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THREE-DIMENS IONAL ELASTIC STRESS AND DISPLACEMENT ANALYSIS OF
TENSILE FRACTURE SPECIMENS CONTAINING CRACKS
by John P. Gyekenyesi, Alexander Mendelson, and Jon Kring

Lewis Research Center

SUMMARY

The line method of analysis is applied to the Navier-Cauchy equations of elastic
equilibrium to calculate the displacement distributions in frequently used tensile frac-
ture specimens. The application of this method to these equations leads to coupled sets
of simultaneous ordinary differential equations whose solutions are obtained along sets
of lines in a discretized region. When decoupling the equations and their boundary con-
ditions is not possible, the use of a successive approximation procedure'permits the
analytical solution of the resulting ordinary differential equations. The results obtained
show a considerable potential for using this method in the three-dimensional analysis of
finite geometry solids and suggest a possible extension of this technique to nonlinear
material behavior.

INTRODUCTION

Considerable progress has been made in recent years in the stress analysis of
bodies containing flaws or cracks. However, most of the work on this subject has been
based on the plane theory of elasticity (ref. 1). For a fracture.specimen of finite geom-
etry the stress and displacement fields are highly three-dimensional. Hence, solutions
of the general elasticity field equations must be obtained when more reliable results are
needed.

Because of the geometric singularity associated with any crack type problem, there
is almost no possibility of a simple closed form type of solution. For this reason,
three-dimensional elastic solutions have been obtained only for a restricted class of
problems (refs. 2 to 4). Recently, with the availability of large digital computers, a
variety of numerical methods appeared in the literature; however, most of these meth-
ods have yielded only partial results. Among these approximate methods are the finite



difference (ref. 5), the direct potential (ref. 6), the eigenfunction expansion (ref. 7),
and the line method of analysis (ref. 8). Of all these solution techniques, the line meth-
od of ahalysis appears to yield the most complete and accurate results for three-
dimensional elasticity problems.

Although the concept of the line method for solving partial differential equations is
not new (ref. 9), its application in the past has been limited to simple examples (ref. 10).
The line method lies midway between completely analytical and discrete methods. The
basis of this technique is the substitution of finite differences for the derivatives with
respect to all the independent variables except one for which the derivatives are retain-
ed. This approach replaces a given partial differential equation with a system of simul-
taneous ordinary differential equations whose solutions can then be obtained in closed
form. These equations describe the dependent variable along lines which are parallel
to the coordinate in whose direction the derivatives were retained. Application of the
line method is most useful when the resulting ordinary differential equations are linear
and have constant coefficients.

An inherent advantage of the line method over other numerical methods is that good
results are obtained from the use of relatively coarse grids. This use of a coarse grid
is permissible because parts of the solutions are obtained in terms of continuous func-
tions. Additional accuracy in normal stress distributions is derived from the fact that
they are expressed as first-order derivatives of the displacements and these derivatives
can be analytically evaluated. Inherently inaccurate numerical differentiation is re-
quired only for evaluating the shear stresses, but this presents no important loss of
accuracy since they are an order of magnitude smaller than the normal stresses. For
problems with geometric singularities, additional accuracy is derived from using a
displacement formulation since the resulting deformations are not singular.

It is the purpose of this report to present a simple and systematic approach to the
elastic analysis of three-dimensional, finite geometry solids containing traction-free
central or edge cracks. The need for these specific solutions has existed for a number
of years in fracture toughness testing, and several attempts in the past have failed to
arrive at meaningful results (refs. 11 and unpublished data by G. C. Sih and R. J.
Hartranft of Lehigh University (NASA Grant NGR-39-007-025)). Problems that are most
conveniently described in rectangular Cartesian coordinates are discussed herein while
circular geometry solids will be treated in a subsequent report.

SYMBOLS -

Aj; i =j =2, partitioned submatrices of e?¥

A(x) coefficient matrix of first-order, x-directional differential equations



2a

2b

g ny’
(0]
Ozx? yz

crack width

partitioned particular integrals, i = 1,2,3,4
bar width

Young's modulus of elasticity

dilatation or natural logarithm base

shear modulus of elasticity

increments along Cartesian coordinate axes
identity matrix

stress intensity factor for opening mode

coefficient matrices of second-order differential equations

bar length

number of lines in x-direction

number of lines in y-direction

number of lines in a given plane

number of lines in z-direction

distance from crack edge

coupling vector for x-directional second-order differential equations
coupling vector for y-directional second-order differential equations
bar thickness

coupling vector for z-directional second-order differential equations
x-directional displacement

y-directional displacement

z-directional displacement

rectangular Cartesian coordinates

Lame's constant

variable of integration

Poisson's ratio

components of the stress tensor in Cartesian coordinates
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v Laplacian in Cartesian coordinates

Symbols used in the appendixes are defined there when they are introduced.

