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Chapter I

INTRODUCTION
4

Recent investigation by Croswell and Chatterjee (1972) has shown that

a small homogeneous dielectric sphere-may be used to focus the radiation from

an open-ended waveguide into a relatively directive beam, and hence would be

useful as an antenna.

Historically, large spherical lenses have been of interest for microwave

antennas because their symmetry permits the formation of beams in any direction

by displacement of source alone. Perhaps the best known lens of this type was

introduced by Luneberg (1944). It has a radially varying dielectric constant and

will focus rays emanating from a point source on the surface into a collimated

beam of parallel rays at the opposite side of the lens. The Luneberg lens, how-

ever, is difficult to fabricate in practice. A survey of other inhomogeneous

spherical lenses is given by Johnson (1964).

The imaging properties of the homogeneous dielectric sphere has been

investigated by Bekefi and Farnell (1956), using the methods of geometrical

optics and the diffraction theory of optical aberrations. Their results suggested

that spheres of small refractive index, less than 30 wavelengths in diameter,

may be used to produce good diffraction images of point sources.

Assaly (1958) measured patterns for heptane (e =1. 94) filled spherical

shells 13. 3 and 33. 3 wavelengths in diameter In this experiment, the lens was

supported by a conducting screen and illuminated by a waveguide displaced sev-

eral wavelengths from the sphere. Data for a 12.4-wavelength diameter sphere

(e = 2.34) has also been presented by Cheston and Luoma (1963). Their results

confirmed that the homogeneous dielectric sphere may be used to produce

desirable radiation patterns despite the presence of a large amount of spherical

aberration.

Using a somewhat different arrangement, Meinke (1970) measured patterns

and gain for a monopole formed on a small hemisphere (less than 1-1/4 wave-

lengths in diameter) over a ground plane. In his work, using dielectric constants



between 2.2 andfll,5, Meinke noted that the gain tended to oscillate

around that which could be obtained using a. uniformly excited circular

aperture, due to resonances inside the hemisphere.

Finally, recent measurements by Croswell and Chatterjee, some of which

have been published (1972), have shown that waveguide excited plexiglas

(er = 2.57) spheres 2 - k wavelengths in diameter exhibit properties

desirable for feed antennas used to illuminate paraboloidal reflectors.

Although considerable attention has been given to the study and

measurement of scattering from dielectric spheres (see, for example, Inada

and Plonus, 1970; Barrick, 1970), no rigorous treatment using electromagnetic

theory has been given to the spherical homogeneous dielectric lens as an

antenna element.

In this presentation, the radiation from a source in the presence of a

dielectric sphere is treated as a boundary-value problem, and the solution

is obtained using the dyadic Green's function technique. Particular emphasis

is placed on the Huygens' source which is used to model the waveguide excitation

of spheres.

Throughout this work the source, together with the dielectric sphere, is

considered as an antenna, and hence the properties such as radiation resistance,

directivity, and antenna efficiency are studied as well as the radiation pattern,



Chapter II

DYADIC GREEN'S FUNCTIONS PERTAINING TO A SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

*

2.1. Introduction

The effect of a dielectric sphere on the radiation from an antenna may

be investigated as a boundary-value problem under the assumption that the cur-

rent distribution is a known function of position. The solution to this problem

may be obtained by the technique of the dyadic Green's functions.

In this chapter, the boundary conditions are first presented. Then,

starting with the free-space dyadic Green's function in the spherical system, the

functions of the third kind, GQ, are formulated using the method of scattering
O '

superposition. Subsequently the dyadic Green's functions of the fourth kind, G.,

are derived from GQ using the principal of duality. In the next chapter, GQ and
G u

G will be used to obtain expressions for the fields due to electric and magnetic

current sources, respectively.

Although the functions presented here form the groundwork for the

derivation of the fields in Chapter El, they should also find application to most

problems dealing with dielectric spheres.

2.2. The Dyadic Green's Functions Pertaining to an Electric Current Source
in the Presence of a Dielectric Sphere

Figure 2-1 shows the geometry of a dielectric sphere with an externally

located electric current source. The regions exterior and interior to the sphere

are characterized by different constitutive parameters and, therefore, different

propagation constants k and k , where
1 £t

(Region I, R > a)

(Region n, R < a).

Here MO and e denote, respectively, the permeability and permittivity of the
£ £t

sphere, which may be complex. For most applications, Region I will be free

space, and hence At = At and e = e..



observation point

electric current source

Region n

FIG. 2-1: GEOMETRY FOR A CURRENT SOURCE IN THE
PRESENCE OF A DIELECTRIC SPHERE.

With the electric current source J(Rr) located in Region I, the electric

fields in Regions I and n may be expressed by

E&)

E(R)-iuu

Region I

Region

(2.1)

(2.2)

where G.-.tRlR1) is the dyadic Green's function of the third kind and the harmonic
* *4-

time factor e .has been suppressed. The first and second numbers in the

superscripts of the Green's functions in the above equations denote the regions

of the observation and source points, respectively. Those functions are solutions

to the vector wave equations



-leo = T6(R-R') , R>a
o 1 «5

-kG =0 , R<a . - (2.3)

Besides satisfying the radiation condition at infinity,

Urn R[vxG3m|R')-ik£xG3(R|R')] =0 ,
R—>oo

G also satisfies the boundary conditions at the surface of the sphere
O

R=a |R=a+

fixVxGQ(R|R')l = — nxVxGQ(R"|R')| . (2.4)

The simplest way to find G^iR1) is to use the method of scattering
O

superposition in which we let the fields consist of a sum of incident and scattered

waves. With this method, the form of the scattered waves are first constructed

using eigenf unctions which will satisfy the boundary conditions at the sphere sur-

face as well as having the proper form at R * 0 and R = oo. The coefficients of

the scattered waves are then determined by matching the boundary conditions on

the surface of the sphere.

Thus G~(R|R') is treated as consisting of two parts

') , R >a (2.5)

, R < a . (2.6)

Here G (R|R') denotes the free space Green's function pertaining to an infinite
ac — I —

region with the same constitutive parameters as Region I, and G (RIR1) repre-
=s/21^ —

sents the part of the wave scattered from the sphere. G (RJR1) is used to

denote the Green's function internal to the sphere since only a scattered field

will be present in this region.

The free space Green's function for this problem is given by Tai (1971)



as:

- oo n

47T

(n-m)!
m=0

0 «(n+l) (n+m)I

where

and

M
o

OOM'1 gmn (kjNi (kj , R > R «1 mn 1 ' •

M fe.) ,

(kR)

mn

emn l e

L, m; - 0

), m f 0

ap (cos e)m ^m, rtvSin ,A n cos
—r-z P (cos 0) m(60 - ^7 .sm0 n cos ^ 90 sin

9Pm(cos0)ja cos .A
QO • mP^90 sin r

Pm(cos 0)
n
sin0 m

(2.7)

(2.8)

(2.9)

The two sets of spherical vector wave functions, represented by M and

N in (2.8) and (2. 9)> are solutions to the homogeneous vector wave equation

- 2
V x V x F - k F * 0

as shown by Stratton (1941, p. 415), and also satisfy the symmetrical relations

M_ (k) - T 7 V X N (k) .
gmn k

(2.10)

In (2. 8) and (2. 9), j (kR) is used to denote the spherical Bessel functionn
of order n, and P (cos 0) represents the associated Legendre function of degree



n and order m. The expressions in (2.7) with superscript (1) are obtained from

(2. 8) and (2. 9) by replacing the spherical Bessel functions with spherical Hankel

functions of the first kind, h (kR) . A prime is used on a function to denote thatn
it is defined with respect to the primed coordinate variables CR',01,^1) pertain-

ing to the R1 vector.
» — i —

In constructing GQ(R |R!) from the wave functions we make the followingo
observations:

1. For the source located exterior to the sphere, the posterior parts

of G^U)(R|R') and G^21)(R|R') must be the same as G.C
oS oS U

evaluated at R < R1. This is necessary for us to match the boun-

dary conditions at the sphere surface.

2. The propagation constants ki and ko must be used in the anterior

parts of G!; -OllR1) and G* (R|R')> respectively, because of the
OS oS

regions in which the observations points are located.

3. The spherical Hankel functions must be used in the anterior parts

of G0 (RJR1) because these functions represent outward3s '
traveling waves.

4. Finally, since the fields are finite at the origin, the anterior parts

of G CR|R') must be constructed using the spherical Bessel
oS

functions.

In keeping with these requirements we let

oo n

r (11)mlR'> * -I y Y\2 6 )2 n + 1 (n-m)!
G3s < R l R ) a s -£-Z-, ^(2-Vn(n + l) (n+m)!

n=l m=U

fa'" M<» ' fclE^ft,)^ N™ (k.N.'1* flcjl (2.11)
L mn mn 1 emn 1 mn mn 1 mn 1 Jg

and



oo

47T

n

n=l m=
.
0

ML (k0)M*(1)

emn 2 emno o

(n+m)!

I N (k )N' (
emn emn 2 emno o o

(2. 12)

The scattering coefficients a, b, c and d in the above equations, in

general, will be complex quantities and represent the magnitude and phase of the

sphere's contribution to the total fields. The superscript (1) on these coeffi-

cients denotes that they are defined for the source located in Region I, and

should not be confused with the meaning of a superscript on a spherical wave

function.

Since the tangential components of the resulting E and H fields must

be continuous across the sphere surface,we apply the boundary conditions (2. 4)

which for our problem become

R - a . (2. 13)

Solving the above equations for the coefficients, we find a =* a
emn n

(1) u(l) (1) (1) J ,(1) ,,(1) t °
3_ =« b , Cp =0 and dQ «d , where
"inn n mn n emn no o o

a(1)
n

(1)

'2 P2 "l Pl ^^

'1 ' ^2 P2

J (Po)n ^

^0->r,X

K ^ n
Ml P2



(1) Mlkl
Pl

^iV^"
M P

W- ^

k2i fn \
Jn(p2} - Mo

P! VY

[P2jn'(p2f
1

1- /- \
P0 -"n^

n
1J

'l P2

(2. 14)

Here,

LpZn(p)} " i K(P)] '

where z (p) is either j (p) or h (p). Also, h (p) denotes h (p), since onlyn n n n n
the spherical Hankel functions of the first kind will appear in this work.

For a dielectric sphere in free space,

where e is the relative dielectric constant and may be complex. Equations

(2. 14) for this case become



10

.(1)
I ? A W

W

n

d)

(2. 15)

Substitution of equations (2.1), (2. 11) and (2. 12) into (2. 5) and (2. 6)

gives us the desired Green's functions for the configuration of Fig. 2-1. They

are

Source in Region I, Observation Point in Region I

oo n

n^^telm * —- (n-m)!

n=l m-u n(n + l) (n+nO!

I M^1} (k) TM'I gmn 1 L §mn 1 n emn

mn 1 L |mn 1 n gmn i R
(2. 16)

ik

~4TT
19 r. 2n + 1

•• /r
|L

(k1)+a(l)M^l) (k1 n gmn I (k)

NP (kJ+b^-N^ (kjlN^^ (kjlemn l' n e „ 1 J emnx 1 Jo Omn o J
a < R < R '
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Source in Region I, Observation Point in Region

., oo n
_; ^1 V~" V^

G • T^ I *D 11 *^* ^™^™« X x fx •» f\ 1
\X\ I -tx / ^^ A f f V"1 O J

n=l m=0

' [<=!" 5^m<y ̂ n"1!' +di1>Semn&2) ̂ ftj . * < a .0 0 o o J ( 2 1 8 )

For the source located inside the dielectric sphere, again consider
=(22) —I —

the geometry of Fig. 2-1,but now with R1 < a. We let G^ (RjR1) represent

the free space Green's function in an infinite region with the same constitutive

parameters as that of Region n. From (2.7) we have

1 (2
(k_)Me (kJ+N (kJNl (kj , R>R'gmn 2 emn 2 emn 2 emn 2

M^ (kJM|(1) (kJ+N. (k9)Nl(1) (kj , R < R f .emn 2 emn 2 emn 2 emn 2
° (2.19)

=(22) — —
Using the method of scattering superposition, G« (R R1) is treated as con-

sisting of two parts,

Sf ><R|R'> = 5f '(RlB^Ogf ><R|R'> , R < a

|B')-G^2)(R|5') , R>a . (2.20)

="(22) =
Here GQ is used to represent the portion of GQ which is scattered from the

=(12)
inside surface of the dielectric sphere, and G is the transmitted field. We

* (22) =(12)
note that Gq must be finite at the origin, G,, must satisfy the radiation con-

oS o

dition at infinity, and the boundary conditions must be met at the sphere sur-

face. Thus,
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n=l m=0

fa?* Me
1}

L ® ran
ie' (k )+be

2) N(
Q

1} (k )N' (kjl
_mn & Xmn Smn i &mn &->

R >a
mn mn (2.21)

and

3s
(2 6(2

m=U
n(n + l) (n + m)!

Me ( k ) M 'mn 2 emn
N (kjNl (kjl , R<

£ '•'nin & J (2. 22)

where the superscript (2) on the scattering coefficients denote they pertain

to the source located in Region II.

The coefficients are now found by applying the boundary conditions at

the sphere surface, namely

R * a.

We again find af = a(2) b(2) - b(2), c<2) - c(2) and d(2) - d(2), where^ emn n' gmn n emn n §mn n

(2)

n



13

(2) "l
n

2

\

W- ["2h>2>]' W

n

For the case where ju * n , these equations become
X "

(2)a
p,h (pz n z

"

(2)

(2)

[«2WJW-

(2. 23)

(2. 24)

Substitution of equations (2.19), (2.21) and (2.22) into (2.20) yields

the desired Green's functions for the internally located electric current source

as follows:
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Source in Region n, Observation Point in Region I

CD n
»(12),- |-t. 2

- -

Source in Region n, Observation Point in Region

2n+1

(k0)+c(2)Me (kjlni (kJemn 2 n ^nin 2J emn
x 2mn

:2H , a > R > R f

Ojm J (2.26)

oo n
p\——/ /T-,|T-,|\ " f f In r \ ^n 1 1

O

M
emno"1" o

(2)_ -|
)+c M' (k )n ^mn ^-1

^TTin(kjrN'(1) (kJ+d(2)Ne (kjH , Rgmn 2 L emn 2 n emn 2JJ
(2. 27)

2.3 Duality Principle Applied to G0 and cL
o 4

When dealing with magnetic current sources, it will be convenient to use

the dyadic Green's functions of the fourth kind, G , to obtain the magnetic field.

