REPORT NO. A-11

FINAL REPORT (NASW-2144)

by

Astro Sciences

IIT Research Institute
Chicago, Illinois

for

Planetary Programs
Office of Space Science
NASA Headquarters
Washington, D. C.

APPROVED:

C. A. Stone, Director
Physics Research Division

January 1973

IIT RESEARCH INSTITUTE
FOREWORD

This final report summarizes the reports prepared and the special tasks performed by Astro Sciences of IIT Research Institute during the period from November 1971, through January 1973. Seven reports and technical memoranda are summarized together with a listing of five advanced planning tasks on which no formal reports have been written. A brief description of support work for North American Rockwell's SEP Stage Study is also contained within this report. This work has been performed under NASA Contract Number NASW-2144.
NINTH ANNUAL SUMMARY REPORT

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>SUMMARY OF REPORTS AND TECHNICAL MEMORANDA</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Mission Objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>P-42 "Asteroid Selection for Mission Opportunities"</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>P-43 "Instrument Technology for Missions to Asteroids and Comets"</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Mission Analysis</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>M-36 "Saturn Orbiter Mission Study"</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Trajectory Studies</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>T-31 "Advanced Mission Applications of Nuclear Electric Propulsion"</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>T-32 "Planetary Missions Handbook"</td>
<td>29 (First Edition)</td>
</tr>
<tr>
<td></td>
<td>T-33 "Planetary Performance for Advanced Propulsion Comparisons (APC) Study"</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Cost Analysis</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>C-10 "Cost Estimation for Unmanned Lunar and Planetary Programs"</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>SPECIAL STUDIES AND ACTIVITIES</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Advanced Planning Activities</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>NAR/SEP Stage Study Mission Data Support</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>BIBLIOGRAPHY OF AS/IITRI REPORTS AND TECHNICAL MEMORANDA</td>
<td>43</td>
</tr>
<tr>
<td>5.</td>
<td>MAJOR COMPUTATIONAL CODES</td>
<td>57</td>
</tr>
</tbody>
</table>

IIT RESEARCH INSTITUTE
FIGURES

No. Page
1. Viewing Conditions for Candidate Orbits 19
2. Spacecraft Requirements and Launch Vehicle
 Performance .. 22
3. 1977 Jupiter Flyby 32
4. 1983 Jupiter 30th Orbi ter 33
5. Cost Model Schematic 38

TABLES

No. Page
1. Relative Interest Grouping Based on Surface and
 Compositional Characteristics 6
2. Relative Rating of Multiple Missions 7
3. Typical Encounter Speeds and Probable Miss Distances.. 10
4. Development Requirements for Minor Body Science
 Instruments .. 12
5. Instruments for Saturn Orbiters 17
6. Propulsion Systems-Flight Time Comparisons 27
7. Mission Set for First Edition of Planetary Missions
 Handbook ... 30
 Missions Handbook 31
9. APC Planetary Mission Model 36
10. Cost Model Prediction Error Analysis 40
1. INTRODUCTION

Astro Sciences of IIT Research Institute (AS/IITRI) has been engaged in a program of advanced research, study and analysis for the Planetary Programs Division (Code SL) of NASA since March, 1963. The results of Astro Sciences' work up to October 31, 1971, have been previously reported. This report summarizes the work performed on Contract NASW-2144 from November 1, 1971 through January, 1973.

The purpose of advanced mission planning is to derive a preliminary understanding of those missions, and associated mission requirements, which are of importance in the evolution of knowledge of our solar system. It is necessary not only to have a solid foundation in science and engineering for this type of planning but also the ability to integrate the increasing awareness of the problems involved in space exploration back into the advanced planning process. Astro Sciences' program during the period covered by this report, as it has during the previous eight years, has continued to develop this process in accordance with NASA's broadening needs.

The activities of Astro Sciences are reported to the Planetary Programs Office at regularly scheduled bi-monthly review meetings. However, the most tangible output is in the form of technical reports and memoranda. During the time period covered by this report a total of seven reports or technical memoranda have been submitted. Summaries of these documents are given in Section 2. Section 3, Special Studies and Activities, summarizes study efforts that have been performed but for which no formal reports have been published. Section 4 contains a bibliography of reports and technical memoranda published by AS/IITRI. Finally, Section 5 summarizes the major computer programs used to support Astro Sciences' technical efforts.
2. SUMMARY OF REPORTS AND TECHNICAL MEMORANDA
PUBLISHED NOVEMBER 1971 - JANUARY 1973
2.1 MISSION OBJECTIVES

Missions to the asteroid belt and to specific asteroids were identified as scientifically important very early in the space program and flyby opportunities to one or more of the larger asteroids have appeared in NASA long range plans for a number of years. These opportunities have largely been selected on the basis of launch opportunity and mission energy requirements. More recently it has become apparent through rapid advances in our limited knowledge of the asteroids that the major questions which relate to solar system minor bodies will not be satisfactorily answered, even in the first order, by a mission or missions to a single asteroid. Concurrently, advanced propulsion systems are being developed or planned which expand the mission possibilities for minor bodies. Solar electric propulsion (SEP) and nuclear electric systems (NEP), when available, are capable of performing rendezvous and orbit, multiple asteroid flybys, and lander missions.

This preliminary study was undertaken to assess the present state of knowledge of asteroids as well as the rate of change of that knowledge to better identify the mission and target priorities for the advanced planning of asteroidal flights in the 1980's and beyond. It was apparent at the outset that there was not a unique set of asteroids representing maximum priority. Equally important, ground based observations and studies will undoubtedly alter priorities assigned to specific asteroids as our knowledge increases. Thus this report presents a review of current knowledge and derives a categorical set of priorities which can be applied to asteroid selection or evaluation by the reader. A preliminary selection has been made.
both to illustrate the process and to provide the basis for early mission analysis but this selection should not be construed as representing the only choice nor even the "best" one.

The report discusses the present state of asteroid knowledge, the scientific goals and priorities attached to asteroid exploration, the anticipated advances in knowledge over the current decade, asteroid mission consideration and, finally, asteroid selection. To summarize, in selecting priority targets the highest weight should be given to characteristics of spectral reflectivity variations with rotation. High weight should be given to albedo, especially extreme values. Medium weight should be given to albedo variations with rotation, large light-curve amplitudes, and family membership. Low weight should be given to extreme (especially rapid) rotations. Little or no weight should be given to other parameters.

It is most important to observe the asteroids with these important compositional characteristics as a function of semi-major axis (highest priority), diameter (high priority), and proper e and proper i (especially as related to probably extreme values of a in the early solar system, or large distances above the ecliptic). Therefore we want a variety of asteroids which span important ranges of both distance from the sun and diameter which hopefully also have a variety of implied compositions and many of which have evidence for having exposed their interiors as a result of catastrophic collisions. Asteroids should be observed over at least the range of 40 to 350 km diameter. It is important also to span the asteroid belt; the sample should include an asteroid inside of a = 2.4 and an asteroid with aphelion distance beyond 3.5 AU.
Thus, from the point of view of current knowledge about the asteroids, we believe that the major emphasis should be to get close to as many asteroids as possible, constrained by two criteria: 1) At least one major asteroid should be visited, the surface characteristics of which suggests possible differentiation; 2) A reasonably wide range of semi-major axes should be explored, particularly including at least one asteroid (preferably of bluish color) in an orbit reaching aphelion beyond 3.5 AU. Even these criteria should not be regarded as strict. One would probably not wish to give up the opportunity to visit six different asteroids on the same mission if meeting the above criteria reduced the number of targets to only two or three.

Table 1 and Table 2 illustrate the comparative ratings developed from this study. The characteristics of asteroids were assigned relative ratings based on the current level of knowledge and the known data. The values of individual parameters were then assigned a secondary interest rating. The data for the 118 asteroids were then used together with the rating system to classify the asteroids. The groupings of higher interest asteroids which results is shown in Table 1. The system was used to rate several three asteroid missions as an example. The process is outlined in Table 2.

