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- FOREWORD

_ Th1s f1na1 report summarlzes the reports prepared and
. the spec1a1 tasks performed by Astro’ Sc1ences of 1IIT Research
_Instltute durlng the perlod from November 1971, through '

"-January 1973 Seven reports and techn1ca1 memoranda are sum-.
. ,marlzed together w1th a 11st1ng of five advanced plannlng tasks
. on. whlch no formal reports have been wr1tten. A brlef descrlp-

tion of support work for North Amerlcan Rockwell s SEP ‘Stage
- Study is’ also contained w1th1n thlS report : This work has been
'_,performed under NASA Contract Number NASW-2144
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FINAL REPORT (NASW-2144)

LONG RANGE PLANNING FOR SOLAR SYSTEM EXPLORATION

NOVEMBER 1971 - JANUARY 1973

1. 's'leTRODUCTlON

‘ ZAstro Sc1ences of IIT Research Instltute (AS/IITRI) has
been engaged in a program of advanced research, study and
analy31s for the Planetary Programs Division (Code SL) of NASA
since March 1963 The results of Astro Sciences' work up to

'October 31, 1971 have been prev1ously reported1 This report
summarlzes the work performed on Contract NASW-2144'from
November l,‘l97l through January,”l973. :

o The purpose of advanced mission plannlng is to derive

a prellmlnary understanding of those missions, and associated

'm1s31on requlrements, ‘which are of 1mportance in the evolution
of knowledge of our solar system. It is necessary not only to
have a SOlld foundation in science and engineering for this
type of plannlng but also the ability to integrate the increasing

.awareness of the problems involved in space exploration back
into the advanced planning process. Astro Sciences’ program
during the period covered by this report, as it has during the
previous eight years, has continued to develop this process in

- accordance with NASA's broadening needs.

1. The contract work conducted between March 1, 1963 and

December 1, 1968 is summarized in AS/IITRI Report No. A=6, 'Long
‘Range Plannlng Studies for Solar System Exploration" (1969)

‘Work done between December 1, 1968 and October 31, 1969 is
summarized in AS/IITRI Report No. A-=7, ''Long Range Planning for
Solar System Exploratlon" (1970) Work done between November 1969
and October 1970 is summarized in AS/IITRI Report No. A-9, "FINAL
REPORT"' (NASW-2023) (1970) , and work done between November 1970

~ and October 1971 in AS/IITRI Report No. A=10, "FINAL REPORT"
”(NASW-2114) (1971).
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The act1v1t1es of Astro Sc1ences are reported to the
Planetary Programs 0ff1ce at: regularly scheduled b1-month1y
rev1ew meetlngs. However, the most. tangible output is in the
'form of techn1ca1 reports and memoranda. During the time period
.'covered by this: report a’. total of seven reports or techn1ca1
,memoranda have been submltted _ Summarles of these documents
]are glven 1n Sectlon 2. Sectlon 3, Spec1a1 Studles and Activi-
‘}tles, summarlzes study efforts that have been performed but for
lfwhlch no formal reports have ‘been’ published . Section 4 contalns

:'tga blbllography of reports and: technical memoranda publlshed by
j_;fTAS/IITRI Flnally, Sectlon 5 summarlzes ‘the major computer
"jprograms used to support Astro Sciences technlcalbefforts,
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SUMMARY OF REPORTS AND TECHNICAL MEMORANDA
PUBLISHED NOVEMBER 1971 - JANUARY 1973
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2.1 MISSION OBJECTIVES

_.Technlcal Memorandum No. P- 42

- "ASTEROID SELECTION FOR MISSION OPPORTUNITIES"
~ “by.C. Chapman and C. Stone
R ‘November 1972 T

f;MlSSlons to the aster01d belt and to- spec1f1c asteroids
were 1dent1f1ed as. sc1ent1f1ca11y important very early in the
-'space program and - flyby opportunities to one or more of the
llarger aster01ds have appeared in NASA ‘long range plans for a
‘number of years.. These opportunltles have largely been selected
~oon the ba51s of launch opportunlty and mission energy requ1re=
’bments.f More recently 1t ‘has become apparent through rapid ad-

'“”,vances in our. llmlted knowledge of the asteroids that the major .

' lquestlons which- relate to solar 'system minor ‘bodies will not be

'satlsfactorlly answered even in the first order by a mission

. O . misslons to a single aster01d Concurrently, advanced pro-

.fpu131on systems are being developed or planned which expand the
_m1531on p0831b111t1es for minor bodles° ‘Solar electric pro-=

' pu151on (SEP) and: nuclear electric systems (NEP), when available,

are capable of performlng rendezvous and orbit, multlple asteroid

: flybys and lander missions.

This preliminary study was undertaken to assess the
present state of knowledge oflaSteroids_as well as the rate of
vchange of that knowledge to better identify the mission and
‘target pr10r1t1es for the. advanced planning of asteroidal flights
in the 1980's and beyond, 1t was apparent at the outset that
there was not a unique set of asteroids representing maximum
priority. Equally important, ground based observations and
studies will undoubtedly alter priorities assigned to specific
asteroids as our knowledge increases. Thus this report presents
a.review of current knowledge and derives a categorical set of
priorities which .can be applied to asteroid selection or eval-
uation by the reader. A preliminary selection has been made

11T RESEARCH INSTITUTE
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both to;illnstrate_the process and*to provide the basis for
early mission analysis but this selection should not be con-
strued as- representing the only choice nor even the 'best' one.

o ,The,reportidiscnssesrthe,present state of asteroid know-
_1edge;fthefseientificfgoa1s7and'prioritieS-attached'to asteroid
- exploration';the“antieipated advances'in ‘knowledge over the
- current decade, aster01d mission cons1deration and, finally,
'iaster01d selectlon.. To summarlze 1n selectlng prlorlty targets

" the hlghest welght should be. glven to characterlstlcs .of spectral

| freflect1v1ty varlations with rotation. High weight should be

*;glven to: albedo espec1ally extreme values. Medium weight should

be glven to- albedo varlatlons w1th rotatlon 1arge'1ight-curve
‘famplltudes and famlly membershlp., Low. welght should be glven o -
to extreme (espec1a11y rapld) rotatlons L1tt1e or no welght '
”_should be glven to other parameters. . '

' It is most 1mportant to observe the asteroids with these
;_lmportant compositlonal characteristics as a function of semi- TR
“major axis’ (hlghest prlorlty), diameter (high priority), and
ddproper e and. proper ‘i (espec1a11y as related to probably extreme y

- values of a in the early solar system, or 1arge distances above _ Joﬁ
r_the ecllptlc) Therefore we want a variety of asteroids which RS
A span 1mportant ranges of both distance from the sun and diameter

Wthh hopefully also have a variety of implied compositions and

-T;many of‘whrch‘have evidence for having exposed their interiors

asva‘result'of,cataStrophic collisions; Asteroids should be
obserVed‘over at least the range of 40 to 350 km diameter.

