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Chapter I
INTRODUCTION

e
\

Recent investigation by Croswell and Chatterjee (1972) has shown that
a small hbmogeneous dielectric sphere -may be used to focus the radiation from
an open-ended waveguide into a relatively directive beam, and hence would be .
useful as an antenna. |
Historically, large spherical lenses have been of ipterest for microwdve
antennas because their symmetr"y‘ bermits the formation of beams in any direction
by displacement of source alone. Perhaps the best known lens of this type wa;
introduced by Luneberg (1944). It has a radially varying dielectric constant and
will focus rays emanating from a point source on the surface into a collimated
beam of parallel rays at the opposite side of the lens. The Luneberg lens, how-
ever, is difficult to fabricate in practice. A survey of other inhomogeneous
spherical lenses is given by Johnson (1964).
The imaging properties of the homogeneous dielectric sphere has been
investigated by Bekefi and Farnell (1956), using the methods of geometrical
optics and the diffraction theory of optical aberrations. Their results suggested _
. that spheres of small refractive index, less than 30 wavelengths in diameter,
may be used to produce good diffraction images of point sources.
| Assaly (1958) measured patterns for heptane (er = 1. 94) filled spherical
shells 13. 3 and 33. 3 wavelengths in diameter . In this experiment, the lens was
supported by a conducting screen and illuminated by a waveguide displaced sev-
eral wavelengths from the sphere. Data for a 12, 4-wavelength diameter sphere
(er = 2, 34) has also been presented by Cheston and Luoma (1963). Their results
~ confirmed that the homogeneous dielectric sphere may be used to produce
desirable radiation patterns despite the presence of a large amount of spherical
" aberration.
Using a somewhat different arrangemént, Meinke (1970) measured patterns
and gain for a monopole formed on a small hemisphere (less than 1-1/4 wave-

lengths in diameter) over a ground plane. In his work, using dielectric constants
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between 2.2 and 11.5, Meinke noted that the gain %ended to oscillate
 around thatrwhich could be obtained using a uniformly excited circular
aperture, due Lo resonances inside the hemisphere.
Finally, recent measurements by Croswell and Chatterjee, some of which
have peen published (1972), have shown that waveguide excited plexiglas
(er = 2.57) spheres 2 - 4 wavelengths in diametér exhibit properties
desirable for feed antennas used to illuminate paraboloidal reflectors.
Although considerable attention has been given to the study and
measurement of scattering from dielectric spheres (see, for example, Inada
and Plonus, 1970; Barrick, 1970), no rigorous treatment using electromagnetic
theory has been given to thé spherical homogeneous dielectric lens as an
éntenna element.
In this presentation, the radiation from a source in fhe presence of a
dielectric sphere is treated as a boundary-value problem, and the solution
is obtained using the dyadic Green's function technique. Particular emphasis
is blaced on the Huygens' source which is used to model the waveguide excitation
of spheres,
Throughout this work the source, together with the dielectric sphefe, is
considered as an antenna, and hence the properties such as radiation resistance,

directivity, and antenna efficiency are studied as well as the radiation pattern



Chapter II

DYADIC GREEN'S FUNCTIONS PERTAINING TO A SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

’

2. 1. Introduction

The effect of a dielectric sphere on the radiation from an ;mtenna may
be investigated as a boundary-value problem under the assumption that the cur-
fent distribution is a knov&n function of position. The solution to this problem
may be obtained by the technique of the dyadic Green's functions. '

In this chapter, the boundary conditions are first presented. Then,
starting with the free-space dyadic Green's function in the spherical system, the

fun_ctions of the third kind, (=} are formulated using the method of scattering

3’ -
superposition. Subsequently the dyadic Green's functions of the fourth kind, G &
are derived from 53 using the principal of dualify. In the next chapter, 33 and

(=} 4 will be used to obtain expressions for the fields due to electric and magnetic

current sources, respectively.

Although the functions presented here form the groundwork for the
derivation of the fields in Chapter III, they should also find application to most
problems dealing with dielectric spheres.

2.2. The Dyadic Green's Functions Pertaining to an Electric Current Source
in the Presence of a Dielectric Sphere

Figure 2~1 shows the geometry of a dielectric sphere with an externally
located electric current source. The regions exterior and interior to the sphere
are characterized by different constitutive parameters and, therefore, different

propagation constants k., and k,, where

1 2°
k1 =wlu € (Region I, R > a)
= i < .
k2 wlboE, (Region II, R < a)

Here Ho and €, denote, respectively, the permeability and permittivity of the

2 ,
sphere, which may be complex. For most applications, Region I will be free

space, and hence Hi=H, and €= eo



- observation point
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— X
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FIG. 2-1: GEOMETRY FOR A CURRENT SOURCE IN THE
PRESENCE OF A DIELECTRIC SPHERE.

With the electric current source J(R') located in Region I, the electric

fields in Regions I and II may be expressed by
R . (11) = .
E(R) = iwn, ®|RY - IRYav Region I (2.1)

ER) = fwm, (21)(R|R') JRNHAV'  RegionII (2.2)
where 53(§ RY) is the 'dyadic Green's function of the third kind and the harmonic
time factor e-m has been suppressed. The first and second numbers in the
superscripts of ﬂie Green's functions in the above equations denote the regions
of the observation and source points, respéctively. Those functions are solutions

to the vector wave equations



v G -
XV&GB k

VxVx(—_} -k

3 Gy =0 , R<a . - (2.3)

Besides satisfying the radiation condition at infinity,

im R[VxG,®|R) -1k v G,®|RY] =0,
R—>oo

53 also satisfies the boundary conditions at the surface of the sphére

fxG (ﬁ‘ﬁ') =7 xE (f_{‘ﬁ')
3 3
R=a_ R=a
;1-. fix vx G, ®|RY = L 4 x VxG,&|RY 2. 4)
1 R=a_ M2 R=a

The 81mplest way to find G R I R') is to use the method of scattering
superposmon in which we let the f1e1ds consist of a sum of incident and scattered
waves. With this method,the form of the scattered waves are first constructed
using eigenfunctions which will satisfy the boundary conditions at the spheré sur-
face as well as having the proper form at R =0 and R = . The coefficients of
the scattered waves are then determined bj matching the boundary.vconditions on
the surface of the sphere.

Thus G (I_{ II_{") is treated as consisting of two parts

(2 1) (2 1)

®|&m = &, (RIR') ) R<a . (2.6)
Here G (R|R') denotes the free space Green's function perta1mng to an infinite
region w1th the same constitutive parameters as RegionI, and G (R IR') repre~

1
sents the part of the wave scattered from the sphere. ( )

CRIR') is used to
denote the Green's function internal to the sphere since only a scattered fleldv
will be present in this region.

The free space Green's function for this problem is given by Tai (1971)



as:
g &y D '
= - 1 " 2n+1 (n m)'!
- ; 4:)‘2 50) 2@+ ) wrm)!
Mél) R n(k)+N(1) )Ry, 0) L. R>R
(1) (1) .
emn l)Me (k) N mn& N emn(kl) , R<R' 2.7
‘ 1’ m =0
where 50 =
0, m#0
and '
— - sin A aP:l (cos 6) cos
Mopn® = i, 0R) |33 5 mgf- —B—— O mgf | (2.8)
= - nn+1) . cos
gmn(k) R (kR)P (cos 6) m¢R+ kR % [R] (kR)-]
‘m .
oP (COS 0) P (COS 6)
: n 7 cos A _ “n
et

The two sets of spherical vector wave functions, represented by M and

N in (2.8) and (2 9), are solutions to the homogeneous vector wave equation
VaVxF-Lk°F =0

as shown by Stratton (1941, p. 415), and also satisfy the symmetrical relations

1
€mn k) = E?XM n'(k)

0
1 | o
gmn(k)' vaNo o (2.710)

In (2. 8) and (2. 9), >jn(kR) is used to denote the spherical Bessel function

of order n, and P:ln(cos 6) represents the associated Legendre function of‘degree
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n and order m. The expressio-ns in (2.7) with superscript (1) are obtained from

(2. 8) and (2. 9) by replacing the spherical Bessel functions with spherical Hankel

functions of the first kind, h(l) (kR). A prime is used on a functlon to denote that

it is defined with respect to the primed coordmate var1ables CR' o', ¢') pertain-

ing to the R' vector.

In constructing 53c§ |§') from the wave functions we make the following

observations:

1,

.ofG

For the source located exterior to the sphere, the posterior parts

(11) ®|R" and G(ZD |§') must be the same as Eo(ﬁ RY)

evaluai:ed at R<R'. Th1$ is necessary for us to match the boun~.

dary conditions at the sphere surface. V

The propagation constants k, and k. must be used in the anterior

parts of G(ll)(RlR') and E;-Sl)(lﬂﬁ'), respectively,because of the

regions in which the observations points are located.

The spherical Hankel functions must be used in the anterior parts

(11)(R IR') because these functions represent outward

travehng waves,

Finally, since the fields are finite at the origin, the anterxor parts
of G(2 1)(R |R') must be constructed using the spherical Bessel

functlo ns,

In keeping with these requirements we let

(11) ' n+1 (n-m)!
(R|R) Z Z(z 6 ) TefD) @rm)
W FO .<1> (1) =), =)
[Smn ¢3mn(k )M (k )+be HNS (kl)Ngm (kl)] (2.. 11)

and



—( 1) N 1L 2n+1 (n-m)!
(RIR) :: Z(z 5) 2ot D iy

1) = _1(1) 1 < ) |
[cgmhMgmn(kz)Mgmn(kl)+dgmnNgmn ) emn(kl):l (2. 12)

The scattering coefficients a, b, ¢ and d in the above equations, in
general, will be complex quantities and represent the magnitude and phase of the
sphere's contribution to the total fields. The superscript (1) on these coeffi-
cients denotes that they are defined for the source located in Region I, and
should not be confused with the meaning of a superscript on a spherical wave
function.

Since the tangential components of the resulting E and H fields must
be continuous across the sphere surface,we aﬁply the boundary conditions (2. 4)

which for our problem become

Rx (11)(R|R') =Rx G(zl)CRIR')
R=a . o (2.13)
—l—RxVXG(ll)(RlR') L fx (21)cR|R')
# )
(1) (1)

Solving the above equatmns for the coefﬁ01ents we find 3 mn =g ",

C VRN ¢ S ¢ ¢ R ¢ SV
gmn bn s gmn cn and gmn d ", where

ky [pgi (05" k[P )I'j o

W H Py M m2

2 T % (0,) i ()]

SN ) B ) B
o P P2 By Pg 0’1
kK I 2n ("2] ( )_Ez_ [:"13 (pl)]' )

(1) ”1 Py 101 “2 Py n™2

b =

n .k (p )] p.i_(p 5]'

2 Po)n P2
— (pz) -— = hn(pl)

2 P 1”2



1
S0 Hy Py ntloowy Py ol
‘1t s 0tn VI
noky P b () iy )_k_ Poi(py) b (o)
By P 0’2 Hy Py "2
1 3 1
kP (o)) ( )_lfl lpljn(pl)! b o)
M P npl M P n 1
.d(_l)= 1 1 1 1 2. 14)
n  ky [ph ()] ky |paie)! T
“2 [1n"1 oy LL2n"2)
Hy Py 0?2 ST nl
Here,
p1==k1a
p2=k2a

E)Zn(p)]' = 3_?) pzn(p)]',

where zn(p) is either jn(p) or hn(p). Also, hn(p) denotes hr(11)(p)’ since only
the spherical Hankel functions of the first kind will appear in this work.

For a dielectric sphere in free space,

N1=H2’=IJ0 s

62/60 =€, .

where er is the relative dielectric constant and may be complex. Equations

(2. 14) for this case become

a(i) - Ejzjn(p2)—.l,'jn(p1)- [bljn(pl)]' jnﬁpz).
o p 1hn(p1T_l'jn(p2) - [pzjn(pz)]'hn(p P
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(1) [pzln(”z)ll (p)-e [P] (plﬂ i)
E)h(P)]] (pz) [7023 (pz)]h(p)

(1) h(p (p) Py (p)'h(p)
ph(p) (p2 sz ("2 h(p)

4O - Ver [plhn ("1)] i)~ V& [Pn®)] Byfey) ‘

n

€r[p1h1(11) (pl)]' jn(pz) - [pzjn(pz)]' hn(pl)

(2. 15)

Substitution of equations (2.7), (2.11) and (2. 12) into (2.5) and (2. 6)
gives us the desired Green's functions for the configuration of Fig. 2-1, They

are

Source in Region I, Observation Point in Region I
0 n
—(11) ey z E 2n+1 (n-m)!
(R|R’ ar L=l @5 0T arm):!
n=1 m=0

— (1
(F Bt 500
(o)

0

=(1) = (1)=,(1) .
+Ngmn(k1) [-Ngmn(kl) +bn Ngmn(kl)]} : R >R 2. 16) :

(11) . 1 2n+1 (n-m)!
CR,R) Z Z @- 60) n{n+1) (n+m)!

n-1 m=0

{[ (k )+a(1) (1) (k )] Me(l) (k)

[gmn 1 emn 1
: _‘_,° (2. 17)
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‘Source in Region I, Observation Point in Region II

0 n
ik .
=(21) =(=, _ _1 .y 20+l (n-m)!
G3 (RlR-) 47 nZ=1 ;___0 (2 60) n(n+1) (n+m)!