A compilation of all reliably known physical data about the asteroids is contained in the appendix (separately bound). There is a data sheet for each of 118 asteroids for which information, in addition to orbital parameters and magnitude, is available. Data that is considered unreliable (primarily old data such as results of photographic photometry) have been omitted. The information is up to date as of June, 1972 and includes the following parameters: the absolute B magnitude; B-V and U-B colors observed as a function of phase angle, also
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 5, 15, 17</td>
<td>2, 3, 6, 7, 18, 19</td>
<td>1, 9, 10, 12, 14, 16</td>
<td>8, 11, 13, 24, 27, 30</td>
</tr>
<tr>
<td>39, 1437</td>
<td>25, 40, 192, 321</td>
<td>20, 21, 22, 23, 28, 29</td>
<td>37, 38, 42, 54, 62, 70</td>
</tr>
<tr>
<td></td>
<td>324, 433, 532, 624</td>
<td>43, 44, 45, 51, 60, 61</td>
<td>77, 78, 80, 85, 89, 92</td>
</tr>
<tr>
<td></td>
<td>1566</td>
<td>68, 79, 82, 116, 186</td>
<td>93, 110, 162, 230, 258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196, 345, 349, 354</td>
<td>268, 337, 341, 356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>364, 409, 511, 563</td>
<td>380, 481, 510, 540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>911, 984, 1620</td>
<td>554, 658, 674, 704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>753, 779, 1287, 1291</td>
</tr>
</tbody>
</table>

Table 1. Relative interest grouping based on surface & compositional characteristics.
<table>
<thead>
<tr>
<th>Mission (Asteroid No.'s)</th>
<th>68 - 1 - 1293</th>
<th>67 - 1 - 544</th>
<th>540 - 116 - 223</th>
<th>1156 - 116 - 223</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositional Interest Rating</td>
<td>3 3 --</td>
<td>-- 3 --</td>
<td>4 3 --</td>
<td>-- --</td>
</tr>
<tr>
<td>Size (Magnitude)</td>
<td>160 290</td>
<td>-- 290</td>
<td>-- 8.8 (D<100)</td>
<td>-- (D<100)</td>
</tr>
<tr>
<td>a</td>
<td>2.78 2.76 2.23</td>
<td>2.42 2.76 3.17</td>
<td>2.22 2.77 3.09</td>
<td>2.26 2.77 3.09</td>
</tr>
<tr>
<td>e</td>
<td>.142 .101 .271</td>
<td>.187 .101 .195</td>
<td>.138 .174 .121</td>
<td>.043 .174 .121</td>
</tr>
<tr>
<td>i</td>
<td>7.5 9.7 5.4</td>
<td>6.0 9.7 11.2</td>
<td>6.1 3.6 1.97</td>
<td>1.43 3.6 1.97</td>
</tr>
<tr>
<td>Mission Scientific Rating (Relative)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 2. RELATIVE RATING OF MULTIPLE MISSIONS
as reduced to 5° phase using lunar phase corrections; a description of asteroid color derived from reliable measurements of all kinds; several descriptions of the spectral reflectivity curve; phase factors for UBV magnitudes and colors; characteristics of the polarization versus phase curve; light-curve characteristics, including period, minimum and maximum amplitude, relative proportion of variability due to albedo differences and shape, and implied axis orientation; mass; diameter; albedo, proper orbital elements; and family membership. The appendix identifies the asteroids by name and by their assigned number. For convenience, subsequent tables in the body of the report identify the asteroids by number only.
Missions to asteroids and comets have an important and planned role in the exploration of the solar system. Present spacecraft and propulsion systems are adequate for some preliminary missions and the advent of SEP/NEP capabilities will permit a variety of minor body flyby and rendezvous missions in the 1980's. The scientific objectives associated with minor body exploration are similar to those for planetary exploration; however, some specific differences in objectives do exist. These differences together with the size of these bodies and the characteristic miss distances projected have generated questions about the adequacy of scientific instruments for these missions.

This study derived measurement specifications for the scientific objectives which have been established for flyby and rendezvous missions to comets and asteroids. These measurement specifications were then combined with typical spacecraft target separations and target size to estimate instrument requirements such as sensitivity, resolution, response time, spectral range, etc. Table 3 lists the spacecraft/target separations which were used. These were based on ephemeris errors and projected S/C capabilities but were chosen conservatively to place maximum demand upon the scientific instruments. The instrument requirements were then compared with the
Table 3: Typical Encounter Speeds and Probable Miss Distances

<table>
<thead>
<tr>
<th>Flybys:</th>
<th>Encounter Speed</th>
<th>Probable Miss Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteroids</td>
<td>5 - 12 km s(^{-1})</td>
<td>~ 100 km</td>
</tr>
<tr>
<td>Comets</td>
<td>~ 12 km s(^{-1})</td>
<td>~ 1000 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rendezvous:</th>
<th>Encounter Speed</th>
<th>Probable Miss Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteroids</td>
<td>0</td>
<td>10 km (orbit?)</td>
</tr>
<tr>
<td>Comets</td>
<td>0</td>
<td>10 km</td>
</tr>
</tbody>
</table>
characteristics of presently available flight rated hardware. When the requirements for minor body exploration exceeded those presently available, expert opinion was obtained on the nature of the R & D required. Based on these inputs the instruments were classified in one of three categories:

1. Adequate flight instruments exist which require only engineering and integration.

2. The basic technology for the instrumentation is available and the normal 3-5 year R & D cycle following mission approval should provide flight hardware.

3. The requirements are sufficiently stringent to warrant R & D expenditures in advance of mission approval to ensure the availability of adequate flight instrumentation.

The judgements involved in the classification were, of course, subjective and it was occasionally difficult to establish a firm "minimum" capability against which to make decisions. Obviously, increases in sensitivity, resolution, etc. will yield better data and the scientific community will always desire continued instrument development. However, based on what we feel are reasonable objectives, the available instruments satisfy most projected needs. Table 4 summarizes the results. Mass spectrometers for comet missions are a borderline case. An increase in efficiency is necessary and it is not clear that the normal mission hardware cycle time is adequate. High resolution gamma ray spectroscopy will require further development of intrinsic Ge detectors but research in this area is underway with DOD and AEC support. No instrumentation exists which will simultaneously measure the mass, diameter and velocity of meteorites and dust particles but this
Table 4: Development Requirements for Minor Body Science Instruments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteoroid Radar</td>
<td></td>
<td>x<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Microwave Radiometer</td>
<td></td>
<td>x<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>IR Radiometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-V-UV Spectrometer</td>
<td></td>
<td>x<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>V-Imagers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-UV Photometer</td>
<td></td>
<td>x<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td>X-Ray Spectrometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-Ray Spectrometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Spectrometer</td>
<td></td>
<td></td>
<td>x<sup>5</sup></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma Probe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma Wave Experiment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrometeroid Detector</td>
<td></td>
<td></td>
<td>x<sup>6</sup></td>
</tr>
<tr>
<td>Gravity Gradiometer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. While sensitivities are satisfactory, weight and power requirements are high compared to scientific value.
2. Spatial resolution for comet nuclei of 1 km diameter is 1/10 of a diameter.
3. Based on slit spectrometer which, however, does not provide two dimensional spatial resolution.
4. This assumes that high resolution spectroscopy will be required.
5. Estimates of the effort required to achieve desired throughput vary. Advanced R & D might be required.
6. Flight hardware does exist but does not provide desired information. Cometary dust is the pacing scientific objective.
is a long standing problem. The weight and power limitations for these missions are similar to those for planetary exploration and obviously some of the scientific instruments would benefit from further advances in miniaturization.
2.2 MISSION ANALYSIS

Technical Memorandum No. M-36
"SATURN ORBITER MISSION STUDY"
by W. Wells and R. Sullivan
January, 1973

This report provides a preliminary analysis of the important aspects of missions orbiting the planet Saturn. Orbital missions to the outer planets can be given serious consideration in the 1980's or after flybys by Pioneer 10/G and Mariner Jupiter-Saturn '77. Previous studies (by IITRI/Astro Sciences, JPL and NASA/Ames) have looked at Jupiter orbiters. This effort attempts to characterize Saturn orbiters in similar detail so that comparisons with Jupiter missions can be made.