The symmetry which exists in Maxwell's equations provides a simple means

of obtaining these functions from those of the third kind which were derived in

Section 2. 2.



15

Consider the following sets of Maxwell's equations:

VxE » ii*«H

VXH * HuoeE+J

V -7 - iup (2. 28)

m

V* H' * -iueE1

V-J =iup (2.29)
m m

where J and p are the magnetic current and charge densities. Here, the
m m

primed and unprimed fields are due to electric and magnetic sources respectively.

As shown in detail by Papas (1965), a duality exists in the above equation

sets. This principle, however, may be extended to include the dyadic Green's

functions of the third and fourth kinds by considering the inhomogeneous vector

wave equations derived from (2. 28) and (2.29) and their solutions. Thus,

— 2— —V x V x E - k E * iu/xj

V x V X H - k H * iweJ (2.30)
m

and

H« «iue\\\G /1(R|R')-J dV (2.31)
\\\ 4 ' m

or

E = i U A i \ \ G (RlR')-KdS1

H' = iue G4(R |R') • KmdS' (2. 32)
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where the surface electric and magnetic current densities are given by

Km -nxE 1

K < n X H (2. 33)

To change from a system of fields excited by electric sources to one

excited by magnetic sources, or vice versa, we see from equations (2. 28) to

(2. 33), it is only necessary to replace the quantities by their duals as sum-

marized in Table 2-1.

Table 2-1: Dual Quantities

E

H1

H

-E'

=
G

G

3

4

J

J
m

K

K
m

P M

Pm C

£

A*

k

k

It also should be noted that besides satisfying the radiation condition,

G. also satisfies the boundary conditions at the surface of the sphere,

nxG4(R|R')
R=a

nxG4(R|R')|
R=a.

— nx VXG C R R « )
R=a

(2. 34)

R=a.

which are the dual of (2.4).

2.4. The Dyadic Green's Functions Pertaining to a Magnetic Source in the
Presence of a Dielectric Sphere.

Since the propagation constant k is its own dual, it can be seen from

(2. 8) and (2. 9) that the spherical wave functions will remain invariant in the

transformation from G« to G . The only difference, therefore, will be manifest

in the scattering coefficients a , b , c , d , and once these coefficients haven n n n
been determined, it is possible to list the various Green's functions of the fourth

kind.

To obtain the coefficients for G from those previously derived for

Gg we let
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cM|u,e) -cn(e,yn)

df fc, e) - d (e,A*)n n

where the primed coefficients are used in G. and a , b , c •, d are defined by4 n n n n
(2. 14) or (2. 23) depending on the source location. Equations (2.15) and (2. 24)

were not used for the unprimed coefficients in this case because ju cannot be

set equal to A«O until after the duality principle has been applied.
Ct

From (2.14) for the external source we find

(1).

b(1)1

c(1>'

(2. 35)

where we have used the fact that k /p = k /p and let M = M0/^i • For tne

1 1 ^ ^ r ^ 1
case when n = \*-, equations (2. 35) may be further simplified; it is found that

1 &

n n

n n
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n

,(1)
"n (2. 36)

Proceeding in a similar manner for the internally located magnetic

source, it is found from (2.23)

n

(2). 'W
•w

n
J

By letting /u = /u , it is apparent from the above equations that

J2)' _
n

(2)'

(2)' ,(2)c == dn n

,(2)' (2)
d =* cn n

1 ,(2)
D

n

(2. 37)

(2. 38)

where the unprimed coefficients are given by (2.24).
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It is now a simple matter to list the dyadic Green's functions of the

fourth kind by making the appropriate substitution of the scattering coefficients

in equations (2.16) to (2.18) and (2. 25) to (2. 27). These functions are listed

below for the various regions of source and observation points.

Source in Region I. Observation Point in Region I

„ , v 2n+l (n-m)!

m=
n(n + l) (n+m)!

QO+b^M'^ (kjl1 n emn 1 Jeemn 1 L emn 1 n emn0 0 o

R >n

2n + 1 (n"m)!
(2

47T <--> (2- n(n + l) (n+m)!
n=

•\[M e (kJ+b^M^ (kjlMl^OcJ
1L ®n 1 n m n 1 J m n

, a < R < R « (2.39)

omn omn

mn

Source in Region I, Observation Point in Region

-6
nCa + 1) (n+m)!

nxl m=U

fd(1)Me (k )M'(1) (kj +c^N (k ) N'(1) (k,)! , R < aL n emn 2 emn 1 n emn 2 emn U0 0 o o (2/4Q)
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Source in Region II, Observation Point in Region I

., oo n
ik.

(kjMl (k_) + a(2)Ne (ION' (kjl , R>a
! x mn ^-J

(2.41)

_
Omn ! Qmn onm x gmn

Source in Region n, Observation Point in Region

oo n

(2
^ - n f o - H ) (n-fm)!n=i

^ (k)+d (2)Me (k)lM' ( k ) M ' <gmn ^ n gmn & ^ emn 2 emn

( k ) + c N e (k9)Nl (kJ , a > R > R
Smn 2 » ^mn 2J emn 2

oo

47T - - - n(n + l) (n + m)!

M
mn n mn

+ Np (kj fe(1) (kj +c(2)N' (kj , R < R' (2. 42)gmn 2 L Qmn 2 n gmn 2 J

where we have used the fact that for ju "Mo, k m k0/ / e .1 ^ 1 ft V r
This completes the derivation of the dyadic Green's functions, pertaining

to a homogeneous dielectric sphere, which will be used in subsequent chapters.



Chapter HI

ELECTRIC FIELDS DUE TO SIMPLE POINT SOURCES
IN THE PRESENCE OF A DIELECTRIC SPHERE

3.1. Short Horizontal Electric Dipole

Consider an infinitesimal horizontal x-directed electric dipole with

current moment C located at R1 = b, 0'=0, j i f = 0 as shown in Fig. 3-1.

Region H
Region I

FIG. 3-1: HORIZONTAL ELECTRIC DIPOLE IN THE
PRESENCE OF A DIELECTRIC SPHERE.

We let the electric current density be represented by

b sine1
(3.1)

To find the electric fields in the two Regions, (3. 1) is substituted into

(2. 1) and (2. 2). Because of the delta functions within the integrand, the follow-

ing is obtained

21
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E(R) * i
e 3 R'=b

0'=0

Region I

E(R) -lutfi.Cl e
;<21)^I~

R'=b
0'«0

Region H. (3.2)

The expression GQ(R|R') •£ must now be examined. First, the
o

associated Legendre functions in (2. 8) and (2. 9) are evaluated at 6 = 0.

It is known (Harrington, 1961) that at 6 * 0, i.e., cos0 * 1,

Pm(Dn

L, m * 0

)> m ^ o

Also, using de I'Hopital's Rule for the limit,

Pm(cos 0)
n
sine

fn(n + l)

i o, "„
These last two equations show that for the point source located at 0' = 0, only

those terms in the series expansion corresponding to m * 1 will contribute to

the fields.

Since in the spherical coordinate system

x = sin 0 cos ̂ R 4- cos 0 cos pO - sin

it is apparent that

M (k)-x
emn

N .
omni

0 ,

and hence

rmn
<k)-x

(b, 0,

as

0)

M ,
oln

(k)
A•x

(b, 0, 0)

n(n + 1)
2 n
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Ne (k)-x n(n + l)
2

[kbjn(kb)]'

kb
(b,0,0) (3.3)

where the M and N functions are given by (2. 8) and (2. 9).

Substitution of the dyadic Green's functions given by (2. 16) to (2. 18)

into (3. 2), and using the results (3. 3), yields the following expressions for the

electric fields:

Source in Region I, Observation Point in Region I

V
/_,4,
n=l

(1M fc ) j fo ) +ah (p ) +N (ko l n l L n o n n o J e l n l
,,

"3 a P3

oo
e \ 2n + l

n(n
n=l

R > b (3.4)

r_ /n_ -i r_ / i>— n rV «vf^
M , (k)+aU ;M , (k> h (p0)+ N , (kJ+bU;N . (kj L<J n 6

L oln 1 n oln 1J n^3 L eln 1 n elnx l'J p

a < R < b (3.5)

Source in Region I, Observation Point in Region

Ee(R) = —; n(n
n-l

,m , (kjcVA/h (pJ+N , (k.)dv
oln 2 n n 3 eln 2 n

(1) , • 0<R <a

(3.6)
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Here, p = k b and the subscript e is used to denote that the field is due to an
o J.

electric current source

For the current source located inside the dielectric sphere, consider

the geometry of Fig. 3-1, but with b<a. The electric fields will then be given

by

E(R) = i u M R R ' ) ' JCR')dV'

or

E(R) = iw \\\G?2!R |R') ' J (R')dV' (3. 7)

depending on the location of the observation point.

Letting n = n and using the dyadic Green's functions given by (2. 25) .

to (2. 27) together with (3.3), the following expressions are obtained.

Source in Region II, Observation Point in Region I

-k ujuC
2

n(n
n-l

Source in Region n, Observation Point in Region II

! rn

-k.

E_(R) 2n+1
n(n + l)

n=l

1 .
n oln ^ n 4

(3.9)
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Ee(R) - 47T £—} n(n + l)
n-l

oln 2'|_n^4' n Jn^4'J "eln 2'| p^ n p^

R < b (3. 10)

where p ==-k9b.

3.2 Short Horizontal Magnetic Dipole

In this section, the radiation from an infinitesimal magnetic dipole located

on the +z axis is considered. The source is pointed in the -y direction and has

a magnetic current moment C .m
The magnetic field is given in terms of the dyadic Green's functions of

the fourth kind for the appropriate regions of source and observation points as

follows:

H(R) = iu€l \ \ \ G ( R R«) • J (R')dV'
1 \ \ \ 4 ' m

H(R)

H(R) » iue9\\W12)CR|R')' J f c Wmm

H(R) = i u € G ( R R ' ) ' J ( R ' ) d V (3. 11)

where Jm is the magnetic current density, and for this problem is expressed by
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J (Rf) = -C 6(R'-b)6(e')6(4f) A
m m 2

b sin6f
(3. 12)

In the spherical coordinate system,

y = sine1 sin jii'R' +cos e! +cos < (3. 13)

On performing the integration of (3. 11), one finds the magnetic field will be

given by

H(R) ^-i (3.14)
R'=b
e'=o

From (2. 8) and (2. 9), it is seen

M (k) -y
omn

0 = 0
= 0 ,

and thus

Mp (k)
'mn

Ne < k ) - ycmn

(b,0,0)

(b,0,0)

(b,0,0)

(b,0,0)

2 V

[kbjn(kbj]f

kb

(3. 15)

where we have used the relationships for the associated Legendre functions

derived in Section 3. 1.

The magnetic fields due to a magnetic point source could now be listed,

but it would be more convenient to find the electric fields. In a source-free

region,

Also, since

I = — V X H .
(06

(k) = kNe (k)~mn
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and

V*NO (k) = k M _ (k) ,§mn emn

we simply need to multiply each term by the factor ik/ue appropriate to the

region of observation, and interchange the roles of the resulting M and N

functions to obtain the electric fields from the magnetic field expressions.

Using the above result and the Green's functions given by (2.39) to (2.42),

we find the electric fields due to an infinitesimal -£ directed magnetic dipole

located at (Rf =0, 01 = 0, $' = 0) may be expressed as follows.

Source in Region I. Observation Point in Region I

oo

4am. £—\ n(n + l)1 n=l

-
M - (koln

p nein _
(3. 16)

iiok.juC v — i 01 m \ 2
7TT} ^— n47TT},1 n=l

r
\ M , (k,) + a • . M , (k\L oln 1 n oln eln

a < R < b (3. 17)

Source in Region I, Observation Point in Region

oo
iok nC \

E m

m 4m).1 n-l

. (kJ-dU;h (pJN (k )V , R<aoln 2 n n 3 eln 2 ' —
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Source in Region II, Observation Point in Region I

'1£ C ^9 4 .1
r fa) 1 r m \ _2n+I_

m1"' ~ 4™ ^—• n(n-M),n=l

^^•^n^^^y- R^a
(3. 19)

Source in Region n, Observation Point in Region II

iiOjuk..e C
F m^ - 1 r m

mW ~ 4jjn1 t^ln(n + 1)

CD

Z 2n+l
. n(n + l)

2 , 4oln 2 n oln 2J Jn 4 2 , ,
2 n eln 2J

a > R > b (3. 20)

oo
iwpk.e C ^—" _ . ,

1 r m \ 2n + l
47rrj A^ n(n + l)

+0<
2>

P, n P/

R < b . (3.21)

Here the relation rj= VM/e is used and again p_ = k b and p = k0b.1 o 1 4 ^



Chapter IV

ELECTRIC FIELDS DUE TO A HUYGENS' SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

4.1 Introduction

The radiation from a homogeneous dielectric sphere, a few wavelengths

in diameter, placed over the aperture of an open-ended waveguide is of consider-

able practical interest since it has been shown experimentally (Croswell and

Chatterjee, 1972) that this device exhibits properties desirable for a feed antenna.

Because it would be exceedingly difficult to solve this problem exactly,

we will neglect the scattering from the waveguide and model the exciting fields

using a superposition of electric and magnetic dipole currents forming an

approximate Huygens1 source.