T. 0z = (1) (D = (1)
[cn Mgmn(kZ? Mémn(kl) +dn Ngmn(kz) Ngmn(kl)] , Rza.

(2. 18)

For the source located inside the dielectric sphere, again consider
the geometry of Fig. 2-1,but now with R'<a., We let G(zz)(RIR') represent
the free space Green's function in an infinite region with the same constitutive
parameters as that of Region II. From (2.7) we have |

(22) ) z E : 2n+1 (n-m)!
®[RY = (- n(n+1) (n+m)!

n=1 m=0

1)

7 r <( N! 1
Memn(kz)M L )+N (kz)Nemn(kz) , R>R
o 0 (o]
(k)M'()(k)+N (k )N'(I)( k) , R <R'.
gmn mn 2

(2.19)

Using the method of scattering superposition, G; 2)CR R') is treated as con-

sisting of two parts,

(22) (22) =

(R]R')— (RlR')+G ®[R) , R<a

(12)(R |R') =G 2)(ﬁ|§') | , R>a . (2. 20)

=(22 = ’
Here Gi(is ) is used to represent the portion of G3 which is scattered from the
inside surface of the dielectric sphere, and E( 2) is the tra.nsmitfed field. We

note that G3$22) must be finite at the origin, =( 2) must satisfy the radiation con-

dition at infinity, and the boundary conditions must be met at the sphere sur-

face. Thus,
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W n

ik
=(12) = 1= _ 2 oy 20+l (n-m)!
G3s_ (R,R )= ar ; ;0 @ 60) n(n+1) (n+ m)?

gmn Smn 1" (m n gmn (2.21)
and
(22) N oo 2 2n+1_ (-m)!
(RIR) Z Z @- 50) n(n+1) (n+m)!?
n=1 m=0
@ = 1 @ 3 Nt
'[}gmnMgmn(kZ) MO (k )+ d Ngmn(kz) Ngmn(kZ)] » R<a @.22)

where the superscript (2) on the scattering coefficients denote they pertain
to the source located in Region II.
The coefficients are now found by applying the boundary conditions at .

the sphere surface, namely

RGP g|R) = RGP R[RY
R=a
—l-ﬁxva(lz)(RIR') = Lfix VxG(zz)(Rln')
Hy Hq
(2) @, _ @ @ _ (2) 2 _
We again find a 8m an, emn bn , gmn c and d8mn dn , where
L _ [Paigte))] B (o)) - [pzhn(ng'jnooz)
n

[pgintes)]'n (o)) - [p (0] "5 o)

@ _ E)Zjn(pz)'_\'hn(pz) - [pzhn(pz)]'jn(pz)
n k. u

K
. t __2_ ts
k;uj E’zln(”z)J b (o))~ k, [" lhn(pl):l inley)
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u
f [RXN LN - [oh, (0] 2 (o))

M
[p2jn(p2)]'hn(p1) B ;—? l?lhn(plﬂ- ' jn(p2)

(2)
c =

n

<—>[ph(p )]'h(p2 m [ph(p)]'h (o))
Py [pzjn )'J'h(p) <k>[ph(p)]J(p)

(2. 23)
For the case where #1 = #2’ these equations become
F’z’ (pz)] h (og)- |p, n("z)-.]'J (g
E)ZJ (pﬂ'h (e~ |ph (o )]] ()
@ _ E>2jn(pz)]' h (o) - [pzhn(pz)]‘jn(pz)
? _I];'—: Eo2jn(p2)]'hn(pl)- \’q[blhn(pl)]’jn(%) '
@ _ [plhn(pl)lhn(pz)- [oohy (P )] B, (o)
°a [pzjn(pz)]'h (o) [p b (o) ]'5 (o))
h(p)h(p) h(p)'h(p)
d o] RENe) (2. 24)

[PZJ (pz)]'h (0= |osh, b )JJ (pz)er

Substitution of equations (2. 19), (2.21) and (2. 22) into (2. 20) yields
the desired Green's functions for the intervnally located electric current source

as follows:
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Source in Region II, Observation Point in Region I

(12) N 2 C 2n+1 (-m)!
(RIR) Z Z( 0 n(n+1) (n+m)!

n=1l m=0

.5 (1)

n

URE SIS E e (k)N"n(kz)] , R>a  (2.25)
0

Source in Region II, Observation Point in Region II

(zz) 0 2 2n+1 (n-m)!
®|&" , ZZ 2-8)) T+ D) (ntm):

n=1 m=0

—(1) (@)= _.
{[ em aleg) *e Mg n(kZ)JMgmn(k2)

(2

=) \ :
+[0 () +a Sermn (k)]N (k)} a>R>R

(2. 26)

(22) Ne 2 2n+l (n-m)!
(RlR) ZZ - 60) n(n+1) (n+m)!

n=1 m=0
— = (1) @)=,
{Mgmn(kz’ [Famn2 o0 Mg )

+Ne (k)[N'(l) (k)+d N‘ ;]} _ R<R'.
(2.27)

2.3 Duality Principle Applied to G. and G

3 4

When dealing with magnetic current sources, it will be convenient to use
the dyadic Green's functions of the fourth kind, E 4
The symmetry which exists in Maxwell's equations provides a simple means

to obtain the magnetic field.

of obtaining these functions from those of the third kind which were derived in

Section 2. 2,
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Consider the following sets of Maxwell's equations:
VXE = imﬁ
V*H = -iweE +J
V-J =iwp ' (2.28)
VHE' = ipufi'-J
m
VX H' = -iweE"

V-3 = iwp (2.29)

where Em and P, are the magnetic current and charge densities. Here, the
primed and unprimed fields are due to electric and magnetic sources respectively.
As Shown in detail by Papas (1965).a duality exists in the above equation
sets, This principle, however, may be extended to include the dyadic Green's
functions of the third‘ and fourth kinds by considering the inhomogeneous vector

wave equations derived from (2. 28) and (2. 29) and their solutions. Thus,

 UNVXE-Kk°E = i

vaxﬁ-kzﬁ = iweim " 4 (2. 30)
and
E = ||\ Gy ®|RD - Tav"
-— - -— ] - -—
H' = jwe \\\ G,(R |R')-J av' : (2.31)
4 m
or R

&, & [RY -Ras

ﬁ'=im€\ (RIR') R_ds (2.3

E = iwu
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where the surface electric and magnetic current densities are given by

=-1 xE

i

m
K=0%xH . (2. 33)

To change from a system of fields excited by electric sources to one
excited by magnetic sources, or vice versa, we see from equations (2. 28) to

(2. 33), it is only necéssary to replace the quantities by their duals as sum-

marized in Table 2-1.

Table 2-1: Dual Quantities

E }—I,G3 J K o} M € k

= -— ——
G4 Jm Km pm € u k

)
1
)l

It also should be noted that besides satisfying the radiation condition,
E 4 also satisfies the boundary conditions at the surface of the sphere,
- - » = - ——
& xG,®|RY = xG,®|RY
4 R=a 4

- - +

xVxG=4(§|1—%')

=24

(2. 34)

1]
€1

R=a_ o .

which are the dual of (2. 4).

2.4, The Dyadic Green's Functions Pertaining to a Magnetic Source in the
Presence of a Dielecfric Sphere. ‘

Since the propagation constant k is its own dual, it can be seen from

(2. 8) and (2. 9) that the spherical wave functions will remain invariant in the

transformation from C=}3 to G 4 The only difference, therefore, will be manifest

in the scattering coefficients a bn’ . dn’ and once these coefficients have
been determined, _it is possible to list the various Green's functions of the fourth
kind. |

To obtain the coefficients for E from those previously derived for

- 4
G3 we let



17

a;(p, €) = an(e,p)
b;l(u, €) =b (e, n)
cl'l(M,E) = cn(e,u)

d;l(u, €) = dn(e,#)

where the primed coefficients are used in E 4 and an, bn’ C dn are defined by

(2. 14) or (2. 23) depending on the source location. Equations (2. 15) and (2. 24)

were not used for the unprimed coefficients in this case because u 1 cannot be

set equal to Ky until after the duality principle has been applied,
From (2. 14) for the external source we find

W _ [921 (p2]J (o))-¢ E)IJ (o )]J (o)
% € ]_p o )] ilog) - er (pj'h ()
L oy o] 1) -4 [oydy o] (o))
n H T E) lhn(pl):" jn(pz) ~[p2jn(p2)-_rhn(pl)
(1)' Llh (p jn(pl)-erl.;)ljn(pl)]'hn(ply
[p URN Y l.;2jn(p 2):|'hn(‘°1)
NOVL k1k2€rE)1hn(p1)]'jn(p )-kqkge, ["ﬂ o )]'h b,
. %@ﬂ&ﬂmygke@?@qmqn

.(2. 35)

where we have used the fact that kl/p1 = kz/pz, and let ur = “2/“1' For the

.case when Hy = By, equations (2. 35) may be further simplified; it is found that

L
n n
L)

n n -
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e —c)
n r n
dW' = W
n r n

(2.36) .

Proceeding in a similar manner for the internally located magnetic

source, it is found from (2. 23)

[Poipteg)] b () - ["2“ (”2)] Iy 09

(2)'

L@

n

(2)'

@' ( )2[9 6 )] 05 - € [Pgh ()] o))
[pzjn(p )]'h CRE (k )[p h (p )—_|J ()

it is apparent from the above e};uations' that

By letting Ky

E)zln(p )J'h (o, ) -€ ['p

]‘J(p)

3@ raeg) - [eohn 0] iy )

=#2,.

k
1 . '
k_2 6r l:pzln(" 2)] hn(p 1) -

[P (p)]'h(p) E)h(p

k, -
I{—l [‘51hn("1)]' G

h (o y
E)zs (pz)]'h (b)) -¢ flh (ﬂ}] (py)

(2)'

L@

n

(2)'

n

o

n

1 (2)
T

1 a(2)
\f_

()

n

(=9

(2)
c

n

where the unprimed coefficients are given by (2. 24).

(2.37

(2.38)
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It iS now a simple matter to list the dyadic Green's functions of the
fourth kind by making the appropriate substitution of the scattering coefficients
in equations (2. 16) to (2, 18) and (2. 25) to (2.27). These functions are listed

below for the various regions of source and observation points.

Source in Region I, Observation Point in Region I .

Q0
ik
(11) | 2n+1 (n-m)!
® [Ro = Z @-50) 2a*D (@rm)!

NN W) o
{Mgmn(kl) [Memn(kl) +bn Memn(kl)--|

NV & )[N' )+ (1)N'(1)(k )]} R> R
0

00 n
2n+1 (n-m)!
n(n+1) (n+m)!

(2 8y
4 =1

om

o (1)=(1) =, (1) | ,
+[N (k) +a Ngmn(;;l) Némn“_‘l)} » aSR<R' (2.39

(-]
omn

Source in Region I, Observation Point in Region II

(21) . 1kz 2n+1 (n-m)!
IR) Z Z (2- 60) n(n+1) (n+m)!

n=l m

0= @, L (s 1)
[t Mg 0D )0 N ) D ], R<a

e
o™ (2.'40)
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Source in Region II, Observation Point in Region I

ik [c o) n
=(12) ==, = 1 _ 2n+1 (n-m)!
G, ®[RY = o ;;)(2 50 A+ D) (atm)!

@ H , @< ,
[n (k )M (k )+a Ne (kl)N mn(k ):I

o Smn 2 omn

Source in Region II, Observation Point in Region II

ik [0.9] n -
=(22) =[=p - _2 .20+l (n-m)!
G4 (RIR) 4T nZ-—:-l ;) (@ 60) n(n+1) (n+m)!

=(1) @)= =y =,
{E“gmn(kz) +d Mgmn(kz)JMgmn(kz) Mgmn(kz)

= (1) © ,
+ Nemn(k2)+ Ne (kz]N (k )}

0

=(22) N = _2 2n+1 (n-m)!
Gy (RIR) Z Z @- 60) nn+1) (n+m)'

= () @)=,
{Mgm (i )[M c,) +d 3 mn(k)]

e

e
(] 0

where we have used the fact that for u, = ”2’ =k / /

a>R>R!

= (1) @)=
*N mn(kZ) I:ﬁgmn(kZH-'cn Ng mn(kz) } » R<R!

(2.41)

(2. 42)

This. completes the derivation of the dyadlc Green's functions, pertaining

to a homogeneous dielectric sphere,which will be used in subsequent chapters.



Chapter III

ELECTRIC FIELDS DUE TO SIMPLE POINT SOURCES
IN THE PRESENCE OF A DIELECTRIC SPHERE

3.1. Short Horizontal Electric Dipole

Consider an infinitesimal horizontal x-directed electric dipole with

current moment Ce located at R'=b, 6'=0, ¢'=0 as shown in Fig. 3-1.

Region 1

FIG. 3-1: HORIZONTAL ELECTRIC DIPOLE IN THE
PRESENCE OF A DIELECTRIC SPHERE.

We let the electric current density be represented by

@) -, a(R'-g)a(e')é(é')_ ¢ (.1)
b sin6'

To find the electric fields in the two Regions, (3. 1) is substituted into
(2.1) and (2.2). Because of the delta functions within the integrand, the follow-

ing is obtained

21
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ER) =iy C 5(11)(&'|§') X ,  RegionI
: le 3 '
, R'=b
o'=0
gr=o -
E®) = e c 62VR|RY 4 ,  Region IL.
17e¢e 3
R'=hb
6'=0Q
§'=0

The»éxpression (=}3(§|I_{') -2 must now be examined. First, the

associated Legendre functions in (2. 8) and (2. 9) are evaluated at 6 = 0.

It is known (Harrington, 1961) that at 6 = 0, i.e., cosf =1,
m 1, m=0
Pn (1) = '
0, m#%0
Also, using de 1'HOpital's Rule for the limit,
. o |
Pn (cos 0) ) {n§n2+ 1) m=1

sin 6 ] ) m + 1

(3.2)

These last two equations show that for the point source located at 6' =0, only

those terms in the series expansion corresponding to m = 1 will contribute to

the fields.

Since in the spherical coordinate system
: A
% = sinBcosgR +cosh cos#6-singd |

it is apparenf that

A

1\_/[-emn(k) % omn| =0
= 4=0
and hence
M, 0 =¥, ® S‘c} = 22D )
© (b,0,0) (b, 0,0)
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=N
omn 4 eln
4Lb,0.0)

where the M and N functions are given by (2. 8) and (2. 9).

- n(n+1) [kbj n(kb)] '
2 kb
(,0,0) (3.3)

k) -%

QZI
2
>

Substitution of the dyadic Green's functions given by (2. 16) to (2. 18)
into (3. 2), and using the results (3. 3), ylelds the followmg expressions for the

electrlc fields:

Source in Region I, Observation Point in Regidn I

-k .wuC
. E (I-{) = 1 e 2n+1 .
e 47 — n(n+1)
70 _(1) pgi,lo ] &Y Py ("3)]
ln(kl)[ (P )+a h (P )]"'N (k ) [-[-——;;—— by ,
R>b (3.4)
@
E® = -klque \  2n+1
eV ar — n(n+1)
n=1

[ﬁoln(k1)+a( (k )] h (o )"'[ oK )+b N 1nK )] & (pd

n

a<R<b  (3.9)
Source in Region I, Observation Point in Region II
F '(ﬁ) - —klee i 2n+1
e 4r £ n(n+1)
et o+ (k)all .pi“(p?’) -+, o<r <a,

(3.6)
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Here, p3 =k 1b and the subscript e is used to denote that the field is due to an

electric current source

For the current source located inside the dielectric sphere, consider

the geometry of Fig. 3-1, but with b<a. The electric fields will then be given

by

B = i, | \\Go AR|R) - T @Nav'

or

EG) = n, \\\G o (&R T @)av'

depending on the location of the observation point.

Letting My

to (2. 27) together with (3. 3), the following expressions are obtained.

Source in Region II, Observation Point in Region I

(v}
E (I—{) = —kaHCe 2n+1 .
e 4z Z n{n+1)

4 oln 1

P (o)
{(2) (P)Mol (k) + b(z)—[-%-——] (1)(k) , R>a

Source in Region II, Observation Point in Region II

’ 00

: -k _wuC '
- - 2 E : +
Ee(R) [ 2n+1

el
4 = n(n+1)

(3.7

=K, and using the dyadic Green's functions given by (2. 25) .

