
NASA TECHNICAL NOTE NASA TN D-7200

CM

PROPOSAL FOR
HIERARCHICAL DESCRIPTION
OF SOFTWARE SYSTEMS

by H. Trauboth

George C. Marshall Space Flight Center
Marshall Space Flight Center, Ala. 35812

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1973



TECHNICAL REPORT STANDARD TITLE PAGE
1. REPORT NO.

NASA TN D-7200
2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE

Proposal for Hierarchical Description of Software Systems

5. REPORT DATE

March 1973
6. PERFORMING ORGANIZATION CODE

7 AUTHOR(S)
H. Trauboth

8. PERFORMING ORGANIZATION REPORT 0

9. PERFORMING ORGANIZATION NAME AND ADDRESS

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

10. WORK UNIT NO.

1 1 . CONTRACT OR GRANT NO.

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space At^mihistration
Washington, D. C. 20546 "'^ YllBii

13. TYPE OF REPORT & PERIOD COVERED

Technical Note

'Mi SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Prepared by Computation Laboratory,
Science and Engineering

16. ABSTRACT .".: • _..... ..... _._ ._ _

The programming of digital computers has developed into a new dimension full of diffi-
culties, because the hardware of computers has become so powerful that more complex applica-
tions are entrusted to computers. The costs of software development, verification, and main-
tenance are outpacing those of the hardware and the trend is toward further increase of sophisti-
cation of application of computers and consequently of sophistication of software. To obtain better
visibility into software systems and to improve the structure of software systems for better tests,
verification, and maintenance, a clear, but rigorous description and documentation of software
is needed. The purpose of this report is to extend the present methods in order to obtain a
documentation that better reflects the interplay between the various components and functions
of a software system at different levels of detail without losing the precision in expression.
This is done by the use of block diagrams, sequence diagrams, and cross-reference charts. In
the appendices, examples from an actual large software system, i.e. the Marshall System for
Aerospace Systems Simulation (MARSYAS), are presented. The proposed documentation
structure is apt to automation of updating significant portions of the documentation for better
software change control. This report should also stimulate research into new practical methods
and principles for the development, verification, and maintenance of complex software systems.

Note: Date of the manuscript is October 1, 1971.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

19. SECURITY CLASSIF. (of thte report)

Unclassified

20. SECURITY CLASSIF. (of thl« page)

Unclassified

21. NO. OF PAGES

138

22. PRICE

$3.00
MSFC - form 3292 (May 1969)



TABLE OF CONTENTS

Page

INTRODUCTION 1

SECTION I. GUIDELINES FOR SOFTWARE DESCRIPTION 4
A. Tables . 4
B. Subprograms . 12
C. Software System 24
D. Proposed Research 30

SECTION H. DOCUMENTATION 31
A. Purpose 31
B. Structure 33
C. Updating of Documentation . ; . . . . . . 40
D. Verification of Software 42
E. Automating the Documentation. . . . . . . . . . 44

APPENDDC A. The "Table Functional Specifications" of the
MODEL TABLES FILE of the Software System
MARSYAS . 48

APPENDIX B. An Example of an "Indicator Lisf'.R LIST". . . . . . . 83

APPENDIX C. Extract of "Software Programming
Specifications'from DESCRIPTION Program
Module of MARSYAS 84

APPENDIX D. Extract of "Subprogram Functional
Specifications" from DESCRIPTION Program
Module of MARSYAS 106

APPENDK E. Extract of "Subprogram Overview Specifications"
from DESCRIPTION Program Module of
MARSYAS 123

REFERENCES 132

in



LI STOP ILLUSTRATIONS

Figure Title Page

1. General hierarchical structure of a table 5

2. Structure of table T-NAME dictionary in MARSYAS 7

3. Control and data connections of a subprogram. 13
j

4. Symbol for logical decision switch 14

5. Symbol for a processing .element ....-.". 15

6. Example of graphical representation of a. subprogram SI with
three exits — El, E2, and E3 15

7. Processing/table affect diagram, state.sets, and logic
equations of example in Figure 6 19

8. Example of a cascaded flow structure within a subprogram ... 20

9. Example of a parallel-series flow structure within a
subprogram . . . . . . . . . . . 20

10. Two types of graphical representation of three nested
subprograms 25

11. Block used in SCD which denotes the function group numbers
P} that call other subprograms and the exit point number E. . . 25