In this chapter, the electric and magnetic current relationship necessary

to construct a Huygens' source in free space is first derived, and then the radi-

ation from it is examined. Subsequently, the electric fields are derived for an

approximate Huygens' source in the presence of a dielectric sphere, and it is

shown that the same results are obtained if the source is allowed to ̂ approach

the sphere surface from either the inside or outside of the sphere. Finally, the

far-zone fields are derived and the results examined for a very small sphere.

4.2 Huygens' Source in Free Space

Consider a small portion of a uniform x-polarized plane wave in free

space, incident normally on the z = 0 plane as shown in Fig. 4-1. The electric

y

H

V

FIG. 4-1: PLANE WAVE GEOMETRY

29
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and magnetic fields across this plane are related by

EX = r)QH . (4.1)

When the fields to the right of z = 0 are of interest, the incident fields may be

replaced by fictitious electric and magnetic current sheets,

K = n X H
e

K = -nXE .
m

For this problem, n = z and thus

K = - H x
e y

K = -r?0H $ . (4.2)
m C -*

Allowing the portion of the plane wave under consideration to become

small, the incident fields may be replaced by the equivalent electric and mag-

netic dipole current moments C x and C y, where
e m

C = \\K dS
e \\ e

C = \\K dS . (4.3)
m \ \ m

Substituting (4. 2) into (4. 3) we find C * n»C . This double source corres-
m U e

ponding to the ratio of electric and magnetic fields of (4.1) is called the "Huygens1

source" because Huygens introduced the concept of considering a wavefront as

a system of secondary sources.

Let us now derive the far-zone fields radiated from a pair of crossed

point electric and magentic dipoles as shown in Fig. 4-2, and then particularize

to the special case of the Huygens1 source.

For the x directed electric dipole.the far-zone electric field is given

by
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magnetic dipole

electric dipole

FIG. 4-2: COORDINATE SYSTEM FOR HUYGENS' SOURCE

E = -
e

0
ikR

r1 ——
4jr - e R

(4.4)

where C is the electric current moment of the source and 0' is measured withe
respect to the x-axis. From duality, Table 2-1, it is found that the magnetic field

radiated by a -z directed magnetic dipole of current moment C is given by

iue.C

m-

ikR_

R
(4.5)

where, in this case, 0" is measured with respect to the y-axis.

In the far-zone R X E = r) H, and hence from (4. 5)

m

-in we C
° °4?r

ikR
-
R

sine"".r (4.6)
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Using the coordinate transformation
A .A

sin0'0' = -cos0cosp0+sin

sin 0"0" = cos <f>6 - cos 6 sin

where 9 is measured from the z-axis as is the usual case for the spherical

coordinate system, (4. 4) and (4. 6) become

iuMnC ikR ^
E =- , ^T (-cos Ocos4e + sin fib (4.7)e 4?r R

_ iurj e C ikR A

E = -- V m ^~ (cos ?te- cos0 sin j6?) . (4.8)
m 4?r R

Letting

C • = rjC , (4. 9)m e

where TI = rj / /T~ , (4.7) and (4.8) may be combined. Thus,

ikRP̂ e e
I 47T R

(-pr - cos 0)cos ̂ 6 + (l - Sj-J-J sin ji £ . (4. 10)
. VCr ' ^ V C r ^

For now the factor /e~ is simply a constant used in the ratio of the electric and

magnetic current sources.

We let e =1 to construct the Huygens1 source in free space, and hence

(4. 10) becomes

ikR

A47T R
(4.11)

It is apparent from this equation that the Huygens1 source will radiate a linearly
A

polarized cardioid-shaped pattern with a field maximum in the -z direction and

a null in the 4z direction .

It is because of this directional characteristic together with its

simplicity that the Huygens' source has been chosen to model the waveguide

aperture excitation of a dielectric sphere.
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4.3 Huygens' Source in the Presence of a Dielectric Sphere

We can only approximate the Huygens1 source in the presence of the

dielectric sphere because the complex wave impedance rj is not known.

Although, in general, TI would be a function of the sphere diameter and

constitutional parameters as well as the source location, we will let

{r?1 , b>a

r\ , b < a

(4. 12)

(4. 13)

where r\ - / M I / C I , rj = /P2/e and the regions are shown in Fig. 4-3.

Region Region I

FIG. 4-3: HUYGENS1 SOURCE IN THE PRESENCE OF A
DIELECTRIC SPHERE.

Equation (4.12) was chosen because it would be valid if b»a, since for

this case the sphere would have little effect on the source. Alternately, (4.13)

would be appropriate for the source located within, or on the surface of, a large

lossy dielectric sphere. Also, as will be shown in subsequent sections, (4.13)

yields a good approximation to the Huygens1 source on the surface of small

spheres.
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To obtain the electric fields due to the source located external to the

sphere, let C = n,C and combine (3.4) to (3. 6) with (3.16) to (3.18). Am 1 e . . •
similar procedure is followed using equations (3.8) to (3.10), (3. 19) to (3. 21),

and letting C « r)0C . The resulting equations for the electric fields in them & e . . ' r..
various regions.are given as follows.

Source in Region L Observation Point in Region I

oo

B CO 4?r

n n oln'

2n +

n ' eln R > b (4. 14)

EH<R>

00.
1 e

47r £_j n(n + l)
n=l

3

(P0)n 3

Source in Region I. Observation Point in Region

[N, (kj+b^L e l n l n e ln a < R < b

(4. 15)

EH(R) 2n + l
4?r *—\ n(n + l)n=l

(1)N (k )n eln^V 0 < R < a (4. 16)
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Source in Region U, Observation Point in Region I

oo
I ' e
4?r *—? n(n + l)

n=l

n oln eln
, R>a (4.17)

Source in Region n. Observation Point in Region II

CD

e N ' 2n+l

n=

, . a > R > b

(4. 18)

oo

n=l n(n + l)

n
.
.) -

. ["AM1 .
•*• -

.
-icn P,

P4 '
n

R <b (4.19)

where

B =
n

+b(«
'3,

n
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(4.20)
n o~

and

A(2)- j (P4)a(2)/rn Jn 4 n V r

}(2) = LP4VP4'J b(2)
n p. n V r

c<2) = «<p> (
n n 4 n V r

D = -i
n

i(2)jT (4.21)
n v r

The coefficients in (4. 14) and (4. 17) were combined into A , B , C ,n n n
D since the primary interest here will be the electric field far from the antenna,n
A and B represent the field contribution from the electric current source andn n
similarly C and D were derived from the magnetic source. Again, then n
superscript on the coefficient denotes the source region.

These coefficients are now simplified for the case where the source is

located on the surface of the sphere. The procedure will be to first let the exter-

nal source approach the sphere surface. Subsequently, we let the internal source

approach the surface, and the results are compared as a check on the validity

of the expressions.

Since C = r\ C for the external source, (4. 14) must be modified for

the source on the surface where C = n0C . Thus, (4. 14) becomesm <L e
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oo

4?r

n

2n+l

n
oln V n Vs. eln

(4. 22)

b*a

where the relation r)1 = loi/^ nas been used.

To evaluate the coefficients, we first insert (2. 14) into (4. 20) and let

p_ = p , i. e., k b = k a. The Wronskian relation from Appendix A,o 1 1 1

jn(p)[phn(p)]l-hn(p)[pjn(p)]' = i/p , (4. 23)

is then applied to simplify the expressions. After some algebraic manipulation,

it is found that for the source on the sphere surface

n

„(«. j_
•" ~ on 2

n

n

/s
<«D
n

^2
(4. 24)

In a similar manner but with p = P2 we find from (4. 21), (2. 24) and

(4. 23) that
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A(2> = A»
n n

B = B
n n

n n

D
(2) = D(1
n n

r
P2= P4

(4. 25)

In comparing (4. 22) with (4.17), it is seen that (4. 25) confirms that the

same results are obtained if the excitation is allowed to approach the surface

from either the inside or outside of the sphere.

4.4. Far-Zone Field

In the far zone, the spherical Hankel functions of the first kind may be

replaced by the leading term of their asymptotic expressions. Thus,

hn(kR)

«

"
ikR_

- ikR
..n e

~X> kR
(4. 26)

For large values of kR, the spherical wave functions become

/i\rr<l/ „ ^« , .xM (kR) ~ (-1)
gmn

e _ —— - m

gmn
(kR)

ikR
3
*t

~kR~
(4. 27)

where

me
o {• m _.m, . sin

-r~7 P (cos0)sind n cos

apm(cos 0)n cos
80 sin (4. 28)

and
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V
Pm(cos6) .

-a- COS m^0 + -2—r-
 Sm raft? . (4. 29)

o_ 98 sin r + sine cos rv '

Using these results in (4.14) and (4.17) we obtain the following far-zone

field expressions for the Huygens' source in the presence of a dielectric sphere.

Source in Region I, C — n,C

.
Source in Region n. C =• n^C- - — m - ̂ ~e

ikiR
e e

H 47T R

(2))n 1 \ ,n e ln j
))m , + ( B ( 2 )

+ C ) n , (4.31)
n n oln n

where the coefficients are defined by (4. 20) and (4. 21).

In order to recover the far-zone field expressions due to the electric

or magnetic source only, simply let C = D = 0 or A = B = 0 in the above
n n n n

equations .

Now the source is placed on the surface of the dielectric sphere and the

diameter is allowed to become very small. The results using C = rj.C and
m i e

C = r)0C are then compared to those of an ideal Huygens' source in free
m 2 e

space.

For small arguments only the first term in the ascending series for the

spherical Bessel functions is needed. It is found (Abramowitz and Stegun, 1966)

h (p) ̂  1 • 3 • 5. . . (2n - l)(-i)p"(n+1) (4. 32)
n



40

hence,

r /Hi n + 1 n
K(P)J ~ l .3 .5. . .(2n + l) P

rpMp)"]1 ^ 1-3-5 . . . (2n- l ) - i .

and therefore,

Using these relations in (4. 24),

n 1- 3-5 . . . (2n + l)

„(!) __ (2n+l)(n+l) (n-1)
n (e n + n - f - D - 3 - 5 . ..(2n + l)p l

r

/i\ ic v^u i a./
C(D ^ r n

n (e n+n + l ) -3-5 . . . (2n + l) pl
r

ink"1*
ti\ ~XPi

and therefore in the limit as p — >0

n

-
n 1 € +2

r

'34)

» - » - - •
Inserting (4. 35) into (4. 30) and evaluating the m and n functions given by (4. 28)

and (4. 29) we obtain the following expression:
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I..® - -^ -R

\ ~ / Q \ ^

(4. 36)

1 r) 1

where the facts that P.fcos 9)/sinO = 1 and — P_(cos0) = cos 0 have been used.
1 da 1

Had C = r)0C been used in relating the electric and magnetic current sources,m & e
the coefficients would have been related as shown in (4. 25) and the following

expression for the field would have been obtained:

i,C ikiR— — 1 p p •!•
EH(R) - IT^ V-

(4. 37)

Equations (4. 36) and (4. 37) may be compared to the expression for the far field

radiated from an ideal Huygens1 source in free space (4. 11), repeated here:

47T R
(4.38)

It is seen from (4. 36), derived using C = r i 'C , that even a very small spherem 1 e
has an effect on the radiation pattern. In particular, the contribution from the

electric dipole source has an additional factor of 3/(e +2) as compared to the

free-space case. The magnetic source contribution, however, has remained

unchanged. Note that when e = 1, equation (4. 36) reduces to (4. 38), the

free-space case, as it should.

The small dielectric sphere apparently behaves like a short electric

dipole with a current moment

s - - ' - - (4-39)
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which is independent of the sphere size. This factor also appears in the results

found by Stratton (1941, p. 206) for a dielectric sphere within a uniform static

electric field.

Let us now look at the deviation of the small dielectric sphere patterns,

using C = r\ C or C = r)0C for the electric and magnetic current relations,m 1 e m £ e
from the pattern radiated by a Huygens' source in free space.

Let

3
"l " FT!

r r

The first terms of (4. 36) and (4. 37) then contain the respective factors

1 - C* COS 0

-==. (l-a2cos0)
V r

and similarly in the second terms we find the factors

a -cos 6

(«2-cos0)

For the Huygens1 source in free space ct = <*0 = 1 and a (1 -cos 6) pattern1 &
remains.

Table 4-1 shows the values of a and or0 for various values of dielectric
1 «&'

constants. The <*„ remains a good deal closer to unity than a and hence
Lt 1

using r)0 for the current relations in constructing the Huygens1 source on the
£t

surface of a small dielectric sphere will yield only a small error. In fact, a
^

differs from unity by only 6 percent at its maximum value corresponding to a

dielectric constant of 2.
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TABLE 4-1

Approximate Huygens' Source Factors
For Small Spheres

er

1.0
1.5
2.0

2.5
3.0
3.5

4.0
4.5
5.0

V

1.0
0.86
0.75

0.67
0. 60
0.55

0.50
0.46
0.43

°2 '

1.0
1.05
1.06

1.05
1.04
1.02

1.00
0.98
0.96



Chapter V

PROPERTIES OF A HUYGENS1 SOURCE
IN THE PRESENCE OF A DIELECTRIC SPHERE

5.1 Introduction

In this chapter, the orthogonality relationships between the n and m

functions are shown and then an expression for the radiated power is derived.

Equations for the radiation resistance and directivity are formulated and com-

pared to the free-space case for small spheres. Finally, an expression is

developed for the power dissipated due to the nonzero conductivity of the dielec-

tric material.