It is important also to span the asteroid belt; the sample should
include an asteroid inside of a = 2.4 and an asteroid w1th
aphellon d1stance beyond 3.5 AU.

IIT RESEARCH INSTITUTE
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: Thﬁs,,from the point of view of current kndwledge about
‘the astéroids we believe that the major emphasis- should be to
get close- to as many asteroids as possible, constrained by two
,criterla-' 1) At least one major asteroid should be visited,
‘the surface characterlstlcs of whlch suggests pos31b1e differ-
‘1ent1atlon" 2). A reasonably wide . ‘range of semi-major axes should
be. explored, partlcularly including at least one asteroid
-*(preferably of blulsh color) in.an orbit reaching aphelion
beyond 3.5 AU . Even these - cr1ter1a should not be regarded as
- strict. . One would probably not ‘wish to give up the opportunity
to viéit SlX d1fferent asteroids on the same mission if meeting
‘the - above crlterla reduced the number of targets to-only two
f'or three.l‘;"

‘ Table l and Table 2 illustrate the comparatlve ratings
"‘developed from this study. The characteristics of asteroids
were_a§81gned relatrve ratings based on the current level of
7.know1edge'and"the'known _d_ata° The values of_individual parameters
~ were then‘aSSigned a secondary interest rating. The data for

- he 118 asteroids were then used together with the rating system
to c1ass1fy the aster01ds. The groupings of hlgher interest
‘asteroids which results is shown in.Table 1. The system was
Iused ‘to- rate several. three asteroid missions as an example,
The‘process is outlined in Table 2.

A A oompilation of all reliably known physical data about
the asteroids is contained in the appendix (separately bound),.
There is a data sheet for each of 118 asteroids for which in-
formation; in addition to orbital parameters -and magnitude,

is available. Data that is considered unreliable (primarily
old data such as results of photographic photometery) have been
omitted, The information is up to date as of June, 1972 and
includes the following parameters: the absolute B magnitude;
B-V and U-B colors observed as a function of phase angle, also
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as reduced to.5° phase using lunar phase corfections; a descrip-
tion of astérdid color derived from reliable measurements of
all klnds' several descriptions of the spectral reflect1v1ty
curve; phase factors for UBV. magnitudes and colors; character-

_ isties of the polarlzatlon ‘versus phase curve; llght-curve
_:characterlstlcs 1nc1ud1ng perlod -minimum and maximum amplitude,

- relatlve proportlon of variability due to albedo differences

and shape, and 1mp11ed axis orlentatlon maSS° diameter; albedo,
‘, proper orb1ta1 elements"and family membershlp. The appendix
identlfles the asterOLds by name and by ‘their assigned number.
v.For convenlence subsequent tables in the body of the report
 identify the-asterolds by number only.

IIT RESEARCH INSTITUTE
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‘Report No. P-43
"INSTRUMENT TECHNOLOGY FOR MISSIONS TO ASTEROIDS AND COMETS"
by R. Sullivan and D. Klopp. .
January, 1973

co Missions to asteroids and comets have an important and

'planned role in the exploration of the solar system. Present
 spacecraft and propulsion systems are adequate for some pre-
liminary missions and the advent of SEP/NEP capabilities will
permitva.vsriety of minor body flyby and rendezvous missions
in the 1980's. The scientific objectives associated with
minor body exploration are similar to those for planetary ex-
ploration; however, some specific differences in objectives do
exist, These differences together with the size of these bodles
and the characteristic miss distances projected have generated
questions about the adequacy of scientific instruments for
these missions.

This study derived measurement specifications for the
~scientific objectives which have been established for flyby

- and rendezvous missions to comets and asteroids. These mea-
surement specifications were then combined with typical space-
craft target separatlons and target size to estimate instru-
ment requlrements such as sensitivity, resolution, response
time, spectral range etc. Table 3 lists the spacecraft/target
separations whlgh were used. These were based on ephermeris
errors and projected S/C capabilities but were chosen con-
servatively go'place maximum demand upon the scientific instru-
ments. The instrument requirements were then compared with the

IIT RESEARCH INSTITUTE
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Table 3: Typical Encounter Speeds and Probable Miss Distances

Flzbzs:.:

Asteroi&s '

‘vComets

. Rendezvous:

" Asteroids

Comets

: Encounteri§peed~

Probable Miss Distance

5 - 12 km st

~ 100 km

~ 12 km s7t

“Encountervgpeed

~ 1000 km

0

Probable Miss Distance

10 km (orbit?)

HT RESEARCH INSTITUTE
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characteristics of presently available flight rated hardware.
When the requirements for minor body exploration exceeded those
presently available, expert opinion was obtained on the nature -
of the R & D required. Based on these inputs the instruments
were classified in one of three categories:

1. Adequate flight instruments exist which4require
only engineering and integration.

2, The basic technology for the instrumentation is
available and the normal 3-5 year R & D cycle
following mission approval should provide flight
‘hardware. -

3. The requirements are éufficiently stringent to

' warrant R & D expenditures in advance of mission
-approval to ensure the availability of adequate
flight instrumentation,. |

The judgements involved in the classification were,
of course, subjective and it was occasionally difficult to
establish a firmj”minimum"'capability against which to make
decisions. Obviously, increases in sensitivity, resolution,
etc, will yield better data and the scientific community will
alwéys desire continued instrument development. However, based
on what we feel are reasonable objectives, the available in-
struments satisfy most projected needs. Table 4 summarizes
‘the results, Mass spectrometers for comet missions are a
borderline case. An increase in efficiency is necessary and
it is not clear that the normal mission hardware cycle time is
adequate. High resolution gamma ray spectroscopy will require
further development of intrinsic Ge detectors but research in
this area is underway'with DOD and AEC support. No instrumen-
tation exists which will simultaneously measure the mass,
diameter and velocity of meteorites and dust particles but this

T RESEARCH INSTITUTE
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is a long standing problem. The weight and power limitations
for these missions are similar to those for planetary exploration
and obviously some of the scientific instruments would benefit

from further advances in miniaturization.