REDUCTION OF THE NAVIER-CAUCHY EQUATIONS TO SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

Within the framework of linearized elasticity theory, the equations of elastic equi-
librium in terms of displacements are

()\+G)—89-+ GV2u=0 (1)
X '

O+ G2, gvv =0 (2)
ay

()\+G):—e-+GV2w=O (3)
z )

where the body forces are assumed to be zero and the dilatation is

e:ﬂ-;-ﬂq._aﬂ (4)

ox dJdy Oz

The stress-displacement relations can be written as

o, = E F(l- ) U, v<ﬂ+a—w)] (5)
1+v)1-20)L X oy 0z

o = E (l—v)ﬂ-{- v(a—W+il-)1 (6)
Y @a+v)@a-2v i oy oz 9%/
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oxy 2(1 + v) (ax * ay) ®)
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For a finite geometry solid with rectangular boundaries. we construct three sets of
parallel lines (fig. 1(a)). Each set of lines is parallel to one of the coordinate axes and-
thus perpendicular to the corresponding coordinate plane. An approximate solution of
equation (1) can then be obtained by developing solutions of ordinary differential equations
along the x-directional lines. As seen in the figure, there are a total of 7= NY X NZ
such lines where NY is the number of lines along the y-direction and NZ is the number
of lines along the x-direction in a given plane, respectively. We define the displacements
along these lines as Uy, Ug, o .., U ‘The derivatives of the y-directional displacements
on these lines with respect to y are defined as v| 12 L4 PTR { p and the derivatives
of the z-directional displacements with respect to z are defined as vbll, virlz, e
These displacements and derivatives can then be regarded as functions of x only since
they are variables on x-directional lines. When these definitions are used, .the ordinary
differential equation along a generic line ij (a double subscript is used here for sim-
plicity of writing) in figure 1(b) may be written as

2
d®u,, _ f..(x)
j,a-2y( (2, 2 ui.+—1(ui+1 cH U g .)+l(ui 1t Y 1) -
w2 M- \2 2P 2 ] e b 2 2(1 - v)
by y 2
11)
where
g = | + ¥ (12)
dxly;  Ax 35
vy =Y
dy
and
w=adw
dz




Similar differential equations are obtained along the other x-directional lines. Since
each equation has the terms of the dispia,cemepts on the surrounding lines, these equa-
tions constitute a system of ordinary differential equations for the displacements ug,
Ugy « + +5 Ug. _ ‘

It is convenient to nondimensionalize equations (11) and (12) with respect to some
characteristic dimension of the problem. Hence, we introduce the following variables:

: , N
~ou Y Xy
U =— X == = —
a a P a
~ ~ ~ h
v=YX =¥ % =_YL : (13)
a a Y a : o
~ ~ ~ h
W=—W' Z:E hz_:_z
a a J

where 2(a) is the crack width. In matrix notation, the differential equations along the
x-directional lines of figure 1(a) can be written as

de/d;?z:Ig{ U o+ rx) SRR C(14)
Ix1 X1 Ix1 X1

In a similar manner, to solve equations (2) and (3) ordinary differential equations _
are constructed along the y- and z-directional lines, respectively. These equations are
also expressed in an analogous form to equation (14); they are

a5/dy? = K, ¥ +s() (15)
mx1 mxm mx1 mx1 ‘

/2% =k, ¥ +t(3) (16)
nx1 nXn nX1 nx1

An inspection of these eoiuations shows that they are linear, second-order, ordinary
differential equations with constant coefficients. The coupling terms in each set of dif-
ferential equations are grouped into the vectors r(%), s(y), and t(Z), which are the
nonhomogeneous terms in equations (14), (15), and (16). The elements of the coefficient
matrices are functions of the coordinate increments and Poisson's ratio only. Since the
sum of the elements in any given row of the three coefficient matrices is zero, they are
all singular.
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Noting that a second-order differential equation can satisfy only a total of two
boundary conditions and since three-dimensional elasticity problemé have three bound-
ary conditions at every point of the bounding surface, some of the boundary data must
be incorporated into the surface line differential equations. Hence, conditions of normal
stress and displacement are enforced through the constants of the homogeneous solutions
while shear stress boundary data must be incorporated into the differential equations of
the surface lines. The application of the specified shear conditions permits the use of
central difference approximations when surface line differential equations are construct-
ed. The details of constructing these equations are found in reference 8.