5.2 Radiated Power

In the far zone we found (4. 30, 4. 31) that the electric field radiated by

a Huygens1 source in the presence of a dielectric sphere may be represented by

_ ik.R oo
rr /-^Tv lee \ fu « x / ,«ii / — . n — \ I..E«^R) = —~A ^— / . ^ . n> (-i) (a m +0 n ) (5.H 4?r R *—f n(n + l) n oln n eln

n=l

where

n n n

n n n

or

for the source located in Regions I or IL respectively. The vector wave functions

in (5. 1) are found from (4. 28) and (4. 29) to be

P1(cos6) 3P (cos0)
— n iA n .
m , = r-r— cos pV rr sm

oln sui0 90

44
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A P1(cos0)

°eln = ~^~e - COS^- n Sin^ • (5'2)

An expression for the total radiated power W may be derived by

integrating the total power flow across an infinitely large sphere, centered at the

origin, using the relation

>2?r r\n
* o

(5.3)

where dfi= sinededji, and * denotes the complex conjugate.

Let us now investigate the various scalar products which will be formed

in (5. 3). From (5. 2), it can be seen that each term of the product m n -n , „* oln el*
will contain a factor of the form

pl(cos8) ap*(cos0)
sine 30

Using the differential relations for the associated Legendre functions (Stratton,

1941, p. 402), it is found

\^v"«* »*/ A \WVO V/ -| 1 i J- \V^V»J \S/ f^ J^ \\j\JtJ \JI O

•^e- -V- - 5 {« + l)^^ p?fcose)- -^- p-fcos»

It now follows that

P!(cose) 8p(cos0)
(5.4)

since

\7T
lr

P (cos e) P (cos 0)d0 = 0 , m ^ k .n n
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Thus X V m , • n , „ dfl = 0 .
oln

Also, on performing the integration,

2 2

1 'n 11dn = o li 6 , . <5- 5)eln el^ 2n + l ni

where
0, nf

IL L, n = i

and we have used the formula (Stratton, 1941, p. 417)

(5. 6)

Upon inserting (5. 1) into (5. 3) and evaluating the integrals with the aid of (5. 5),

we obtain the desired relation for the radiated power

oo

W = f £ C* E <2n + l)(V%/yy , (5. 7)
n=l

where rj

5.3 Radiation Resistance

Suppose that instead of having an infinitesimal point source, the electric

current element were of a short length S. with a constant magnitude I . Then

C = Ly?, and the radiation resistance for this system is easily obtained.
6 \J

The radiation resistance of an antenna is defined as

(5.8)
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That is, assuming no losses, a current element with an rms value of I flowing

on an antenna with a radiation resistance R will radiate an average power W.

The far-zone electric field of the crossed dipole source in the absence

of the dielectric sphere is given by (4.10). Using this equation together with

(5. 3) and (5. 8), the radiation resistance is given by

R = 20(k i)2fl + —J . (5.9)
\ r/

It is apparent from this equation that for the Huygens' source in free space, i.e.
2

e =1, the radiation resistance obtains its maximum value of 40(kj?) which isr
twice that of an elementary electric dipole source.

To determine the radiation resistance of the source in the presence of

the dielectric sphere (5.7) is substituted into (5.8). Hence

oo

R = 15(k^)^ (2n + l)(cy*+j3n/3 . (5.10)
n=l

Let us now place the source on the surface of the sphere, allow the

radius to become small, and see how the resulting radiation resistance com-

pares to the free-space case. Using the relations (4. 35) to evaluate a and j3

we find for the case when C '= n,Cm '1 e

R =20(k-02 1+M—) . (5.11)

Had we let C = r]9C in relating the electric and magnetic current
III £t 6

moments, instead of (5. 11) we would have obtained

2 l~l f 3 \2~\R = 20(W) — •+(-—:) - (5.J

In order to compare the radiation resistances for the various sources, (5. 9),
2

(5.11) and (5.12) are divided by (k-0 and the results denoted by R R and R ,
U 1 £t
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respectively. The results are shown in Table 5-1 for various values of e

TABLE 5-1

Normalized Radiation Resistance
for Sources on Small Spheres

er

1

2

3

4

5

Eo
40.0

30.0

26.6

25.0

24.0

Ri
40.0

31.2

27.2

25.0

23.6

R2

40.0

21.2

13.8

10.0

6.6

It can be seen that the normalized radiation resistance R of the source

(C = rj^C ) on the surface of a small dielectric sphere closely corresponds

to the free-space case, R . It should be noted, however, that R does not cor-

respond to the Huygens1 source, i.e., 1 - cos 6 pattern, unless e = 1 in (5. 9).

The normalized radiation resistance R_ of the source (C = r)0C ) is smaller/ m & e
than R because in the former the magnetic current moment is reduced in order

to compensate for the reduction of the electric current moment by the dielectric

sphere. In the next chapter, it will be seen that the radiation resistance for

larger spheres tends to oscillate about the free-space value.

5.4. Directivity

The directivity in the forward direction relative to an isotropic source

is defined by

_ 47r(radiation intensity in 0 = 180 direction) /,- 1 o\
total power radiated

since for the sphere concentric with the origin,and the source located on the +z

axis, we are interested in the relative field intensity in the -z (6 = 180 ) direction.

Prom (5. 2), it is evident that

m
oln

0=7T

n(n + l)
£t
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and oln = (-1)n 9 (5. 14)
0=7T

since

and

P (cos0)n
sin0

0=7T

31

n"
(cos0)

90
0=7T

.n+1 n(n + l)
' 2

>n n(n +1)
' 2

Using this result in (5.1), an expression for the radiated power intensity

in the -z direction is obtained. Thus,

2
— E-E
2r]0

1 e

0=7T
4?r

\^y

Z ̂  a)"fa.+«.)
n=l

n n (5. 15)

where rj_ =

Combining (5.15), (5.7) and (5. 13), the desired directivity formula

results:

»n n
D =

v"1 2n +1 / * . /% o*>
> —r— (a o- +^ j3 ]

t—, 2 n n n n
n=l

(5. 16)

Again, it is noted that A =B = O o r C = D = 0 i n the expressions for a6 n n n n v n
and B in Section 5. 2, in order to recover the result due to the magnetic orn
electric source only.

It is found from (5.16) for the small sphere case that
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for C - r»9C .m <s e

and

for C = irCm 1 e

The results are shown for various values of e in Table 5-2 .r

TABLE 5-2

Directivity of Sources on Small Spheres

er

1

2

3

4

5

V
3. 000

2.940

2. 824

2.700

2. 586

D2

3.000

2.997

2. 999

3.000

2.999

(5. 17)

(5. 18)

From (4.11) and (5.13) it can be shown that the directivity of a Huygens1

source is 3. From Table 5-2 it is seen that the directivity D2 remains

approximately this value.

In Chapter 6, it will be of interest to compare the directivity of the

pattern radiated by the dielectric sphere with that of a uniformly illuminated

aperture of the same diameter. The normalized field pattern of a large uniform

aperture as shown in Fig. 5-1 can be found by the application of Huygens1 princi-

ple and is given by Kraus (1950):

E(0) = 2X J. 4^

ird sio.6
(5. 19)
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uniform
plane wave

d

infinite sheet

FIG. 5-1: UNIFORMLY ILLUMINATED APERTURE.

For this case, the expression

D = —

is used for the directivity, and hence

D =
2 2

ir d

2X
rW2

Jo sin0 d0 .

5.5 Dielectric Loss

(5. 20)

For a lossy dielectric e0 is complex and may be represented by
£i

(5.21)

where e' and e" are the real and imaginary parts of the permittivity
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respectively. The conductivity cr is related to e" by

o- = u>e" ,

and the loss tangent is defined as

tan6=e"/e f -.

Equation (5. 21), therefore, may be cast in the form

e2 = e'U+itan6) .

The propagation constant k will also be complex, being equal to
£t

(5. 22)

(5. 23)

(5. 24)

k = k'/l+itan6 . (5. 25)

Thus, in the previously derived equations, e , k and also r\ are simply

replaced by their complex values to account for the dielectric loss.

To find the power dissipated within the sphere, the source is placed

in Region I close to the surface of the sphere. With C = r)0C , it is found
m & e

from (3. 6) and (3.18) that the electric field within the sphere is given by

-k

47T

00

y 2n + l
£-i n(n + l)n=l

(5. 26)

where

"P (cose)
. _ GOSjD

sing r

A 3P (cos0)
n n • J^L0- de sm^ (5. 27)

N ,ein(kj =
<j

i (p)p (cose)cosJ£R

+ i
(cos 0)

cos
P (cos0)

n ;
sine sin (5.28)
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ic [p h (p )]'
v.c

(1)h (pJ--p* L3n 3J

n n^3 P

[p h (p Jl' d(1)

L . 3 n 3 j + i -^ h ( p )P3

and c , d are given by (2.14).n n
The power dissipated within a region of conductivity <r is given by the

formula

p^= o \V\oE-E dV . (5.29)

For a homogeneous sphere of radius a (5. 29) becomes

P = o / 2 E(R)'E(R)"R2sin0dRd0d^ . (5.30)

o Jo Jo

Because of the orthogonality of the associated Legendre functions and

their derivatives, shown in Section 5. 2,

M -N ..sinOde = 0 .oln

Also, it is easy to show

M , (p)-:oln

and
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where we have used (5. 6) and the formula (Stratton, 1941, p. 403)

6
(n - m) ! a?

With the aid of (5. 31) the 6 and 0 integrations are performed and an expres-

sion for the dissipated power obtained. Thus,

2 22 oo

' e

[pJn(p)] '[pJn(p)] 'RdRHU2,
or

ISor,
p =

2 e
n-1

C f p j (5. 32)

Now that expressions for the dissipated power P and the radiated

power W (5.7) are available, the antenna efficiency may be computed from the

relation

WPower radiated _
Total input power ~ W + P

. .
\D. oo)



Chapter VI

NUMERICAL RESULTS

6.1 Introduction

Some of the more significant equations derived in Chapters IV and V

were programmed and evaluated using the University, of Michigan IBM System

360 Model 67 dual-processor computer. The data was then plotted on the

CALCOMP 780/763 digital plotter.

In this chapter, the numerical results using a Huygens1 source are first

compared with measured data for plexiglas spheres placed over the ends of

waveguides. Curves are then presented showing the variation of directivity with

sphere diameter for various dielectric constants. Subsequently, the resonant

modes of the dielectric sphere are studied together with the effect of dielectric

loss. Finally, curves are presented which show that directive patterns may be

produced with the source located inside the sphere.

6.2 Comparison with Measured Data for the Plexiglas Sphere

The far-zone electric fields radiated from a Huygens1 source on the

surface of a dielectric sphere (4. 31) were calculated numerically for the two

principle planes using the computer program listed in Appendix B. Since the

series for the far field converges in a manner similar to the spherical

Bessel functions it was found that N = kD +7 terms provided sufficient accur-

acy.

The normalized power patterns for various diameter spheres, computed

in one degree increments, are presented in Figures 6-1 to 6-4. Here the E and

H planes correspond to the fi = Q and $ = n/2 planes, respectively. In each case,

a dielectric constant of 2. 57 with a loss tangent of . 0065 was used,, which is

typical of plexiglas in the frequency range of interest (von Hippel, 1954). It

should be noted that with the source oriented as shown in Fig. 4-3, the maximum

radiation occurs in the -z direction, and hence the top of the computed patterns

correspond to 0 = 180 degrees.

55
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The curves on the left of each figure were measured by Croswell

and Chatterjee in the anechoic chamber located at the NASA Langley Research

Center. These measurements were made using plexiglas spheres centered

against the flange of an open-ended waveguide. The parameters are listed in

Table 6-1. It should be noted that no attempt was made to impedance match the

waveguide or, in the case of the rectangular guide, to physically fit the aper-

ture to the curved surface of the sphere.

TABLE 6-1

Measurement Parameters

Sphere Diameter (inches)

Frequency (GH )z
Sphere Diameter (X )

Waveguide Type

3 5 5 5

5.0 5.0 8.0 10.0

1.27 2.12 3.39 4.23

C-band
Circular

X-band
Rectangular

From these patterns, Figs. 6-1 to 6-4, it can be seen that the agree-

ment is quite good, particularly for the larger diameter spheres. The theo-

retical patterns do, however, show sharper nulls in the main beam and stronger

back lobes than the measured patterns. These differences may be due to scat-

tering from the waveguide feed structure used in the measurements.

Figure 6-5 shows the directivity of the Huygens1 source on the surface

of the sphere computed from (5.16). Again, a dielectric constant of 2.57 and

loss tangent of . 0065 have been used. For comparison, the directivity of a

uniformly illuminated circular aperture (5. 20) is also shown. The abscissa

is measured in aperture diameter or sphere diameter in free-space wavelengths.

The small circles and crosses in the figure represent directivities derived

from measured patterns for waveguide-excited plexiglas spheres using the

empirical formula

D K

•A
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EXPERIMENTAL (E-PLANE) THEORETICAL (E-PLANE)

Huygens' Source

V2.57

tan 6 = . 0065

EXPERIMENTAL (H-PLANE) THEORETICAL {H-PLANE)

FIG. 6-1: RADIATION PATTERNS FOR PLEXIGLAS SPHERE (D = 1.27A. ).
o
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EXPERIMENTAL (E-PLANE) THEORETICAL (E-PLANE)

Huygens' Source

EXPERIMENTAL (H-PLANE) THEORETICAL (H-PLANE)

FIG. 6-2: kADIATION PATTERNS FOR PLEXIGLAS SPHERE (D = 2.12X ).
o
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EXPERIMENTAL (E-PLANE) THEORETICAL (E-PLANE)

Huyeotut' Source

V2.57

tan S • . 0065

EXPERIMENTAL (H-PLANE) THEORETICAL (H-PLANE)

FIG. 6-3: RADIATION PATTERNS FOR PLEXIGLAS SPHERE (D = 3.39X ).
o
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EXPERIMENTAL (E-PLANE) THEORETICAL (E-PLANE)

Huygens* Source

v2-57

tan5- .0065

EXPERIMENTAL (H-PLANE) • THEORETICAL (H-PLANE)

FIG. 6-4: RADIATION PATTERN FOR PLEXIGLAS SPHERE (D = 4.23XQ)
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Uniform Aperture

« From measured pattern (circular waveguide)
a From measured pattern (rectangular waveguide)

'.0 .5 1.0 l.S 2.0 Z.S 3.0
DlfWETEfl IN HfWELENGTHS

3.S

FIG. 6-5: DIRECTIVITY OF PLEXIGLAS SPHERE (e = 2.57,
taniS = .0065). r

where K is a constant and 0 and Q^ are the half-power beamwidths in the1 - &
two principle planes measured in degrees. By comparing the computed directivity

with the beamwidths of the Huygens' source patterns, it was found that K = 26, 500

yielded an error less than O.SdB for sphere diameters in the range of interest.