12. Example of SCD for the program SI which consists of five
called subroutines at three levels of nesting 26

13. Internal function flow diagram of subprogram S2 of Figure 12
which contains three loops that involve P'2(S3), P'4(S3),
and P'5(S5) 27

14. Subprogram sequence diagram (SSD) 28

15. Example of STAD 29

IV



LI STOP ILLUSTRATIONS (Concluded)

Figure Title Page

16. Overview of software documents 34

17. Hierarchy of documentation 35

18. Example of hierarchical human language expressions 38

19. Major steps in software development 42

20. Computerized quick-look software change impact analysis. ... 47

LI STOP TABLES

Table Title Page

1. List of Primitive Operations of Passive Actions
(Condition Switches) 17

2. List of Primitive Operations of Active Actions
(Processing). . . 18



PROPOSAL FOR HIERARCHICAL DESCRIPTION
OF SOFTWARE SYSTEMS

INTRODUCTION

The programming of digital computers has developed into a new dimen-
sion full of difficulties, because the hardware of computers has become so
powerful that more complex applications are entrusted to the computer. While
15 years ago, a program was considered large if it contained 1000 instructions,
today, program systems with 100 000 instructions are no scarcity anymore.
The costs of software development are outpacing those of hardware and the
trend is toward further increase of sophistication of application of computers
and consequently of sophistication of software [ l]. In many large-scale, real-
time systems, the computer and its programs have become a vital part of the
total system. For instance, the,flight computer of the Space Shuttle and the
tracking computer of an antiballistic missile are now responsible for the es-
sential control functions during the launch and flight of these space vehicles.
Instead of simple programs, we have now to deal with complex software sys-
tems. The complexity and size have caused severe problems in the develop-
ment, verification, and maintenance of software systems.

The reliability of software is often so low that schedules of projects
which depend on computer software become unpredictable and the user is
losing his confidence in computer technology. In real-time systems where
high reliability is necessary, such as in an avionics system for a space
vehicle or a structural test facility, software checkout and verification have
become very expensive and time consuming. The verification costs for such
critical real-time applications exceed often 50 percent of the software develop-
ment costs [2l . • '• '

The visibility into a large software system and consequently the con-
fidence in an estimate of the manpower and time necessary for development are
poor. Schedule slippages in software development of about 100 to 200 percent
of the planned time are not unusual. Management of software systems'often
lacks the information and understanding it needs to make intelligent decisions
at various levels and phases.

Many of these problems stem from the fact that computer technology
and particular software is a very new technology; it is still more of an art than



a science. T-he software design does not use many generally proven principles.
Each computer program is written as a new entity, seldom using other basic
programs as building blocks. Not many standards exist (except flow chart
symbols and Backus-Naur notation) for describing software. If 10 different
programmers wrote the same computer program; they .would describe it in
10 different ways. One might .compare"the software state-of-the-art with the
state of electronics around World" War I, when no circuit analysis and synthesis
techniques were known. Then, electronic circuits were designed by pure ex-
perimentation with the assistance of Ohm1's and Kirchoff s laws. However, now,
techniques to describe, analyze, and synthesize the various functions of com-
plex electronic circuits are so powerful that they allow to automate many
design steps. In contrast, software still lacks a methodology based on
standard symbolics and mathematically well-defined relationships which
would give insight into .complex software systems.. ,

Although presently,available documentation describes computer pro-
grams in detail, it fails to give insight into the system at a higher level, and
to show explicitly the, inter relationships between the various software com-
ponents. Thereby, it hampers the manager,to plan properly and make intel-
ligent .decisions during the development of software. x . -

. .The .purpose; of this report is to improve the present situation by pro-
viding guidelines for..a more rigorous description and documentation of soft-
ware based on commonly practiced ways of describing software [11]. The present
methods; are simply extended to obtain a more-engineer-like and systematic
description of software functions. This extension was stimulated by reading
the documentation of a large software system which is the Marshall System for
Aerospace Systems Simulation (MARSYAS) that was developed by Computation
Laboratory of Marshall Space Flight Center. An improved software descrip-
tion should be structured to better serve .the systems engineering of software.
Hence, the documentation should reflect the interplay between the various
components and functions;of the software system at different levels of detail
without loosing the precision in expression. The information that will be used
to describe the software is already available in present documentations;
however, it will be presented in different forms using block diagrams and
charts similar to those familiar to engineers. These different forms should
assist the systems designer to gain insight into the interrelationships of the
various.functional units of a software system. Thereby, he should be enabled
to better perform checkout, verification, .overlays of data tables, and modifi- .
cations. -The structure of the documentation should also allow easy automatic
generation and up-dating of portions of. the documentation by a computer.