(3. 8)

[M(l) (,) o' (kz)] (p)+[:N(1) (k) +d R (k)]M

a>R>b

(3.9
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-k
2"’“ Ce 2n+1

4 - n{n+1)

h (P ) i (p Y
Mok E‘n(P4)+°fl?)in(p4;J+N (k )[_[4_p_]_ +q®® [p4]n 4 l} ’

eln 2 4 n p4

E_(R) =

R<b (3. 10)

where p 4 =/k2b .

3.2 Short Horizontal Magnetic Dipole

In this section, the radiation from an infinitesimal magnetic dipole located
onthe +z axis is considered. The source is pointed in the ¥ direction and has
a magnetic current moment Cm o

The magnetic field is given in terms of the dyadic Green's functions of

the fourth kind for the appropriate regions of source and bbservation points as

ﬁ(ﬁ) = MGIXXES 1)(§ lﬁt) . jm(ﬁr)dvt

follows:

HR) = e ) —(21)(R &y - -J_R®NAV'

-— - =(12) =} — - —_

AR = we, | \\Go @& |E -5 _@)av:

‘H(R) = ive, —(22)(RlR') J ®"av’ (3.11).

where Jm is the magnetic current density, and for this problem is expressed by
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50 = -c,, SE=po0d g
b sin@'

In the spherical coordinate system,

§ =sin@ sin¢'ﬁ‘+cos o' sin¢'é\' +cos ¢'3'

(3.12)

(3.13)

On performing the integration of (3. 11), one finds the magnetic field v;ill be

given by o .
AR) = -weG, ®[RN 9|
R'=b
6'=0

#1-0

From (2. 8) and!(2. 9), it is seen

n(a+1) [kbjn(kbﬂ '

M ®-§ =N __®-5y =0,
omn- ¢=0 . ¢=0
and thus

M ‘¥ -n(n+1)
gmn(k) y .= eln(k) yi. = n(n2 ) ]

(,0,0) -~ [(b,0,0) '

ﬁgmn(k) & =N & I =T

(b,0,0) ‘ (b,0,0) ‘

(3. 14)

>

(3. 15)

where we have used the relationships for the associated Legendre functions

derived in Section 3, 1.

The magnetic fields due to a magnetic' point source could now be listed,

but it would be more convenient to find the electric fields. In a source-free

region, - o
E= — VXH.

Also, since

Ne o n (k)

vaM, &) =k
Smn o

o
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and )
VAN, () = kﬁem»n(k) :
o o
we simply need to multiply each term by the factor ik/we appropriate to the
region of observation, and interchange the roles of the resulting M and N
functions to obtain the electric fields from the _magnétic field expres sions.
Using the above result and the Green's functions given by (2. 39) to (2. 42),
we find the electric fields due to an infinitesimal -9. directed magnetic dipole -

located at (R' =0, 6' =0, ¢' =0) may be expressed as follows.

Source in Region I, Obsérvation Point in Region I

= = 2n+1
Em-(R) 41r'n1 =1 n(n+1)
=) (k) [P5ipleg)’ ("3)] (1) psh, (P’
oln Py g
51 () |
ln(kl)[ (p3) *h h.n(pB)—J , R>b .
(3. 16)
’ iwk _uC
= = 1 2n+1
Em(R) 41m1 = n(n+1)

— (D= P, @3]" (D=(1)
{[Moln(kl)-’-an’Moln(kL)] p3 f[Neln(kl) +bn Noin )]hn(p3) ’

eln 1
a<R<b (3.17)
Source in Region I, Obserx}ation Point in Region I
. (¢0)
5 (I-{) _ n")klucm 2n+1
m 41rn1 = n{n+1)
h (p,)
L0 1f3" 3] (1)

e > (k g -d “h (p3) (kz) , R<a (3.18)

3
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Source in Region II, Observation Point in Region I

. 0
1(Wklercm E 2n+1

E_@R)= ‘
m am, — n(n+1)
AR CH] _
,@ I 4'n 4| 7Y )_b(2)j (© )N(l),(k) ., R>a (3.19
n oln 1 n ‘n"4 eln 1

Py

Source 'in Region II, Observation Point in Region II

. o)
nouklercm Z on+1

E (R) = = mawaY

n=1

ARG I -
¢n 4] [=(D ()= . =(1) @= .
Py .[Mo ln(kz) +cn Mo ln(kZEI -Jn(p4) [Ne ln‘(kz) +dn Ne 1n'(k2)] ’

a>R>b (3. 20)
iwuk € C x
= = 1 m 2n+1
Em(R) B 47rn1 ; n{n+1)
ph(p)] ij(p)__]'
4 n 4 (2) L'4n"4 - (2). =
[ p4 +cn p4 Mo ln(kZ)--Eln(pll) +dn Jn(p4)] Neln(kz) '
R<b. (3.21)

b.

Here the relation n= Vu/e is used and again p, = k,b and b=k,



Chapter IV

ELECTRIC FIELDS DUE TO A HUYGENS' SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

4.1 Introduction .

The radiation from a homogeneous dielectric sphere, a few wavelengths
in diarﬁeter, placed over the aperture of an open-ended waveguide is of consider-
able practical interest since it has been shown experimentally (Croswell and |
Chatterjee, 1972) that this device exhibits properties desirable for a feed antenna.

Beéause it would be exceedingly difficult to solve this problem exactly,
we will neglect the scattering from the waveguide‘ and model the exciting fields
using a superposition of electric and magnetic dipole currents forming an
approximate Huygens' source. | _ .

In this éhapter, the électric and magnetic current relationship nece_ssary '
to construct a Huygens' source in free space is first derived, and then the radi-
ation from it is examined. Subsequently, the electric fields are derived for an
approximate Huygens' source in the presence of a dielectric sphere, and it is
shown that the same results are obtained if the source is allowed to \approa‘ch-
the sphere surface from either the inside or outside of the sphere. - Fihally, the

far-zone fields are derived and the results examined for a very small sphere.

4.2 Huygens' Source in Free Space

Consider a small portion of a uniform x-polarized plane wave in free
space, incident normally on the z = 0 plane as shown in Fig. 4-1. The electric

y A
’ X

:;’.Iil

el ]

FIG. 4-1: PLANE WAVE GEOMETRY

29
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and magnetic fields across this plane are related by

E_= noHy ) (4. 1)

'3

When the fields to the right Qf z =0 are of intexfest, the incident fields may be

replaced by fictitious electric and magnetic current sheets,

K =2XH

For this problem, n = £ and thus

- A
K =-HX
e .y

- A : ' o

K _=-nH Sy - (4.2)
Allowing the portion of the plane wave under consideration to become

small, the incident fields may be replaced by the equivalent electric and mag-

netic dipole current moments Ce;?, and Cm§, where

C = \\K ds. ' (4. 3)
m

Substituting (4. 2) into (4. 3) we find Cm. = nOCe' This double source corres-
ponding to the ratio of electric and magnetic fields of (4. 1) is called the "Huygens'
source" because Huygens introduced the concept of considering a wavefront as
a system of secondary sources. o :

Let us now derive the far-zone fields radiated from a pair of crossed
point electric and magentic dipoles as shown in Fig. 4-2,and then particularize
to fhe special case of the Huygens' source.

For the X directed electric dipole,the far-zone electric field is given |

by
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™ <
2]

magnetic dipole

electric dipole

FIG. 4-2: COORDINATE SYSTEM FOR HUYGENS' SOURCE

iy ikR

—,‘=_ e <
E = % R® sin 6'60 (4.4)

where Ce is the electric current moment of the source and 6' is measured with

respect to the x-axis. From duality, Table 2-1, it is found that the magnetic field
radiated by a -Z directed magnetic dipole of current moment Cm is given by
iwe C ikR

ﬁm_= SW 0 eR sin "6 s : . (4. 5)

where, in this case, " is measured with respect to the y-axis.
A — -
In the far-zone R XE = nOH, and hence from (4. 5)

-inoweocm eikR

— : e"A" (4
m e =~ sin g" . : .6)

=
i




32

Using the coordinate transformation

sin6'9' = -cos 0 cos $0 +sing g
sin6"9" = cos ¢a—cos Gsing§ |

where 6 is measured from the z-axis as is the usual case for the spherical

coordinate system, (4.4) and (4. 6) become

_ i C_ IkR .
=. —2F -~ +si ,
Ee o R (-cos B cos g0 +sing 3) (4.7)
ion €.C ikR .
- _ 00 me N . _
E = ym = (cos pO- cos B singB) . (4.8)
Letting

Cm = T)Ce , (4. 9)

where n = no/ fe_r , (4.7) and (4. 8) may be combined. Thus,

_— lwuoCe elkR
H e m 4T R

v

{(Ti_- -cos 9>c§S }53+ ( - c:/zf) sinéa} . (4. 10)

For now the factor /er is simply a constant used in the ratio of the electric and

"magnetic current sources.

We let Er = 1 to construct the Huygens' source in free space, and hence

(4. 10) becomes

leuOCe e1kR

E, =-——=

H 47 R

(cos ¢6+sin¢$)(1-.cos 6) . (4.11)

It is apparent from this equation that the Huygens' source will radiate a linearly
polarized cardioid-shaped pattern with a field maximum in the -z direction and
a null in the 4Z direction.

It is because of this directional characteristic together with its
simplicity that the Huygens' source has been chosen to model the waveguide

aperture excitation of a dielectric sphere.
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4.3 Huygens' Source in the Presence of a Dieleétric Sphere

We can dnly approximate the Huygens' source in the presence of the
dielectric sphere because the complex wave impedance n is not known.
Although, in general, n would be é._function of the Asphe're diameter and

constitutional parameters as well as the source location, we will let

{n‘l, b>a - - (4.12)
n,, b<a , (4. 13)

n_

h = [ Je = : o1 wn in Fig, 4-
where n, uile s ny “2/62’ and the regions are shown in Fig. 4-3.

Region II Region I

FIG. 4-3: HUYGENS' SOURCE IN THE PRESENCE OF A
' DIELECTRIC SPHERE.

Equation (4. 12) was chosen because it W01'11d’ be valid if b>> é;. since for
this case the sphere would have little effect on the source. Alternately, (4. 13)
. would be appropriate for the soufce located within, or on the surface of, a large
lossy dielectric sphere. Also, as will bé shown in subsequent sections, (4. 13)
yields a good approximation to the Huygens' source on the surface of small

spheres,



34

To obtain the electric fields due to the source located external to the
sphere, let Cm = n1C and comblne (3 4) to (3. 6) w1th (3.16) to (3.18). A

similar procedure is followed _usmg equai:mns (3.8) to (3. 10) (3.19) to (3.21),

and lettmg C = nZC . The resulting equanons for the electnc flelds in the

various regmns are given as follows

Source in Region I, Observation Point in Region I

1) . (1=(1) M, (D=(1) ,
{(An +Dn )Moln(kl)*-(Bn +C,n )Neln(kl)} ! R>b

[0 0)
k1“"'Mce " 2n+1l

Ly ah+D)

h(p)
{L h (-1 ["Sn ]][M e a (1)= (1)0{)]

E R) =

| P3

Source in Region I, Observation Point in Region I

[0.0)
kwHCO ST an+l

47 el n(n+1)

{[h (o) [—ph(p)]] RS )+
+[-[‘in—(p—3).]—+h(p3)] (1) LIV G 05’R_<_-a

E (R) =

P

(4. 14)

ph (p )]
+ J:Mlﬂl (p3)][N &k )+b(1) (1) (k)-J a<R<b

(4. 15)

(4. 16)
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Source in Region II, Observation Point in Region I

Q0
& 1w“Ce . 2n+1

47 = n(n+1) -

EH(R) =

{(A(z) M) e )+(B( )+C(2))N(1) t )} R>a (417

Source in Region' I, Observation Point in Region II
k wu 2,
- 2n+1
H Z n(n+1)
p,j o)
{[J (o) -i +22 4] ][ 2 ) re @5 )]
P4J (94 (1) o
+ij (p4 (k )+d N (k)] .a>R>b
‘ ® . ‘
-k “’“Ce Z on+i
(n+1) ,
p,h (p P, (p
{[h ) +e s (p4> i L‘*——‘ﬂ L‘*—‘*} M ()
Iph'(p')"-' ' 'p:j 0,) e '
+[ 4 n 4] erl(2) 4’n 4] +ih (p )+1d( )] (p4)] (k )}

;?4. | n p4‘

=

(4.18)

R<b (4. 19)

where

(1) ( )

=j (03) +a

B(l) i |P3jn(P3)]' +b(1) ' Pshn(ps)]' ,

n Ps3 n P3

h (p3)
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Cl(ll) = ijn(p3) +ib1(11)

_iL—p3jn(p3U' _iakl) [stad] (420
P B P3

hn(P3)

and

-, (2) ()
An =] (p4) \/_r

@ _ [Pd] @

n 'p4 n T

e =5 (o, )0 e

P, (o) _ ;
D(2)=-iM 22 < . (4.21)

n : Py n r

The coefficients in (4. 14) and (4. 17) were combined into A B C
D since the primary interest here will be the electrlc field far from the antenna ’
A and B represent the field contribution from the electric current source and
s1m11arly Cn and Dn were derived from the magnetic source. Again, the
superscript on the coefficient denotes the source region.

These coefficients are now simplified for the case where the source is
located on the surface of the sphere. The pfocedure will be to first let the exter-
nal source approach the sphere surface. Subsequently, we let the internal source
approach the surface, and the results are compared as a check on the validity
of the expressions. N ' ' _ ‘

Since Cm = "1Ce for the external source, (4.14) must be modified for

the source on the surface where Cm = nZCe. Thus, (4.14) becomes
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(o)
~k wuC
= /oy _ 1 e 2n+1 .
EH(R)* A = n(n+1)
(1)
(1) —(1) (1) =(1)
< oln+< \[—> eln} (4.22)

b=a

where the relation U = nz"er has been used. |
To evaluate the coefficients, we first insert (2. 14) into (4. 20) and let

P3=pPy; i.e., klb = kla. The Wronskian relation from Appendix A,

@ o, @) -1 @) [o5 @] = i/p (4.23)

is then applied to simplify the expressions. After some algebraic manipulation,

it is found that for the source on the sphere surface

A= [pl o, )] i <p> “TPoin (pzjrh (o)
paj (P!
50 _ 2'n2

n 2€[ph(p)]1(p)[921(p2)]'h(p)

(1)

Q
m

i (pz)
[p h (o )]] (92) EOZJ (Pz)]'h (¢ )

R

(1) L '
Dn = 1 ) p2]n(p2) . (4. 24)
Ve, P1Ps L?lhn(pl)]'jn(pz)—[szn(pz)'_]' hp) ™

In a similar manner but with Py =Py We find from (4. 21), (2. 24) and
(4.23) that ' ' ‘ '
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A@_ @ D

n n
BI(IZ) - -Bl(ll)

Pl = P3

@ _ ,, ? -y
C, =, Ve, P27 Py

2 (1) ~ |

=D, / F; J (4. 25)

In comparing (4. 22) with (4. 17), it is seen that (4. 25) confirms that the
same results are obtained if the excitation is allowed to approach the surface

from either the inside or outside of the sphere,

4.4, Far-Zone Field
In the far zone,the spherical Hankel functions of the first kind may be

replaced by the leading term of their asymptotic expressions. - Thus,

ot eikR
4 KR
= 2 [Rh (kR]fv " = (4. 26)

For large values of kR, the spherical -wave functions become

ikR
1 +1 —
M R~ () m,
Omn Omn (
ikR
—(1) n e o
N kR -i s 4,27
Smn( ) ~ (i) R ngmn ( )
where
_ . ‘ sin N SPLn(cos 6) cos :
mgmn = {_"‘ sin@ P (c ose) ’69_ T— sin m¢$} . (4.28)

and
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m m
9P (cos®) P (cos0)
- n cos A_. n sin
- ——————————————— ————————
ngmn 20 i mySO *  sin6 cos mé 3 : .29

sin

Using these results in (4. 14) and (4. 17) we obtain the following far-zone

field expressions for the Huygens' source in the presence of a dielectric sphere.