Since the measured and computed patterns have the same general shape, this

value of K was used in the above formula.

It can be seen from Fig. 6-5 that the experimental and theoretical

directivities agree quite favorably with a maximum deviation of 1. 7dB occurring

at D = . 85 X . It is also noted that for the measured data available, the direc-

tivity is generally greater than that for a uniformly illuminated aperture.
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In Table 6-2, the radiation patterns presented in Fig. 6-3 for the

dielectric sphere are compared to that observed for a conical horn of about the

same diameter (3. 4X) as given by Jasik (1961). The data is for a horn opti-

mized in the sense that the flare angle has been adjusted to yield a maximum

phase deviation of 3/8X in the aperture wavefront.

TABLE 6-2

Comparison with Optimum Horn '

Optimized Horn
Parameter D = 3.4X

E -plane, SdBbeamwidth
(degrees)

H-plane, SdBbeamwidth
(degrees)

First sidelobe level,
E -Plane (dB)

First sidelobe angle from
axis, E-plane (degrees)

Directivity (dB)

16

19

-8.5

22

17.7

Plexiglas

Measured

12.5

14

-13.5

20

23.7

Sphere, D = 3. 39X

Theoretical

14

14

-16

22

21.0

From this table, one can see that both the measured and theoretical

patterns for the plexiglas sphere have lower sidelobes and higher directivity

than the optimized conical horn.

Figure 6-6 shows the radiation resistance computed from (5.10) toget-

her with power reflection coefficient curves measured for 2 and 3-inch plexiglas

spheres.

Here it is noted that both the radiation resistance and the measured

curves have strong peaks occurring with a periodicity of about D = 0.25X or

(k2a) =1.26. ,

The antenna efficiency was computed using (5. 33) and is plotted in Fig.

6-7. For this computation, the source was placed 0.01X from the sphere

surface to avoid the problem of infinite loss associated with a point source in

contact with a lossy medium (Tai, 1947).
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O) - •

CD • •

in • •

<D

1+J
.2
03

.2

CM • -

Calculated Radiation Resistance

3" sphere

-15 -1-

- .00
•4- -f-

.50 1.00 1.50 2.00
OlflMETER IN WflVELENGTHS

2.50 3.00

FIG. 6-6: CALCULATED RADIATION RESISTANCE AND MEASURED
REFLECTION COEFFICIENTS (dB) FOR PLEXIGLAS
SPHERES. :
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As one might expect, the antenna efficiency generally decreases with

increasing sphere diameter. It is also noted (Fig. 6-7) that for the larger

sphere diameters the efficiency curve shows a marked decrease at the same

points the radiation resistance (Fig. 6-6) shows sharp peaks.

6.3 Directivity

Since the directivity is an important parameter in antenna design,

the value of dielectric constant which maximizes this parameter for a given

diameter is of interest.

The directivities for the Huygens1 source on the surface of the sphere

(5. 16) are plotted as a function of sphere diameter for various lossless dielec-

trics in Fig. 6-8. Since the curves were plotted at only a finite number of

points (0.01 diameter interval), it is recognized that some of the fine structure

may not be precise. Nevertheless, it is apparent from these figures that as the

diameter increases, the directivity becomes frequency-sensitive, with the effect

being more pronounced for the higher dielectric spheres. The sharp dips in

these curves are due to a resonance effect, discussed in detail in Section 6.4,

caused by the dielectric sphere in which much of the energy is radiated into

the sidelobes.

The resonance effect was not noted in the relatively smooth curve of

Fig. 6-5 because the dielectric loss was included in the calculation. By com-

paring the directivity curves of Fig. 6-9 which were calculated using a loss

tangent of .0065 with the lossless curves of Fig. 6-8, it is noted that the loss

tends to attenuate the resonance with the effect being most notable at the larger

sphere diameters. The dielectric loss, however, had little effect on the peaks

of the curves.

Figure 6-9f was constructed by drawing smooth curves through the

maximum points on the directivity curves presented in Figures 6-5 and 6-9.

Here it is seen that a dielectric constant of about 3.0 tends to optimize the direc-

tivity, particularly for the larger diameter spheres.
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o
I/I-

co

'Uniform Aperture

(a) e = 1.8r

•.o 1.0 l.S 2.0 2.5 3.0
DIMETER IN WflVELENGTHS

3.5 t.o 5.0

•.o t.O 1.5 2.0 2.5 3.0
DIflMETER IN HflVELENGTHS

3.5 1.0 H.S 5.0

FIG. 6-8: DIRECTIVITY OF LOSSLESS SPHERES.
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0

Jniform Aperture

o-
'.0

( c ) e = 3 . 0

1.0 l.S 2.0 2.5 3.0
OIRME7ER IN WflVELENGTHS

3.5 4.0 l.S S.O

QC
1-̂

O

o
-.0

(d) e = 3.5r

1.0 l.S
OJflMETER IN2HflVELENGTMS

3.5 1.0 <4.S S.O

FIG. 6-8: DIRECTIVITY OF LOSSLESS SPHERES.
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~0°

o.
-.0

(e) e = 4.0r

1.0 l.S 2.0 2.5 3.0
OlflMETER IN HflVELENGTHS

3.5 4.0 t.5 5.0

~
0°

CC

a

6.0

-.0 1.0 1.5 2.0 2.5 3.0
DIMETER IN HflVELENGTHS

3.5 f.O I4.S 5.0

FIG. 6-8: DIRECTIVITY OF LOSSLESS SPHERES.
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o

sir

o

St

~
0°,

UJ—•
cc

( a ) e = 1 . 8

'.0 .S 1.0 1.5 2.0 2.5 3.0
OlflMETER IN WfWELENGTHS

3.S 1.0 «-S S.O

.5 1.0 1.5 2.0 2.S 3.0
OIRME7ER IN MfWELENGTHS

3.5 4.0 «.S S.O

FIG. 6-9: DIRECTIVITY OF SPHERES WITH TAN 6 = .0065.



70

,_
0°.

cc
5

Uniform Aperture

(c) er= 3.5

'.0 1.0 1.5 2.0 2.5 3.0
OIRME7ER IN HRVELENG7HS

3.5 11.0 4.5 S.O

'.0 .5 1.0 1.5 2.0 2.5 ' 3.0
OIRMETER IN HRVELENGTHS

3.S 4.0 4.5

FIG. 6-9: DIRECTIVITY OF SPHERES WITH TANS = .0065.
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Uniform Aperture

(e) e = 6.0r

.5 1.0 I.S 2jO 2.5 3.0
01RMETER IN WflVELENGTHS

3.S 1.0 U.S S.O
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(f) Composite

-I- H 1-
1.0 1.5 2.0 2.5 3.0 3.5

DIAMETER IN WAVELENGTHS
4.0 4.5 5.0

FIG. 6-9: DIRECTIVITY OF SPHERES WITH TAN 6 = .0065.
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6.4 Resonance and the Effect of Dielectric Loss

The resonance phenomenon noted in the directivity curves of Section

6. 3 is now investigated. Figure 6-10 shows a detailed section computed using

a diameter interval of . 003 X. A pattern occurring in this curve is noted. For

example, resonances occur at B, D, and then the pattern repeats starting at E

with the nulls becoming stronger with increasing diameter.

Figure 6-11 shows the antenna patterns corresponding to points B, C

and D of Fig. 6-10. The patterns of Fig. 6-1 la (H-plane) and Fig. 6-lie

(E-plane) each have ten complete lobes indicating that the resonance is due to a

large tenth mode. It has been found that points A and F are caused by

resonances in the 8th and 13th modes respectively. Hence, with increasing

diameter, the resonance appears in the H-plane, then the E-plane, and

again in the H-plane at the next higher mode.

Looking back at (5.1), it is seen that the far-zone field in the two planes

may be expressed by

E(R)
-UA^C

4ir

ik R oo
lCe e V1 2n+l n
-.TT R '̂ —f n(n+l)n=l

A
0

9.

E-plane

H-plane (6.1)

It has been found that when there is an ith mode resonance in the E-plane or

H-plane the magnitude of /3. or a., respectively, is considerably larger than

the other coefficients. It therefore can be seen from (6. 1) that the radiation

patterns will exhibit a strong resemblance to

in the plane of resonance ,
/ap.(cos0)\

V 90 J
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FIG. 6-10: DIRECTIVITY OF HUYGENS1 SOURCE ON SPHERE
SURFACE (e.-- 3.2, tan6 =0.0)
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FIG. 6-11: RADIATION PATTERNS FOR VARIOUS SPHERE
DIAMETERS (e = 3.2, tan 6 = 0.0).r
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FIG. 6-11: RADIATION PATTERNS FOR VARIOUS SPHERE
DIAMETERS (e =3 .2 , tan 6 = 0 . 0 ) .

and in the alternate plane.

This resonance phenomenon occurs when the denominators of (3. or a. ,

which contain the respective factors e [p h (p )] ' j (p ) - [p j (p ) ' h (p )r I l n. II n. ^ l ^ n ^ j n l

or p h (p ) ' j (p0)- p«j (p0) ' h (p,), become small. It has been shown by
L i n i j n ^ L ^ D - ^ J u l

Stratton (1941, Sec. 9.25), however, that these factors never reach zero.

The total radiated power may be expressed as a summation over the

power radiated in each mode, i.e.,
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00

W = / , P
n=l Q

P
as shown by (5.7). The quantity — • 100 percent represents, therefore, the per-

cent of the total power contributed by each mode. These power contributions are

plotted for the modes with significant power for points B and C in Fig. 6-12a

and F and G in Fig. 6-12b. Although the modes are discrete they have been

connected for identification purposes.

From these figures it is noted that when the directivity is high, the power

is distributed among the modes. At the points of resonance, however, most of

the power is concentrated in a single mode; about 89 percent is in the 10th mode

at B, and 98 percent is in the 13th mode at F.

Although it is not apparent from Fig. 6-12 because of the normalization,

the total radiated power at resonance is considerable higher than at nonresonance,

and hence the radiation resistance (see Fig. 6-13) shows strong peaks at the reso-

nant points. This curve was computed using (5. 10) in .001 diameter intervals.

It was noted from comparing the directivity curves for lossy spheres

with the corresponding lossless curves that the attenuation had little effect on

the points of high directivity. The dielectric loss did, however, significantly

reduce the magnitude of the resonances with the effect being more pronounced

for the larger diameter spheres. The reason for this may be explained with the

aid of Fig. 6-14.

We define modal efficiency by

P (radiated)
Efficiency = -r-;—:. . , > . , > /, r ' 100 percent ,Jn P (radiated)+P (loss)n n

where P (radiated) and P (loss) are the nth terms of (5. 7) and (5. 32) respec-n n
tively. In Fig. 6-14 this efficiency, using a loss tangent of .01, is plotted as

a function of mode number for various resonant sphere diameters. Generally,

as the sphere becomes larger, it is seen that the efficiency of the higher modes

increases while that of the lower modes decreases slightly.
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FIG. 6-12a: RELATIVE POWER DISTRIBUTION AMONG MODES.
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FIG. 6-12b: RELATIVE POWER DISTRIBUTION AMONG MODES
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FIG. 6-15: MODAL EFFICIENCY FOR VARIOUS LOSS TANGENTS
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Table 6-3 shows that each new resonant mode has an efficiency less

than the previous one in the same plane. This, together with the fact that for a

TABLE 6-3

Modal Efficiency for Resonant Spheres
(loss tangent = . 01; e =3.2)

Diameter (A )

2.000

2.407

3.010

2.110

2.533

3. 145

Mode No.
Number

8

10

13

8

10

13

Resonance
Plane

H

H

H

E

E

E

Efficiency (of )
'O

48.55

25.22

6.08

61.61

36.78

9.48

given diameter the resonant mode efficiency is less than that of the lower modes,

accounts for the smoothing of the directivity curves with dielectric loss. These

results also explain the reduction of the overall antenna efficiency, noted in

Fig. 6-7, in the resonance region for the larger sphere diameters. The effect

of other loss tangents on the modal efficiency is shown in Fig. 6-15.

The patterns of Figs. 6-16 and 6-17 were computed in 2-degree intervals

using (4.13). Because of the high loss used in Fig. 6-16d, the internal reflec-

tions are greatly attenuated, and hence there is practically no radiation in the

back direction. Finally, for a large sphere with constitutive parameters typical

of plexiglas, Fig. 6-17c, the resonance is almost completely attenuated and

therefore may not be noted in actual measurements.

6.5 Source Displaced from Sphere Surface

To examine the effect of moving the source away from the sphere, the

curves of Fig. 6-18 were calculated using (4. 30) in two-degree intervals. The

dielectric constant was kept at 2. 57 with a loss tangent of . 0065. Since b is the
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{b> tea 6*0. 02

FIG. 6-16: RADIATION PATTERNS FOR SPHERES WITH
VARIOUS LOSS TANGENTS (D = 2X , e = 3.2).

o r
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FIG. 6-16: RADIATION PATTERNS FOR SPHERES WITH
VARIOUS LOSS TANGENTS (D = 2X , e =3.2).o r



85

(a) tan 6 = 0.0

X

(b) tan 6 ' 0. 001

FIG. 6-17: RADIATION PATTERNS FOR SPHERES WITH
VARIOUS LOSS TANGENTS (D = 4.21X ,
e =2.57). °
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(c) Urn 6" .0065

FIG. 6-17: RADIATION PATTERNS FOR SPHERES WITH
VARIOUS LOSS TANGENTS (D = 4.21X ,
e =2.57). °

T

distance from the origin to the source and a is the sphere radius, the ratios

of b/a shown in Figs. 6-18a, b, c and d correspond to the source spaced 0. 0,

0.25, 0.5 and 1.0 free-space wavelengths from the sphere surface. From

these patterns it is seen that the main beam first narrows slightly and then be-

comes broader with increasing displacement. The sidelobe level also becomes

considerably higher as the source is moved away from the sphere.