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Appendix A shows the details of a solution technique for the type of simultaneous
ordinary differential equations given in equation (14). This solution technique yields the
following solution vector for the x-directional displacements:

AR = A (BD)[U(0) + BY(X)] + A;5(3)|1(0) + By(R) (17)
Ix1 Xl X1 IxX1 Xt |IX1 X1

where An(';c) and A1‘2(§) are the matI:'ix functions
J |
| A;4(%) = cosh Igl(/z?c (18)

~J - . 2~
Asp(®) = K12 sinn K1/2% (19)
The matrlx Igi/ 2 is defined as a matrix whose square is equal to K . Vectors u(0)
and u(O) are initial value vectors whose evaluation from given boundary conditions is
discussed in appendix B. Vectors B (x) and Bz(x), which represent particular solu-
tions of equations (14), are given by

~

B,(3) = - / " Ayt dn (20)
X1 0 Xt X1

N X
Bz(X)=/ Ay1@)r(n) dn (21)
ix1 Jo  ixt oix1



Differentiating equation (17) with respect to x yields

() = K, Ay5(X)[(0) + By ()| + Ay(X)]U(0) + By(%) (22)
Ix1 Xt Ixt pPIx1x1 Ixt [Ix1  Ix1 '

Similar solution vectors can be constructed for equations (15) and (16) involving the y-
and z-directional displacements, respectively. Since r(n) in equations (20) and (21) is
unknown, the solution of the problem is begun by assuming values for d';/d?f, d?r'/d§,
dw/dx, and dw/dx along the x-directional lines. Using zero values for these required
quantities is a good place to start. Then equations (17) and (22) give the first estimate
for the vectors u(x)( ) and u(x)( ), It is assumed, of course, that the boundary con-
d1t10ns u(0) and u(O) are specified or known. Using these calculated values of u(l)
and u'"’ we can evaluate the vector s(y)(l) where we must use similarly assumed ’
values of dw/dy and dw/dy Analogous equations to equations (17) and (22) give the
first value of v(y)( ) and v(y)( ). First values of w(z)(l) and w(z)(l) can then be
calculated by using the first estimates of the x- and y-directional displacements and
their derivatives in the coupling vector t(’E)(l). At this point we return to equations (17)
and (22) and calculate the second valuesof (%)% and H(%)@ based on‘the first values
of the y- and z-directional solutions. '

If the values of 2()W), 3®W, 7HHW, A’v(?)(i), % and %)W) converge
with the repetition of this procedure, an approximate solution of a given problem is
determined. In general, the convergence rate for these successive calculations is de-
pendent on the accuracy to which the matrix functions Aij can be evaluated. Equa-
tion (A13) may be used to establish this required accuracy. Sufficiently large errors in
the necessary matrix functions lead to divergence in the successive approximation cal-
culations.

Since the vector r(n) in equations (20) and (21) involves displacements and their
derivatives that are defined only at the nodes, finite difference calculus must be used in
evaluating its elements. Hence, 1ntegra1s Bl(x) and Bz(x) are calculated by a suitable
numerical integration technique.

Once the displacement field in the bar has been calculated and the successive ap-
proximation procedure has converged, the normal stress distributions along the three
sets of parallel lines can be obtained from the following equations:

E(1-v) ~ vE

o, = u + (’; * 6;) (23)
x - - along 3 along

(L+v)d-2v)  TE (L v)(1 - 2v) x-lines
lxl lxl lX]. lxl



E(l - V) ~ vE ~ =
= v + (u + W) (24)
v : along ' _ along
(1+v)1 - 2v) y-lines 1+ )1 - 2v) x-lines
mX1 mX1 mx1  mx1
o = W) + (u + v) (25)
z ; along _ along
A+ -20) o L+ -2v) x-lines
nx1 nx1 nX]_. nx1

Note that the normal stress equations involve only derivatives that can be evaluated
analytically. The shear stresses at each node can be calculated from equations (8)

to (10) but finite difference approximations must be used for the required displacement
gradients.

APPLICATION TO TENSILE FRACTURE SPECIMENS CONTAINING CRACKS

A great amount of experimental work has been done in fracture mechanics (ref. 12)
through the use of crack-notched speci'm'éns. In the past, many different types of speci-
mens have been used toldetermine a material's fracture toughness. The most common
early specimens employed in these tests were the center-cracked and double-edge-
notched bar specimens. Figures 2(a) anﬁ 7(a) show the finite rectangular bars with
through -thickness, traction-free central and double-edge cracks, respectively. Be-
cause of the symmetric geometry and loadmg, only one-eighth of the bars has to be dis-
cretized as shown in figures 2(b) and 7(b). Inspection of the derived ordmary differen-
tial equations also shows that for any numerical computation a value of Poisson's ratio
must be selected. For our work, a Poisson's ratio of 1/3 is used as shown in figures 2
to 14.

NUMERICAL RESULTS

Center-Cracked Tensile Fracture Specimen

The solution of this problem was obtained by using two different sets of lines along
the coordinate axes so that the convergence of the finite difference approximations could
be checked. In a given direction, uniform line spacing was used in all computations with
no other restriction being placed on the selection of the grid size. The crack edge loca-
tion with respect to the imposed grid was assumed to be halfway between nodes specify-
ing normal stress and displacement boundary conditions, respectively. The successive
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approximation procedure reqﬁired for decoupling the three sets of ordinury differential
equations was terminated when the difference between successwely calculated displace-
ments at every point was less than a preset value (10~ )

Selected results of the dimensionless displacements are listed in tables I to III.