Source in Regionl, C =n.C
I

1—
o _
-wu C iklR
= = 17e e 2n+1
EH(R) 47 R nZ=: n{n+1) (- -i)"
'{-i(Afll)+DI(11)) o1 +(B(1) ”)ﬁeln} . (4. 30)

Source in Region I, Cm = H2Ce.
E @) - Wk 1Ce IR Z 2n+1
H 47 R

{—i(Al(lz){-Dflz)) +(B(2) flz))ﬁelnl' ,‘ (4. 31)

where the coefficients are defined by (4. 20) and (4. 21)

In order to recover the far -zone field expressmns due to the electric
or magnetm source only, simply let C = D = 0 or A = B = 0 in the above
equations.

Now the source is placed on the surface of- the dielectric sphere and the
diameter is allowed to become very small. The results using Cm = nICe and
Cm = nZCe are then compared to those of an ideal Huygens' source in free
space.

For small arguments only the first term in the ascending series for the

spherical Bessel functions is needed. It is found (Abramowitz and Stegun, 1966)

1

. ~ n
3,0~ 155 T Garn P

h () ~ 1-3°5... (2n- 1)-1)p~ @D (4.32)
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hence,

. . | n+l n
' E)Jn(p-)] 1-3-5...(2n+1) P

Ehn(p)]' ~ 1-3f5...(2n-1)-i.np‘(n+1) ,

and therefore,

. in -(o+l) n
I.—plhn(pl)] WP M omer Pr Py

; 1 ___l(ﬂl_) ~(n+1) n
E’zjn(pz)] h o)~ Sne1 P1 P2 - (4.33)

Using these relations in (4. 24),

(D 1
Ay Y 17305, @+
B(l) ~ (2n+1)(n+1) (n-1)
n (ern+n+1)'3'5...(2n+1) P
Q) ier(2n+ 1) N
[a ¥4
Cn (ern+n+l)'3'5...(2n+1) Py
. (n-1)
p{) ~ 1 (4.34)
n 1-3-5...02n+1) ~ :
and therefore in the limit as o —>0
A(1) - C(l) 0
.'n n
(n_0__2
Bn - Bl € +2
: r
pV =pV-_ 2 (4. 35)

n 3

Inserting (4. 35) into (4. 30) and evaluating the m and n functions given by (4. 28)

and (4. 29) we obtain the following expression:
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{( _ €r3+2 cos 0) cos g$'0\+<€r:_3'_2 -cos 9> sin¢$} , (4. 36)

where the facts that Pi(cos 6)/sin6 = 1 and 389- Pl(cos 6) = cos 9 have been used.
Had Cm = nZCe been used in relating the electric and magnetic current sources,
the coefficients would have been related as shown in (4.25) and the following
expression for the field would have been obtained: '
-iwulce eiklR

4T R

{(—\FL_ -z 3+2 cos 6>cos ¢§‘+<€ COS9> 1n¢$} (4.37)
r r

Equations (4. 36) and (4. 37) may be compared to the expression for the far field

EH(R) =

radiated from an ideal Huygens' source in free space (4. 11), repeated here:
s ¢ KR
lee
4r

EHC§) = {(l—cos G)kcosy$6+(l-cos 6)sin¢$} . (4. 39)
It is seen fromt (4. 36), derived 4using Cm = "1Ce’ that even a very small sphere
has an effect on the radiation pattern. In particular, the contribution from the
Aelectric dipole source has an additional factor of 3/(€r+ 2) as compared to the
free-space case. The magnetic source contribution, however, has remained
unchanged. Note that when €. = 1, equation (4. 36) reduces to (4. 38), the
free-space case, as it should.

The small dielectric sphere apparently behaves like a shért electric

dipole with a current moment

(4. 39)
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which is independent of the sphere size. This factor also appears in the results
found by Stratton (1941, p. 206) for a dielectr‘ic sphere within a uniform static
electric field.

Let us now look at the deviation of the small dielectric sphere patterns,
using Cm = nlCe or Cm = nzce for the electric and magnetic curre?t relations,

from the pattern radiated by a Huygens' source in free space.

et
, 5 '
a, = 3 and a. = —E-IL
1 cr+2 ’ -2 €r+2 '

The first terms of (4. 36) and (4. 37) then contain the respective factors

1= alcose

1
\/_e_ (1- ,,CoS 0)
r .
and similarly in the second terms we find the factors

al-cose

1 (o, -cos 0)

ﬁ 2

For the Huygens' source in free space o

=a,=1 and a (1-cos@8) pattern

1 72
remains. -
Table 4-1 shows the values of @, and a,, for various (valués of dielectric
constants, The a, remains a good deal closer to unity than al,' and hence

using n, for the current relations in constrdcting the degens' source on the
surface of a small dielectric sphere will yield only a small error. In fact, a,
differs from unity by only 6 percent at its maximum value corresponding to a

dielectric constant of 2.
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TABLE 4-1

Approximate Huygens' Source Factors

For Small Spheres.

1.0

1.05
1.06
1.05
1.04
1.02
1.00
0. 98
0.9

1.0

1.0
1.5
2.0
2.5
3.0

0.86 .
0.75
0.67
0. 60
0.55
0.50

0.46

3.5
4.0

0.43




Chapter V

PROPERTIES OF A HUYGENS' SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

5.1 Introduction

In this chapter, the'orthogo_nality rela.tionships. between the n and m
functions are shown and then an expression for the radiated power is derived.
Equations' for the radiation resistance and directivity are formulated and com-
pared to the free-space case for small spheres. Finally, an expression is
developed for the power dissipated due to the nonzero conductivity of the dielec-

tric material.

5.2 Radiated Power

In the far zone we found (4. 30, 4.31) that the electric field radiated by

a Huygens'® source in the presence of a dielectric sphere may be represented by

£ (®) = o 1§ 2otl em . 48D ) (5.1)
H I R . = n(n+1) -1 anmoln Bnneln -
where
a =—i(A(1)+D(l)) ,
n n n -
g =0,
n n n
or
o =-i(a?@+p?@)
n n n
)
n n n

for the source located in Regions I or IL respectively. The vector wave functions

in (5. 1) are found from (4. 28) and (4. 29) to be

i 1
Pl(cos 0) 9P (cos0)
= _n_.___ COS¢ - -——_n Sin¢$
oln sin@ 09

44
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aPl(cos o) a Pl(cos6)
"n n

. - A
Boin = Tcos;ée— ——— singg . (5.2)

An expression for the total radiated power W may be derived by \
integrating the total power flow across an infinitely large sphere, centered at the
origin, using the relation ’

27 AT

1 - =% 9
W=7 E.E R dQ o (5.3)

0 0 VO

where d2= sin6d@dg, and *denotes the complex conjugate,

Let us now investigate the various scalar products which will be formed
in (5. 3). Fi:om (5. 2), it can be seen that each term of fhe product r—no ln.;el 0
will contain a factor of the form

1

P (cos 6) aPl(cos 0)
n £
sin 6 06

Using the differential relations for the associated Legendre functiohs (Stratton,

1941, p. 402), it is found

1 el

P (cos 0) - OP (cos 6) \ Pl(cos 0) Pl(cos 0)
n £ =1 L€ +1) —2—— P (cos 6) n——PZ( 0)
sin @ LY 2 sin 6 2 o8- Tgine A

It now follows that

T
Pri(cos 0) 3P;(COS 0)
sin 6 o0

sinfde =0 - . - (5. 4)

since

T
PLn(cos ) Pi(cos 0)de =0 , m#k
0 .
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Thus -moln.nelldﬂéo .

Also, on performing the integration,

2 2
— = \\- - _ 2m (n+1) :
meoln m011 dsz= neln nell d 2n+1 n{ ’ (5.5)
where
{0, n # ¢
6 =
nf 1, n=1{
and we have used the formula (Stratton, 1941, p. 417)
T m m m_m
dpn dPl m2 Pn P in0d6 = 2n(n +1)(n +m)! )
de de 2 st @n+1Xn-m)! ‘nf
0 sin 6
(5. 6)

Upon 1nsert1ng (5. 1) into (5.3) and evaluating the integrals with the aid of (5.5),

we obtaln the desired relation for the radiated power

nn

® ‘
S22 %, o g%
W = > klce _ Cn+1){a o +Ban) , - (5.7)
n=1
~ where Ny = 1207 2.

5.3 Radiation Resistance

(

Suppose that instead of having an infinitesimal point source, the electric
current element were of a short length ¢ with a constant magnitude Io. Then
Ce = Iol, and the radiation resistance for this system is easily obtained.

The radiation resistance of an antenna is defined as

R=—— . (5. 8)
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That is, assuming no losses, a current eleme;it with an rms value of I0 flowing

on an antenna with a radiation resistance R will radiate an average power W.
The far-zone electric field of the crossed dipole source in the absence

of the dielectric sphere is given by (4. 10). Using this equation together with-

(5.3) and (5. 8), the radiation resistance is given by
R = 20(k11)2Q+-€i) . (5.9)
r ’

It is apparent from this equation that for the Huygens' source in free space, i.e.
er =1, the radiation resistance obtains its maximum value of 40(k{ )2 which is
twice that of an elementary electric dipole source.

To determine the radiation resistance of the source in the presence of

the dielectric sphere (5.7) is substituted into (5. 8). Hence

nn nn

© v :
"R = 15&11)22 (Gn+1)a o +B ) . _ (5. 10)
n=1 : : : : §

Let us now place the source on the surf‘ace of the sphere, allow thé
radius to become small, and see how the resulting radiation resistance com-
pares to the free-space case. Using the relations (4. 35) to evaluate o and B

we find for the case when C. =1.C
m- ‘le

9 ‘
_ 2 3 :
R = 20(k¥) E+ (—€——r+2> ] . ‘ (5.11)

Had we let Cm = nZCe in relating the electric and magnetic current

moments, instead of (5. 11) we would "'have obtained

2
- 2|11, (3 o |
R = 20(k{) Lr +(€£+2> ] | - | . (5.12)

In order to compare the radiation resistances for the various sources, (5. 9),

(5. 11) and (5. 12) are divided by _(ld)2 and the results denoted by R, R, and R_,

0’1 2



48

respectively. The results are shown in Table 5-1 for various values of €.

TABLE 5-1

Normalized Radiation Resistance
for Sources on Small Spheres

r Ro Ry R,
1 40.0 40,0 40.0
2 30.0 312 21,2
3 26.6 27.2 13.8
4 25,0 25,0 10,0
5 24,0 23.6 6.6

It can be seen that the normalized radiation resistance R1 of the source

(Cm = nICe) on the surface of a small dielectric sphere closely corresponds

0" It should be noted, however, that RO does not co;‘—
respond to the Huygens' source, i.e., 1-cos6 pattern, unless €. =1lin (5.9).

to the free-space case, R

The normalized radiation resistance Rz of the source (Cm = nZCe) is smaller
than R1 because in the former the magnetic current moment is reduced in order
to compensate for the reduction of the electric current moment by the dielectric
sphgre. In the next chapter, it will be seen that the radiation resistance for

lafger spheres tends to oscillate about the free-space value.

5.4. Directivity

The directivity in the forward direction relative to an is'otropic source

is defined by

_ 4n(radiation intensity in 6 = 180° direction)

total power radiated , (5.13)

D
since for the sphere concentric with the origin, and the source located on the +z _
I (8] . .
axis, we are interested in the relative field intensity in the -2 (6 = 180") direction.

From (5.2), it is evident that

- (_1)n+1 n(n2+ 1) 6‘

oln

O=n
$=0
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n n(n+ 1) A

and Do = (-1) ) : (5. 14)
O=m
$=0
since
Pl( )
n Ccos - (- 1)n+1 n(n+1)
sin@ 2
0=7
and
1
BPn(cos 0) n n(n+ n(n+1)
Y =(-1)
O=m

Using this result in (5. 1), an expression for the radiated power intensity

in the -z direction is obtained. Thus,

R2 - % 15’k.?CZ n 2
2y EE LT Tar Ry (6.15)
Mo o=n n=1

where ny = 12072
Combining (5. 15), (5.7) and (5. 13), the desired directivity formula

results:

2
Z 2n+1 (1) (a +B )

p = 2=l . (5. 16)

[0 0]
Zl 2““<aa+3/3>
e nn

Again, it is noted that An= Bn= 0 or Cn = Dn= 0 in the expressions for @
and Bn in Section 5. 2, in order to recover the result due to the magnetic or
electric source only. |

It is found from (5. 16) for the small sphere case that
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3 er+2 2
5 —.G -+{>
_ r .

3‘[_

D, = = a2 for € =mC, . (5.17)
(2= +1

: 3 ,er

and 3 er+2 2 '

-— + :
2 1
<€ 3 for C. = nl.Ce . (5. 18)

The results are shoewn for various values of €. in Table 5-2.

TABLE 5-2

A i)irectivity of Sources on Small Spheres
€. D 1 A, . D2
1 3.000 - 3.000
2 2,940 - 2,997
3 2.824 2,999
4 2,700 - 3.000
5 2.586 2,999

. From (4. 11) and (5. 13). it can be shown that the directivity of a Huygens'
source is 3. From Table 5-2 it is seen that the direcfivity D2 remains
approximately this value.