Without varying the dielectric constant, the curves shown in Fig. 6-19

were computed using (4. 31). These patterns correspond to the source spaced

0.1, 0. 5, 0.75 and 1. 5X inside the sphere surface. The theoretical patterns

shown in Fig. 6-3 were also calculated using (4. 31) for the source on the sphere

surface, and may be compared to Fig. 6-18a which was computed from (4. 30)

using the same parameters.
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From Fig. 6-19, it is seen that the antenna pattern continuously de-

grades as the source is moved into the sphere, and that the sphere shows very

little focussing effect as the source approaches the center.

Directional patterns can, however, be obtained with the source located

inside the sphere by appropriately adjusting the dielectric constant as shown in

Figs. 6-20 and 6-21. The directivity of these patterns is about the same as

that with the source located on the surface of a sphere with a lower dielectric

constant.

Figure 6-22 shows the optimum ratio of source to sphere radius for

various diameter spheres. These points were obtained by fixing the dielectric

constant at 4, 6, 9, and 12 and varying the source position until the maximum

directivity was found. The additional points corresponding to the source on the

sphere surface were obtained by adjusting the dielectric constant. In each case

a loss tangent of . 0065 was used. For comparison, the upper curve shows the

location of the geometrical optics paraxial focus (8.5).

It is seen from Fig. 6-22 that for a dielectric constant of 9 the source is

located about half way between the center and back surface of the sphere. It is

also noted that for a fixed source position a higher dielectric constant is neces-

sary to obtain optimum directivity for the smaller spheres. In all cases, how-

ever, the best results were obtained for a dielectric constant less than that

required for the paraxial focus.
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(a) - = 1.0

(b) -= 1.15

FIG. 6-18: RADIATION PATTERNS FOR SOURCE LOCATED
OUTSIDE SPHERE (D = 3.39X^, e^ = 2.57,
tan 6= .0065). o r
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- - 1

(d) IJ- 1.59

FIG. 6-18: RADIATION PATTERNS FOR SOURCE LOCATED
OUTSIDE SPHERE (D = 3.39X , e = 2.57,
tan 6 =.0065). ° r
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« o

(b) 7..0.71

FIG. 6-19: RADIATION PATTERNS FOR SOURCE LOCATED
INSIDE SPHERE (D = 3.39X , e = 2.57,
tan 6 =.0065). ° r
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(c) f -0.56

FIG. 6-19: RADIATION PATTERNS FOR SOURCE LOCATED
INSIDE SPHERE (D = 3.39X , e =2.57,
tan 6 =.0065). ° r
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(a) €_.• 6.0

£-0.59

(b) I • 9.0

FIG. 6-20: RADIATION PATTERNS FOR SOURCE LOCATED
INSIDE SPHERE (D = 3.39X , tan 6 = .0065).

o
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IH-PLANE!

t.0.46

FIG. 6-21: RADIATION PATTERNS FOR SOURCE LOCATED
INSIDE SPHERE (D = 4.46X ,tan 6 = .0065).
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Chapter VII

EXTENDED SOURCES

7.1 Introduction

The previous chapters were concerned with the effect of a dielectric

sphere on the radiation from infinitesimal point sources. In this chapter the

excitation is expanded into line sources concentric with the sphere.

Expressions for the far field radiated by curved electric dipoles are

derived first, and then the results for a superposition of Huygens1 sources in

the presence of a dielectric sphere are presented. Finally, it will be shown

that the patterns from these sources do not differ greatly from those of point

sources.

7.2 Electric Field Due to a Curved Electric Dipole

Consider a dielectric sphere with a filament of current located in the

x -z plane at R = b as shown in Fig. 7-1. It should be noted that in the f> = 0

Filament of Current
Observation point

FIG. 7-1: CURVED FILAMENT OF CURRENT IN PRESENCE OF
DIELECTRIC SPHERE (x-z PLANE).

95
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^and p = TT half-planes the current is defined to flow in the +6 and -6 directions

respectively. This is because the 6 coordinate variable is always measured in

a downward direction from the -t-z-axis.

For the antenna located as shown in Fig. 7-1 we let

I(0t) (7.1)

where 1(0') is the current distribution on the antenna in the j> = 0 half-plane

and is only a function of the coordinate variable 0*.

To find the electric field in Region I, (7.1) is substituted into (2. 1). Thus,

E(R)
o

o vo

') - 6^'- 7^ R' (7.2)

Integration over the R' and fi* variables yields

E(R) =
R'-b

\e.

R'=b
(7.3)

Following the same procedure for equations (7. 1) and (2. 2), a similar

result is obtained for the electric field in Region n. Thus,

E(R ) = i
R'=b
^'=0

0 -21 11
(R|Rf)'0fd0f

R'=b
(7.4)
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The expression G^(RIR r) • Q must now be examined. From equations
O '

(2. 8) and (2. 9) it is seen that at R' = b

Mf (emn omn ( k ) - 0 ' = 0 <
= 0 or

Pm(cose')
Mf (k). 0' = mj (p.) n. .,omn n 3 sm0'

N' flO.-emn

r fr = 0 (7.5)

A 1 -m /\
M1 (k ) -0M = (-1) M' (k)-0'omn ,, omn

I 0'=7T

N1 (k)
emn emn

(7.6)

where p denotes k b.
o X

Substitution of (2.16) through (2. 18) into (7. 3) and (7. 4) yields the

following expression for the electric field in the various regions:

E(R) =

oo n

=l m=l
(n + m)!

(I) (kJA(1)i (e
omn 1 n mn 0 emn n mn 0

R > b > a

(7.7)

oo n

n=l m=l

emn n emn mn O
a < R < b (7.8)
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i u JQ n .-k uu b v—i r—i'
1 1 > \

(n+m)! '
n-l m=l

{ /n - m rpsVp^T i
M (kJc h (pji (0J+N n(k)d u* L6 n •* r (0JV ,omn 2 n n o mn 0 emn 2 n p mn 0 [

0 < R < a (7.9)

where

mPm(cos0')
n. .,

mn 0 \ sine1

'0

aPm(cos0')

and 2-* is used to denote that the summation is over the odd integers only. The

scattering coefficients are given in Section 2. 2.

The far-zone field of (7. 7) is easily found with the aid of (4. 27). Hence

in this region

2n+1

-n R *-i-\ n(n + l) (n+m)!n=l m=l

-T-im A(1)I (0J+n B(1)F (6Si , (7.11)
(^ omn n mn 0 emn n mn 0 I

where A and B are given by (4. 20).
n n
For computational purposes, it is often desirable not to have the

associated Legendre functions within the integrals of (7.10). It will now be

shown that by locating the source in the x -y plane, the integration will be over

the (61 variable, and hence the integrand will contain only trigonometric functions.

Consider a curved filament of electric current oriented as shown in

Fig. 7-2. In this case, let
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FIG. 7-2: CURVED FILAMENT OF CURRENT IN PRESENCE OF
DIELECTRIC SPHERE (x-y plane).
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(7. 12)

and assume that the current distribution 1(^5') is an even function of the coor-

dinate variable ^'.

To solve for the fields in Region I, (7. 12) is substituted into (2.1) and

on performing the R' and 6' integration one finds

O
R'=b

Alternately, since

in the form

(7.13)
R'=b

is an even function, this result may be expressed

E(R) = 2i

= 11

0

Jo

=11 —I— *G: ( R R ) - r f -Seven ' r (7. 14)
R'=b
0'=7T/2

where G,, is an even function of fr. Taking the even parts of the spher-
oGVGD.

ical wave functions (2.8) and (2. 9) results in

M1 •«£' = N1 •«*' = 0
omn emn

and

M1 -
emn

9Pm(0)

R'=b

N1 -
omn

R'=b
mP (O)cosm^1 . (7.15)n
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It is known (Smythe, 1950, p. 153) that

(-1)

0 ,

P> -

n-m
2 1-3-5 . . . (n+m-1)

2 - 4 - 6 . . . (n-m) ' n + m even

n + m odd

and also

3Pm(0)-is- - -pr<°> •
Using these relations in (7.14) the result is obtained

i-k oo n~ 2n+l

n=l

e m n I n n
n + m odd

n + m even

R>b (7. 16)

where

7.3 A Superposition of Huygens* Sources

Consider two lines of crossed electric and magnetic current sources

located on the surface of a dielectric sphere as shown in Fig. 7-3.
^v

In the x-z plane, there is a filament of +6 directed electric current,

together with a -y directed magnetic dipole strip,
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FIG. 7-3: A SUPERPOSITION OF HUYGENS' SOURCES ON THE
SURFACE OF A DIELECTRIC SPHERE.

where X(0') is the electric current distribution in the j> = 0 half-plane. Note

that at any value of 01, J = -ruJ , and hence there is a continuous line ofm z e
approximate Huygens1 sources.

In a similar manner, in the y-z plane the line of Huygens1 sources

consists of an x directed electric dipole strip,

A

together with a filament of _0 directed magnetic current

Here Y(0') represents the electric current distribution in the ^ = ar/2 half

plane.
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Proceeding in a manner similar to that used in Sec. 7.2, it is found

that the far-zone field radiated by this superposition of sources may be expressed

by

where

V

y e / L mn x mn Y_l

„<!)

rnn' X' -mn'-yj nemn * ' ^'17)

Pm(cos0')
X (0 ) = \ m n

mn x

m+3 ^.ni. _tvy ——- P (cosQ1)
Y (0 ) = (-1) * m n. ., • Y(0')d0«

mn y f

?y ^ 9Pm(cOS0')

Y' (0 ) = \ (-1) n
Q» t Y(0')d0' .

mn y
/O

7.4 Numerical Results

The dipole patterns shown in Figs. 7-4 and 7-5 were computed using

(7.11) with the sinusoidal current distribution

1(0') =sink0a(00-0') . (7.18)
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The upper patterns in these figures show the effect of bending the dipoles into

arcs with no sphere present. In Fig. 7-4a, the dipole is in the form of a semi-

circle, i.e., 0 = 7T/2, and similarly in Fig. 7-5a, the dipole subtends a half-

angle of 7T/10 radians. It is noted that these patterns are the same in both the

forward and back directions and that arcing the dipole tends to reduce the nulls

in the E-plane patterns occurring at d = 7r/2.

The patterns of Figs. 7-4b and 7-5b show the effect of adding a

dielectric sphere with e = 3. 2. Here the sphere tends to focus the energy into

the forward direction.

The current distribution of (7.18) was also used in calculating the

patterns of Fig. 7-6. They illustrate that directional patterns can be produced

with a small sphere constructed of a material with a relatively high (e =7 .5)r
dielectric constant.

The patterns shown in Fig. 7-7 were calculated using (7. 17) in 2-degree

intervals with sinusoidal current distributions in both planes. The crossed

sources each subtended half-angles of ?r/6 radians corresponding to a 3-inch

sphere against the aperture of a C-bandcircular waveguide. In a comparison of

Figs. 7-7 and 6-1, it is seen that extending the source had very little effect on

the resulting patterns.

Using (7. 17), the patterns of Fig. 7-8 were calculated with a) a point

Huygens1 source and b) an extended crossed source with sinusoidal currents,

each subtending half-angles of Tr/10 radians. This would correspond to a 5-inch

sphere operating at 5. 6 GHz. Here it is noted that with the extended source the

sidelobes are slightly reduced.



105

(b) I -3.2

FIG. 7-4: RADIATION PATTERNS FOR CURVED HALF-
WAVE DIPOLE ON SPHERE SURFACE (D = X
tan 6 = 0.0). °
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(a) C =1.0

FIG. 7-5: RADIATION PATTERNS FOR CURVED HALF-
WAVE DIPOLE ON SPHERE SURFACE (D =5X fir,
tan 6 =0.0). °
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FIG. 7-6

FIG. 7-7

FIG. 7-6: RADIATION PATTERNS FOR CURVED HALF-WAVE DIPOLE
ON SPHERE SURFACE (D = .4X , e = 7.5, tan 6 = 0.0).

o r

FIG. 7-7: RADIATION PATTERNS FOR EXTENDED SOURCE (D = 1.27X
e =2.57, tan 6= 0.0, 9 = ir/6).
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«>> »„• */,,

FIG. 7-8: RADIATION PATTERNS FOR EXTENDED SOURCE
(D = 2.37X , e =2.57, tan 6 =.0065).



Chapter VIE

INTERPRETATION BASED ON GEOMETRICAL OPTICS

8.1 Introduction

Physical insight into the way in which the homogeneous dielectric

sphere focusses the energy from a point source to form the relatively direc-

tive antenna patterns shown in Chapter 6, may be obtained using the ray-tracing

techniques of geometrical optics. With this method, it is assumed that the wave-

length is infinitesimally small, i.e., ka—v oo, and the paths of the electromag-

netic wave propagation are determined using elementary geometry.

In this chapter, the trajectory of ray paths leaving the sphere are

determined for various dielectric constants. Next, the amplitude and phase

across an equivalent plane through the center of the sphere is examined and used

to explain some of the results of Chapter 6. Finally, we look at the reduction of

aperture radius caused by the critical angle as a function of source position and

dielectric constant.

8.2 Ray Paths

Figure 8-1 shows the cross section of a homogeneous dielectric sphere

with an index of refraction n, where n = Je~. Consider a typical ray path

ABF eminating from a point source located at A; the ray originates at the

angle 6. and travels undeviated to B. Here the ray is refracted by the air-

dielectric interface with the transmitted portion leaving the sphere at an angle

0' measured from the horizontal.