Broadly speaking, the scientific objectives of Saturn exploration can be grouped under four topics: 1) the atmosphere, 2) the magnetosphere, 3) the rings and 4) satellites. Like Jupiter, Saturn has an atmosphere consisting of belts and zones whose global circulation pattern and local features can be studied by long term monitoring (imagery) from an orbiting spacecraft. The vertical profiles of temperature, pressure, etc. can be deduced from spectroscopic and occultation measurements. Saturn's magnetic field and radiation belts, for which only upper limits can be given, could be very similar to Jupiter's and can be investigated using standard fields and particles measurement techniques. The rings are the truly unique feature of the Saturn system and the primary objective is to describe their photometric properties from which the sizes, shapes and composition of particles can be inferred. Saturn has ten satellites including Titan, the largest, which has an atmosphere; Iapetus, known for its large amplitude light curve, and Janus which is so small and close to the rings that it has been seen only four times. Imagery is the most useful technique for studying the satellites.
A suggested visual imaging instrument has been designed around the standard Mariner vidicon. Two identical 30 cm focal length lenses are used, similar to the arrangement for MVM '73. Saturn fills the field of view at a range of 60 \(R_s \), a typical apoapse distance, where the surface resolution is 330 km per line pair. However, if the spacecraft is spin stabilized, a multi-detector spin scan camera should be used. Its resolution at the same distance is 700 km per line pair. The weight of each candidate instrument and an example of a similar one are given in Table 5.

For accurate photometric measurements a separate photopolarimeter with five or more spectral bands is needed. It and the selected infrared (IR) radiometer have a 0.5° field of view or a resolution of 3000 km at \(6 R_s \). The radiometer has a signal to noise ratio of at least 100 in two bands, 20-35\(\mu m \) and 60-100\(\mu m \). Radio occultation and radio tracking data are derived from an analysis of the dual frequency radio signal received at the earth. A microwave radiometer channel at 13 cm can and should be added to the spacecraft command receiver.

An ultraviolet (UV) spectrometer, which has fixed detectors for measuring specific emission and absorption lines of H, H\(_2\), He and other less abundant species, is easily constructed with 20 Å spectral resolution. A 1/3 x 3° field of view is appropriate even though an atmospheric scale height is not resolved during airglow measurements of Saturn's limb. It is very difficult to get both good spectral and spatial resolution in the IR, even with an interferometer. The best option is to measure absorbed solar radiation between about 1 and 5\(\mu m \). The magnetosphere, its interaction with the solar wind and its trapped particles are measured with a complementary set of instruments including a magnetometer, charged particle detectors and radio receivers to record plasma waves and planetary emissions.
Table 5
INSTRUMENTS FOR SATURN ORBITERS

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Weight</th>
<th>Payload #1</th>
<th>Payload #2</th>
<th>Similar Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV System</td>
<td>30</td>
<td>x</td>
<td>-</td>
<td>Mariner 9</td>
</tr>
<tr>
<td>Spin Scan</td>
<td>12</td>
<td>-</td>
<td>x</td>
<td>ATS</td>
</tr>
<tr>
<td>Photopolarimeter</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>Pioneer 10</td>
</tr>
<tr>
<td>IR Radiometer</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>Pioneer 10</td>
</tr>
<tr>
<td>Radio Science</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>Viking</td>
</tr>
<tr>
<td>UV Spectrometer</td>
<td>4</td>
<td>x</td>
<td>a</td>
<td>Mariner '73</td>
</tr>
<tr>
<td>IR Spectrometer</td>
<td>15</td>
<td>x</td>
<td>-</td>
<td>Mariner 9</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>3</td>
<td>x</td>
<td>x</td>
<td>Pioneer 10</td>
</tr>
<tr>
<td>Charged Particles</td>
<td>5</td>
<td>a</td>
<td>x</td>
<td>Pioneer 10</td>
</tr>
<tr>
<td>Plasma Wave</td>
<td>4</td>
<td>a</td>
<td>x</td>
<td>OGO</td>
</tr>
<tr>
<td>Radio Astronomy</td>
<td>3</td>
<td>a</td>
<td>x</td>
<td>RAE</td>
</tr>
<tr>
<td>Micrometeoroid Detector</td>
<td>5</td>
<td>a</td>
<td>x</td>
<td>Helios</td>
</tr>
<tr>
<td>Total Payload #1</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload #2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x = selected
a = alternate
Finally, there is a micrometeoroid composition detector which determines the mass of ions formed by hypervelocity impacts.

Two payloads have been selected from these candidate instruments. The first emphasizes atmospheric measurements and is intended for a Mariner spacecraft which has inertial stabilization and a science payload capacity of 60 kg. The fields and particles instruments are well represented in the second payload which is made up of experiments which can work well on the spin stabilized Pioneer spacecraft. The pointing requirements of the TV system and IR spectrometer prevent them from being alternate instruments for the Pioneer payload. Their weight is also a problem.

The rings of Saturn are a hazard to an orbiting spacecraft which crosses the equatorial plane at a radius of less than 2.3 \(R_S \). Because of uncertainties about the full spatial extent of the rings a nodal radius of 3.0 \(R_S \) was selected for nominal missions and 4.0 \(R_S \) for a worst case analysis. Microwave observations of Saturn have not established the presence of radiation belts, but the upper limits are consistent with the nominal model for Jupiter's trapped particles. A spacecraft with a periapse of 3.0 \(R_S \) or more can survive for at least ten orbits in the nominal environment. Because the rings cut off the belts at 2.3 \(R_S \), a periapse of 1.6 \(R_S \) can also be used. For a worst case analysis a periapse of four Saturn radii is appropriate.

There are three types of orbits that are useful for Saturn orbiter missions. The first maximizes the phase angle coverage for atmospheric and ring system measurements by using an orbit plane that passes very near the subsolar point. Figure 1a shows that the spacecraft's motion, as typically seen from the sun, passes in front of the rings and Saturn's disc so that 0° phase angle data is obtained over the full radial extent of the rings.
Figure 1. Viewing conditions for candidate orbits.

(a) View of orbit from sun

(b) View of orbit from sun

(c) View of Saturn from apoapse

(d) View of Saturn from apoapse

Maximum phase angle orbit

Minimum periape radius orbit

Atmospheric occultation

Backscatter

Extinction
Then the spacecraft passes behind the rings and both solar extinction and radio occultation measurements can be made. Such an orbit should have a periapse radius of $3.0 \, R_s$ and a period of 15 to 30 days. During the long periods of time near apoapse the spacecraft is well positioned to observe the global atmospheric circulation pattern (see Figure 1b). Close passes of Titan, the largest satellite, can often be arranged in conjunction with this orbit.

Taking the periapse as $1.6 \, R_s$ minimizes the energy requirement for orbit capture. But the orbit plane is then restricted so that the node is at $3.0 \, R_s$. Typically this type of orbit does not have complete phase angle coverage. The view from the sun in Figure 1c shows that no 0° coverage is acquired. From apoapse the view is about the same as the previous case. A particular advantage of this orbit is the fact that it penetrates the magnetic field to the $2.15 \, R_s$ shell and can observe the effects of the rings on the trapped particles. Close encounters with the larger satellites are not possible.

Finally for maximizing the number of close encounters with satellites, an elliptical orbit is essential. This requires two additional impulses to first change the plane and then reduce the orbit period to about 16 days which is an integer multiple of the period of five satellites. The equatorial orbit also has a view of the atmosphere unobstructed by the rings but with the polar regions always forshortened.