~ In Chapter 6, it will be of interest to comparevt.he dire@tivity of the
pattern radiatgd by the dielectric sphere with_ thé,f _of a uniformly illuminated
aperture of the same diameter. The normalized field pattern of a large uniform
aperture as shown in Fig. 5-1 can be found by the application of Huygens' pfinci-

ple and is given by Kraus (1950)

2x J ( Sme)
smG

E(6) = (5. 19)
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uniform

plane wave N
B I =T
o

infinite sheet

FIG. 5-1: UNIFORMLY ILLUMINATED APERTURE,

For this case, the expreSsioh

E@*_
1 2
i SIE(O)I dQ

is used for the directivity, a_nd hence

. 22 , .
D= . ' (5. 20)

S/zp £

sinf dé

5.5 Dielectric Loss

" For a lossy dielectric €. is complex and may be represented by

2 -

€, = ¢€'+ie" | ' (5.21)

2

where €' and €" are the real and imaginary parts of the permittivity
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respectively. The conductivity o is related to €' by
o =we" , (5. 22)
and thé loss tahgent is defined as
tans = €"/e' . . (5.23)
Equation (5.21), therefore, may be cast in the form

€, = e'(l+itand) . (5. 24)

The propagation constant k2 will also be complex, being equal to

k, = k'T+itans - (5.25)

“Thus, in the previously derived equations, 62, k2 and also n, are simply
_replaced by their complex values to account for the dielectric loss. ‘
To find the power»dissipated within the sphere, the source is placed
in Region I close to the surface of the sphere, With Cm = nZCe, it is found
from (3. 6) and (3. 18) that the electric field within the sphere is given by

_ - -k wuC -
B @) = —-;—1,——— ey { Myl *EN, 09} . G20
where _ _
Pn(cos 6) a BP;(cos 0)
oln(kz) = j (p) [T cos¢9- 5 sin¢3 (5. 27)
ﬁeln(kZ) = ﬂil_) (p)P (cos 6) cos¢R

s1n9

oP (cos 0) A P (cos 6)
+ = [PJ @] [ COS¢9- Sm95:| (5.28)

p =k_R
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ict 1)

|—3n(p)]
h()-
J—r P3

o [Paha g a
s J—: h (p3)
(1) (1 '

and c dn_ are given by (2. 14).

()

The power dissipated within a region of conductivity o is given by the

formula

1 - —
Py = S\\\cE‘E av . (5. 29

For a homogeneous sphere of radius a (5.29) becomes
2r(\T pa

= o/2 E®) E®) R°sin0dR dodg . (5. 30)
0 V0 Jo

Pp

Because of the or_thogonality of the associated Legendre functions and

their derivatives, shown in Section 5. 2,

T

Moln.Nell sin6dé =0

0

Also, it is easy to show

2T NI
: ) 2
M. (o) M (e =2m> BED 5 ) e,
oln ol/f P 2n +1 ] p
0
and
27 AT 9 2
- P
N, 0N, e o= 2B o0 ()50
n .
0o Jo pp (2n+1)

+[o1, @) pr 0] b, . 63D
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where we have used (5. 6) and the formula (Stratton, 1941, p. 403)

T .

m m ) _ _2 (n+m)!
Pn (cos G)PE (cos 0)sin 8d0 In+i(o-m) 6n1

With the aid of (5.31) the 6 and § integrations are performed and an expres-

f sion for the dissipated power obtained. Thus,

1" "1 PRV
pD = __FQ ; (2n+1) o Jn(p)]n(p) +%§ n(n+1)jn(p.)j:(P)+
0 o
@] [, 7]y
or | o
22 o T Aa

150m,. k" C -
Py = —zl‘lej—ez (2n+1) ﬂvpjn(pﬂz +’n(n+1)I|§J'I‘1(p)|2
' 0

n=1 i
+|§ [pi, 6] 'Iz}cm . (5. 32)

Now that expressions for the dissipated power P and the radiated

power W (5.7) are available, the antenna efficiency may be computed from the
relation -

_Power radiated = _ W
Total input power . W+PD

(5.33)



Chapter VI
NUMERICAL RESULTS

6.1 Introduction

‘Some of the more significant equations derived in Chapters IV and V
were programmed and evait;ated using the University of Michigan IBM System .
360 Model 67 dual-processor computer. The data was then plotted on the
CALCOMP 1780/763 digital plotter. ‘ |

In this chapter, the numerical resuité using a.Huygens' source are first
compared with measured data for plexiglaé spheres placed over the ends of
waveguides. Curves are then presented showing the variation of dire btivity with
sphere diameter for various dielectric constants. Subsequently, the resonant
modes of the dielectric sphere are studied together with the effect of dielectric
loss. Finally, curves are presented which show that directive patterns méy be

produced with the source located inside the sphere.

6.2 Comparison with Measured Data for the Plexiglas Sphere

The far-zone electric fields radiated from a Huygens' source on the
surface of a dielectric sphere (4. 31) were calculated numerically for the two -
principle planes using the computer progfam listed in Appendix B. Since the
series for the far field converges in a manner similar to the spherical
Bessel functiohs it was found that N = kD+7 terms provided sufficient accur-
acy. - -

_ The normalized power paﬂ:erns for ‘various‘diamet‘er spheres, computed
in one degree increments, are presented in Figures 6-1 to 6-4. Here the E and
H planes correspond to the § =0 and ¢ = /2 pla.nes,'resgectively. In each case,
a dielectric constant of 2.57 with a loss tangent of . 0065 was used, which is -
typical of plexiglas in the frequency range of interest (von Hippel, 1954). It
should be noted that with the source oriented as shown in Fig. 4-3,the maximum
radiation occurs in the -z direction, and hence the top of the computed patterns

correspond to 8 = 180 degrees.
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The curves on the left of each figure were measured by Croewell
and Chatterjee in the anechoic chamber located at the NASA Langley Research
Center. These measurements were made using plexiglas spheres centered
against the flange of an open-ended waveguide. The parameters are listed in
Table 6-1. It should be noted that no attempt was made to impedance' match the
waveguide or, in the case of the rectangular guide, to physically fit the aper—

ture to the curved surface of the sphére.

TABLE 6-1
Meaeurement Parameters
Sphere Diameter (inches) 3 5 5 5
Frequency (GH, ) | 50 50 8.0 10.0
Sphere D1ameter (7\ ) 1.27 2.12 3.39 4,23
Wavegmde Type . - C-band - -X-band
Circular Rectangular

From these 'patte'rns:,’ F1gs 6-1to '6-4,A it ean be seen that the é.gree-'
ment is quite good, particularly for the larger diameter spheres. -The theo-

- retical patterns do, however, show sharper nulls in the‘main beam and stronger
back lobes than the measured patterns. These differences may be due to scat-
termg from the wavegulde feed structure used in the measurements.

Figure 6- -5 shows the d1rect1v1ty of the Huygens' source on the surface
of the sphere computed from (5.16). Again, a dielectric constant of 2.57 and -
loss tangent of .0065 have been used. For comparison, the directivity of a
uniformly illuminated eircular aperture (5. 20) is also shown. The abseissa
is measured in aperture diameter or sphere diameter in free-space wavelengths.
The small circles and crosses in the figure represent directivities derived

from measured patterns for waveguide-excited plexiglas spheres using the

e'mpirica.l formula
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whei'e "K 1is a constant and @ 1 apd 02 are the half-power beamwidths in the

two principle planes measured in degrees. By comparing the computed directivity
with the beamwidths of the Huygens' source patterns, it was found that K = 26, 500
yielded an error less than 0.5dB for sphere diameters in the range of intefest.
Since the measured and computed patterns have the same general shape, this
value of K wés used in the above formula.

A It can be seen from Fig. 6-5 that the experimental and theoretical
directivities agree quite favorably with a maximum deviation of 1.7dB occurring
atD=.85 AO. It is also An'oted that for the meas'ureq data available, the direc--

tivity is generally greater than that for a uniformly illuminated aperture. -
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In Table 6-2, the radiation patterns presented in Fig, 6-3 for the
dielectric sphere are compared to that observed for.a conical horn of about the
same diameter (3. 4)») as given by Jasik (196 ). The data is for a horn opti-
mized in the sense thaf the flare angle has been adjusted to yield a maximum

phase deviation of 3/8X in the aperture wavefront,

TABLE 6-2

" Comparison with Optimum Horn -

: Optimized Horn Plexiglas Sphere, D = 3. 39)\0
P t =
a1-‘ame er D =3. 4:kO Measured Theoretical
E-plane, 3dBbeamwidth 16 12.5 14 -
(degrees) ,
H-plane, 3'dB beamwidth 19 14 14
(degrees) : '
First sidelobe level, i -8.5 -13.5 -16
E-Plane (dB) '
First sidelobe angle from 22 _ 20 22
axis, E-plane (degrees)
Directivity (dB) 17.7 - 237 21.0

From this table, one can see that both the measured and theoretical
patterns for the plexiglas sphere have lower sidelobes and higher directivity
than the optimized conical horn, '

Figure 6-6 shows the radiation resistance computed from (5. 10) toget-
her with power reflection coefficient curves measured for 2 a;ld 3~inch plexiglas
spheres.

Here it is-noted that both the radiation resistance and the measured
curves have strong peaks 'occurring with a periodicity of about D = 0,25 )\O or
(k2a) = 1,26,

The antenna efficiency was computed using (5. 33) and is plotted in Fig,

6-7. For this computation, the source was placed 0.01A . from the sphere

0
surface to avoid the problem of infinite loss associated with a point source in -

contact with a lossy medium (Tai, 1947).
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As one might expect, the antenna efficiency generally decreases with
increasing sphere diameter. It is also noted (Fig. 6-7) that for the larger
sphere diameters the efficiency curve shows a marked decrease at the same

points the radiation resistance (Fig. 6-6) shows sharp peaks.

6.3 Directivity

Since the directivity is an important parameter in antenna design,
the value of dielectric constant which maximizes this parameter for a given
diameter is of 1nterest

The d1rect1v1t1es for the Huygens' source on the surface of the sphere
(5. 16) are plotted as a function of sphere diameter for various lossless dielec-
trics in Fig. 6-8. Since the curves were plotted at only a finite number of
points (0.01 diameter interval), it is recognized that some of the fine structure
may not be precise. Nevertheless, it is abparent from these figures that as the
diameter increases, the directivity becomes frequency-sensitive, with the effect -
being more pronounced for the higher dielectric spheres. The sharp dips in
these curves are due to a resonance effect, discussed in detail in Section 6;4,
caused by the dielectric sphere in which much of the energy is radiated into
~ the sidelobes.

The resonance effehct was not noted in the relatively smooth curve of
Fig. 6-5 because the dielectric loss was included in the calculation. By com-
paring the directivity curves of Fig. 6-9 which were calculated usmg a loss
tangent of .0065 with the lossless curves of Fig, 6-8, it is noted that the loss
tends to attenuate the resonance with the effect being most notable at the larger
sphere diameters. The dielectric loss, however, had little effect on the peaks
of the curves. '

Figure 6-9f was constructed by drawing smooth curves through the
maximum points on the directivity curves presented in Figures 6~5 and 6-9,
Here it is seen that a dielectric con_étant of about 3.0 tends to optimize the direc-

tivity, particularly for the larger diameter spheres.
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6.4 Resonance and the Effect of Dielectric Loss

The resonance phenomenon noted in the directivity curves of Section
6.3 is now investigated. Figure 6-10 shows a detailed section computed using
a diameter interval of .003A. A pattern occurring in this curve is noted. For
example, resonances occur at B, D, and then the pattern repeats starting at E
with the nulls becoming stronger with increasing diameter., |

Figure 6-11 shows the antenna patterns corresponding to points. B, C
~and D of Fig. 6-10. The patterns of Fig. 6-11a (H-plane) and Fig. 6-1lc
(E-plane) each have ten complete lobes indicating that the resonance is due to a
large tenth mode. It has been found that points A and F are caused by.
‘resonances in the 8th and 13th modes respectively. HenceA, ‘with -increasi-ng
diameter, the resonancé appears in the H-plane, then the E-plane, and
again in the H-plane at the next higher mode. |

Looking back at (5.1), it is seen that the far-zone field in the two planes

may be expressed by

o iklR 00
E(ﬁ) - -(:Jlil e e Z 2n+1 (_.)n_
47 R 4= n(n+1) .
n=1
r — 1 1
Pn(cos 6) aPn(cos 0) N
J Lan sme "By oo .  E-plane
1 1
™ 8Pn(cose) Pn(cos 0) .
& — 43 — -
ST Bn b ,  H-plane (6.1)
\ b

It has been found that when there is an ith mode resonance in the E-plane or

H-plane the magnitude of Bi or ai’ respectively, is considerably larger than
the other coefficients. It therefore can be seen from (6. 1) that the radiation

patterns will exhibit a strong resemblance to

aPil(cos N
Eya— in the plane of resonance .,
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and in the alternate plane.

sin 6
This resonance phenomenon occurs when the denominators of Bi or a,,
. . : Vs _ . '
which contain the re‘spectlve factors €, [plhn( Py )] Jn(pZ) [pzjn(pz)] hn(pl)
13 _ % 1 )
or [plhn(pl)] Jn(p2) [pzjn(pz)] hn(pl)’ become small. It has been shown by

Stratton (1941, Sec. 9.25), however, that these factors never reach zero.

The total radiated power xﬁay be expressed as a summation over the

power radiated in each mode, i.e.,
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as shown by (5.7). The quantity _‘Vn - 100 percent represents, therefore, the per-
cent of the total power contributed by each mode. These power contributions are
plotted for the modes with significant power for points B and C in Fig. 6-12a

and F and G in Fig. 6-12b. Although the modes are discrete they have been
connected for identification purposes.

From these figures it is noted that when the directivity is high, the power
is distributed among the modes. At the points of resonance, however,v most of
the power is concentrated in a single mode; about 89 percent is in the 10th mode
at B, and 98 percent is in the 13th mode at F.

Although it is not apparent from Fig. 6-12 because of the normalization,
the total radiated power at resonance is considerable higher than at nonresonance,
and hence the radiation resistance (see Fig. 6-13) shows strong peaks at the reso-
nant points. This curve was computed using (5. 10) in .001 diameter intervals.

It was noted from comparing the directivity curves for lossy spheres
with thé corresponding lossless curves that the attenuation had little effect on
the points of high directivity. The dielectric loss did, however, significantly
reduce the magnitude of the resonances with the effect being more pronounced
for the larger diameter spheres. The reason fof this may be explained with the
aid of Fig. 6-14. |

We define modal efficiency by

Pn(radiated)
P (radiated) +P (loss)
n n

Efficiencyn = - 100 percent ,

where Pn (radiated) and Pn (loss) are the nth terms of (5.7) and (5. 32) respec-
tively. In Fig. 6-14 this efficiency, using a loss tangent of .01, is plotted as

a function of mode number for various resonant sphere diameters. Generally,
as the sphere becomes larger, it is seen that the efﬁciency of the higher modes

increases while that of thé lower modes decreases slightly.
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Table 6-3 shows that each new resonant mode has an efficiency less

than the previous one in the same plane. This, -together with the fact that for a

TABLE 6-3

Modal Efficiency for Resonant Spheres
(loss tangent = ,01; € = 3.2)

Diameter (A.) Mode No. Resonance Efficiency (o /0)
Number Plane
2,000 8 H 48. 55
2, 407 10 H 25,22
3.010 13 H 6.08
2,110 8 E 61.61
2.533 10 E 36.78
3.145 . 13 E 9.48

given diameter the resonant mode efficiency is less than that of the lower modes,
accounts for the smoothing of the directivity curves with dielectric loss. These
results also explain the reduction of the overall antenna efficiency, noted in

Fig. 6-7, in the resonance region for the larger sphere diameters. The effect
of other loss tangents on fhe modal efficiency is shown in Fig. 6-15.