IIT RESEARCH INSTITUTE
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2.2 MISSION ANALYSIS

Technical Memorandum No. M-36.
. "'SATURN ORBITER MISSION STUDY"
by W. Wells and-R. Sullivan
'}January, 1973 _

_ -,'Thls report provldes a prellmlnary ana1y31s of the important

o aspects of missions orb1t1ng the planet- Saturn. Orbital missions

to. the outer planets can be glven serious consideration in the

- 1980's’ or after ‘flybys by Pioneer 10/G and Mariner Jupiter-Saturn '77.
_‘Prev1ous studles (by IITRI/Astro Sc1ences JPL and NASA /Ames)have

" looked. at Juplter orblters.. .This . effort, attempts to characterize
Saturn orblters in’ ‘similar detall so that comparisons with Jupiter
m1s31ons can be made.f4

_ Broadly speaklng, the scientific objectives of Saturn ex-
t_ploratlon can be grouped'under four topics: 1) the atmosphere,

' 2): the magnetosphere, 3) the rings and 4) satellites. Like

'Jupitér ‘Saturn has an atﬁosphere consisting of belts and zones
a whose- global circulation pattern and local features can be studled
. by long term monitoring (imagery) from an orbiting spacecraft,

" The vertleal profiles of temperature, pressure, etc. can be de-
‘duced from spectroscopic and occultation measurements, Saturn's
magnetic field and radiation belts, for which only upper limits
can be given, could be very similar to Jupiter's and can be 1n-
vestlgated u31ng standard fields and particles measurement
techniques. The rings are the truly unique feature of the Saturn
’syStem and the primary objective is to describe their photometric
prpperties from which the sizes, shapes and composition of
particles can be infered. Saturn has ten satellites including
Titan, the largest, which has an atmosphere; Iapetus, known for
its large amplitude light curve, and Janus which is so small and
close to the rings that it has been seen only four times. Imagery
is the most useful technique for studying the satellites.

IIT RESEARCH I[INSTITUTE
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A suggested visual imaging instrument has been designed
around the standard Mariner vidicon. Two identical 30 cm focal
length lenses are used, similar to the arrangement‘for:MVM '73.
Saturn fills the‘field'bf view at a range of 60 R,, a typical
apoapse distance, where the surface resolution is 330 km per line
pair, However, if the spacecraft is spin stabilized, a multi-
‘detector spin scan camera'should be used., 1Its resolution at
the same distance is 700 km per’line pair. The weight of each
candidate instrument and an example of a similar one are given
in Table 5. -

‘ For_éécurate photometric measurements a separate photo-
polarimeter with five or more spectral bands. is needed. It and
the selected infrared (IR) radiometer have a 0.5° field of view
or a resolution of 3000 km at 6 R,. The radiometer has a signal
to noise ratio of at least 100 in two bands, 20-35um and 60-100um.
_ Radio occultation and radio tracking data are derived from an
analysis of the dual frequency radio signal received at the earth.
A microwave radiometer channel at 13 cm can and should be added
to the spacecraft command receiver.

An ultraviolet (UV) spectrometer, which has fixed detectors
for measuréing specific emission and absorption lines of H, Hy,
He and other less abundant species, is easily constructed with
20 L spectral resolution. A 1/3 x 3° field of view is appro-
priate even though an atmoépheric scale height is not resolved
during airgléw measurements of Saturn's limb. It is very diffi-
cult to get both good spectral and spatial resolution in the IR,
even with an interferometer., The best option is to measure ab-
sorbed solar radiation between about 1 and 5um. The magneto=-
sphere, -its -interaction with the solar wind and its trapped
particles are measured with a complementary set of instruments
including a magnetometer, charged particle detectors and radio
receivers to record plasma waves and planetary emissions.

IIT RESEARCH I[INSTITUTE
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. Table

5

- . INSTRUMENTS FOR. SATURN ORBITERS

*. - Instriment

:7-Weigh;

Payload

#1 #2

Similar

instruments_-

ot et v s P 4T R

vxsTV;System..; 
*Spln Scan
Photopolarlmeteriﬂ'
 L IR Radlometer -
R Radlo Sc1ence
' UV Spectrometer  “'
';IR Spectrometer."“
4 HMagnetometer .:
. } 'Charged Partlcles
 P1asma Wave ”
* Radio Astronomy'l

Mlcrometeor01d Detector| -

30
12

15

n., W LW

X

X

X

%

‘Mariner

ATS -

Pioneer

"Pioneer

Viking

Mariner.

Mariner

Pioneer

Pioneer

0GO
RAE

Helios

VlO"

10
'73

10
10 -

—

.A~TotéllPaY1oad M

Payload #2

60
36

Selected
alternate

o
n

IIT RESEARCH
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Finally, there is a micrometeroid composition detector which
determines the mass of ions formed by hypervelocity impacts.

Two payloads have been selected from these candldate in-
struments.“ The first empha31zes atmospheric measurements and is
intended for‘a‘Marinef spaCécraft which has.inertial stabiliza-
tion and‘a-science'payload capacity of 60 kg. The fields and
particles.instruments are well represented in the second payload
' which_isvmade.up of experiments which can work well on the spin
stabilizévaioneer spacecraft; The pointing requirements of the
TV system and IR spectrometer prevent them from being alternate
instruments for the Pioneer payload. Their weight is also a

- problem.