The first payload option could be used on each of the three candidate orbits although it might be profitable to include the fields and particles instruments on the minimum periapse radius orbit. The net mass (excluding propulsion) of a Mariner spacecraft which can provide data storage for 5×10^8 bits, data transmission at 45 Kbps and $\pm 0.8 \, \text{mrad}$ pointing for these instruments is estimated to be 608 kg. Most subsystems would be
very similar to the MJS '77 ones. The larger propulsion system would require structural changes similar to the difference between 1969 Mars flyby and the 1971 orbiter. A proposed MJS '77 revision of the radio system was assumed which would improve its scientific capabilities and decrease its weight.

The second payload option belongs on a Pioneer spacecraft in the minimum periapse or maximum phase angle coverage orbit. Significant changes to the current Pioneer 10/G spacecraft are required to convert it to a Saturn orbiter. A maximum data rate of 12 Kbps is provided by a new 10 w X-band transmitter and storage is increased to 3×10^5 bits. Two MHW RTG's are employed to achieve 230 w of spacecraft power at end of mission. Structural changes caused by the larger power source and orbit capture propulsion system bring the net mass in orbit to an estimated 312 kg (excluding propulsion).

The optimum year for direct ballistic trajectories to Saturn is 1985. Launch vehicle performance for this opportunity and the spacecraft requirement are both plotted in Figure 2 as approach mass versus approach speed. The flight time can be determined from the intersection of one curve with another. A Pioneer spacecraft can be placed into orbit after a four year flight and a Titan III E Centaur/TE=364 launch. The more powerful Shuttle/Centaur/HE BII reduces the flight time to 3.3 years.

The Shuttle/Centaur/HE BII is just able to put a Mariner spacecraft into this orbit. For a flight time of 4.2 years, the minimum periapse radius orbit can be achieved. Actually it will be difficult to state the Shuttle performance until its operating requirements, such as launch window and the availability of a larger chemical or nuclear state (neither of which is well defined) are determined. Solar electric propulsion, however, is capable of putting the nominal Mariner spacecraft into the $3.0 R_\oplus$ periapse orbit. Using the Shuttle/Centaur/SEP (20 kw)
FIGURE 2: SPACECRAFT REQUIREMENTS AND LAUNCH VEHICLE PERFORMANCE.
vehicle and allowing a total of 900 kg for the SEP stage which is jettisoned before orbit capture, the flight time is 4.0 years. Even for an equatorial orbit the flight time is 4.4 years. The flight times are independent of launch opportunity.

The obvious differences between Saturn and Jupiter orbiter missions are: 1) a five year mission rather than three years, 2) a typical communications distance of 10 AU rather than 5 AU which makes the data rates differ by a factor of 4, and 3) a significantly larger launch vehicle. The longer lifetime requirement is less significant for the Mariner spacecraft while the Pioneer needs improvements in several key subsystems to qualify as a Saturn orbiter. These changes would also be beneficial for a Pioneer Jupiter orbiter.

Most of the instruments which have been selected for the Saturn orbiter payloads could also be used at Jupiter. The data rate difference will affect the operation of the imagery system and perhaps the design of its optics. The higher infrared flux from Jupiter means it would be easier to design an IR spectrometer for use only in Jupiter orbit. The micrometeoroid detector could be dropped from consideration at Jupiter.

Attempts to improve our knowledge of Saturn's rings, magnetic field and radiation belts prior to the MJS '77 flyby are recommended as a method of permitting earlier final design work for an orbiting spacecraft. Assuming that the Shuttle upper stage and its operating characteristics will permit it, the Mariner spacecraft is more attractive. It would make sense to use two spacecraft so that all the candidate instruments can be utilized. The first would have payload #1 and go into the 3.0 R₉ periapse orbit which encounters Titan. On the second spacecraft room would be made for fields and particles instruments by dropping some instruments from payload #1, such as the IR spectrometer. This spacecraft should be placed in the minimum periapse orbit.
Current analysis of advanced unmanned planetary missions in the 1980's and beyond indicate the need for propulsion systems with performance capabilities beyond those of current and near state-of-art. One propulsion system concept being considered to fill this need is nuclear electric low thrust propulsion (NEP). The only on-going NEP development program is the internally-fueled thermionic reactor. The major development effort is concentrated on design proof and testing of the thermionic fuel element and overall reactor design. Technology forecasts indicate that an internally-fueled thermionic NEP system capable of 20,000 hour operating thrust time could be available for mission application by late 1983.

Two different NEP system power levels are considered for performance analysis: 100 kw and 250 kw. The 100 kw NEP system uses a Centaur (D-1T) chemical stage for injection to an interplanetary transfer and the 250 kw system uses a spiral escape maneuver. Advanced chemical systems used for ballistic performance comparison are the Centaur (GT)/Kick, Centaur (GT)/VUS and Centaur (GT)/Centaur (GT)/VUS. All systems are launched to a 270 n.mi. parking orbit via the space shuttle with a payload capability of 50000 lbs.
The set of missions selected for performance analysis includes loose elliptical orbiters and close circular orbiters of the outer planets, satellite orbiter/landers, a Saturn-Uranus-Neptune flyby, Halley rendezvous, and Ceres sample return. Performance comparison is in general made on the basis of net payload at the target as a function of flight time. NEP performance is shown for unconstrained and constrained (20,000 hours) thrusting time. Specific impulse is optimized and ranges from 4000 sec to 7000 sec.

In general, results show that both NEP systems are capable of performing all the missions considered but that the ballistic systems could perform only those missions requiring a moderate expenditure of energy at the target (loose elliptical orbiters, satellite orbiter/landers, and multi-planet flyby). For these missions, the NEP systems are found to yield as high as 30% (100 kw) to 50% (250 kw) reduction in flight time for a given payload over the chemical ballistic systems. Table 6 shows for a selected net payload, flight time results for the various missions considered. The NEP data are for systems constrained to a maximum operating thrust time of 20000 hours. For the payload levels indicated, the 250 kw system out-performs the 100 kw system only in those missions requiring relatively high energy expenditure. For moderate energy levels, the two systems are comparable.

A detailed analysis of the Ceres sample return mission showed that the 100 kw NEP system has the capability to return as much as 120 kgs of surface sample plus a photographic coverage at 1 meter resolution of 100% of the asteroids' surface.
Table 6: Propulsion System-Flight Time Comparisons

<table>
<thead>
<tr>
<th>Target</th>
<th>Mission Type</th>
<th>Net Payload (Kgs)</th>
<th>NEP (100)</th>
<th>NEP (250)</th>
<th>Flight Time (Days)</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>30-Day Orbiter</td>
<td>1000</td>
<td>450</td>
<td>500</td>
<td>500</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>Synchronous Orbiter</td>
<td>1000</td>
<td>1520</td>
<td>1350</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Callisto</td>
<td>Orbiter/Lander</td>
<td>1740 (^1)</td>
<td>910</td>
<td>870</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>Io</td>
<td>Orbiter/Lander</td>
<td>1830 (^1)</td>
<td>1460</td>
<td>1145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saturn</td>
<td>30-Day Orbiter</td>
<td>1000</td>
<td>940</td>
<td>950</td>
<td>1130</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ring Orbiter</td>
<td>1000</td>
<td>1640</td>
<td>1570</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Titan</td>
<td>Orbiter/Lander</td>
<td>1890 (^1)</td>
<td>1660</td>
<td>1400</td>
<td>1660</td>
<td>-</td>
</tr>
<tr>
<td>Uranus</td>
<td>30-Day Orbiter</td>
<td>1000</td>
<td>1850</td>
<td>1725</td>
<td>2440</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Synchronous Orbiter</td>
<td>1000</td>
<td>2600</td>
<td>2460</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neptune</td>
<td>30-Day Orbiter</td>
<td>1000</td>
<td>2850</td>
<td>2630</td>
<td>4075</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Synchronous Orbiter</td>
<td>1000</td>
<td>4140</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-U-N</td>
<td>Multi-Planet Flyby</td>
<td>1000</td>
<td>< 2400</td>
<td>NA</td>
<td>2640</td>
<td>-</td>
</tr>
<tr>
<td>Halley</td>
<td>Rendezvous</td>
<td>1000</td>
<td>950</td>
<td>950</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceres</td>
<td>Sample Return</td>
<td>NA</td>
<td>1250</td>
<td>NA</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. - indicates system not capable of performing mission.
 NA indicates system not applied to mission.
3. Results shown are for constrained thrust time (20000 hr maximum).
The Planetary Missions Handbook provides a consistent source of payload performance data for missions to the outer planets. The payload data for both flybys and orbiters is presented graphically as a function of flight time for various launch years, launch vehicles, and orbit sizes. All the relevant parameters have been combined to produce useful data on a single graph to make advanced planning much easier.