The patterns of Figs. 6-16 and 6-17 were computed in 2-degree intervals
using (4.13). Because of the high loss used in Fig. 6-16d, the internal reflec-
tions are greatly attenuated, and hence there is practically no radiation in the
back direction. Finally, for a large sphere with constitutive parameters typical
of plexiglas, Fig. 6-17c, the resonance is almost completely attenuated and

therefore may not be noted in actual measurements.

6.5 Source Disglaced from Sphere Surface

To examine the effect of moving the source away from the sphere, the
curves of Fig. 6-18 were calculated using (4. 30) in two~degree intervals. The

dielectric constant was kept at 2. 57 with a loss tangent of .0065. Since b is the
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distance from the origin to the source and a is the sphere radius, the ré.tios
of b/a shown in Figs. 6-18a, b, ¢ and d correspond to the source spaced 0.0,
0.25, 0.5 and 1.0 free-space wavelengths from the sphere surface. From »
these patterns it is seen that the main beam first narrows slightly and then be-
comes broader with increasing displacement. The sidelobe level also becomes
considerably higher as the source is moved away from the sphere.

| Without varying the dielectric constant, the curves shown in Fig. 6-19
~were computed using (4.31). These patterns correspond to the source spaced .
0.1, 0.5, 0.75 and 1. 57&0 inside the sphere surface. The theoretical patterns
shown in Fig. 6-3 were also calculated using (4. 31) for the source on the sphere
surface, and may be compared to Fig. 6-18a which was computed from (4. 30)

using the same parameteré.
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From Fig. 6-19, it is seen that the antenna pattern continuously de-
grades as the source is moved into the sphere, and that the sphere shows very
little focussing effect as the source approaches the center, . 4

Directional patterns can, howéver, be obtained with the source located

inside the sphere by appropriately adjusting the dielectric constant as shown in

Figs. 6-20 and 6-21. The directivity of these patterns is about the same as
that with the source located on the surface of a sphere with a lower dielectric
constant, | A

Figure 6-22 shows the optimum ratio of éource to sphere radius for
various diameter spheres. These points were obtained by fixing the dielectric
constant at 4, 6,9, and 12 and varying the source position until the maximum
directivity was found. The additional points corresponding to. the source on the
sphere surface were obtained by adjusting the dielectric constant. In each case
a loss tangent of .0065 was used. For comparison, the upper curve shows the
location of the geometrical optics paraxial focus (8.5). V

It is seen from Fig. 6-22 that for a dielectric constant of 9 the source is
located about half way between the center and back surface of the sphere.. it is
also noted that for a fixed source position a higher dielectric constant is neces-
sary to obtain optimum directivity for the sinaller spheres. In all cases, how-
ever, the best results were obtained for a dielectric constant leés than that

required for the paraxial focus.
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Chapter VII
EXTENDED SOURCES

7.1 Introduction

The previous chapters wefe concerned with the‘effect of a dieleétric
sphere on the radiation from infinitesimal point sources. In this chapter the
excitation is expanded intoxline sources concentric with the sﬁhere.

Expressions for the far field radiated by curved electric dipoles are
derived first, and then the results for a superposition of Huygens' sources in
the presence of a dielectric sphere are presented. Finally, it will be shown
that the patterns from these sources do not differ greatly from those of point

sources,

7.2 Electric Field Due to a Curved Electric Dipole

Consider a dielectric sphere with a filament of current located in the

x -z plane at R = b as shown in Fig. 7-1. It should be noted that in the § =0

z
. 'y
Filament of Current
: Observation point
b
J X

FIG. 7-1: CURVED FILAMENT OF CURRENT IN PRESENCE OF
DIELECTRIC SPHERE (x-z PLANE).
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i A A
and ¢ = 7 half-planes the current is defined to flow in the +6 and -6 directions
respectively. This is because the 6 coordinate variable is always measured in

a downward direction from the +z-axis.

For the antenna located as shown in Fig. 7-1 we let
- = 6(R'-Db) A
= 1y S ") - _
TRY =100 o [66)- 64 - m)] 6" (7.1)

where 1(6') is the current distribution on the antenna in the ¢ =0 half-plane

and is only a function of the coordinate variable 6'.

To find the electric field in Region I, (7, 1) is substituted into (2. 1}. Thus,

90 T A0D
E®) = o, G & [RY -Br1iey 2D
0 Jo Yo
| ES(¢') - 6(¢'- rﬂR'zdR'd;&'dG', (7.2)

Integration over the R' and §' variables yields

0
— 0 =]1,—1— N
E®) = wu b 160G, &R - 6'de’
1 3 .
o R'=b
$'=0
-\ 169G, ®|R"-6'ae’ : (7. 3)
0 R'=b
gr=r

Following the same procedure for equations (7. 1) and (2. 2), a similar

result is obtained for the electric field in Region II. Thus,

== 90 =21 ,=[=.. A
E®)=wub<| LG, ®[R)-Baer
1 3
0 R'=b
$1=0

%

=2] == A
- I(e')Gsl(RIR')-e'de-

0 i
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g . A '
The expression G3(R R') -6 must now be examined. From equations

(2. 8) and (2. 9) it is seenthat at R' =b

_ ~ _ $'=0 or
M' (k)-6'=N'. (k) 9"0{ s
emn - om
. ¢l =q -
_ A P;n(cos 6Y)
Momn(k) [0 = m]n(p3) sin 0!
- gr=0 (7. 5)
n poj (P )} 3P (cosé")
X ). 6" = [ 3’n 3)—J n
emn p3 o0t
— A m— P
M-8 = ™M - 9'\
¢|=,n. ¢1=0
N -8 = EnmN _<k>-’é'\ , (7.6)
emn dr=r emn b= |

where Ps denotes k 1b.
Substitution of (2. 16) through (2. 18) into (7. 3) and (7. 4) yields the

following expression for the electric field in the various regions:

_ © _n,
E(§)= klw“lb E 2n+1 (n-m)!
T - — n(n+1) (n+m)!

n=1 m=1

=(1) (1) =(1) (1.,
{ Momn(kl) An Imn(eo) +Nemn(k1) B Imn(eo)} R>b>a
(7.7)

n

- @ 1
== k1“’“1b Z 2n+1 (n-m)!

n(n+1) (n+m)!

n=1 m=1

| {[ﬁo G +a WD )b (o1 (6))

ph(P]
(D= (1) (k )][_u_linn(e)} a<R<b (7.8)

+[Ne (k) b 0s 0
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: 0 n
E(ﬁ) - -klw“lb z ' 2n+1 (m-m)!
T - — n(n+1) (n+m)!
n=1 m=1
- (1) . (1) [PaBplP3l]'
{Momn(kz)cn hn(P3)Imn(90)+Nemn(k2) dn -————-p3 Imn(eo) s
0<R<a (7.9)
where
90 mP;n(cos_G')
e T A
0
90 E)P;m(cos 6") :
I;nn(eo) = T 1(6")do’ (7. 10)

0

and Z' is used to denote that the summation is over the odd integers only. The
scattering coefficients are given in Section 2. 2,

The far-zone field of (7.7) is easily found with the aid of (4. 27). Hence
in this region

ik. R n

_ . cwub 1 ' )t
E®) = 1" e zz ~2n+1 (n-m)! (_i)n_

+ 1
T R 1 ool nn+1) (n+m)!

{Qir’n A% ey+n BWp (eo)}, (7. 11)

omn n mn O emn n mn

where Al(ll) and Bfll) are given by (4. 20).

For computational purposes, it is 6ften desirable not to have the’
associated Legendre functions within the integrals of (7, 10). It will now be
shown that by locating the soui‘ce in the x -y plane, the integration will be over
the §' variable, and hence the integrand will contain only trigbnometric functidns.

Consider a curved filament of electric current oriented as shown in

Fig. 7-2, In this case, let
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FIG. 7-2: CURVED FILAMENT OF CURRENT IN PRESENCE OF
DIELECTRIC SPHERE (x-y plane).
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J@RY = 14" ﬁ(ib'—i) 5(6" - %)3' (7.12)

and assume that the current distribution I(#') is an even function of the coor-
dinate variable ¢°'.
To solve for the fields in Region I, (7. 12) is substifuted into (2. 1) and

on performing the R' and 6' integration one finds

— ¢0:]_]_ - A

E@®) =ioub\ G, R|R"$1" g’
, R'=b

0'=xn/2

v\ Gy ®|RD G161 o

...¢0

. (7.13)
R'=b
9'=7r/2

Alternately, since I(§'} is an even function, this result may be expressed

in the form

| $
ER) = 2iwb \ G R |R) - ¢- 166048 , (7. 14)
even _
0 R'=b
o'=mw/2
=11 : s '
where G3even is an even function of ¢'. Taking the even parts of the spher-
ical wave functions (2, 8) and (2. 9) results in '
1 M = T e
Momn.’ls - Nemn $t =10
and . 8P (0)
—k =-j (p,) cosmg'
emn |, 3 96
r=n/2
= ” [p3jn(p3)]' m '
' . - 9 v 1
Nomn é e s mP (0)cos mg* , (7.15)
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It is known (Smythe, 1950, p. 153) that

n-m ,
1:3-5,,.(n+m-1)
-1 2:4:6...(n-m) ntm even
P () =
n
o, n+m odd
and also
m
aPn ©) - _Pm+1(0)
o6 n

Using these relations in (7. 14) the result is obtained

== “k w“b Sy 2n+1
ER) = Z -8 27Dy Im (¢)
n=1 m=0
AR (k )A(l)Pm+1(0) , n+m odd
emn 1" n n .
R>b
(()lrlm(kl)B( ) P:l(o) s n+m even
where
2
Im(¢0) = I{$") cos mg'dg’
0

7.3 A Superposition of Huygens' Sources

(7. 16)

Consider two lines of crossed electric and magnetic current sources

located on the surface of a dielectric sphere as shown in Fig, 7-3.

A
In the x-z plane, there is a filament of +6 directed electric current,

8(R'-a)
asinf!

T_@®Y =x( To—2 [s¢n-sr-)]6

together with a -ir\ directed magnetic dipole strip,
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FIG. 7-3: A SUPERPOSITION OF HUYGENS' SOURCES ON THE
SURFACE OF A DIELECTRIC SPHERE.

3@ = -n,xe) B8 G s a)f

where X(0") is the electric current distribution in the ¢ =0 half-plane. Note
| that at any value of 0', jm = -nzje , and hence there is a continuous line of |
approximate Huygens' sources. '
In a similar manner, in the y -z plane the line of Huygens® sources

consists of an £ directed electric dipole strip, .

3 @) = (e 2B=2

‘asi n6'

1 1+ T34
) [s¢- PARRIR ] E
A ' ’
together with a filament of 16 directed magnetic current

5 @) =nyven) SR8 LTy g TG

m 2 asin@'

Here Y(6") represents the electric current distribution in the § = /2 half-

plane.



103

Proceeding in a manner similar to that used in Sec. 7.2, it is found.

that the far-zone field radiated by this superposition of sources may be expressed

by

u.)p a 1k R
- 2n+1_ n (n-m)!
5@ - D> e

( D(1) :

1) 0 1 —
{(An * V?;)[an(ex) +Ymn(9Y)J ™M omn
(1)
+i % \[_> X! 6)+Y_ (e] emn} , @)

where

ex le(cos 0')
= ———e s 1 1
X n(ex) m - X(6")do
0
+
ey %ﬁ P (cos 0") _
Y (0)= (-1) m —I-l—,—;‘— Y(6*)d6*
ny sin6
0
. O 8P (cos 6')
4 = —e e 1 1
mn(ex) og' X(6)d6
0 .

1) 2 —B_—— v(@n4e

By m+3 op™ (cos ")
Y a0y 26"

0

7.4 Numerical Results

The dibole patterns shown in Figs. 7-4 and 7-5 were computed using

(7. 11) with the sinusoidal current distribution

I(6") = sinkoa(eo-e') . (7.18)
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The upper patterns in these figures show the effect of bending the dil;(;les into
arcs with no sphere present. In Fig. 7-4a, the dipole is in the form of a semi-

circle, i.e., 6, = m/2, and similarly in Fig. 7-5a, the dipole subtends a half-

angle of 7r/ 10 gadians. It is noted that these patterns are tﬁe same in both the
forward and back directions aﬁd that arcing the dipole tends to reduce the nulls
in the E-plane patterns occurring at 6 = /2,

Thé patterns of Figs. 7-4b and 7-5b show the effect of adding a
dielectric sphere with er = 3.2. Here the sphere tends to focus the energy into
the forward direction.

The current distribution of (7. 18) was also used in calculating the
patterns of Fig. 7-6. They illustrate that directional patterns can be produced
with a small sphere constructed of a material with a relatively high (er =17.5)
dielectric constant.

The patterns shown in F1g 7-7 were calculated using (7. 17) in 2-degree

intervals with sinusoidal current distributions in both planes. The crossed

sources each subtended half-angles of 7/6 radians corresponding to a 3-inch

sphere against the aperture of a C-band circular waveguide. In a comparison of
Figs. 7-7 and 6-1, it is seen th:;t_extending the source had very little effect on
the resulting patterns.

- Using (7. 17) the patterns of Fig. 7-8 were calculated with a) a point
Huygens' source and b) an extended crossed source with sinusoidal currents,
each subtending half-angles of 7/10 radians. This would correspond to a 5-inch
sphere operating at 5.6 GHz. Here it is noted that with the extended source the
sidelobes are slightly reducedf.
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Chapter VII
INTERPRETATION BASED ON GEOMETRICAL OPTICS

8.1 Introduction

Physical insight into the way in which the homogeneous dielectric
sphere focusses the energy from a point source to form the relatively direc-
tive antenna patterns shown in Chapter 6, may be obtained using the ray-tracing
techniques of geometrical pptics. With this method, it is assumed that the wave-
length is infinitesimally small, i.e., ka—» 00, and the paths of the electromag-
netic wave propagation are determined using elementary geometry.