 The rings of Saturn are a hazard to an orb1t1ng spacecraft
'whlch crosses the equatorial plane at a radius of less than 2.3 R..
Because of uncertainties about the full spatial extent of the
rings a nodal radius of 3.0 R was selected for nominal missions
and 4.0 R for a worst case analys1s. Microwave observations of
Saturn have not established the presence of radiation belts, but
the upper limits are consistent with the nominal model for
Jupiter's trapped particles. A spacecraft with a periapse of

3.0 R, or more can survive for at least ten orbits in the nominal
environment, Because the rings cut off the belts at 2.3 R., a
periapse of l 6 R  can also be used. For a worst case analysis

- a periapse of four Saturn radii is appropriate.

There are three types of orbits that are useful for Saturn
orbiter missions. The first maximizes the phase angle coverage
for atmospherié and ring system measurements by using an orbit
plane that passes very near the subsolar point. Figure la shows
that the spacecraft's motion, as typically seen from the sun,
passes in front of the rings and Saturn's disc so that 0° phase
angle data is obtained over the full radial extent of the rings.
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Then the spacecraft passes behind the rings and both solar ex-
‘tinction and radio occultation measurements can be made. Such

an orbit should have a periapse radius of 3.0 R and a period of
" 15 to 30 days. During the long periods of time near apoapse the
, spacecraft is well pos1tloned to observe the ‘global atmospherlc
clrculatlon pattern (see Flgure 1b). Close passes of Titan, the
largest satelllte , can often be arranged in'oonjunction with
_this Orblt i - '

‘ Taklng the periapse as 1.6 R minimizes the energy re=-
'qulrement for orbit capture.’ - But thezorblt plane is then re-
strlcted so - that the node is at 3. 0 Ry . Typically thlS type of
_-orbit does not. have complete phase angle coverage. .- The view
X from the sun- in Flgure 1c shows ‘that no 0° coverage is acqulred
From apoapse the view is about the same as the previous case,
A partlcular advantage of this orbit is the fact that it pene-
. trates the magnetlc_fleld to the 2.15 R, shell and can observe
- the effects of the rings on the trapped particles. Close en-
1counters with'thefiarger satellites are not possible.

Finally for maximizing the number of close encounters

~ with satellites, an elliptical orbit is essential, This re-
quires two additional impulses to first change the'blane and

then reduce the orbit period to about 16 days which is an integer
multiple of . the period of five satellites. The equatorial orbit
also has a view of the atmosphere unobstructed by the rings but
with the polar regions always forshortened.

The first payload option could be used on each of the
three candidate orbits although it might be profitable to include
the fields and particles instruments on the minimum periapse
radius orbit, The net mass (excluding propulsion) of a Marinmer: -
spacecraft which can provide data storage for 5 x 108 bits;~data
transmission at 45 Kbps and +0.8 mrad pointing for these in-
struments is estimated to be 608 kg. Most subsystems would be

II'T RESEARCH INSTITUTE
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very similar to‘the MIS . 77 ones.: The larger propulsion system
would require structural changes similar to the difference be-
tween 1969 Mars flyby and the 1971 orbiter. A proposed MJS '77
revision of the radio system was assumed which would improve its
- sc1ent1f1c capabllltles and decrease its weight.,

) :lﬂ The second payload optlon belongs on a Pioneer spacecraft
~'1n ‘the mlnlmum perlapse or max1mum phase angle coverage orbit.
vSlgniflcant changes to. the current’ Pioneer 10/G spacecraft are

s requlred to convert it- to a. Saturn orblter. A maximum data rate

‘l,of 12 Kbps 1s prov1ded by a new. 10 w X-band transmitter and

fstorage is: 1ncreased to 3 x lO5 bits. . Two MHW RTG's are employed
»ieto achleve 230 w of. spacecraft power at end of mission. Struc-
"ltural changes caused by the larger power source and orblt capture
'”propu131on system brlng the net mass in orbit to an estlmated
312 kg (excludlng propu131on)

, The optlmum year for direct balllstlc traJectorles to

”e:Saturn is 1985 Launch vehicle performance for this opportunity
" and the spacecraft requirement are both plotted in Figure 2 as

h approach mass versus approach speed The flight time can be

determlned from the 1ntersect10n of one curve with another,

A Pioneer spacecraft can be placed into orbit after a four year

_fllght and a Titan IITI E Centaur/TE =364 launch. The more power=
ful Shuttle/Centaur/HE BIT reduces the flight time to 3.3 years,

4 . The Shuttle/Centaur/HE BII is just.able to put a Mariner
spacecraft_into-this orbit. For a flight time of 4.2 years, the

eninimum periapse radius orbit can be achieved. Actually it will
be difficult to state the Shuttle performance until its operating
requirements, such as launch window and the availability of a
larger chemical or nuclear state (neigher of which is well de-
fined) are determined. Solar electric propulsion, however, is
capable of putting the nominal Mariner spacecraft into the
3.0‘Ré periapse orbit. Using the Shuttle/Centaur/SEP (20 kw)

IIT RESEARCH INSTITUTE
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:vehicledand,allowing_a total of 900 kg for the SEP stage which is
jettisoned before orbit capture, the flight time is 4.0 years,
'Eyen for5anveQuatorial orbit the flight time-is 4.4 years, The
fflight'times'are independent.ofvlaunch opportunity. '

o The obv1ous d1fferences between Saturn and Juplter orbiter
'_m1331ons are'“ l) a flve year m1531on rather than three years,
2)"a typical communlcatlons dlstance of 10 AU rather than 5 AU

'sf whlch makes ‘the data rates dlffer by a factor of ‘4, and 3) a sig-
'7“n1f1cantly larger launch vehlcle.' The longer 1lfet1me requirement

7i1s 1ess slgnlflcant for the Marlner spacecraft while the Pioneer

’f:needs 1mprovements in several key subsystems to qualify as a

. fiSaturn orblter These changes would also be. benef1c1al for a
;Pioneer Juplter orblter. o S

o Most of the 1nstruments whlch have been . selected for the
Saturn orblter payloads could also be used at Jupiter. The

o data rate dlfference will affect the operation of the imagery

"system and perhaps the design’ of its optics. The higher infra-
3.red flux from Jupiter means it would be easier to design an