Table 7 presents the mission mode/flight mode combinations used in the first edition of the Handbook. The three target planets are Jupiter, Saturn and Uranus, with launch opportunities ranging from 1974 to 1986. Table 8 shows the various fixed parameters assumed in generating the payload curves. Three technology advancements are assumed available in 1980: 20 kw solar electric propulsion, shuttle-based launch systems, and space-storable retro propulsion for orbiter missions.

Figure 3 presents a typical set of payload curves for flyby-type missions: Jupiter flyby in 1977. The kink in the curves is due to the constraint in launch declination. Figure 4 presents a set of payload curves typical of orbiter missions: a 30th orbiter mission to Jupiter in 1983.

In all, the Handbook contains 80 graphs with almost 400 performance curves. Also, in a separate appendix the raw ballistic trajectory data used in generating the ballistic performance curves are summarized.
<table>
<thead>
<tr>
<th>PLANET</th>
<th>MISSION MODES</th>
<th>LAUNCH YEARS</th>
<th>FLIGHT MODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>Flyby</td>
<td>1974-1986</td>
<td>Ballistic</td>
</tr>
<tr>
<td></td>
<td>Orbiter</td>
<td>1976-1986</td>
<td>Ballistic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1980,83,85</td>
<td>SEP</td>
</tr>
<tr>
<td>Saturn</td>
<td>Flyby and Orbiter</td>
<td>1976-1986</td>
<td>Ballistic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1980,82,85</td>
<td>SEP</td>
</tr>
<tr>
<td>Uranus</td>
<td>Flyby and Orbiter</td>
<td>1985</td>
<td>Ballistic and SEP</td>
</tr>
</tbody>
</table>
TABLE 8

FIXED PARAMETERS FOR FIRST EDITION
OF PLANETARY MISSIONS HANDBOOK

LAUNCH VEHICLES:

1976-1986
- Titan III E/Centaur
- Titan III E/Centaur/BII (2300)
- Titan III E/Centaur/TE 364-4
- Titan III E/Centaur/SEP (20 kw)

1980-1986
- Shuttle/Centaur
- Shuttle/Centaur/HE BII
- Shuttle/Centaur/SEP (20 kw)

LAUNCH CONDITIONS:

20 day window/DLA < 40° for Titan vehicles

RETRO PROPULSION SYSTEMS:

1976-1980
- Earth-Storable, Isp = 285

1980-1986
- Space-Storable, Isp = 375

ORBITS:

<table>
<thead>
<tr>
<th>PLANET</th>
<th>PERIAPSE</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>4.0 R_J</td>
<td>15,30,60^d</td>
</tr>
<tr>
<td>Saturn</td>
<td>3.0 R_S</td>
<td>15,30,60</td>
</tr>
<tr>
<td>Uranus</td>
<td>1.2 R_U</td>
<td>5,15,60</td>
</tr>
</tbody>
</table>

IIT RESEARCH INSTITUTE

31
FIGURE 3. 1977 JUPITER FLYBY
Basic performance trade-offs between mission flight time and net useful payload are analyzed for advanced propulsion systems applied to unmanned planetary missions. The results are part of the much larger Advanced Propulsion Comparisons (APC) study undertaken by NASA and the AEC during 1972 and 1973. A total of 26 different propulsion options encompassing chemical rocket propulsion (CRP), nuclear rocket propulsion (NRP), solar electric propulsion (SEP), and nuclear electric propulsion (NEP) are analyzed. These options are applied to the APC Planetary Mission Model, consisting of 21 missions launched in the period 1981-1994 (Table 9). A total of almost 300 propulsion/mission combinations are analyzed. Payload versus time trade-offs are presented for each combination in tabular and graphical form. In addition, basic assumptions, stage performance graphs, and tabular trajectory data are included in the report. The results are summarized using propulsion-ready scenarios to illustrate performance conclusions. It is shown that all of the competing advanced propulsion systems, almost irregardless of technology base restrictions, provide about the same performance improvement compared to that available with only Shuttle-based Centaur and Tug stages. This conclusion applies to mission payloads increased up to 50% of baseline weights developed by JPL. It appears, based on this conclusion, that selection of advanced propulsion systems should emphasize cost and development factors, as well as geocentric mission applications perhaps, rather than basic planetary performance capability. These, and other considerations including an economics analysis, are the subject of the final report of the APC Committee.
<table>
<thead>
<tr>
<th>NO.</th>
<th>MISSION</th>
<th>LAUNCH YEAR</th>
<th>(\text{TARGET ORBIT SIZE})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(R_p)</td>
</tr>
<tr>
<td>1</td>
<td>Encke Slow Flyby(^a)</td>
<td>1979</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Encke Rendezvous</td>
<td>1981/82</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Venus Radar Mapper</td>
<td>1983</td>
<td>1.08 or 3.25</td>
</tr>
<tr>
<td>4</td>
<td>Mars Semi-Autonomous Rover</td>
<td>1984</td>
<td>1.44</td>
</tr>
<tr>
<td>5</td>
<td>Mercury Orbiter</td>
<td>1984</td>
<td>1.41</td>
</tr>
<tr>
<td>6</td>
<td>Saturn Orbiter (W/Probe)</td>
<td>1984-85</td>
<td>3.00</td>
</tr>
<tr>
<td>7</td>
<td>Vesta Rendezvous</td>
<td>1985</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Halley Flyby</td>
<td>1985</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Jupiter Orbiter</td>
<td>1985</td>
<td>4.00</td>
</tr>
<tr>
<td>10</td>
<td>U/N Swingby (W/U-Probe)</td>
<td>1986</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Uranus Orbiter (W/Probe)</td>
<td>1987</td>
<td>1.20</td>
</tr>
<tr>
<td>12</td>
<td>Venus Large Lander</td>
<td>1989</td>
<td>1.08</td>
</tr>
<tr>
<td>13</td>
<td>Neptune Orbiter (W/Probe)</td>
<td>1989</td>
<td>1.20</td>
</tr>
<tr>
<td>14</td>
<td>J/P Swingby</td>
<td>1990</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Ganymede Orbiter/Lander</td>
<td>1990</td>
<td>1.04</td>
</tr>
<tr>
<td>16</td>
<td>Mars Surface Sample Return</td>
<td>1990</td>
<td>1.30</td>
</tr>
<tr>
<td>17</td>
<td>Halley Rendezvous</td>
<td>1983</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>S/U/N Swingby (S/U-Probe)</td>
<td>1984</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>0.1 AU Solar Probe</td>
<td>1985</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Saturn Ring Probe</td>
<td>1988</td>
<td>1.20</td>
</tr>
<tr>
<td>21</td>
<td>Ceres Sample Return</td>
<td>1993</td>
<td>1.10</td>
</tr>
<tr>
<td>22</td>
<td>Deimos Recon/Phobos Sample Return</td>
<td>1994</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\) Encke slow flyby not considered in performance analysis since it has a pre-shuttle IOC launch opportunity.