The dimensionless crack opening displacement is shown in figure 3. Inspection of fig-
ures 3(a) and (b) shows that the grids of lines have been sufficiently refined when the
results of the 48 by 96 by 128 grid were calculated. Figure 3(a) also contains the re-
sults of the plane elasticity solutions obtained by Mendelson, Gross, and Srawley

(ref. 13). It is noteworthy that the results correspond to elliptical crack profiles in all
cases. The plane stress solution gives the highest crack opening'displacement while the
plane strain solution is very close f{o the results obtained at the center of the bar.

The dimensionless normal stress distributions in the crack plane are shown in fig-
ures 4 to 6 as a function of both the X- and z-coordinates. The results in these figures
clearly indicate the singular nature of the normal stresses near the crack édge. As ex-
pected, the stress normal to the crack plane increases most rapidly near the crack
front. A plot of these stresses in the ‘z-direction also indicates a central region of uni-
form stress and a boundary layer through which the stresses decrease to the surface
values. These same results show that as X increases the stress field approaches a
uniaxial state of stress which indicates that the cause of a triaxial stress field in the bar
is the through-thickness central crack.

Double-Edge Crack Tensile Fracture Specimén

Selected results for the problem of figure 7(a) are presented in tables IV to VI and
figures 8 to 11. These results were also obtained with two different sets of lines along
the coordinate axes which were identical to the two sets used for the central crack prob-
lem. The dimensionless crack opening displacements are plotted in figure 8. Com-
paring figures 8(a) and (b) shows that the finite difference approximations have suffi-
ciently converged when the results of the finer grid were calculated. Contrary to the
central crack problem, the crack opening displacements in figure 8 are independent of
the Z-coordinate. Similar results were obtained by Cruse and Van Buren (ref. 6) for
the single-edge-crack bar specimen.

The dimensionless normal stress distributions in the crack plane are shown in fig-
ures 9 to 11 as a function of both the X- and z-coordinates. Their singular nature near
the crack edge is evident from the distributions shown in these figlires. A plot of these
stresses in the thickness direction also shows a central region of uniform stress and a
boundary layer through which the stresses decrease to the surface values. Tables IV
to VI contain selected results of the dimensionless displacement distributions.
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STRESS INTENSITY FACTOR

It is customary in fracture mechanics to describe the plane elasticity crack opening
displacement as a superposition of three basic deformation modes (ref. 1). Since the
problems shown in figures 2(a) and 7(a) have geometric symmetry and are symmetri-
cally loaded, only the opening mode of crack displacement is obtained. In terms of the
stress intensity factor for the opening mode KI’ the plane elasiticity crack displace-
ments near the crack tip are given by (ref. 1)

=2(1-1/)K R

v|,_ = plane strain (26)
y=0 G 1 2n

v|y=0 -2 K; ‘/ﬁ plane stress (27)
1+ v)G 27

Since three-dimensional problems are neither in a state of plane strain nor in a state of
plane stress, the definition of a stress intensity factor for these problems must be first
established. Note that by definition the plane stress and plane strain stress intensity
factors are equal while the displacements are approximately 12.5 percent different for
v = 1/3. Since the results indicate that most of the bar in the thickness direction is
approximately in a state of plane strain, Vequation (26) is selected to calculate the stress
intensity factor. Rearranging this equation so that the dimensionless crack opening dis-
placements can be used leads to

Ev
c.a
0 -—
E CK; = __ly=0 (28)
0'0 _R_
a
where .
2
C =‘4(1 - v9) (29)

I
E\lzna

A plot of equation (28) as \/R/a — 0 can then be used to calculate KI' Since the crack
opening displacement is a function of the thickness variable, the previous stress inten-
sity factor varies in the z-direction. However, if we were to account for the nonplane

11



strain conditions near the surface by using equation (27) or a corrected equation (26) for
the definition of K;, the stress intensity factor would become a constant across the
thickness of the bar by definition. This approach would then result in a continuously
varying definition of KI across the thickness. It should be noted that the previous
description of KI is completely arbitrary and that it is questionable if it has any real
significance in three-dimensional elasticity problems. However, values of KI are still
presented so that a comparison is possible between the calculated results and the pub-
lished plane strain solutions (ref. 1).

Figures 12 and 14 show the calculation of the opening mode stress intensity factors
from the plane strain crack opening displacements. Their variation across the thick-
ness of the bar is shown in figures 13 and 15 for the two problems discussed in this re-
port. Note that for the center-cracked bar KI is maximum at the surface and minimum
nearNthe center. The value of KI for the double-edge-crack specimen is independent of
the z-coordinate since the crack opening displacement is constant across the thickness.

Although the stress intensity factors for these problems could be determined with
reasonable accuracy, the associated type of singularities are difficult to evaluate be-
cause values of the normal stresses are needed within a distance of 0. 05a or less from
the crack edge. With the equal spacing of lines used in these examples, the minimum
node location for these problems is about 0. 06a. For this range of crack edge diétance
R, the singularity of the stresses is not defined.