IR - spectrometer for use only in Juplter orbit, The micro-

' meterold detector could be dropped from consideration at Jupiter,

_ _ Attempts to improve our knowledge of Saturn's rings,

'fmagnetlc field and radiation belts prior to the MJS '77 flyby

are recommended ds a method of permlttlng earlier final de31gn
_ work for an orbiting spacecraft, Assuming that the Shuttle
' upper stage and its operating characteristics will permit it,

.the Marlner spacecraft. is more attractive. It would make sense

to use two spacecraft so that all the candidate instruments

can- be utilized. The first would have payload #1 and go into
the_3.0 Rs,periapse,orbit which encounters Titan., On the second
- spacecraft room would be made for fields and particles instru-

- ments by dropping some instruments from payload #1, such as the
IR spectrometer, This spacecraft should be placed in the mini-
- mum periapse orbit. : '

' - ' IIT RESEARCH INSTITUTE
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| 2;3.'TRAJECIORY‘STUDIES

; Report No.. T-31
""ADVANCED MISSION APPLICATIONS OF NUCLEAR ELECTRIC
\ © . PROPULSION" =~
. .- by D, Spadoni
' ,g;”July, 1972

o 'Current analy81s of advanced unmanned planetary missions
v1n the 1980's and beyond indicate the need for propu151on systems

-dzw1th performance capabllltles beyond ‘those of current and near

state-of-art ‘ One propulsion system concept be1ng considered
“to- fill thlS need is. nuclear electrlc low thrust propu131on (NEP).

';faThe only on-g01ng NEP development program is the internally-fueled
v.;thermlonlc reactor._ The major development effort is concentrated

”fon design proof and testlng of the thermionic fuel element and
overall reactor de31gn. Technology forecasts indicate that an
v'élnternallyﬂfueled thermionic NEP system capable of 20,000 hour
v"'operatlng thrust t1me could ‘be_available for mission application
E by late 1983

e Two dlfferent NEP system power levels are considered for

“performance analysis: 100 kw and 250 kw., The 100 kw NEP system

'duses a Centaur: (DelT) chemlcal stage for injection to an inter-

"planetary transfer and the 250 kw system uses a spiral escape

.maneuver, - Advanced chemical systems used for ballistic per-

A formance comparison’are the Centaur (GT)/Kick, Centaur (GT)/VUS
and Centaur (GT)/Centaur (GT)/VUS. All systems are launched to
- a 270 n.mi. “parking orbit via the space shuttle with a payload

' _capablllty of 50000 1bs. |
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The set of m1831ons selected for performance analysis

1ncludes loose elllptlcal orbiters and close circular orbiters
of the, outer planets satelllte orblter/landers, a Saturn-Uranus-

:Neptune flyby, Halley rendezvous, and Ceres sample return,

. Performance comparlson 1s in general made on the basis of net
”fpayload at the target as ‘a functlon of flight time "NEP per-
‘formance ‘is-. shown for unconstralned and constralned (20 000 hours)
'thrustlng time.: SPElelC 1mpu1se is opt1m1zed and ranges from
4000 sec to 7000 sec._ : '

T In general results show that both NEP systems are
capable of performlng a11 the m1s51ons con31dered but that the

: ,balllstlc systems could perform only those m1s31ons requlrlng f
| Z:a moderate expendlture of energy at . the target (loose. elllptlcal
vorblters, satelllte orblter/landers, and multi-planet flyby).

" For. these missions, ‘the NEP. systems are found to yield as high:

“as 30% (100 kw) to 50% (250 kw) reduction in. fllght time for a

“oglven payload over ‘the chem1ca1 balllstlc systems. - Table 6

- shows for a selected net. payload flight time results for the
_varlous missions considered, The NEP data are for. systems con-
.stralned to. a ‘maximum operatlng thrust time of 20000 hours,

~ For the payload levels 1nd1cated the 250 kw system out-performs

- the 100 kw system’ only in those m1531ons requiring relatively
high energy expenditure, For moderate energy levels, the two

"systems-are:COmparable.‘ '

A detalled ana1y51s of the Ceres sample return mission
jshowed that the ‘100 kw NEP system ‘has the capability to return
as- much as 120 kgs of surface’ sample plus a photographic coverage
at 1 meter resolution of 100% of the asteroids'-surface;

" 1IT- RESEARCH INSTITUTE
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‘Technicai Memorandum No. T-32
""PLANETARY MISSIONS HANDBOOK (FIRST EDITION)"
, July, 1972

- 4The Planetary M1s51ons Handbook provides a consistent
source of. payload ‘performance data for missions to the.outer
planets. The payload data for both flybys and orbiters is pre-
sented graphlcally as a functlon of flight time for wvarious
'41aunch years, 1aunch vehicles, and orbit sizes, All the rele-
. vant parameters have been combined to produce useful data on
. a‘srnglelgraph to make,advanced plannlng much easier.

: Table 7 presents the mission mode/fllght mode combinations
_used in: the flrst edition of  the Handbook. The three target

d’ﬁplanets are Juplter Saturn and Uranus with launch opportunities

ranglng from 1974 to 1986. Table 8§ shows the'various fixed
‘parameters assumed in generatlng the payload curves, Three

d?-technology advancements are assumed available in 1980: 20 kw

“solar- electrlc propu151on,;shuttleebased launch systems, and
o space-storable retro propulsion for orbiter missions.

. Figure 3 presents a typical set of payload curves for
‘ leByftype missions: Jupiter flyby in 1977, The kink in the
‘curves is due to the constraint in launch declination.
‘Flgure 4 presents a set of payload curves typical of orbiter

m1331ons:' a 30¢ orbiter mission to Jupiter in 1983.