\(R_p = \text{orbit periapse}, R_a = \text{orbit apoapse}; \) both given in units of target radii.
2.4 COST ANALYSIS

Technical Memorandum No. C-10
"COST ESTIMATION FOR UNMANNED LUNAR AND PLANETARY PROGRAMS"
by J. Dunkin, P. Pekar, D. Spadoni and C. Stone
January, 1973

A basic model is presented for estimating the cost of unmanned lunar and planetary programs. The level of input parameters required by the model and its accuracy in predicting cost are consistent with pre-Phase A type mission analysis.

Cost data was collected and analyzed for eight lunar and planetary programs. Total cost was separated into the following components: labor, overhead, materials, and technical support. This study determined, with surprising consistency, that direct labor cost of unmanned lunar and planetary programs comprises 30 percent of the total program cost.

Twelve program categories were defined for modeling: six spacecraft subsystem categories (science, structure, propulsion, electrical power, communications, and guidance and control); and six support function categories (assembly and integration, test and quality assurance, launch and flight operations, ground equipment, systems analysis and engineering, and program management). An analysis, by category, showed that on a percentage basis, direct labor cost and direct labor manhours compare on a one-to-one ratio. Therefore, direct labor hours is used as the parameter for predicting cost. This has the advantage of eliminating the effect of inflation on the analysis.

Figure 5 is a flow diagram of the use of the cost model in forecasting. The boxes in the upper left involve the mission dependent information. Scaling laws, physical and mathematical relationships, and synthesis guidelines, provide the basic estimate of manhours. The remainder of the model deals with converting the basic cost element, direct labor hours, into cost.
FIGURE 5.
COST MODEL SCHEMATIC

MISSION
INPUT
PARAMETERS

SUBSYSTEM
ESTIMATION
PROCEDURES

SYNTHESIZE
TOTAL
MANHOURS

DIRECT
LABOR
RATE

PROGRAM
LABOR
COST

LABOR
AS % OF
PROGRAM

TOTAL
PROGRAM
COST
This requires two additional steps. First, the average pay scale ($/hr) must be determined for the period of the program. If desired, the selected pay scale could include inflation between the time of the estimate and program execution. The final step involves converting direct labor cost into total program cost. Total program cost can be determined by dividing direct labor cost by its fraction of total cost. The relationship used throughout this study is:

\[\text{Total Program Dollars} = \text{Direct Labor Hours} \times \text{Average Hourly Rate} \]

Table 10 presents cost estimates and errors for the programs used in developing the cost model. The Surveyor program did not follow clearly established trends of the other seven programs, and was subsequently not used in the development of the model. As an example, the model was used to predict the cost of the Mariner Venus/Mercury 1973 program. The model predicted a program cost of $120 Million, which is approximately 20 percent higher than current estimates.

Recommendations for further effort include: update the current data base by obtaining the latest Mariner 1971, Viking Orbiter and Viking Lander cost data; expand the data base by obtaining cost data for such programs as Mariner Venus 1967, Mariner Venus/Mercury 1973, and interplanetary and cis-lunar Pioneer and Explorer programs; and develop cost models for planetary atmospheric entry probes.
Table 10: Cost Model Prediction Error Analysis

<table>
<thead>
<tr>
<th>Program</th>
<th>Actual Cost $1000</th>
<th>Predicted Cost $1000</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>M64</td>
<td>78104</td>
<td>62296</td>
<td>-20.2</td>
</tr>
<tr>
<td>M69</td>
<td>122052</td>
<td>100862</td>
<td>-17.4</td>
</tr>
<tr>
<td>M71</td>
<td>120647</td>
<td>150578</td>
<td>24.8</td>
</tr>
<tr>
<td>PIO</td>
<td>83858</td>
<td>77842</td>
<td>-7.2</td>
</tr>
<tr>
<td>VO</td>
<td>242870</td>
<td>245998</td>
<td>1.3</td>
</tr>
<tr>
<td>VL</td>
<td>327924</td>
<td>288094</td>
<td>-12.2</td>
</tr>
<tr>
<td>LO</td>
<td>134534</td>
<td>164132</td>
<td>22.0</td>
</tr>
<tr>
<td>SU *</td>
<td>423195</td>
<td>169908</td>
<td>-60.0</td>
</tr>
</tbody>
</table>

* not used in model derivation
3. SPECIAL STUDIES AND ACTIVITIES
3.1 ADVANCED PLANNING ACTIVITIES

Within the Long-Range Planning Contract approximately one man year of effort is set aside for fast-response technical support to the Planetary Programs Office. In addition to real-time technical assistance, five specific minor tasks were performed in the fast-response mode during the past year as part of this effort.

The five tasks are listed below. Two of the tasks (4 and 5) were precursory studies to the Advanced Propulsion Comparisons Study (Report No. T-33, see discussion, page 35) and have been superseded by it.

2. Outer Planet Mission Options - 1975 to 1980
4. Performance Data Based on "Quick-Look" APC Analysis
5. Small Nerva (15K) Saturn/Uranus/Neptune Missions
3.2 NAR/SEP STAGE STUDY MISSION DATA SUPPORT

The objective of this task was to generate SEP trajectory/payload data in support of North American Rockwell's SEP Stage Study Program (MSFC Contract). The trajectory analysis ground rules, input parameters and desired results were provided by NAR with IITRI's consultation. Basically, the desired results were to show the net spacecraft mass capability for a set of nine missions as a function of such parameters as: launch vehicle, SEP power, flight time, propulsion on-time, and launch window. The parametric data will allow NAR to ascertain the capability of their stage design(s) to these mission applications, and to generate more detailed data as needed for three specific missions (Encke slow flyby, Mercury orbiter and Saturn orbiter).

Results for each mission application were sent to NAR as they were completed. The mission set is listed below:

<table>
<thead>
<tr>
<th>Mission Application/Launch Year</th>
<th>Baseline Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encke Slow Flyby/1979</td>
<td>12 kw</td>
</tr>
<tr>
<td>2. Ceres Orbiter/1983</td>
<td>18 kw</td>
</tr>
<tr>
<td>4. U-N Flyby/1984</td>
<td>18 kw</td>
</tr>
<tr>
<td>5. Phobos and Deimos Rendezvous/1984</td>
<td>12 kw</td>
</tr>
<tr>
<td>6. Encke Rendezvous/1981</td>
<td>12 kw</td>
</tr>
<tr>
<td>7. Solar Probe (0.1 AU)</td>
<td>21 kw</td>
</tr>
<tr>
<td>8. Mercury Orbiter/1983</td>
<td>21 kw</td>
</tr>
<tr>
<td>9. Saturn Orbiter/1983</td>
<td>18 kw</td>
</tr>
</tbody>
</table>
4. BIBLIOGRAPHY OF AS/IITRI REPORTS
 AND TECHNICAL MEMORANDA
4. BIBLIOGRAPHY OF AS/IITRI REPORTS AND TECHNICAL MEMORANDA

COST REPORTS

R C-4 Progress on Spacecraft Cost Estimation Study, by J. Beverly and C. Stone (copies not available)

TM C-5 An Analysis of the Correlation Between Spacecraft Performance and Cost Complexity Factor, by W. Finnegan (copies not available)

TM C-8 Spacecraft Comparison Study for Mars-Venus Fields and Particles Orbiters, by W. O. Adams and H. J. Goldman

R C-9 Cost Modeling Analysis - An Interim Report by P. P. Pekar

R P-1 Scientific Objectives of Deep Space Investigations - Jupiter, by D. L. Roberts, NASA STAR No. 64-19467

R P-6 Scientific Objectives for Mercury Missions, by T. Owen, NASA STAR No. N64-26599

R P-8 Scientific Objectives of Deep Space Investigations - Non-Ecliptic Regions, by D. L. Roberts (copies not available)

R P-9 Compendium of Data on Some Periodic Comets, by D. L. Roberts, NASA STAR No. N64-28525

R P-10 Critical Measurements on Early Missions to Jupiter, by J. Witting, M. W. P. Cann, and T. Owen, NASA STAR No. N66-15807