Lewis Research Center,
National Aeronautics and Space Administration,
and
U.S. Army Air Mobility R&D Laboratory,
Cleveland, Ohio, January 4, 1973,
501-21,

12



APPENDIX A

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

For the solution of equations (14) the following new variables are introduced

- A
U1 = Uy
_d?il } (A1)
Ul+1' ~
dx
T U A
142 dx 21 d’;(‘J

In terms of these new variables, equations (14) can be written as a set of twice as many
first-order differential equations. Hence, we have

d

. U = A U +T(x) (A2)
dX 9501  21x21 2ix1  2Ix1
where
0 1]
IXL X1
A = (A3)
21x21 |K_ 0
IXl  IX1]
"0
Ix1
T(X) = (A4)
2ix1 |r(X)
Ix1

The solution of equation (A2) is well known and can be written as (ref. 14)

13
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e A T() dn (A5)
21%21 21%x1

UR) = e2® U(l) + AX

2Ix1  21I%21 21X1 21%x21 A

where U(0) is an initial value vector whose evaluation from given boundary conditions is

discussed in appendix B and eAX is a matrix series given by the following equation:

~ ~ 2~2 3~3
eAx= +Ax+A X +A X

1! 2! 3!

I I (A6)

In terms of the coefficient matrix K, equation (A6) yields

—

[~ o0 [« o)
';{Zm <™ §2m+1 g~
(2m)! % @Cm+ 1) X
o m=0 m=0
eAx= (AT)
[~ o) 0
§2m+1 Igr{n“ §2m IgI{n
(2m + 1)t (2m)!
| m=0 m=0 .
A1) 853
o Ix1 X1
eAX = (A8)
21%21  [Ag(X) A22(§)
| it Ixt |

From equations (A7) and (A8) we note that

Al

A1) = Agy(X) = cosh K/ 2% (49)
AR = K}'{l/ 2 sinh K}I{/ 2% (A10)
Ay (%) =K A (%) (A11)

where Iglﬁ/ 2 is a matrix whose square is equal to Kx. Noting that A11 and A22 are

14



even functions of X while A12 and A21 are odd functions of §, the inverse of eAx

becomes

| Ap®) -Ap()
eAX -l | (A12)
-Ag (%) Agy®)| |

A% _-A%X

Substituting equations (A8) and (A12) into the identity of e e % -1 yields

IXHEIEE WARCIE (A13)
Ix1l Xl Ixl Ix1l
Matrix functions (A9) and (A10) may be evaluated for each value of the independent
variable from the series definitions given in equation (A7). However, for increasing
values of X serious convergence difficulties may arise and impractically large number
of terms must be calculated. To avoid these computational difficulties, additive formu-

las for these matrix functions may be obtained from using the identity

AX AX AR +%,)
s S B LS W

In terms of the submatrices Aij this identity yields the following two equations:
Apy(Xp+ %) = A (XA 1 (Rp) + KA (XA 15(Xp) (A14)
and
Agp(Ry + Xg) = AL (XA 1(Xp) + Ay (XA 5(%y) (A15)
Using equations (A7) in conjunction with equations (A14) and (A15) does not require

the solution of an eigenvalue problem. However, greater accuracy is obtained if we
consider the similarity transformation of

A =p! K _ P (A16)
XL  IXI IXI IXl

where A is a diagonal matrix whose elements are the eigenvalues of Kx Appendix C
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gives the details of the development showing how the eigenvalues and eigenvectors of a
matrix having the form of Ig{ can be analytically evaluated. The eigenvalues of Kx

are given by
Xi.=2k3[1-cos<i‘l)nJ+2k2[1-cos<j'1)n (A17)
] NZ - 1 NY - 1

where i=1,2, . . ., NZ, j=1,2, . . ., NY, and ky and kg are constants given in
appendix C. Note that these eigenvalues are ordered by fixing i first and then varying
j-

The modal matrix or the matrix of eigenvectors corresponding to the previously
ordered eigenvalues is given by

P = P, ) P, (A18)
IXI NZXNZ NYXNY

where (X) denotes the Kroenecker product of two component modal matrices (ref. 16)
whose elements are given by

P, =cosELU-V, 5592 ..., Ny (A19)
sj NY -1 '
- 16 - |
Py =cosT- V- 5.9 . Nz (A20)
i Nz-1 \ U =

The matrix functions (A9) and (A10) can now be evaluated in diagonalized form and re-
transformed according to the transformation

(A21)

(A22)

Note that the inverse of the modal matrix P can also be evalué.ted in closed form and
the details of the derivations are shown in appendix C.

