrett, R.J. Taylor (March 1971)
R-90 "Evolution of Turbulent Electronic Shocks", A.Y. Wong and R. Means (July 1971)*
R-91 "Density Step Production of Large Amplitude Collisionless Electrostatic Shocks and Solitons", David B. Cohen (June 1971)
R-95 "3-D Velocity Space Diffusion in Beam-Plasma Interaction without Magnetic Field", P.J. Barrett, D. Gresillon and A.Y. Wong (September 1971)
PPG-96 "Dayside Auroral Oval Plasma Density and Conductivity Enhancements due to Magnetosheath Electron Precipitation", C.F. Kennel and M.H. Rees (September 1971)
PPG-97 "Collisionless Wave-Particle Interactions Perpendicular to the Magnetic Field", A.Y. Wong, D.L. Jassby (September 1971)
PPG-98 "Magnetospheric Substorms", F.V. Coroniti and C.F. Kennel (September 1971)
PPG-100 "Structure of Ion Acoustic Solitons and Shock Waves in a Two-Component Plasma", R.B. White, B.D. Fried and F.V. Coroniti (September 1971)
PPG-101 "Solar Wind Interaction with Lunar Magnetic Field", G. Siscoe (Meteorology Dept.) and Bruce Goldstein (JPL) (November 1971)
PPG-102 "Changes in Magnetospheric Configuration During During Substorm Growth Phase", F.V. Coroniti and C.F. Kennel (November 1971)

PPG-108 "Threshold and Saturation of the Parametric Decay Instability," R. Stenzel and A. Y. Wong, November 1971*

PPG-112 "Polarization of the Auroral Electrojet," F. V. Coroniti and C. F. Kennel, February†

PPG-113 "Mode Coupling and Wave Particle Interactions for Unstable Ion Acoustic Waves," Pablo Martin and Burton D. Fried, February 1972

PPG-116 "Large Diameter, Quiescent Plasma in a Magnetospheric Field," Earl Ault, Thesis, April 1972

PPG-124 "Calculation of Reflection and Transmission Coefficients for a Class of One-Dimensional Wave Propagation Problems in Inhomogeneous Media," A. Baños, Jr., September 1972

PPG-125 "Electromagnetic Wave Functions for Parabolic Plasma Density Profiles," A. Baños, Jr. and D. L. Kelly, September 1972

PPG-128 "Can the Ionosphere Regulate Magnetospheric Convection?" F. V. Coroniti and C. F. Kennel, October, 1972