TM P-12 Regularities in the Solar System Pertaining to its Origin and Evolution, by J. Witting (copies not available)

TM P-13 Comparison Criteria for a Total Lunar Scientific Exploration Program Study, by C. A. Stone (copies not available)

R P-14 Analytical Methods and Observational Requirements for Interpretations of Asteroid Distributions, by J. Ash, NASA STAR No. N67-17961

IIT RESEARCH INSTITUTE

44
TM P-15 Analytical Techniques for the Investigation of Distributional Features of the Asteroids, by J. Ash (copies not available)

TM P-17 A Geological Analysis for Lunar Exploration, by W. Scoggins

TM P-21 Scientific Objectives for Total Planetary Exploration, by ASC Staff

TM P-22 Role of Ground Based Observations in the Exploration of Venus, by J. T. Dockery

R P-23 A Preliminary Evaluation of the Applicability of Surface Sampling to Mars Exploration, by W. H. Scoggins and D. L. Roberts

R P-24 The Scientific Objectives for Venus Landers, by J. E. Gilligan

TM P-25 Preliminary Study of Atmospheric Sample Return from Venus, by J. Woodman

R P-26 Apollo G-1 Mission-Science Data Dissemination Study, by Astro Sciences Center, June 1969

R P-28 Objective Priorities for Lunar Science Orbital Instruments, by H. Goldman and W. Adams, August 1969

R P-29 Logic for Lunar Science Objectives, by A. B. Binder et al., January 1970
SPACE SCIENCE REPORTS - Continued

R P-31 Lunar Surface Scientific Experiments and Emplaced Station Science, by W. K. Hartmann, March 9, 1970

R P-32 Objectives of Permanent Lunar Bases, by W. K. Hartmann, R. J. Sullivan, January 1970

R P-33 The Role of Subsatellites in the Exploration of the Moon, by P. J. Dickerman, January 1970

R P-34 Candidate Experiments for Lunar Exploration, Compiled by R. J. Sullivan, June 1970

R P-35 Apollo 18 and 19 Mission and Science Option, by J. E. Blahnik

R P-36 The Physical Structure and Implied Navigational Hazard of the Saturn Ring System, by M. J. Price

R P-37 Analysis of the Apollo 11 Results, by J. E. Blahnik

R P-38 Application of Advanced Spacecraft Systems for Lunar Exploration in the 1980's and 1990's, by J. E. Blahnik

TM P-39 Science Payload for First Jupiter Orbiters

R P-40 Objectives of Lunar Exploration, by R. Sullivan

R P-41 Investigation of Potential Techniques for Performing Automated In-Situ Composition and Age Dating Analyses, by ASC Staff

TM P-42 Asteroid Selection for Mission Opportunities, by C. Chapman and C. Stone

TM P-43 Instrument Technology for Missions to Asteroids and Comets, by R. Sullivan and D. Klopp
MISSION STUDY REPORTS

R M-1 Survey of a Jovian Mission, by ASC Staff, NASA STAR No. N64-20643

R M-2 Survey of a Jovian Mission (U), Confidential (copies not available)

R M-3 Survey of Missions to the Asteroids, by A. Friedlander and R. Vickers, NASA STAR No. N64-19566

R M-4 Summary of Flight Missions to Jupiter, by ASC Staff NASA STAR No. N64-26597

R M-5 Missions to the Asteroids, by ASC Staff (copies not available)

TM M-8 Cometary Study by Means of Space Missions by F. Narin, P. Pierce and D. L. Roberts (copies not available)

R M-9 Missions to the Comets, by F. Narin, P. Pierce and D. L. Roberts, NASA STAR No. N66-15978

TM M-10 The Satellites of Mars, by D. L. Roberts (copies not available)

R M-12 A Survey of Multiple Missions Using Gravity-Assisted Trajectories, by J. C. Niehoff

TM M-15 A Solar System Total Exploration Planning System (STEPS), by J. Witting

TM M-16 The Multiple Outer Planet Missions (Grand Tour), by ASC Staff
MISSION STUDY REPORTS - Continued

TM M-17 A Preliminary Study of Jupiter Atmospheric Missions, by J. E. Gilligan and D. L. Roberts

TM M-18 Lunar Exploration Program Memorandum, 1969-70, by AS Staff, March 1970

R M-19 Preliminary Feasibility Study of Soft-Lander Missions to the Galilean Satellites of Jupiter, by M. Price and D. Spadoni

R M-20 First Generation Orbiter Mission to Jupiter, ed. by J. C. Niehoff

R M-21 Solar Electric Propulsion - A Survey, by A. Friedlander

TM M-22 A Preliminary Comparison of Direct Flybys and Swingby Tours of the Outer Planets, by A. Friedlander

TM M-23 Lunar Exploration Program-Memorandum 1970-71 by D. L. Roberts

R M-24 Solar Electric Propulsion for Jupiter and Saturn Orbiter Missions, by A. Friedlander and R. Brandenburg

R M-25 A Preliminary Feasibility Study of Composite Orbiter/Lander Missions to the Satellites of the Outer Planets, by M. J. Price and D. J. Spadoni

R M-26 Mercury Orbiter Mission Study, by D. A. Klopp and W. C. Wells

R M-28 Comet Rendezvous Mission Study, by A. L. Friedlander and W. C. Wells

R M-29 Automated Lunar Exploration, by J. E. Blahnik

TM M-30 A Survey of Interstellar Missions, by R. Brandenburg
MISSION STUDY REPORTS - Continued

TM M-31 A Survey of Candidate Missions to Explore Saturn's Rings by W. C. Wells and M. J. Price

R M-32 Preliminary Analysis of Venus Orbit Radar Missions by R. K. Brandenburg and D. J. Spadoni

R M-33 Uranus and Neptune Orbiter Missions via Solar Electric Propulsion by A. L. Friedlander and R. K. Brandenburg

TM M-35 Planetary Handbook Test Case: Saturn Missions by J. C. Niehoff

TRAJECTORY REPORTS

R T-4R Summary of One Way Ballistic Trajectory Data: Earth to Solar System Targets, by F. Narin and P. Pierce, NASA STAR No. N64-19572

R T-5 Accuracy and Capabilities of ASC/IITRI Conic Section Trajectory System, by P. Pierce and F. Narin, NASA STAR No. N64-19603

TM T-8 Comparison of Atlas Centaur and Floxed Atlas Centaur Capabilities in Interplanetary Explorations Using the Accessible Regions Method, by F. Narin (copies not available)

R T-9 Spatial Distribution of the Known Asteroids, by F. Narin, NASA STAR No. N65-30471

TM T-10 Collected Launch Vehicle Curves, by F. Narin (copies not available)

TM T-15 Mission Requirements for Unmanned Exploration of the Solar System, by F. Narin (copies not available)

TM T-16 Selection of Comet Missions: 1965-1986, by F. Narin, P. Pierce and D. L. Roberts (copies not available)

IIT RESEARCH INSTITUTE

50
R T-17	Low-Thrust Trajectory Capabilities for Exploration of the Solar System, by A. Friedlander, NASA STAR No. N67-12224
R T-20	Trajectory Opportunities to the Outer Planets for the Period 1975-2000, by B. Rejzer
TM T-21	Comet Rendezvous Opportunities - An Interim Report, by A. Friedlander, J. C. Niehoff and J. Waters
TM T-22	Mars Orbit Characteristics, by M. Hopper and D. L. Roberts
TM T-23	Modification of an Optimum Multiple Impulse Computer Program for Hybrid Trajectory Optimization, by J. Waters
R T-25	Trajectory and Propulsion Characteristics of Comet Rendezvous Opportunities, by J. Waters, A. Friedlander and J. C. Niehoff
TM T-26	Preliminary Report on Apollo Site Selection, by W. K. Hartmann
TM T-27	Lunar Imaging Application Survey, by H. P. Mason
R T-28	Halley's Comet Flythrough and Rendezvous Missions via Solar Electric Propulsion, by A. L. Friedlander
R T-29	Mars Surface Sample Return Missions via Solar Electric Propulsion, by D. J. Spadoni and A. L. Friedlander
R T-30	Asteroid (Flora and Eros) Sample Return Missions via Solar Electric Propulsion, by A. L. Friedlander
TM T-31	Advanced Mission Applications of Nuclear Electric Propulsion, by D. Spadoni
TM T-32	Planetary Missions Handbook, by W. C. Wells
SPECIAL STUDY REPORTS