The plane of incidence is defined as the plane containing the incident

ray and the normal to the surface. Since for this case the surface normal is the

radius vector, the plane of the paper is the plane of incidence. It follows, there-

fore, from the law of refraction (Snell's law) that the refracted ray BF must

remain in the plane of the paper. To find the angle 0', Snell's law is applied at

the local point B,

sin0 = nsin0. (8.1)

109
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Diameter = D

PIG. 8-1: GEOMETRY FOR RAY TRACING CALCULATIONS

and hence

0! = 20 -sin" (nsin0.) .
i i

(8.2)

Since rays are travelling from a dielectric into a region of lower per-

mittivity, there is a critical angle 9 given byc

6 = sin" (1/n) .
c

(8.3)

Rays incident at this angle, i. e., 0. =0 , leave the sphere tangent to the surface.
1 C

If 0. > 0 , the rays experience total internal reflection and will not be considered
1 C

here.

Ideally one would like the dielectric sphere to transform the radiation

from the point source into a plane wave. This would correspond to 0' = 0 for all
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values of 0.. For small 6. (8.2) becomes

= (2-n)0. , (8.4)

and hence the emergent rays for this case are parallel to the axis when n = 2.

This value of index is in agreement with Born and Wolf (1970, p. 162), since fo

a spherical lens of diameter D the par axial focus is given by the formula

and therefore lies on the surface when n = 2 corresponding to a dielectric

constant of 4.

The deviation angle 0' as given by (8. 2) is plotted in Fig. 8-2 as a

function of incident angle for various dielectric constants. It is observed that

except when 6. = 0, the deviation angle is strictly positive or strictly negative for

for e < 2 or e > 4, respectively. It appears, therefore, that the sphere will

have its maximum focussing effect when the dielectric constant is somewhere

between these two values. Note also from Fig. 8-2 that the critical angle de-

creases with increasing dielectric constant. Figure 8-3 shows typical ray paths

for a sphere with a dielectric constant of 3.0.

8. 3 Amplitude and Phase Across an Equivalent Plane

Now an expression is derived for the amplitude and phase across an

equivalent aperture plane, located at the center of the sphere, in a manner

similar to that outlined by Bekefi and Farnell (1956).

In this analysis we consider incident rays in the range

0 <e. <0 , € >2
- i- c r-

0 < 0. < 7T/4 , e <2
r

since the critical angle occurs at ?r/4 for e =2. Looking back at Fig. 8-1,

a typical ray travels from A to B within the dielectric, and then leaves the
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20 -r
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Incident Angle (degrees)

50

FIG. 8-2: ANGULAR DEVIATION OF RAYS FROM HORIZONTAL
UPON EXIT FROM SPHERE.
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FIG. 8-3: RAY PATHS THROUGH DIELECTRIC SPHERE (e = 3 0).
r

sphere at the angle 0'. Reflection from the surface is being neglected. Now the

sphere is removed and the ray BF is traced back as if it originated from point

H on the plane PP1.

The various angles and distances in Fig. 8-1 may be found as follows:

6 = sin (nsin0.)
V Ai

0' = 20 -0
i t

AB = Dcos0.

OE = CB = cos 20.
•^ i

EB = OC = sin20.

BH = CBsec0'

= BHsin0' (8.6)
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Since the ray ABF suffers no phase reversal at B, the phase angle

of the ray BF transformed back to H is given by

{> = rnAB-BH -D(n-|)Jk radians , (8.7)

where D is the sphere diameter, k is the free space propagation constant,

and the factor k D(n - -z) is used to normalize the phase to zero at the center0 Z
of the sphere. Making use of (8. 6) we obtain the desired phase expression

r i / cos20iT
= kJDn(cos0-!) + •£ 1 r1

L V COS0-/L
(8.8)

It is apparent from Fig. 8-1 that the radius H of the intersection of the

ray with the aperture plane is giyen by

and hence

H = OC - CH

H = TT (sin20 -cos 20.tan0')2 i i (8.9)

The amplitude of the power density across the equivalent aperture plane

remains to be examined. For the present we neglect the transmission coeffi-

cient associated with the surface of the sphere and consider two concentric cones

of semi-angles 0 and 0+d0 as shown in Fig. 8-4. The power radiated by the

FIG. 8-4: GEOMETRY FOR APERTURE PLANE AMPLITUDE
CALCULATION.
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the source into the space enclosed by these cones appears over the equivalent

plane in the annular ring of radius H and width dH.

The incremental areas of the annular rings located at unity radius and

at the equivalent plane respectively are given by . .

dS = sin0d0dji

dS = HdHdj/5 .
£ •

If P(0) is the power radiated per unit solid angle and P(H) is the power received

per unit angle across the equivalent plane, conservation of energy requires

(Born and Wolf, 1970, p. 116)

P(0) dS2

and thus

. (8.10).
ri uH

Using (8. 9) together with the relations (8. 6) yields

2sinei r 2 -r1
P(H) » -_-. 2 cos 20. + 2sin20.tan0'- cos 0. sec 0f(2 -ncos0 sec 6 ) P(0).

til) L_ 1 . 1 1 1 t J .

(8.11)

• Although only the primary rays are examined in this analysis , the above

equation must now be modified to account for the amplitude reduction of these

rays due to the energy reflected from the sphere surface.

Since the Huygens1 source radiates a linearly polarized field, the two

principal planes are considered where the electric field is either parallel or

perpendicular to the plane of incidence corresponding to the E or H planes.

The power transmission coefficients for these two planes are (Stratton, 1941,

p . 496) . . - . . - ' . - . •
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sin 20. sin20
TF = - 2 - ~ - 2 - (8- 12)

sin (0 +6 )cos (0 -6 )
i t i t

sin 20. sin 26
TH = — -^ - ~ . (8. 13)H sin <0 .+e )

With this modification, the amplitude distribution A(H) across the line of inter-

section of the plane of incidence and the equivalent plane will thus be given by

A(H) = |P(H)T| ' , (8.14)

where T is either T or T for the plane of incidence parallel to the E or H
E n

planes, respectively.

Comparing (8. 12) with (8. 13) it is seen that the former contains an

additional cosine factor in the denominator, and hence the amplitude in the E-

plane will, in general, be greater than the H-plane. Since the two transmission

coefficients are identical for 6. = 6 , which would correspond to all rays for
1 t

e = 1 or the on-axis ray for e > 1', the amplitude distribution will be contin-
r J r

uous at the center of the aperture.

The results of this section are presented in Figs. 8-5 to 8-7 for a sphere

of unity diameter. In Fig. 8-5, the phase shift (8. 8) is plotted as a function of

equivalent plane radius (8. 9) for various dielectric constants. Here a dielec- ,

trie constant of about 3.0 tends to yield the minimum phase deviation across

the aperture. Looking back at Fig. 6-9f it is noted that this same value of

dielectric constant produced the maximum directivity for the larger diameter

spheres. That this should be the case is apparent from (8. 8), where we see

that the phase deviation is proportional to sphere diameter, and hence is a

critical parameter for large spheres.
2

With P(0) = (1+cos 0.) in (8.11), the amplitude distribution across the

equivalent plane (8. 14) is plotted in Figs. 8-6 and 8-7 for various dielectric

constants. We note that for e >2, there is a greater tapering of the amplitude
r

across the aperture in the H-plane than the E-plane. In the light of this one expects
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-60
.1 .2 .3 .4 .5 .6 .7

Normalized Effective Radius

FIG. 8-5: PHASE ACROSS APERTURE FOR VARIOUS DIELECTRIC
CONSTANTS.
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.1 .2 .3 .4 .5 .6 .7 .8
Normalized Radius at Equivalent Plane

FIG. 8-6: E-PLANE APERTURE AMPLITUDE FOR VARIOUS
DIELECTRIC CONSTANTS.

.9
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0 .1 .2 .3 .4 .5 .6
Normalized Radius at Equivalent Plane

FIG. 8-7; H-PLANE APERTURE AMPLITUDE FOR VARIOUS
DIELECTRIC CONSTANTS.
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the far-field pattern in the H-plane to have a wider main beam and lower side

lobes than the E-plane (Silver, 1963). In the patterns presented in Figs. 6-2

to 6-4, this tends to be the case.

8.4 Effective Aperture Radius

It was noted in Section 8. 2 that rays incident at an angle equal to or

greater than the critical angle experience total internal reflection. We now wish

to investigate how the effective aperture radius,which is limited by this critical^

angle, varies as a function of the dielectric constant for the source located on the

surface or inside the sphere.

Figure 8-8 shows the cross section of a sphere of radius a. Assuming

FIG. 8-8: GEOMETRY FOR APERTURE RADIUS
AT CUTOFF.

the ray AB is incident on the surface at the critical angle 6 , we seek the
t/

aperture radius d. As was shown in Section 8.2, the critical angle is given by

sing =
c

l/n (8. 15)
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where n is the index of refraction. Also from the Law of Sines note

_b _ = a
sin 0 sin 9 .

and hence

sin0, = — . (8.16)
1 nb

Since

- = sin0,cos0 +sin0 COS0.. . (8.17)a 1 c c 1

Using (8. 15) and (8. 16) in the above expression yields

d
a

2 •which is valid for (a/b) < e . '

Equation (8. 18) is plotted in Fig. 8-9 together with the optimized

directivity data of Fig. 6-22. Here the effective aperture radius is generally

about nine-tenths of the sphere radius for the optimized points, and that locating

the source at the paraxial focus would result in a considerable reduction of the

of the effective aperture radius.
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This thesis has been devoted to the study of the radiation from simple

sources in the presence of a homogeneous dielectric sphere. The dyadic Green's

functions of the third and fourth kinds pertaining to this problem have been pre-

sented and should be applicable to most electromagnetic problems dealing with

homogeneous spheres. Using the method of scattering superposition, exact

representations for the electric fields excited by infinitesimal electric or mag-

netic dipole current sources located inside, outside, or on the surface of a

dielectric sphere were formulated.

Because of the simplicity and directional characteristics of the Huygens1

source, the antenna parameters using this source in the presence of a dielectric

sphere were studied in detail. Expressions were developed for the radiated

power, radiation resistance, directivity and antenna efficiency. These results

may be easily reduced to that for individual electric or magnetic dipoles by let-

ting the appropriate constants be zero.

When the calculated radiation patterns for the Huygens1 source on the

sphere surface were compared to measured patterns for plexiglas spheres on

the end of waveguides, excellent agreement was found. These results confirm

the findings of Croswell and Chatterjee (1972) that waveguide-excited dielectric

spheres may be used to radiate patterns which are superior to those from opti-

mized circular horns of the same cross-sectional area. Extending the point
\

Huygens1 source into crossed curved lines of sources did not significantly affect

the radiation patterns.

Again using the point source, the directivity was plotted as a function of

sphere diameter for various dielectric constants. It was found that for spheres

greater than 2.5X in diameter, a dielectric constant of about 3.0 tended to

yield the optimum directivity.

123



124

The dielectric sphere exhibits a resonance phenomenon in which much of

the energy is radiated into the side lobes with a commensurate decrease in the

directivity. This effect was most pronounced for the larger, denser spheres.

It was found that with increasing sphere diameter, the resonance alternates be-

tween the two principle planes with each new resonance in a particular plane being

at the next higher mode. The resonance may not be apparent in the radiation pat-

tern of a lossy sphere, but will be manifest as a reduction in the antenna efficiency.

This is because the resonance occurs at a high order mode which is quickly

attenuated by dielectric loss.

Using the Huygens' source model, it was shown that by appropriately

adjusting the dielectric constant, radiation patterns with high directivity and low

side lobes may be produced with the source located inside the sphere. This sug-

gests that directional patterns may be radiated by a truncated sphere mounted

on a waveguide, as shown in Fig. 9-1.

Expressions were developed for the radiation from a curved electric

dipole in the presence of a dielectric sphere. The bending of the half-wave dipole

into an arc tended to reduce the sharp nulls in the E-plane patterns. It was

found that directional patterns may be radiated from a dipole partially wrapped

around the meridian of a dielectric sphere. This, together with the previous

results, suggests the use of a monopole mounted on a ground plane covered by a

dielectric hemisphere as shown in Fig. 9-2.

Using the methods of geometrical optics, it was shown that a relatively

small phase deviation occurs across an equivalent aperture plane when the dielec-

tric constant of the sphere is about 3. This, together with the tapering of the

field amplitude across the aperture, may be used to explain why the small sphere

is able to focus the point source into a relatively directive pattern. Since the

phase deviation is proportional to sphere size, this focussing effect should tend

to degrade for large spheres.
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9.2 Recommendations for Further Research

There is considerable room for future investigation, both theoretical

and experimental, of sources in the presence of dielectric spheres.

According to Luneberg's original theory (1944), an inhomogeneous lens
2

with the permittivity profile e (R) = 2 - (R/a) will focus rays from a point

source on the surface into a collimated beam. It would be interesting to perform

a detailed numerical analysis of the expressions given by Tai (1956; 1971, Sec.

46) for the electromagnetic solution of the spherical Luneberg lens. The re-

sults could then be compared to those presented in this work for the homogene-

ous sphere.

Using the method of dyadic Green's functions, together with scattering

superposition, exact expressions could be formulated for the radiation from

stratified spheres. Numerical results could then be easily obtained with a

computer program similar to that presented in Appendix B. since only the cal-

culations of the scattering coefficients would need to be modified. Again, the

data could be compared to that of a homogeneous sphere to see the effect of lay-

ering on the antenna parameters such as the radiation pattern, resonance, and

dielectric loss.

It would be interesting to construct the models shown in Figs. 9-1 and

9-2 and measure their performance. The data presented in Fig. 6-22 could be

used to provide the initial design parameters. The antenna of Fig. 9-1 has a

smaller axial dimension than the full sphere, as well as providing a flat surface

for mounting the waveguide.