In ail, the Handbook contains 80 graphs with almost
400 performance curves. Also, in a separate appendix the raw
- ballistic trajectory data used in generating the ballistic
performance curves. are summarized.
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"TABLE 7

- MISSION SET FOR FIRST EDITION

. OF._PLANETARY MISSIONS HANDBOOK

LAUNCH |  FLIGHT
YEARS MODES

- 'MISSION
PLANET | MODES

SN U DU

| Jupiter , Flyby . | 1974-1986 | Ballistic

- orbiter © 1976-1986° |  Ballistic

SRS AT NS SN

1980,83,85 | SEP

Ballistic

e e

Saturn |  Flyby and 1976-1986

| orbiter - |  1980,82,85 |  SEP

Uranus | Flyby and 1985 Ballistic

T VI

and SEP

U SENPUES I S

o Oribtér‘

3 SRR
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| TABLE 8

" FIXED PARAMETERS FOR FIRST EDITION

OF PLANETARY MISSIONS HANDBOOK

-LAUNCH VEHICLES

-I11976 1986 ;Tltan 111 E/Centaur

L -~~**‘7-T1tan I11 E/Centaur/BII (2300)

| ‘Titan III E/Centaur/TE 364-4
*'-Tltan IIIvE/Centaur/SEP (20 kw)

v:I19364I986If'f;'HShuttle/Centaur |
IR ”'ff“”?fShuttle/Centaur/HE BII
| -,Shuttle/Centaur/SEP (20 kw)

LAUNCH CONDITIONS

f;20 day w1ndow/DLA < 40° for Tltan vehicles

RETRO‘PROPULSION SYSTEMS: -

1976-1980 ~  Earth-Storable, Isp

‘V;198061986 S SpaceeStorabIe, Isp = 375
ORBITS:
PLANET PERIAPSE ~ PERIODS
L R - d
Jupiter 4.0 R 15,30,60
Saturn 3.0 Rg 15,30,60
Uranus . - 1.2 Ry 5,15,60
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Report No. T=33
"PLANETARY PERFORMANCE FOR ADVANCED PROPULSION
COMPARISONS (APC) STUDY"

" by J. Niehoff and A, Friedlander

. October 1972 :

: Ba51c performance trade-offs between mission fllght time
.and net useful payload are ‘"analyzed for advanced propulslon
systems" applled to unmanned planetary missions. The results
 are partgof'the much larger Advanced Propulsion Comparisons
" (APC) study undertaken by NASA and the AEC during 1972 and 1973,
,A_totalfof:26 different propulsion options encompassing chemical

L rocketspropulsion (CRP), nuclear rocket propulsion (NRP), solar

5Ee1ectric'propulsion'(SEP), and nuclear electric propulsion (NEP)
"are_analyzed. ‘These options are applied to the APC Planetary
Mission Model, consisting of 21 missions launched in the period
1981-1994 (Table '9). A total of almost 300 propulsion/mission
- combinations.are analyzed. Payload versus time trade-offs are

"~ presented for each combination in tabular and graphical'form°
'Infaddition, basic assumptions, stage performance graphs, and
tabular_trajectory data are included in the report. The results
are summarized using propulsion-ready scenarios to illustrate
performance conclusions. It is shown that all of the competing
advanced propulslon systems, almost irregardless of technology
base_restrlctlons, provide about the same performance improvement
compared to that available with only Shuttle-based Centaur and
Tug stages. This conclusion applies to mission payloads in=-
creased'up to 507% of baseline weights developed by JPL., It
appears, based on this conclusion, that selection of advanced
propulsion systems should emphasize cost and development factors,
as well as geocentric mission applications perhaps, rather than
basic planetary performance capability. These, and other con-
siderations includingran economics analysis, are the subject of
the final report of the APC Committee.
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TABLE 9
APC PIANETARY MISSION MODEL

it has a pre=-shuttle IOC launch opportunity.

o : . LAUNCH TARGET ORBIT SIZE
NO. MISSION YEAR R D 2 D
, . P a
1  Encke Slow Flyby? 1979 - -
2 ' Encke Rendezvous .- 1981/82 - -
-3~ 'Venus Radar Mapper 1983 1.08  or 3.25
R o o | - 1.08 1.08
4.1‘Mars‘Semi-Autonomous‘Rover 1984 1.44 10,63
5. Mercury Orbiter - 11984 1.41 1.41
.6 . Saturn Orbiter. (W/Probe) 1984-85  3.00 58.65
-7 Vesta Rendezvous - 1985 - -
'8 «‘Halley Flyby 1985 - -
-9 i.Juplter Orbiter 1985 4.00 45,14
10 U/N Swingby (W/U-Probe) 1986 - -
11 Uranus Orbiter (W/Probe) 1987 1.20 36.61
12 ' Venus ‘Large Lander 1989 1.08 1.08
. 13°  Neptune Orblter (W/Probe) 1989 1.20 41,80
14  J/P Swingby 1990 - -
15 Ganymede Orblter/Lander 1990 1.04 1.04
16  Mars Surface Sample Return 1990 1.30 1.30
17  Halley Rendezvous 1983 - -
18 S/U/N Swingby (S/U-Probe) 1984 - -
19 0.1 AU Solar Probe | 1985 - -
20 - Saturn Ring Probe 1988 1.20 2,30
21 - Ceres Sample Return . 1993 1.10 1.10
22 Deimos Recon/Phobos Sample Return 1994 - -
a. Encke slow flyby not considered in performance analysis since

Rp = orbit periapse, Ra = orbit apoapse; both given in units of

target radii.
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2.4 COST ANALYSIS

Technical Memorandum No. C-10
""COST ESTIMATION FOR UNMANNED LUNAR AND PLANETARY PROGRAMS'
by J. Dunkin, P, Pekar D Spadon1 and C Stone

, January, 1973 '

"'A bas1c model is presented for estlmatlng the cost of un-

" manned 1unar and planetary programs.« The level of input parameters
requlred by the model and its accuracy in predicting cost are
;consrstent w1th pre-Phase A type mission analys1s.-

Cost data was. collected and analyzed for elght lunar and
planetary programs.; Total cost was separated into the following
_ components 1abor, overhead materlals and’ technlcal support.
hThlS study determlned w1th surprlslng con31stency, that direct
© labor. cost of unmanned lunar and planetary programs comprlses
- 30 percent of the total program cost,