In this chapter, the trajectory of ray paths leaving the sphere are
determined for various dieléctric.constants. Next, the ampiitude and phase
across an equivalent plane through the center of the sphere is examined and used
to explain some of the results of Chapter 6. Finally, we look1at the reduction of
aperture radius caused by the critical angle as a function of source position and

dielectric constant.

8.2 Ray Paths
' Figure 8-1 shows the cross section of a homogeneous dielectric sphere
with an index of refraction n, where n = {E—r . Consider a typical ray path
ABF eminating from a point source located at A; the ray originates at the
angle Gi and travels undeviated to B. Here the ray is refracfed by the alr-
dielectric interface with the transmitted portion leaving the sphere at an angle
6' measured from the horizontal.

The plane of incidence is defined as the plane containing the incident
ray and the normal to the surface. Since for this case the surface normal is the
radius vector, the plane of the paper is the plane of incidence. It follows, there-
fore, from the law of refraction (Snell's law) that the refracted ray BF must
remain in the plane of the paper. To find the angle 6', Snell's law is applied at
the local point B,

Asmet = nsmGi , 8.1)

109
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pf

Diameter = D

P
FIG. 8-1: GEOMETRY FOR RAY TRACING CALCULATIONS

and hence

o' = zei—sin-l(nsihei) . o ' 7 (8.2)

Since rays are travelling from a dielectric into a region of lower per-

mittivity, there is a critical angle GC given by
-1 | .
6_ =sin (1/n) . . (8.3)

Rays incident at this angle, i. e..,vé)i = OC, leave the sphere tangent to the surface.

If 'Gi > Oc, the rays experience total internal reflection and will not be considered

here. ‘ o
Ideally one would like the dielectriq sphefe to fcransform @he radiation

from the point source into a plane wave. This would correspond to 6' =0 for all
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values of Gi. For small Gi (8. 2) becomes
6' = (2—n)6i s (8. 4)

and hence the emergent rays for this case are parallel to the axis when n = 2,
This value of index is in agreement with Born and Wolf (1970, p. 162), since forj

a spherical lens of diameter D the paraxial focus is given by the formula

> |

= (8.5)
and therefore lies on the surface when n =2 corresponding to a dielectric
constant of 4. B

The deviation angle 8' as given by (8.2) is plotted in Fig. 8-2 as a
function of incident angie for various dielectric ethtanfsl It is observed that
except when Gi =0, the deviation angle is strictly Aposifive ovr'strictly negatfve for
for er <2 or e.r > 4, respectively. It appears, therefore, that the sphere will
have its maximum focussing effect when the dielectric constant is somewhere
between these two values. Note also from Fig. 8-2 that the critical angle de;
creases with inereasing dielectric constant, Figure 8-3 shows typical ray peths

for a sphere with a dielectric censtant of 3.0.

8.3 Amplitude and Phase Across an Equivalent Plane

Now an expression is derived for the amplitude and phase across an
', equivalent aperture plane, located at the center of the sphere, in a manner
similar to that outlined by.f];eﬁefi‘ and Farnell (1956).

In this analysis we consider incident rays in the range

"0<6.<6 ,. € >2
- 1= C r—

0<6.<m/4, € <2
- 1= r

since the critical angle occurs at 7/4 for €. = 2. Looking back at Fig. 8-1,

a typical ray travels from A to B within the dielectric, and then leaves the
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FIG. 8-3: RAY PATHS THROUGH DIELECTRIC SPHERE (¢ = 3.0).
- r

sphere at the anglé 6'. Reflection from the surface is being neglected. Now the
sphere is removed and the ray BF is traced back as if it originated from point
H on the plane PP',

The various angles and distances in Fig. 8-1 may be found as follows:

6 = sin-l(n sin@))
t i

0' = 20 -
i Gt

AB =Dcos(9i

OE =CB = Ecos 26,
2 i

EB = 0C = 2sin20,
2 i

BH = CBsec6'

CH = BHsin6' ‘ , (8.6)
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~ Since the ray ABF suffers no phase reversal at B, the phase angle ¢
of the ray BF transformed back to H is given by

$ = I:nAB-BH-D(n--';‘)-Jk0 radians , , (8.7)

where D is the sphere diameter, k_ is the frée space propagation constant,

0
1
and the factor kOD(n - 5) is used to normalize the phase to zero at the center

of the sphere. Making use of (8.6) we obtain the desired phase expression.

= L cos 26, 1} 3 !
9“=an(cosé)-1)+l 1 - . (8.8)
0 i 2 _cosGi /. S )

It is apparent from Fig. 8-1 that the radius H of the intersection of the
ray with the aperture plane is given by
H =0C-CH
and hence

H = g (sin 261- cos 29itan 6") . (8.9)

The amplitude of the power density across the equivalent aperture plane
reméins to be examined. For the present we neglect the transmission coeffi-
éient associated with the surface of the sphere and consider two concentric cones

of semi-angles 6 and 6+d6 as shown in Fig. 8-4. The power radiated by the

FIG. 8-4;: GEOMETRY FOR APERTURE PLANE AMPLITUDE
CALCULATION. '
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the source into the space enclosed by these cones appears over the equivalent
plane in the annular ring of radius H and width dH.
The incremental areas of the annular rings located at unity radius and

pe

at the equivalent plane respectively are given by .

ds, = sin 6d6dé

dSé = HdHdg¢

If P(P) is the power radiated per unit solid angle and P(H) is the power received
per unit aiigle across the equivalent plane, coriservation of energy requires

(qun and Wolf, 1970, p. 116)

ds

PE) _ 1
P6) " I,
and thus -
d R
P(H) = () S‘;I“’ de (8. 10)

Using (8. 9) together with the relations (8.6) yields )

]

2sm9

P(H) = E‘Zcos 20. +2 s1n29 tan @' - cos 0 sec 6'(2 ncos9 sec 9)—_‘ P(6)

(8. 11)

-Although only the primary rays are examined in this analysis, the above
equation must now be modified to account for the amplitude reduction of these -
rays due to the energy reflected from the sphere surface.

Since the Hilygens ' 'soiirce radiates a linearly polarized field, the two
principal planes are considered where the electric field is either parallel or
perpendicular to the plane of incidence corresponding to the E or H planes.
The power transmission coefficients for these two planes are (Stratton, 1941,

p. 496)
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sin 260_sin26
_ i t '

Tp= 72 3 (8. 12)

sin (0,46 )cos (0.-0) : )

it it

sin 2Gi sin 26t : g
TH = > . (8.13)

sin (Gi+6t)

With this modification, the amplitude distribution A(H) across the line of inter-

section of the plane of incidence and the equivalent plane will thus be given by

am = [par]/? (5. 14

‘where T is either TE or TH for the plane of incidence parallel to the E or H
planes, respectively.

Comparing (8. 12) with (8. 13) it is seen that the former contains an
additional cosine factor in the denominator, and hence the amplitude in thel E-
plane will, in general, be greater than the H-plane. Since the two transmission
coefficients are identical for Gi = Gt, which would correspond to allrays for
€.= 1 or the on-axis ray for €. > 1, the amplitude distribution will be contin-
uous at the center of the aperture, _

The results of this section are presented in Figs. 8- 5 to 8-7 for a sphere
of unity diameter. In Fig. 8-5, the phase shift (8. 8) is plotted as a function of
equivalent plane radius (8. 9) for various dielectric constants. Here a dielec-

" tric constant of about 3.0 tends to yield the minimum phase deviation across
the aperture. Looking back at Fig. 6-9f it is ﬁoted that this same value of
dielectric constant produced the maximum directivity for the la.rger diameter
sv,pheres. That this should be the case is apparent from (8. 8), where we see
that the phase deviation is- proportional to sbhere diameter, and hence is a
critical parameter for -large.spheres. , _

With P(6) = (1+cos 49i)2 in (8. 11), the amplitude distribution across the
equivalent plane (8. 14) is plotted in Figs. 8-6 and 8-7 for various dielectric -
constants, We note that for €. >2, there is a greater tapering of the amplitude

across the aperture in the H- plane than the E-plane. In the light of this one expects
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FIG. 8-6: E-PLANE APERTURE AMPLITUDE FOR VARIOUS
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FIG. 8~7: H-PLANE APERTURE AMPLITUDE FOR VARIOUS
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the far-field pattern in the H-plane to have a wider main beam and lower side
lobes than the E-plane (Silver, 1963). In the patterns presented in Figs. 6-2
to 6-4, this tends to be the case.

8.4 Effective Aperture Radius

It was noted in Section 8. 2 that rays incident at an angle equal to or
greater than the critical angle experience total internal reflection. We now wish
to investigate how the effective apérture radius,which is limited by this critical
angle varies as a function of the dielectric constant for the source located on the
surface or inside the sphere. ‘

Figure 8-8 shows the cross section of a sphere of radius a. Assuming

FIG. 8-8: GEOMETRY FOR APERTURE RADIUS
AT CUTOFF.

"the ray AB is incident on the surface at the critical angle Oc, we seek the

aperture radius d. As was shown in Section 8, 2, the critical angle is given by '

i = 11 = 8.15
sing = /er 1/n (8. 15)



121

where n is the index of refraction. Also from the Law of Sines note

b - a
sin @ sin @
c 1

and heﬂce
sing, = — 8.16
% nb (8.16)
Since
62 ='91+ec ’
d . .
= = ginf cosO +sinf cosb (8.17)
a 1 c c 1
Using (8. 15) and (8. 16) in the above expression yields
d 1
. - € (8. 18)
r

which is valid for (a/ b)2 < €.

Equation (8. 18) is plotted in Fig: 8-9 together with the optimized
directivity data of Fig. 6-22.‘ Here the effective aperture radius is generally
about nine-tenths of the spheré radius for the optimized points, and that locating '
the source at the paraxial focus would result in a considerable reduct'ion of the

of the effective apertdre radius.
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Chapter IX
CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This thesis has been devoted to the study of the radiation from simple
sources in the presence of a homogeneous dielectric sphere. The dyadic Green's
functions of the third and fourth kinds pertaining to this problem have been pre<
sented and should be applicable to most electromagnetic problems dealing with
homogeneous spheres. Using the method of scattering superposition, exact
représentations for the electric fields excited by infinitesimal electric or mag-
netic dipole ¢urrent sources located inside, outside, or on the surface of a
dielectric sphere were formulated.

Because of the simplicity and directional characteriétics of the Huygens'
source, the antenna parameters using this source in the presence of a dielectric
sphere were studied in detail. Expressions were developed for the radiated
power, radiation resistance, directivity ‘and antenna efficiency. These results
may be easily reduced to that for individual electric or magnetic dipoles by let-
ting the appropriate constants be zero. ‘ T

When the calculated radiation patterns for the Huygens' source on the
sphere surface were combared to measured patterns for plexiglas spheres on
the end of waveguides, excellent agreement was found. These results confirm
the findings of Croswell and Chatterjee (1972) that waveguide-excited dielectric
spheres may be used to radiate patterns which are superior to those from opti-
mized circular horns of the same cross-sectional area. Extending t\he point
Huygens' source in_to crossed curved lines of sources did not sigmfiéantly affect
the radiation patterns.

Again using the point source, the directivity was plotted as a function of
sphere diameter for x}arious dielectric constants. It was found that for spheres
greater than 2, 5)\0 in diameter, a die.lectric constant of about 3‘.0 tended to

yield the optimum directivity.
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The dielectric sphere exhibits a resonance phenomenon in which much of
the energy is radiated into the side lobes with a commensurate decrease in the
directivity. This effect was most pronounced for the larger, denser spheres.

It was found that with increasing sphere diameter, the resonance alternates be-
tween the two principle planes with each new resonance in a particular plane being
at the next higher mode. The resonance may not be apparent in the radiation pat-
tern of a lossy sphere, but will be manifest as a reduction in the antenna efficiency.
This is because the resonance occurs at a high order mode which is quickly
attenuated by dielectric loss.

Using the Huygens' source model, it was shown that by appropriately
adjusting the dielectric constant, radiation pétterns with high directivity and low
side lobes may be produced with the source located inside the sphere. This sug-
gests that directional patterns may be radiated by a truncated sphere mounted
on a waveguide, as shown in Fig. 9-1,

Expressions were developed for the radiation from a curved electric
dipole in the presence of a dielectric sphere. The bending of the half-wave dipole
into an arc tended to reduce the sharp nulls in the E-plane patterns. It was
found that directional patterns may be radiated from a dipole partially wrapped
around the meridian of a dielectric sphere. This, together with the previous
results, suggeststhe use of a monopole mounted on a ground plane covered by a
dielectric hemisphere as shown in Fig. 9-2.

Using the methods of geometrical optics,-‘- it was shown that a relatively
small phase deviation occurs across an equivalent aperture plane when the dielec-
tric constant of the sphere is about 3. This, together with the tapering of the
field amplitude across the aperture, may be used to explain why the sxﬁall s_phere
is able to focus the point source into a relatively directive pattern. Since the
phase deviation is proportional to sphere size, this focussing effect should tend

to degrade for large spheres.
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9.2 Recommendations for Further Research

There is considerable room for future investigation, both theoretical
and experimental, of sources in the presence of dielectric spheres.

According to Luneberg's original theory (1944), an inhomogeneous lens
with the permittivity profile> er(R) =2-(R/ a)2 will focus rays from a point
source on the surface into a collimated beam. It would be interesting to perform
a detailed numerical analysis of the expressions given by Tai (1956; 1971, Sec,
46) for the electromagnetic solution of the sphefical Luneberg lens. The re-
sults could then be compared to those presented in this work for the homogene~
ous sphere.

Using the method of dyadic Green's functions, together with SCattefing
superposition, exact expressions could be formulated for the radiation from
stratified spheres. Numerical results could then be easily obtained with a
computer program similar to that presented in Appendix B. since only the cal-
culations of‘the scattering coefficients would need to be modified. Again, the
data could be compared to that of a homogeneous sphere to see the effect of lay-
ering on the antenna parameters such as the radiation pattern, resonance, and
dielectric loss.

It would be interesting to construct the models shown in Figs. 9-1 and
9-2 and measure their perforniance. The data presented in Fig. 6-22 could be
used to provide the initial design paramefersl The antenna of Fig. 9-1 has a
smaller axial dimension than thé full sphere, as well as providirig é flat surface
for mounting the waveguide.

The radiation pétférns of the antenna shown in Fig. 9-2 should be the
same as that of a dipole within a full sphere because of the imaging properties
of the conducting ground plane. This structure is similar to that used by Meinke
(1970), except that here the source is located inside the dielectric hemi-
sphere. It could be easily mounted on the outside of an aircraft and would not

 require a radome,
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As a final remark, antennas are frequently designed without considera.tidn
of the radome and then modified to reduce the often deleterious effects of this
protective cap. In view of this work, perhaps éhe dielectric cover should be con-
sidered an integral part of the radiating system used to improve the beam-

forming properties of the antenna.