The human mind is rather.limited in comprehending.and memorizing
large intermeshed systems. He can follow small steps in a logical sequence
which leads to an understanding of a larger entity. Therefore, human organi-
zations such as the Government are built in hierarchies using small components
and groups of these components which can.be overlooked. Even the human
language accounts for this hierarchical thinking in its vocabulary. Also, com-
plex software systems should.be structured, in .hierarchies of modules. Then,
the software can be described by its individual components and their inter-
relationships. The functions of these small components can be understood and.
their interplay be overviewed. The smallest components which cannot be
divided anymore are the foundation of the hierarchy. Their functions have to.
be described-precisely so that all higher-level components can be "based on " •-.
them. It is like building a house on a firm foundation in order not to collapse.
The documentation of software systems should reflect this hierarchical struc-
ture of the software. •'• • - •

This report does not unveil any new break-through method for the de- .
scription of software systems. To obtain.fundamentally new methods and
principles which'are useful for software development, imuch more intensive .=•
basic research is required'. Hopefully, 'this report might stimulate more .
original thinking and might assist in activating funds to pursue the extremely
needed research. -' . . • -~ .

This report has two sections: Section I .shows how tables, subprograms,
and their interrelationships should be described, and Section II outlines the
various documents of the documentation and includes-some thoughts about : .
verification of software,and up-dating and automating of documentation. The .
appendices present examples from MARSYAS to aid the explanation. •,.

A software system is viewed as a highly coupled logical network of.
basic components. We.distinguish between.two types of components: (l) the
subprograms which contain the instructions, and (2) the tables, including : .
indicators and buffers, which contain the data to be processed by the sub- ;

programs. ; ; • .



SECTION I. GUIDELINES FOR SOFTWARE DESCRIPTION

A. Tables

1. General. The information to be processed by the computer is
stored in groups of memory cells. These memory cells may be physically
located in the main memory (i.e., the core) or in other memory devices such
as index registers, magnetic drum, disc, or tape. In this report, we do not
concern ourselves with the physical location, rather with the logical location
of tables, the identification of data, and the description of the contents of logi-
cal memory cells.

A table is defined here as a collection of data in which each data item
is identified by a label or name, by its position relative to other data items,
or by some other means [ 3]. Data items mean the individual member of a
set of data. In the following, we will use the term table also for lists, arrays,
dictionaries, directories, etc. A collection of tables will be called a file.
The tables are, in general, of variable length and are structured in a hierarchi-
cal way to better access and retrieve the contents of the tables. A simple,
though consistent, nomenclature should be used to identify unambiguously the
data items to be accessed. Names that are used to address or label a data
item should be chosen in such a way that they give a good and concise indica-
tion of the meaning of the data item. It is important for the reader of the
documentation on tables to obtain a visually good picture of the structure and
contents of the tables so that he can memorize them easily. Also, the short-
hand notation should be as close as possible to the English language.

The description of the tables should also produce a clear and easy
understanding of the structure and contents of the tables. But it should also
explain why the tables are needed and structured in a certain way. In order
to facilitate the comprehension of the documentation, the documentation itself
should be partitioned into a hierarchy of documents each containing a different
level of knowledge.

2. Hierarchical Structure. A table is partitioned in groups of data
items, each group is subdivided into subgroups, each subgroup is subdivided
again, etc. The table is structured in a hierarchical way (Fig. 1). Each of
these groups will be called a set of data items or a data element. Hence, the
following data elements in their hierarchical order of seven levels (including
the file) are presented:



M i iaa J.IQ 2 1 ia I I Id

icnaid

^
Q

tt
0

CN

O

O
• • •

10

O
Q£
o

| 
H

E
A

D
E

R

O
Of
O

<N

O
Of
O

• • •

•s.-
a
0£
O

Ul
o
Ul

0)
F—(
,£>

rt

•s-

CO

'i— I
cfl

S -
ca

I—t"
;C3

I
O

i . <u

Ul



File = Collection of tables

Table = Collection of entries

Entry • = Collection of words

Word = 'Collection of fields

Field ' = Collection of characters

Character = Collection of bits

B i t . . . , :

All seven levels of a table are not necessary; for instance, it could contain
words, characters, and bits only.