_ Twelve program categorles were defined for modellng six
spacecraft subsystem categorles (sc1ence, structure, propulsion,
electrlcal power, communlcatlons, and guldance and control),
and.six support functlon categories (assembly and ‘integration,
test and quallty assurance, launch and flight operations, ground
equlpment,»systems analy51svand engineering, and program manage-
,ment)}rVAn'analysis, by category, showed that on a percentage
basis;cdirect labor cost. and direct labor manhours compare on a
‘one?tofonevratio,; Therefore,_direct labor hours -is used as the

. parameter’ for predicting cost. This has the advantage of

eliminating the effect of inflation on the analysis,v

Figure 5 is a flow diagram of the use of the cost model
in forecasting. The boxes in the upper left'involve the mission
dependentinformation° Scaling laws, physical and mathematical
' relationships, and synthesis guidelines, provide the basic
estimate- of“manhours. The remainder of the model deals with
) convertlng the basic cﬂsﬁqggggggs Iﬂérepﬁkgabor hours, into cost.
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<Thls requlres two additlonal steps. First the average pay scale
($/hr) must be determlned for the period of the program. If de-
sired, the selected pay -scale could include inflation between

~ the: tlme of the estimate and program execution. The final step
_1nvolves convertlng direct labor cost into total program cost.
'7Total program cost. can be determlned by dividing direct labor
cost by its. fractlon of total cost The relatlonshlp used -

‘vlfthroughout this study is:

'Total Program Dollars D1rect Labor Hours X Average Hourly Rate
0T , 3 ,

Tal)le 10 presents cost estrmates and errors for the pro-
;;grams used in developlng the cost model The Surveyor. program

'-f}dld not follow clearly establlshed trends of the other seven
- programs and was subsequently not used in- the development of
- the model, -As’ an. example, the model was used to predict the

'cost of - the Marlner Venus/Mercury 1973 program.- The model pre=
’dlcted a. program cost of $120 Mllllon whlch is approxlmately
20 percent hlgher than current estlmates°

B *Recommendations for further'effort include: = update the
~current data base by obtalnlng the latest Mariner 1971, Viking
_Orbiter and Vlklng Lander cost data"expand the data base by
'obta1n1ng cost data for such programs as Mariner Venus 1967,
Mariner- Venus/Mercury 1973, and interplanetary and cis-lunar
Ploneer and Explorer programs, and develop cost models for
]planetary atmospherlc entry probes. ‘
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3. SPECIAL-STUDIES AND ACTIVITIES
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3.1 'ADVANCED PLANNING ACTIVITIES

'Within'the Long?Range Planning Contract.approximately

one’ man year of effort is set aside for fast-response technical
- support to. the Planetary Programs Offlce. - In addltlon to real-time
<§techn1ca1 ass1stance five spec1f1c minor. tasks were performed in
the’ fast—response mode durlng the past year as part of this effort,

The flve tasks are llsted below.' Two of the tasks (4 and 5)
1were precursory studles to the Advanced Propulslon Comparisons .
”Study (Report No. T-33,'see dlscu331on page35) and have been
'superseded by 1t - - : : -

'dffﬁﬁlfé;Planetary M1381ons Plan 1980 1990 '
' “121ff0uter Planet MlSSlon Optlons - 1975 to 1980 .

17Q13, .Flight timé and miss distance ‘summary data for five
.. grand=-tour type missions (J/S/P, -J/U/N, S/U/N, U/N, J/P).

R jlm4,afPerformance Data Based on ”Qulck-Look” APC Analysis
V;fs;ﬂismall Nerva (lSK) Saturn/Uranus/Neptune M13$1ons

11T RESEARCH INSTITUTE
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3.2 NAR/SEP STAGE STUDY MISSION DATA SUPPORT

e The'objective'of this task was to generate SEP trajectory/
~payload data in support of North American Rockwell's SEP Stage
‘Study Program (MSFC Contract) - The trajectory analysis ground
“_rules, input parameters and desired results were provided by

. NAR w;th_IITRI S eonsultatlon, Basically, the desired results

were to show the net spacecraft mass capablllty for a set of nine
missions as a function of such parameters as: - launch vehicle,
SEP power fllght t1me propulslon on-tlme and launch window.

. The: parametrlc data w111 allcw NAR to ascertain the capability

- of their stage de31gn(s) ‘to these mission applications, and to
i generate more detalled data as needed for three specific missions
"l(Encke Slow flyby, Mercury orblter and Saturn orblter)

' Resﬁlts for each missionvapplication were sent to NAR as
‘they were’ completed, The mission set is listed below:

v W
. .

‘Mission Application/Launch Year ' Baseline Power
1. Encke Slow Flyby/1979 ' 12 kw
. Ceres Orbiter/1983 18 kw
.. S-U-N Flyby/1983 | 18 kw
U-N Flyby/1984 18 kw
. - Phobos ‘and Deimos ' -
Rendezvous /1984 12 kw
6. Encke Rendezvous/1981 | 12 kw
7. Solar Probe (0.1 AU) ' 21 kw
8. Mercury Orbiter/1983 o 21 kw
9. Saturn Orbiter/1983 | 18 kw

Il'T RESEARCH INSTITUTE
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(copies not available)

‘Mission Requiremenfs for Exobiological Measurements

on Venus, by W. Riesen and D. L. Roberts, NASA STAR

‘No. N67-12073

A Geological Analysis for Lunar Exploratibn, by
. W. Scoggins .