The radiation patterns of the antenna shown in Fig. 9-2 should be the

same as that of a dipole within a full sphere because of the imaging properties

of the conducting ground plane. This structure is similar to that used by Meinke

(1970), except that here the source is located inside the dielectric hemi-

sphere. It could be easily mounted on the outside of an aircraft and would not

require a radome.
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As a final remark, antennas are frequently designed without consideration

of the radome and then modified to reduce the often deleterious effects of this
i

protective cap. In view of this work, perhaps the dielectric cover should be con-

sidered an integral part of the radiating system used to improve the beam-

forming properties of the antenna.

Waveguide
Truncated
Dielectric
Sphere

FIG. 9-1: PROPOSED ANTENNA FOR EXPERIMENTAL STUDY

Dielectric Hemisphere

-Coaxial Cable

Ground Plate

FIG. 9-2: PROPOSED ANTENNA FOR EXPERIMENTAL STUDY.
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Appendix A

EVALUATION OF fpj (pjl'h (p)-fph (pfl'j (p)
L n J n L n J n

Let z (p) and z0(p) be two spherical Bessel functions which are
1 Cl

particular solutions to the differential equation

p2z" + 2pz t+fp2-n(n+l)]z = 0 (A.I)

Since

p2z" = p(pz)"-2pz'

(A. 1) may be in the form

P(pz1)"+[i2-n(n-t-l)]z1 =0 (A.2)

p(pz2)"+[^>2-n(n-H)]z2 =0 . (A. 3)

On multiplying (A.2) and (A. 3) by z~ and z , respectively, and subtracting,

it is found

pz (pz )"-pz (pz )" = 0 . (A.4)
ct \. 1 £t

We next form the integral

P = 0 (A. 5)

and integrate by parts yielding

2 2
== c (A. 6)

where c is a constant.

Letting z =h (p) and z = j (p), where h (p) = j (p)+iy (p), (A. 6)
£ n In n n . n

becomes

P2jn(p)f hn(p) - P\(p)f Jn(p) = c . (A. 7)
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the

c =s -,-

(A.8)



Appendix B

COMPUTER PROGRAM

Although numerous computer programs were used throughout this

research, the one of primary significance, together with the necessary sub-

routines, is listed in this appendix. This program was written in standard

IBM FORTRAN IV for use with the G level compiler, and was run on an IBM

System 360/67 computer.

The MAIN program calculates and prints out the normalized far-zone

radiation patterns (magnitude, phase, and intensity in dB) in the two principal

planes for a Huygens1 source on the surface or inside a lossy dielectric sphere.

It also prints the coefficients of the m and n functions, the directivity, and

provides the pattern data (truncated to -40 dB) in an array suitable for plotting.

This program may easily be modified to compute data for only the electric or

magnetic current source, or for the case where the source lies outside the

dielectric sphere, by making the appropriate changes in the coefficient formulas

of lines 35 to 39.

The input parameters to the MAIN program are defined as follows.

DIAM Sphere diameter (X_)

PER Dielectric constant

TAN Dielectric loss tangent (X1000)

SP Distance from source to sphere surface (X )

THING Increment in 6 variable (degrees).

Note: The parameter THING should divide evenly into 180 degrees. If

THING = 1, for example, data is calculated from 0=0 to 0 = 180

in one-degree intervals.

Subroutine ASLEG is used to generate arrays of associated Legendre

functions of the first order and their derivatives. The parameters are as fol-

lows:

NMAX Maximum value of degree (N) desired

THING Increment in 0 variable (degrees). See note above.

131
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SLEGEN (^ The names of single precision two-dimensional arrays in

which the output functions are returned:
DLEGENJ

P (cos M)
SLEGEN(N,M) = - —- -

sin M

9P (cos M)
DLEGEN(N,M) =

9M

where M = (N - 1)THINC .

Subroutine CBESS generates arrays of spherical Bessel and Hankel

functions of complex arguments and their derivatives. The parameters are

as follows.
-s

BES Names of single-precision complex arrays in which the
DBES I

output functions are returned:

DHANK
HANK

K

BES(N) = JN-1(X)

DBES(N) = - a x

HANK(N)=h^1(

r\

DHANK(N) = •==:

X Double precision complex argument.

NMAX Maximum value of order (N) desired.

Double precision arithmetic is used throughout these subroutines, with

the final output converted to single precision.



C ********** M A I N PROGRAM*********
. C • • ,

0001 D I M E N S I O N O L E G E N <45, 181 ) t Rll 181 ) , R 2< 181 ) ,TH( 1 81 ) , E H M A X ( 2 )
0002 DOUBLE P R E C I S I O N S L E G E N f 45,1 81 )
r-0 r-l C O M P L E X A N P N M 8 1 ) , B N P N < 181), A N D P N ( 1 81 ) , BNDPN ( 181 ) , E M < 181 ,2 ) , 81 < 45)

? , n B n 4 5 ) , f ? 2 ( 4 5 ) , O B 2 ( 4 5 ) , B 3 ( 4 5 ) , D B 3 C 4 5 ) ,H1( 45 ) ,DH1 (45) , H2 (45) «
30H2( 4 5 ) , H 3 ( 4 5 ) , D H 3 ( 4 5 ) * A N , B N » C NA, I » AX, A N A , B N A , S E R » C E R t ON

• O O n ? 1 R F A D 5 D O , 0 1 A M , P E R , T A N , S P , T H I N G
€006 L K = ?
f 0 0 7 - X = . D O C 1 * T A N .

C O N V = 1 8 0 . / P T
T = f O . , l . )
M A = 1 8 0 . / T H I M C * 1

0012
0013 S E P = C S Q R T ( C E R » w
0^14 R D 1 = O T A M * P I

001.6
0017
C C 1 8 R03= ( D I A M - ? . * S P ) * P I * S I = R

C R D 1 . = K I A , R 0 2 = K 2 A , R 0 3 =
O O T 9
00?0 N S U M = N M A X * 1
C C ? 1 C A L L A S L E G ( N 5 U M , T H I , N C , S L F G F N , O L E ^ E N »
002? C A L L C 8 E S S ( 8 1 f D B l , H l , O H l , R 0 1 , N M A X )
0^73 C A L L C B E S S ( 8 2 , D 8 2 , H ? , O H ? , R 0 2 , N M A X )
C??4 C A L L C B E 5 ; S ( 8 3 , O B 3 , H 3 * O H 3 , R 0 3 , N M A X )

" A N =
O D ? 6 DO 20 j = l , M A
DC? 7 A N P N < J ) = Q
60? 8 B N P N ( J ) = 0
C029 A N D P M ( J ) = 0
CO"1.'- B N O P N f J ) = 0 .
003 T 20 C H N T I N U E



0032

0033
003*
OD35
0036
0037
0038
0030

OC4G
0041
0042
00 A3

0045

,0046
0047
0048
00*9
0350
^0 51
005?
C?53
0054
0055

0057
0353
00^<?
0060
0061
006?
0063
on 64
006*;

P»IMT
DO 22 N=1,NMAX
M=N+ 1

B N ! A = - T / f R O ? * ( H l ( M ) * 0 8 2 < W ) / S E R - S E R * O H l ( M ) * B 2 ( M ) )

C AN AND BN ARE THE COEFFTFIENTS OF THE M AND N FUNCTIONS,
21 CONTINUE

"HINT 1 < J 8 , A N » 8 N
Y=N . . ' '
AX=( f.2.*Y+l.
BX=( 2

C SO^N TS THF DENOMTNATOR OF THE DIRECTIV ITY EXPRESSIOM
00 22 L = l fMA

BMPN ( L ) =B NPN ( L ) + AX*SL EGEN ( N, L ) *BN
ANDPNtL)=AMDPNf L)*AX*DLEGEN(N,L)*AN
BNDPN(H-BNDPN(L)*AX*DLEGEN(N,L)*BN

22 CONTINUE
00 25 K = l » 2

25 FHMAXIK)=0
00 50 L=1,MA

FH( L ,2 ) =- AND PN( L ) *8NPN ( L I
00 50 K=l,2

40 FHMAX(K) = AMAXKEHWAX(K),CAaS(FH(L,KI ) )

5D CONTINUE • .
DTRH=10.*ALOG10( (CABS (EH( MA, 1 ) )**2)/SDAN)
00' 55 K-l ,2
00 55 L= It MA

55 EH(L,K)=EH< L»K ) /FHM AX (K)
PRINT 3e2tO! AM, PER,RKl ,ROO f N,X
PRTNT_ 305 ____



0066
,0067
0068
.0069
DC 70
0071
00̂ ?
0073
OD74
0075
OC76
0077
0078
0079
0080

008?
CD 83

:0084
;0085
• 0086

0087
0068
00 89

PRINT 303*SP
PRINT 304,DIRH,LK
DO 75 L = 1,MA
ANGLE=(L-1I*THIMC
TH(L WANGLE
AMA31=CABS(EH(L ,1 )1
A M A G ? = C A B S ( E H ( L , 2 ) )
ANG1 = AT AN2(A IMAG ( EH( L, 1) ), RE AL (!H ( L , 1) )) *CONV
ANG?=ATAN2(AIMAG(EH(L,2) ),REAL(EH(L,2) ).) *CONV
PI(L)=2Q.*ALOG13(AMAG1>
R?(L)=23,*ALOG10(AMAG2)
PPTMT 310,ANGLE,AMAG1,ANG1,R1(L),ANGLE,AMAG2,ANG2,R2(L)
IF (Rl(L).LT.-40.) RUL)=-4D.
IF (R2(L).LT.-40.) R2(L)=-40.

75 CONTINUE
77 PRINT 213,EHMAX(1),EHMAX(2)
100 CONTINUE

WPITE( 10,114) PA, (Rl (L),R2(L),L = 1,MA)
r. THIS STATEMENT PRINTS ON DEVICE TO THE NUMBER OF POINTS TO BE
c PLOTTED AND THEN THE F- AND H-PLANE INTENSITY ARRAYS.

GO TO 1 ;

30? PPRMAT(«1»,21X,'NORMALIZED FAR Z1NE ELECTRIC FIELD FROM SOURCE LOC
1ATED ON SURFACE OF DIELECTRIC SPHERE*/»0***** SOURCE: HUYGEN
? DIAMETER IN WAVELENGTHS: •,F6.3,5X,•DIELECTRIC CONSTANT: «
3,F6.3/52X,'AIR KA: •tF6.3,llX,'DIELECTRIC KA: ',F6.3/
4 ?8X,'NUMBER OF TERMS USED IN SERIES: «,I2,19X
5,'LOSS TAN: ',F8.6)

303 FORMAT(17X,'SOURCE DISTANCE FROM
305 FORN!AT(52X,» SOURCE INSIDE SPHERE
304 FORMAT( //, 6X,«PHI: 0

s DIRECTIVITY: «,F6.3,' D B « / « O

CO

7 INTENSITY THETA

SPHERE IN WAVELENGTHS: f,E7.4)
SURFACE1)
DEGREES •t46X,tPHI: 90 DEGREES

THETA ELECTRIC FIELD
ELECTRIC FIELD INTENSITY

(DEGREES) MAGNITUDE ANGLE (OB)

•0090
9S12X , ' (DEGREES) MAGNITUDE ANGLE » , 7 X , M D B )

310 FORMAT(5X,? (F7 .? ,2X ,E10 .4 ,1X ,E7 .2 ,3X ,F9 .3 ,24X) )
S3X, 12)



0091 19R
009? 2PD TnP*AT!«0«fl*X,«M COEFFIG I€MT« f 1 V X , • N COEFF If. IFNT « , / 15X, 'REAL • t f>Xf

l»IMAGINARY«,10X,'REAL'»6X,«IMAGINARY 1)
00 <n 213 FORMAT ( 'DNORMA1. IZATIPN CONSTANT: « , H12. 4» 36X ,« NORMAL I Z AT ION CONSTA

1MT: SE12.4)
0094 500 FORMAT(5F10.3,I1)
0095 END

LO



0001

00 ' 2
000?
OOO't
0005
0006
COO?
0003
000°
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SUBROUTINE C BESS ( BFS,OBES » HANK, DH ANK, X ,NM<VX )

INDEX IS ONE GREATER THAN ORDFR OF THE FUNCTION
COMPLEX BFSf DtOBESn ) « H A N K ( l ) f DHANK( l ) , I
COMPLEX*16 X»JO, J (90) ,P,Y(75)

NO=NN-l

NR=NMAX+2
J(NM)=(0.,C. )
J (NO) = U.tl.>
jn=cos iN(x) /x

Ym=Y(l) /X-JD
DO 10 M=1»NP CO

DO \2 N=3,NR

P=JT/J(1)
BFS( l)=J(

OH 20" 1=1 t NQ

DHAVJK(L)=L*HANK(L) -X*HANK(K)
RETURN
FMO
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SUBROUTINE ASLEG(NMAX,THINC,SLEGEN,DLEGEN)

DIMENSION OLEGEN(45,18U
DOUBLE PRECISION SLEGEN(^5 ,181 ) tX ,TH ,RAD,CONV t PI
MVAX=180./THINC
MA = MMAX*1.
P 1 = 3ilAl59265358979
CONV=PT/180. • ' '
RAO=THTNf.*CONV
00 10 N=1,NMAX
A=N • '
SLEGENCNt 1 )=A*( A-H. )/2.

Nf MA)=A* (A+1 . )/2.*(
N,MA) =-OLEGEN(N,MA)

CONTINUE
DO 20 M=?,MMAX "
L=M-l
TH=l*RAD
X=DCOS(TH>

00

Ol.FGEN(l,M) =

OLEGEN(2,M)=3.*DCOS(?.#TH)
DO 20 N=3 tNMAX

EN(N,M) = ( (2. *N-1 )*X*SIEGEM (M-l ,M )-N*SLEGEN( N- N-l)

20 CONTINUE
RETURN
END
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