In the explicit evaluation of equation (A5), the value of the particular integral cannot
. be obtained until the vector T(n) is known along the x-directional lines. We define
"_column vectors B1 (X) and Bz(?c) as follows:

16



B, (%) R
fo e 1 T(n) dn | (A23)

i}

Bz(x)
2Ix1 21%21 211

In terms of the partitioned matrix functions, the integral in equation (A23) becomes

-

B -~ [ Ayt oy (a24)
. A&

Bz(X)=4 Ai1(r(@) dn (A25)

If it is assumed that r(n) is known, the particular integrals (eqs. (A24) and (A25)) can
be evaluated. Using the partitioned form of the matrices we can write equation (A5) as

ux)] [A(®) A& f(uE) [B,(%)
.= .ot (A26)
X)) Ay (R) AR\ W0) |By(%)

1
from which the solution vectors (17) and (22) can be directly constructed.
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APPENDIX B

DEVELOPMENT OF INITIAL VALUE VECTORS

Since the problem in figure 2(a) is a two point boundary value problem, the initial
values of both U and U are usually not available. A method for evaluating the initial
value vectors for equations (14) and (15) from given boundary conditions is now pre-
sented.

From symmetry conditions, we can immediately conclude that

F1=ﬁ(0)= 0 (B1)
Ix1 Ix1 Ix1

The zero normal stress boundary condition on the face % = b is used to evaluate the
vector 3(0). From equation (22) we have at x=D

UB) = Ay BT + B, (B)] + A, BI[U(0) + By(B) (B2)

Using equation (5) with the given normal stress boundary condition gives

B = (VW)L (B3)
1 -V X=b

Provided All(b) is not singular and using equations (B1) and (B3) we find from equa-
tion (B2) that
~ - _1 ~ ~ - ~ ~ ~ ~
Fy = u(0) = 1 _VVAll(b)(v + w>,§=,B - Al%(b)Azl(b)Bl(b) - B2(b) (B4)
X1 Ix1 Ixl Ix1 Xl IXl Ix1 X1

Similar equations are obtained for the initial value vectors of equations (16) along the
z-directional lines.

Along the y-directional lines the boundary conditions are somewhat more involved
since in the crack plane mixed boundary conditions are specified. Denoting the number
of y-directional lines falling over the crack surface as NIC and those falling outside as
NOC, the zero normal stress condition over the crack face and the symmetry condition
in the crack plane result in the following equations:

VO) =L (e Wz, (B5)

1-v
NICx1 inside crack

18



v(0) =(0), . (B6)

NOCx1 y=0
outside crack

If we assume that on the face ; = 1. there is a uniform stress of 0, a8 shown in fig- .
ure 2(a), the normal stress boundary condition on this face gives

& Y - ~ ~

vy =W A-2v) v (F 4§, (BT)
E 1-v) 1-v =L

mX1 mX1 mXx1l mxl1

This vector can be suitably partitioned into vectors v a(ﬁ) and Vﬁ(ﬁ). For convenience

NICX1 NOCX1
of matrix manipulations, the following vectors are constructed:

-~ R
F3oz
NICx1
7~ \
v(0)] (Fs) F,
mx1 mx1 NOCx1
{v<o>}=4, L=J > =< \ (B8)
) v(0) F4 F4a
mx1 \mle (X1 NICx1
NoCxy

For the central-crack problem, values of F 4o and F3 g are given by equations (B5)
and (B8), respectively. An analogous solution to equation (A26) along the y-directional
lines can be written as

V()] [Dy;(V) DM (VO]  [(Bs(Y)
' - ) + (B9)
V(Y)]  [Dgy(3) Dyp(M\(¥(0)] (B4(¥)

From equation (B9), we can express v(L) in a partitioned form consistent with equa-
tion (B8) as
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Fe - 1 B )
Va D210:1 D21012 F3a w B3a
NICx1 NICXNIC NICXNOC NICx1 NICx1
ﬁ . = < >+j >
Vg Da 181 Dy1p2 F3g Bgs
NOCx1{, _ |NOCXNIC Nocxwoc|, _\|Nocxi| |Nocxi|,
L Jy=L. — - y=L \\« .J - < y=L
— m ( h <
Dosa1 Dooa2 Fao Bio )
NICXNIC NICXNOC NICX1 NICx1
+ < >+ﬁ & (B10)
Dyap1 Dyag2 Fag Byg
NOCXNIC NOCXNOC NOCx1 Esrooq
[~ — _ J W,

Equation (B10) leads to two matrix equations involving the two unknown vectors Fa,
and F4l3' The solution of these equations yields

-1 & -1
Fgg = Dy Vgl . = Dao Daygi|  Datail Vel
=L S A £

NOCx1 NOCXNOC NOCx1 NOCXNOC NOCXNIC NICXNIC NICx1

-1 ~
Vo

-1
Da Db B

- Byg 38

~ o~

;:ﬂ y:L
NOCx1  NOCXNOC NOCxNOC NOCx1

-1
- Dy De <F4oz + Byg ~ o~
: 5-%

NOCXNOC NOCXNIC NICx1 NICx1

(B11)
where

-1
Pa = <D2232 - Daipr Datai D22a2) (B12)