. ‘Scientific Objeétives,of Deep Space Investigations -
The Origin and Evolution of the Solar System, by
. J. Witting, NASA STAR No. N67-10880

'~ Scientific Objectives of Deep Space Investigations -

Jupiter as an Object of Biological Interest, by

 ASC Staff, NASA STAR No. N67-27647

: Sﬁggestéd'Meaéurement/lnstrument Requirements for

Lunar Orbiter Block III, by W. Sco%gins; and

‘D. L. Roberts, NASA STAR No. N67-31059

 Scientific Objectives for Total Planetary Exploration,
- by ASC Staff '

Role of Ground Based Observations in the Exploration
of Venus, by J. T. Dockery -

A Preliminary Evaluation of the Applicability of
Surface Sampling to Mars Exploration, by
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Objectives, by J. G. Barmby and R. G. Dubinsky
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MISCELLANEOUS - Continued

- TM-16-

™-17 -

Preliminary Analysis of Spacecraft Commonality for
the Space Applications Program (1970-1986), by

‘J. G. Barmby, J. E. Orth, and W, L. Vest

A'Method for Determining Optimum Experiment Profiles
and Resultant Data Bulk Requirements for Remote
Imaging of the Lunar Surface From Polar Orbit, by

- P, Bock

~ TM~-18

™-19
TM-21
TM-22

™=-23

TM=26

Scientific Experiment Program for Earth-Orbital
Flights of Manned Spacecraft, by R. G. Dubinsky

Determination of Earth Orbital Experiment Profiles

- and Data Requirements, by P. Bock

Optical Imagers for the Small Earth Resources
Satellite, by S. S. Verner

Compendium of Space Applications Sensors and
Instruments, by J., E. Orth

Basic Data for Earth Resources Survey Program

Map Plan, by K. Clark

:Expefiment Profile Analysis of the Multiband Camera
Sun Synchronous Mission, by P. Bock and H. Lane.
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5.  MAJOR COMPUTATIONAL CODES

Conic Section Codes

SPARC The JPL general conic sectlon ‘code for ballistic and
balllst1c-grav1ty-ass1st fllghts.

NBODY (IV) The Fortran IV version of the Lew1s Research Center
code rev1sed at ASC for mu1t1body, hlgh prec181on targetlng and
.fguldance ana1y51s.,- ‘ '

Low Thrust CodeS""~

BOEING CODE°’ CHEBYTOP I & 1T are fast generators of optimum
1ow thrust 1nterp1anetary traJectorles. ‘Both- solar—electrlc-
;and nuclear electrlc powerplants can be treated Propulsioﬁ
system parameters must be spec1f1ed - payload optlmlzatlon can

be accompllshed by multlple parametrlc runs..

MULIMP Uses ConJugate Gradlent search method to- flnd minimum.

AV traJectorles consisting of up to four . free fall conic ares

~ separated by up. to five 1mpulses. Departure is from Earth orbit
and the arrival p01nt is constrained 'to lie on an arbitrary. conic.
Veloc1ty is matched at the arrival point (rendezvous)

Near Planet Operations

" KOFNAL: %Generatesvground'traces of orbiting spacecraft for any
number of desired-revolutions. ;Can be used for all nine planets
of the solar system. Has Calcomp capability for plotting longi-
tude and latitude of the ground trace.

CONTUR: Generates data for Sun, Earth & Canopus occultation

. contours for hyperbolic flybys past any given planet.
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PROFYL: A planetary encounter profile definition code.

RINGER’ A code of calculatlng crossings of Saturn's ring plane
_durlng flyby.

AMSOCC:'AGenefates'data for Sun, Earth & Canopus occultation
contours for orbiting spacecraft about any given planet.

PETARD-"Similar to "KOFNAL'.. Generates ground traces orbiting
spacecraft for any number of desired revolutions for any of the
nine. planets of the .solar system._ Has Calcomp capability for
plottlng latitude or- altltude as a functlon of time from periapse
on seml-log plots. : '

CAPTR:  SetﬂQf'tw6 codes developéd to perform orbit and landing
- maneuvers about a natural planetary satellite.

ETY 1:  501ves'differéntia1 equations describing_motioh of a
‘spacecraft entering the atmosphere of a rotating planet with a
sphericai gravity field. Present version assumes fixed values
of'thé'drag coefficient and lift to drag ratio. Atmospheric
'density'is computed as an'expohential-function of altitude.

STAGE/BURN: Calculates injection energy-(C3) requirements for

a specified payload from an Earth parking orbit. Uses a fast,
accurate analytical approximation to finite thrust injection
maneuver. Program is set up to handle multi-stage (up to 4 stages)
injection vehicle. Both chemical and nuclear rocket stages can

be used.

APPROACH: Solves the targeting problem for planetary entry
probes ejected from fly-by spacecraft. Computes deflection
inCrément, entry conditions and sensitivities, as well as post
entry probe to spacecraft range and communication angle,
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'Guidance andVOrbit"Determination
GNAP: VJPL low.thrUSt.navigation code,
lCOMODE ngh pre0131on comet orbit determlnatlon code, taking

1nto con31deratlon grav1tatlonal effects of Sun and all nine
fplanets 51multaneous1y.‘l |

c~ORB6BS' ’A:Fortran v program:for”determining'minimum separation
1ntercepts of‘a’ Juplter orb1ter w1th the four Galilean Satellites;

'f‘,Io__Europa Ganymede, and Calllsto.,

"nSURVEY-: Generates 51ght1ng conditlons for comets over a speci-

. fied. length of tlme.” Has Calcomp capablllty for plottlng sight-

:'llng condltlons as functlon of tlme from perlhellon.

Spec1a11zed Codes

"'fPLANET * PLANET ' JPL planet ephemerls subroutlne package.

PLASAT JPL ephemerls subroutlnes for planetary natural
"'satellltes.‘ : :

.'tASTDAT *'1971:, JPL asteroid and comet ephemeris'data tape.

MIMIC ‘A Fortran IV’like‘systemvfor simulating, on the 1108,
an analog computer and thereby easily doing integrations,

BMD:‘:A general statistical analysis package from UCLA used
for multiple regression analysis of cost data.
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Hewlett-Packard 910040a1culator System

The following is a partial list of programs developed by
Astro Sciences for use on the HP system:

CT: - Transforms coordlnates of approach traJectory from ecliptic
to equatorlal for .any glven planet

'P3:i.Detefmines flyby or orbiter payloads for a given launch
vehicle ~chem1ca1 retro system (1f any), and trajectory energy
requlrements.- Plots payload versus flight time,

BDVE »Determiﬁés AV reqdiremeﬁtslfof orbiting a natural satellite.
Uses a derivative of the bi-elliptic transfer.

.SRO:;'Calculatés occultation parameters of a spacecraft being
occulted by the rings of Saturn. Can handle either a flyby or

orbiter of Saturn.

MR2:. Mﬁltiplé 1iﬁear regression of the form Z = A, + A X + AoY.
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