TM S-1 Study of Photographic and Spectrometric Subsystems for Voyager, by P. N. Slater and G. Johnson (copies not available)

R S-3 Telemetry Communications Guidelines, by M. Stein (copies not available)

R S-4 Thermophysical Effects and Feasibility of Jupiter Atmospheric Entry, by J. E. Gilligan

TM S-5 Low-Thrust and Ballistic Payload Comparison for Jupiter Orbiter Missions, by D. Healy and D. L. Roberts (copies not available)

TM S-6 Deep Space Communications: Command Link and Atmospheric Probe Entry, by M. S. Stein and D. L. Roberts

TM S-7 Radar Exploration of Venus, by D. L. Roberts and H. J. Goldman

RELIABILITY REPORTS

TM R-1 Comparative Reliability Estimation Method for Mission Programming, by H. Lauffenberger (copies not available)

R R-2 Probability of Biological Contamination of Mars, by A. Ungar, R. Wheeler and D. L. Roberts (copies not available)

CR-73454 Orbital Imagery for Planetary Exploration, Volume V-Support Requirements for Planetary Orbital Imaging, by D. A. Klopp et al.
MISCELLANEOUS

TM-1 Notes on the Lunar Atmosphere, by W. O. Davies

TM-2 Comments on the Experimental Objectives of The A.E.S. Program, (2) HF-VHF Reflectivity, by H. J. Goldman

TM-3 Examination of the Lunar Surface by Solar X-Ray Fluorescence, by E. Thornton

TM-4 "Conic Section Trajectories: Summary of the Solar System, by F. Narin

TM-5 Comments on the Experimental Objectives of The A.E.S. Program, (5) Radar Imaging, by H. J. Goldman

TM-7 Ultraviolet Reflectance and Ultraviolet Stimulated Luminescence of the Earth's Surface, by P. J. Dickerman

TM-8 Radiation and Micrometeorite Environmental Hazards to Apollo, by T. Stinchomb and R. L. Chandler

TM-9 Radiation Effects on Films in Synchronous Earth Orbit Missions, by T. Stinchomb and H. Watts

TM-11 Power Systems for the Lunar Surface Experimental Package, by G. Walker

TM-12 Preliminary Geological Analysis of Lunar Orbital Sensors, by B. Pauling and R. Robson

TM-13 Checkout of Apollo Application Program Experiments, by H. R. Hegner

TM-14 Non-Imaging Infrared Instrument Parametric Study, by H. T. Betz and M. S. Stein

TM-17 A Method for Determining Optimum Experiment Profiles and Resultant Data Bulk Requirements for Remote Imaging of the Lunar Surface From Polar Orbit, by P. Bock

TM-18 Scientific Experiment Program for Earth-Orbital Flights of Manned Spacecraft, by R. G. Dubinsky

TM-19 Determination of Earth Orbital Experiment Profiles and Data Requirements, by P. Bock

TM-21 Optical Imagers for the Small Earth Resources Satellite, by S. S. Verner

TM-22 Compendium of Space Applications Sensors and Instruments, by J. E. Orth

TM-23 Basic Data for Earth Resources Survey Program Map Plan, by K. Clark

TM-26 Experiment Profile Analysis of the Multiband Camera Sun Synchronous Mission, by P. Bock and H. Lane.
5. MAJOR COMPUTATIONAL CODES
5. **MAJOR COMPUTATIONAL CODES**

Conic Section Codes

SPARC: The JPL general conic section code for ballistic and ballistic-gravity-assist flights.

NBODY (IV): The Fortran IV version of the Lewis Research Center code revised at ASC for multibody, high precision targeting and guidance analysis.

Low Thrust Codes

BOEING CODE: CHEBYTOP I & II are fast generators of optimum low thrust interplanetary trajectories. Both solar-electric and nuclear electric powerplants can be treated. Propulsion system parameters must be specified - payload optimization can be accomplished by multiple parametric runs.

MULIMP: Uses Conjugate-Gradient search method to find minimum ΔV trajectories consisting of up to four free fall conic arcs separated by up to five impulses. Departure is from Earth orbit and the arrival point is constrained to lie on an arbitrary conic. Velocity is matched at the arrival point (rendezvous).

Near Planet Operations

KOFNAL: Generates ground traces of orbiting spacecraft for any number of desired revolutions. Can be used for all nine planets of the solar system. Has Calcomp capability for plotting longitude and latitude of the ground trace.

CONTUR: Generates data for Sun, Earth & Canopus occultation contours for hyperbolic flybys past any given planet.
PROFYL: A planetary encounter profile definition code.

RINGE RINGER: A code of calculating crossings of Saturn's ring plane during flyby.

AMSOCC: Generates data for Sun, Earth & Canopus occultation contours for orbiting spacecraft about any given planet.

PETARD: Similar to "KOFNAL". Generates ground traces orbiting spacecraft for any number of desired revolutions for any of the nine planets of the solar system. Has Calcomp capability for plotting latitude or altitude as a function of time from periapse on semi-log plots.

CAPTR: Set of two codes developed to perform orbit and landing maneuvers about a natural planetary satellite.

ETY 1: Solves differential equations describing motion of a spacecraft entering the atmosphere of a rotating planet with a spherical gravity field. Present version assumes fixed values of the drag coefficient and lift to drag ratio. Atmospheric density is computed as an exponential function of altitude.

STAGE/BURN: Calculates injection energy (C_3) requirements for a specified payload from an Earth parking orbit. Uses a fast, accurate analytical approximation to finite thrust injection maneuver. Program is set up to handle multi-stage (up to 4 stages) injection vehicle. Both chemical and nuclear rocket stages can be used.

APPROACH: Solves the targeting problem for planetary entry probes ejected from fly-by spacecraft. Computes deflection increment, entry conditions and sensitivities, as well as post entry probe to spacecraft range and communication angle.
Guidance and Orbit Determination

GNAP: JPL low thrust navigation code.

COMODE: High precision comet orbit determination code, taking into consideration gravitational effects of Sun and all nine planets simultaneously.

ORBOBS: A Fortran IV program for determining minimum separation intercepts of a Jupiter orbiter with the four Galilean Satellites; Io, Europa, Ganymede, and Callisto.

SURVEY: Generates sighting conditions for comets over a specified length of time. Has Calcomp capability for plotting sighting conditions as function of time from perihelion.

Specialized Codes

PLANET * PLANET: JPL planet ephemeris subroutine package.

PLASAT: JPL ephemeris subroutines for planetary natural satellites.

ASTDAT * 1971: JPL asteroid and comet ephemeris data tape.

MIMIC: A Fortran IV-like system for simulating, on the 1108, an analog computer and thereby easily doing integrations.

BMD: A general statistical analysis package from UCLA used for multiple regression analysis of cost data.
Hewlett-Packard 9100 Calculator System

The following is a partial list of programs developed by Astro Sciences for use on the HP system:

CT: Transforms coordinates of approach trajectory from ecliptic to equatorial for any given planet.

P3: Determines flyby or orbiter payloads for a given launch vehicle, chemical retro system (if any), and trajectory energy requirements. Plots payload versus flight time.

3DV: Determines ΔV requirements for orbiting a natural satellite. Uses a derivative of the bi-elliptic transfer.

SRO: Calculates occultation parameters of a spacecraft being occulted by the rings of Saturn. Can handle either a flyby or orbiter of Saturn.

MR2: Multiple linear regression of the form \(Z = A_0 + A_1X + A_2Y \).