~ o~

y=u
NOCXNOC NOCXNOC NOCXNIC NICXNIC NICXNOC

20



-1
D, = (Dzmz - Dy1p1 Daiai D21a2)~~ (B13)
y-L

NOCXNOC NOCXNOC NOCXNIC NICXNIC NICXNOC

-1
D = (Dzzm - Daig1 Daini Dzzm)~ (B14)

~

y=L
NOCXNIC NOCXNIC NOCXNIC NICXNIC NICXNIC

- p;l B -B

21a1 D

y:L y=L y=L y=L y=L y=L

NICX1  NICXNIC NICX1 NICKNIC NICXNOC NOCX1 NICX1

A
Va 3a

-1

- Dorai1|, _P22q1|

Fso *+Byq ~ ~>
y=L y=L y=L
NICXNIC NICXNIC NICx1  NICx1

_ _Dasag| <F4;3 + Byg| | ~>
y=L y=L y=L
NICXNIC NICXNOC NOCx1 NOCx1

-1
" Dot

(B15)

with F,q given by equation (B11). Note that although the full matrix D21 ‘ is

y=L
singular, the partitioned submatrices are not. Equations (B11) and (B15) together with
the given boundary data completely specify the initial value vector needed for the solu-
tion of equations (15).
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APPENDIX C

EVALUATION OF THE COEFFICIENT MATRIX EIGENVALUES AND EIGENVECTORS

For the x-directional lines shown in figure 1(a), the nondimensionalized coefficient
matftrix Kx can be arranged as

AN/

where the submatrices le, sz, and their elements kl’ k2’ and k3 are

22

—

Ksq 2Kx2 0 0 0
NYXNY NYXNY

K

x2 Kq1 Ky 0 0

NYXNY NYXNY NYXNY

0 0 Kyo Kx1 Kxo

NYXNY NYXNY NYXNY

0 0 0 2Kx2 K. 1

i NYXNY NYXNY

ky = 2(kg + Kg) h

Kk _(-29(1
2(1 - v)\~2)

kq _(1-21(1
2(1 - v)\2

(C1)

(C2)



k -%, O 0 0]
[k 2

Ker =| 0 L. 0 (€3)
NYXNY
L -

(C4)

o
[\
]
o
o
(=]
o

NYXNY

0 0 0 0 -k

3]

A close investigation of equation (C1) shows that the coefficient matrix KX can be
decomposed into component matrices having the following tridiagonal format:

[(2 -2 0 0 0]
-1 2 -1 0 0

o - - 0 (5)

The eigenvalues and eigenvectors of this type of matrix can then be obtained in closed
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form. Noting that in equation (C1) we have NZ rows of submatrices each of order NY,
we express th_e coefficient matrix as

K, =ky I} ® K; +k3 Ky ® I (C6)
IXt ~ NZXNZ NYXNY  NZxXNZ NYXNY

where (X) denotes the Kroenecker product of two matrices (ref. 15). Matrices K1 and
Kz have the desired form of matrix (C5) but are of different order. Associated with the
matrices K1 and K2 are the following two eigenvalue problems:

K, Xl =uXi (")
NYXNY NYX1  NYx1

NZXNZ NZXx1 NZx1

where u]-, i=1,2, .. .,NY denote the eigenvalues of AK1 and Gi, i=1,2,.. .,NZ
represent the eigenvalues of KZ' The original eigenvalue problem associated with the
coefficient matrix Ig{ can be written as

K, X3 =2X3 (C9)
XL 1x1  1x1

After some matrix manipulations involving Kroenecker products (ref. 15), it can be
shown that the eigenvalues Xij and the corresponding matrix of eigenvectors x34 can
be expressed in terms of the component matrix eigenvalues and eigenvectors. The re-
sults of these manipulations are

Ajj = K3

8; + koh (C10)
xsl - xf ® xi (C11)
IxI NZXNZ NYXNY

where i=1,2, .. .,NZ and j=1,2, . . .,NY. Equations (C1C) and (C11) reduce the
problem of equation (C9) to that of finding the eigenvalues and eigenvectors of ma-
trix (C5). '

The eigenvalues of the tridiagonal matrix (C5) can be obtained by using difference
equation theory. ‘The details of this method for finding the eigenvalues of matrix (C5)
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can be found in reference 8, but the results for the problem of equation (C7) are

ui =2[1- cos(j' 1)"] i=1,2, .. .,M (C12)
M-1 M = NY

Similarly, the eigenvalues of K, become

6_2[1-cos< l)n] i=1,2,...,M (C13)
M-1 M = NZ

Substituting equations (C12) and (C13) into equation (C10) leads to the results of equa-
tion (A17).