Waveguide
- Truncated
Dielectric
Sphere - :

FIG. 9-1: PROPOSED ANTENNA FOR EXPERIMENTAL STUDY

/Dielectric Hemisphere

Ground Plate

—Center Conductor

L — i _ x|

_Coaxial Cable

E-—q—

FIG. 9-2: PROPOSED ANTENNA FOR EXPERIMENTAL STUDY.
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Appendix A
EVALUATION OF E)jn(p)__]'hn(p) -thn(p)]' i

Let zl(p) and zz(p) be two spherical Bessel functions which are

particular solutions to the differential equation

pzz”+29z'+[pz-n(n+ I;Jz? (VI (A.1)

Since

pzzic = p(pzi" -2pz!

(A. 1) may be in the form

p(pzl)"+E)2-n(n+ 1i]z1 =0 (A.2)

p.(pzz)" +E)2- n(n+ lﬂ z, = 0o . (A.3)

On multiplying (A. 2) and (A. 3) by z, and Zys respectively, and subtracting,

it is found

pzz(pzl)"-pzl(pzz)" =0 . (A.4)

We next form the integral
E)zz(pzl)"—pzl(pzz)" dp=0 - (A.5) |

and integréte by parts yielding
pzzzz'l-pzz12'2 =c | (A.6)

where c is a constant.

Letting z_ = hn(p) and z_ = jn(g), where hn(p) = JD(p) +iyn(p),» (A, 6)

2 1

becomes

o5, )"k (0)-p’h ()15 () = . (.7
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Pb (p)' = [Phn(Pﬂ'-_hn (o)
in (A, 7) Yields the result

Eajnm)‘_]'hn @) - [on_ @] ()= - L

°©

(A. 8



Appendix B -
COMPUTER PROGRAM

Although numerous computer programs were used thfongh_out this
research, the one of primary sigm’ficanee, together with the necessary suh- |
- routines, is listed in this appendix. This program was written in standard-
IBM FORTRAN IV for use with the G level compiler, and was run on an IBM
Systemv 360/67 computer. |

The MAIN program calculates and prints out the normalized far-zone
radiation patterns (magnitude, phase, and intensity in dB) in the two principal
planes for a Huygens' source on the surface or inside a lossy dielectric sphere.
It also prmts the coefficients of the m and n functlons the d1rect1v1ty, ‘and
provides the pattern data (truncated to -40 dB) in an array suitable for plotting.
This program may easily be modlﬁed to compute data for only the electric or
magnetic current source, or for the case where the source lies out31de the
dielectric sphere by making the approprlate changes in the coefflclent formulas
of lines 35 to 39. '

The input parameters to the MAIN program are defined as follows.

DIAM ~ Sphere diameter (AO’)

PER Dielectric constant

TAN Dielectric loss tangent (X1000)

Sp Distance from source to sphere surface 0\0)
THINC Increment in 6 variable (degrees).

Note: The parameter THINC should divide evenly into 180 degrees. If
THINC = 1, for example, data is calculated from 6 =0 to 6 = 180

in one-degree intervals,

Subroutine ASLEG is used to generate arfays ef assoeiated Legendre
functions of the first order and theit' derivatives. The parameters are as fol-
lows:

NMAX Maximum value of degree (N) desired

THINC Increment in 6 variable (degrees). See note above.
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SLEGEN } The names of single precision two-dimensional arrays in

DLEGEN which the output functions are returned:
1
PN(cos M)
SLEGEN(N, M) = ———
1
9P, (cos M)
DLEGEN(N, M) = oM

where M = (N - 1)THINC .

" Subroutine CBESS generates arrays of spherical Bessel and Hankel

functions of complex arguments and their derivatives, ‘The parameters are

as follows.
BES Names of single-precision complex arrays in which the
DBES S
HANK ~output functions are returned;
DHANK
BES(N) = ]N_l(X)
DBESkN) - 2 [Xj (Xﬂ
" oX N-1
_
HANK(N) =h " (X)
= 2 [,V
DHANK(N) = o= XhN_l(X)]
X ' Double precision complex argument.

NMAX ' Maximum value of order (N) desired.

Double precision arithmetic is used throughout these subroutines, with

the final output converted to single precision.



C  dokfkiokkkkk MATN PRNOGRAMIKR&kdokikikk

C : : \
conl . DIMENSTION DLEGEN(45,181)+R1(181)4,R2(181),TH(181),EHMAX(2)
oon? ‘ DOURLE PRECISINN SLEGEN(45,1R81) .
el _ COMPLFX ANPN(181),BNPN{181),ANDPN(181),BNDPN(181),E4(181,2),B81(45)
' 2,DR1(45),B2(45),DB2{45),83(45),DB3(45),H1(45),DHL(45),H2(45),
ADH2( 454 H2(45) 4 DH3(45) ANy BN,CNA, T, AXyANA,BNA,SER,CER, DN
nora COMPLEX%16 RN1,R02,RN3 ' '
nons 1 READ 500,DIAM,PER,TAN, SP, THINC
COme LK=2
ekl - X=,20C1%TAN ,
.CONR ' P1=3,1415926£5358979
nena _ CONV=180,/P1
0711 MA=180,/THINC+Y
012 CER=PER%({1,+1%X)
cr13 SER=CSQRT(CER) "
(e1a B A RN =DTAM%D]
(a3 B RK1=R0O1
1ol oY RN2= SFRARNY
ooy T RON=RA? :
noYR RN3= (DI AM-2, *SP ) %P XSFR
C RNO1=K1A,R02=K2A,RD3=K2R
cnN19 NMAX =2, %R01+6,5
goon NSUM=NMAX+]
re 21 CALL ASLEG(NSUM, THINC,SLFGFN,DLESEN)
xialy ] CALL CBESS(B1,DB1,H1,NH]1,R0OL,NMAX)
cr23 CALL CBESS(B24DB2,H2,DH2,R02,NMAX)
onvg CALL CRFESS(R3,DR2,H3,DH3,R0O3,NMAX)
€725 SNAN=0. L L
nn26 : PO 20 J=1,MA
027 ANPN (J) =0
rn2e \ ANDPN 1) =0
co29 ANDPN( 3Y=0
nean : BNDPN( Y)Y =0

o1 20 CONTINUE

£el



nna2
nnaz
0034
ShEL
an3ak
ne27
0038
0029

neas
a1eE/S |
0na?
nna2
nr4L
nnas

LYY

5047
0048
0ong
eyED
pnsY
0ns?
£153
0054
0nss
nang
onsy
pnsQ
posa
DOAD

nGeal

0062
063
Lrky
0res

PRINT 2737
DN 22 N=1,NMAX
M=N+1
ANA--I/(QD?*(H]("i*?ﬂ?(M) -DHI(M)%B2(M)) )"
BNA=-T/{RN2% (H] (M)%XDB2(M)/SER-SERXDHI(M)*B2(M)))
CNA=B3(M)-I%DR3I(M)/RN3 ‘
AN=- BNAXC NA
AN=ANA%CNA
AN AND BN ARE THE COEFFIFIENTS OF THE M AND N FUNCTIONS.
CONT INYE : .
PRINT 198 AN ,BN
Y=N ‘
AX=( (2,%Y 4], )/C0Y%({Y41,)))%(C.~-T)k%N
Bx:( 2%Y+) o" /70
SDAN=SDAN+RX*(CABS{AN) %%24CABS(BN ) %%2)
SPAN TS THE DENDMINATOR OF THE DIRECTIVITY EXPRESSION
DN 22 L=),MA
ANDN!L)-ANPN(L)+AX*§LFGFN(N,L)*AN
BNPN (L )=BNPN(L)+AX*SLEGEN(N, L) *8BN
ANDPN(L )= ANDPNIL ) +AXXDLEGENI N, L ) ®AN
“ANDPNIL Y=BNDPN( L) +AXXDLEGEN(N, L) *RN
22 CONTINUE :
NO 25 K=1,42
25 FHMAX(K)=0
PO 50 L=1,MA
EHIL ,1)= ANPN(L)+BNDPN(Li
EH{L 42)==ANDPN({L ) =BNPN(L)
DN S50 K=1,2 -
N OEHMAX{K)=AMAX]1 (EHMAX (K), CABS(FH(L K)))
50 CONT INUF
"DIRH=10,*ALOGIN{ (CABS (FH(MA, 1))**2’/SDAV!
DO 55 K=1,2 .
PN 55 L=1,MA
SS EH(L K)=FH{L,K)/EHMAX(K)
PRINT 302,01 AM,PER,RK),RND,N, X
_PRINT 305

9E1



N0 66
0N6T
0068
0069

aCcTn

N7
ocT?2
0073
cR274
0N 75
orTe
onv7
no78
oe79
oean
onnel
0082
€583

0084
0085
ne8Aa

noas7
oeas
- 009

ocon

PRINT 3952,SP
PRINT 304 ,NIRH,LK
NN 75 L=1,MA
ANGLE=(L-11%THINC
TH(L }=ANGLE
AMAG 1=CABS(EH(L,1))
AMAG2=CABS{FEHI(L,2))
ANGL=ATAN2{ATMAG(EH(Ls1)),REAL(E4(Ly1))) % CONV
ANG2=ATAM2 (A IMAG (EH(L 421 ) ,REAL(EH(L,y2) V) *CONV
R1(L)=20.*ALOG1ID { AMAG])
R2(L)=25.*ALNG1D (AMAG2)
PPINT 310,ANGLFE, AMAGL, ANGI.RI(L) ANGLE, AMAGZ,ANGZ'RZ(L)
TF (RI(L) LT .=40,) RI(L)=-4D,
IF (R2(L).LT.=40,) R2(L)=-40,
75 CONT INUE
77 PRINT 212,FHMAX({1),EHMAX(2)
100 CONT INUFE
WRITE(10,114) MA,(R1(L)4R2(1L),L=1,MA)
THIS STATEMENT PRINTS ON DEVICE 10 THE NUMBER 0OF PAINTS TO BF
PLOITTED AND THEN THE F- AND H-PLANE INTENSITY ARRAYS,
60 1O 1
114 FORMAT(14,(24F10.4))
302 FDRMAT('19,21X,*NORMALTZED FAR ZINE FLECTRIC FIELD FROM SOURCE LOC
1ATED NN SURFACE NF NIELECTRIC SPHEREY/1Q%kxkkx SNURCF: HUYGEN

2 DYAMETER IN WAVELENGTHS: *,F6,3,5X,*'DIELECTRIC CONSTANT: '
3,F6.3/52X,"ATR KA2 *,F6.3,11X,*DIELECTRIC KA: *,F6,3/
4 28X, *NUMBER OF TERMS USED IN SERIES: *,12,19X

Sy'L0OSS TAN: ',F8,6) :
302 FORMAT(17X,*SOURCE DISTANCFE FROM SPHERE IN WAVELENGTHS: *,F7.4) "
305 FORMAT(52X,*SOURCE INSTDE SPHERE SURFACE')
ANG - FORMAT( /7y BX,*PHI: 0 DEGREES '546X,'PHI: 90 DEGREES
5 DIRECTIVITY: ',F6.3.' DR*/*D THETA ELECTRIC FTELD
7 INTENSTITY . Yel6X,*THETA ELFCTRIC FIELD INTENSTITY
o VA ({DEGREES) MAGNITUDE ANGLE (on)y
9',1?X"(DEGREES) MAGNTITUDE ANGLE *,7X, *(DR) 93X, 12).
210 FORMAT(SX 42(FT7.2,2XsE1Caly1X4FT7.243X4F9.3,24X))

GET



neal ‘ 198 FDRMAT(1-GX.,2»E12.415X92512.41SX'ZEIZ.‘HSX,ZEIZ.‘H

nnoy 200 FORMAT(IOY 146X, 'M COEFFICIENTY y14X%,'N CNEFFICIENT ' ,/15X, *REALY,6X,
CLTIMAGINARY!, 19X, *REALY,6X, " IMAGINARY?) '
oron : 212 FARMAT(IONNRMALTZATINN CONSTANT: ¢, F12,.4,36X,'NORMALIZATION CONSTA
INT: 1,F12.4)
npos 500 FORMATISF10,3,11)
0095 ‘ END

9¢1
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SUBRQQTINE CRESS(BFS,DRES ¢ HANK,y DHANK o X, NMAX )

INDEX 1S ONE GREATER THAN NRDER 0OF THE FUNCTION
COMPLEX BES{1)4DBESL1)HANK(1),DHANK(]1), ]
COMPLEXX16 XoJ0, J(OD) 4P, Y(T5)
T=(Devl)

MN=NMAX+16

NO=NN-1

NP=NN-2

NO=NMAYX+1

NR=NMAX+?

JINNI=(D,. 400}

J(NF‘)?’(IQY]Q‘

JO=TDNSINI{X) /X

Y{1)==-COCASIX)/X

Y{2Y=¥(1)/Xx-J0

DD 1D M=1,NP

N=NJ -M ,
JINY=(2%[N=1)+3) %JIN+1) /X=-J{N+2)
NN 12 N=3,NR

YIN) =(U2%(N-1)=-1)/X)2Y(N-1)-Y(N-2)
P=41/J11) :
RES{1Y=J(1) %P
HANK{1)=RES{1)1+1%Y(])

N0 20 L=1,NQ

K=L+1

BES(KY=J(KY%P

HANK (K)=RFS{K)+TxY(K)
DRES(LI)=L*BES(L)-X*BES(K)
DHANK(L)=LxHANK (L) ~X*HANK(K)
RETURN : :

FND :

Lel
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SUBRNUTINE ASLEG(NMAX,THINC,SLESEN,DLEGEN)

DIMENSTON DLEGEN{45,181)

NDNURLE PRECISTINN SLEGEN(45,181)4+X,TH,RAD, tONv,Pl
MMAX=18N. /THINC

MA=MMAX+1,

P1=3,14159265358979 ,

CONV=PT /180, : S
RAD=THINC*CONV -

NN 10 N=1,NMAX

A=N -

SLEGEN(N,1)=A%(A+1,1/2,
DLEGENINy 1)=SLEGENIN,1) ~
DLESFNIN,MAY =A%R(A#], )/ 2% (=1 ) %%N
SLFSEN(N,MA) ==DLEGEN(N,MA)

CONT INUE

DD 20" M=2 ,MMAX

TH=L*RAD -

X=DCOS(TH)

SLESEN(1,M)=1,

DLFGEN(1,M)=X

SLEGEN(2,M)=1, SHDSIN(2. *TH) /DSTN(TH)
DLEGEN(2,M)=3,%DCOS( 2, %TH)

N0 20 N=2,NMAX

SLEGEN(N MY= ({2, *N=1)%X%XSLEGEN(N=1,M)-N&SLEGENIN-2,M))/7(N-11"

DLEGENIN, M) = N*X% SLEGEN(N,M)=(N+1) %SLEGEN(N=-1,M)
CONTINUE ‘ -

RE TURN

END

8€1
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