The details of finding the eigenvectors corresponding to equations (C12) and (C13)
are also given in reference 8. The results of these manipulations are given by equa-
tions (A19) and (A20), respectively. Substituting these 'éigenvectors into equation (C11)
leads to equation (A18) which gives the modal matrix of the coefficient matrix K,

The inverse of the modal matrix P can be obtained from

- P21®P (C14)

provided that closed form inverses of ‘Pl and P2 can be found. Since these two ma-
trices are of the same type, it is sufficient to investigate the closed form inverse of P1
only.

As the first step in developing the closed form inverse of Pl’ we construct a diag-
onal matrix D1 which transforms the nonsymmetric matr1x K1 into a symmetric
matrix K1 The form of this transformation is

1/2 1/2 _..s

KlD1 =Ky (C15)
where by definition the square root of a diagonal matrix is also a diagonal matrix whosé
elements are the square roots of the elements in the original matrix. For the tridiag-

onal matrix K1 of order M, the diagonal matrix D1 is of the form .
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[1/2 o0 o0 o0 0 0 0]

D. - e (C16)

0 0 0 0 0

o

1/2

Associated with matrix K, is the similarity transformation of

K.P; =PjA, (C17)
which can be written as
Kll?il/zDi/zPl = PJA, (C18)
Premultiplying equation (C18) by D%/ 2 gives
KS (D}/2P1> - (Di/zPl)Al (C19)

Since K? is a symmetric matrix, the transformation of equation (C19) is orthogonal and
the columns of (D% 2P1) must be orthogonal. For an orthogonal transformation it is
known that

<Di/ 2p1)T<D}/ 2P1> -D (C20)

where T denotes the transpose and D is a diagonal matrix. Since D, is a diagonal
matrix, the first term in equation (C20) can be written as

T
(D}/ 2 p1> - P’IPD%-/ 2 (Cc21)
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Using equation (C21) in equation (C20) yields

T
P/D,P, =D } (C22)

Premultiplying this equation by D™1 gives
14T
from which we find that
1 _ -1.T

Equation (C24) requires the inverse of an unknown matrix D. However, from equa-
tion (C22) it can be shown that the matrix D always has the form

M-1 0 0 0 0
o M-1 0 0
2
D = . . . (C25)
MXM
0 0 o M-1
2
| 0 0 0 0 M-1]

Comparing matrices (C25) and (C16) we can conclude that.

p-M-1p]! (C26)
2

Substituting this equation into equation (C24) gives the final closed form inverse of P,
as

27



-1 2 P T : :
MxM MXM MxXM MxM

A similar equation can be written for the inverse of the modal matrix P2. With the
closed form solution of the component modal matrices and their inverses, the diagonal-
ized form of Kx is obtained from equation (A16).
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1= NY x NZ lines m = NZ x NX lines
NY - NZ ——
NY-1¢ = h’)j—‘:. . NZ-1¢9 » sshye o
3 Y .II ° 1 { . . . L3 4
L ] [ ] * L ] * [] L] L]
2 . hZ. ¢ o e o o o
—7 >-—0 o X
1 NZ-1 NZ 1 NX-1 NX
1 n=NY XN tines
NX

NX-1 e o o o
e o o o
s s s s 4
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(a} Three sets of lines parallel to x-, y-, and z-coordinates and
perpendicular to corresponding coordinate planes.

z

(b) Set of interior fines parallel to x-coordinate.

Figure 1. - Sets of lines parallel to Cartesian coordinates.
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(a) Dimensionless crack opening displacement (48 by
96 by 128 grid).
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(b) Dimensionless crack opening displacement (35 by 70
by 98 grid).

Figure 8. - Dimensionless crack opening displacement
for rectangular bar under uniform tension containing
through-thickness double-edge cracks.
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(a) Dimensionless x-directional normal stress as
function of X.
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{b) Dimensionless x-directional normal stress
as function of Z.

Figure 9. - Dimensionless x-directional normal stress
distribution in crack plane for rectangular bar under
uniform tension containing through-thickness
-double-edge cracks.
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{b) Dimensionless y-directional normal stress
as function of z.

Figure 10. - Dimensionless y-directional normal stress
distribution in crack plane for rectangular bar under
uniform tension containing through-thickness double-
edge cracks.
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(b} Dimensionless z-directional normal stress as func-
tion of z.

Figure 11. - Dimensionless z-directional normal stress
distribution in crack plane for rectangular bar under
uniform tension containing through-thickness double-
edge cracks.
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Figure 12. - Calculation of stress intensity factors Xq

for rectangular bar under uniform tension containing
through-thickness central crack.
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Figure 14, - Calculation of stress intensity factors Ky
for rectangular bar under uniform tension containing
through-thickness double-edge cracks.
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Figure 13, - Variation of stress intensity
factor Ky across thickness for rec-
tangular bar under uniform tension
containing through-thickness central
crack.
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Figure 15. - Variation of stress intensity
factor K; across thickness for rec-

" tangular bar under uniform tension
containing through-thickness double-
edge cracks. o
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