To process data being contained in the data elements, one has to
locate or identify them- uniquely. This is being done by a name that serves
as a label or address for a data element; The names should be chosen to
express the contents of the data element as accurately and concisely as pos-
sible. The name is used to reference a data element and to designate the
beginning of its storage space. Each data element covers a certain amount
of storage space. In a word-oriented computer, the name of a table is usually
identical to the name of the first word of the table. For describing the proces-
sing operations, a shorthand notation is used which makes it necessary to
distinguish uniquely between various types of references to the data elements
of a table. . . .

3. Shorthand Notation for Table References. Each name of a table
starts with T- for an easier search of table names. For practical purposes,
the name should not be longer than 36 characters. To name a data element
of a table, one writes successively the names of the data elements that are
connected in the hierarchical structure with the data element to be named.
A simple example should clarify this'statement. Figure 2 shows a typical table.
The name's are shown in capital letters to distinguish them from a designation.



Ul

o
at
O

R
A

C
TE

R

at

rT
Of
Ul
o
<

at
ui
»-
z
O
o.
at
ui
o
ui

[ 
N

A
M

E
 

LE
N

G
T

H
 

j 
C

H
A

IN
 A

D
D

R
E

S
S

 
J

e
o>

;*-
CO

>»
«/>

—
o

>-.
*-•
=
o

0

A

Q!
UJ
a
Ul
X
>•
at

z
UJ

III
!•• . .

z

<

K-

2

O

Ul

ẑ

.-

tt
Ul

<
Ul
z

,

s^»
at
»-
z
Ul

CM

•̂at

z
Ul

...
z

Ot

Ul

at
IU
0
Ul

T
A

B
L

E

£
UJ

CM

Ot

Z
Ul

• • •

z

tt
z
IU

o
•»H
.4->
O

W-

H
CD

CD

O

CQ

O
I-
u u

Ul

<
z



For instance, the designation "field 1" means the first field of the field data
element, while MODEL SEQUENCE NO. is the name of that field. That name
indicates that the field contains the sequence number of the model. The total
name or address of that field is

T-NAME DICTIONARY, TABLE HEADER, MODEL SEQUENCE NO.

The total name (or address) of the prefix of the NAME ID of the second entry
of table NAME DICTIONARY would be identified by

T-NAME DICTIONARY, ENTRY 2, NAME ID, PREFIX.

Knowing the structure, of the table T-NAME DICTIONARY, one could have also
identified these two fields by . '

T-NAME DICTIONARY, header, field 1

and •

T-NAME DICTIONARY, entry 2, word 2, field 2.

In general,' a data item should be identified by the concatenated names
of the data elements in the hierarchical order of the table separated by commas;
i. e.,

T-NAME TABLE, NAME ENTRY, NAME WORD, NAME FIELD,
NAME'CHARACTER

knowing the structure of a table, one can always form a unique composite
name for each data item.

If a table contains as entries only a string of characters, the total
name contains only the names of two data elements; e.g., NAME TABLE and
NAME ENTRY. The name then reads •

T-NAME TABLE, NAME ENTRY.

Knowing the structure of the table, NAME ENTRY identifies a character.

The contents of a table are denoted by parentheses around a name. For
instance,

(T-NAME TABLE, NAME ENTRY, NAME WORD)



means the contents of the word with the name T-NAME TABLE, NAME
ENTRY, NAME WORD. An example is given using Figure 2:

(T-NAME DICTIONARY, ENTRY 2, MARSYAS NAME)

contains the MARSYAS name "CONTROL SYSTEM."

Besides a name, the contents of a data item may also be a specific
number; e.g., 35, or any number, or a code for the designation number. We
distinguish between these three types of data item contents by the following
notation:

Contents = ' 35' The contents is the specific number 35.

Contents = ' any number' The contents can be any real number
from -oo to +03 , integer, fixed point,
or floating point.

Contents = 'number' The contents signals a number; e.g.,
by code 9999. (No number might be
0000.)

The contents can also be logical combinations of "and" and "or" of these three
types of contents, or arithmetic combinations; i.e., +, -, *, /, exp., etc.

The notation of parenthesis can also be used for data element names
within a total name (indirect addressing). For instance, in

(T-NAME DICTIONARY (I-ENTRY COUNT), MARSYAS NAME)

the contents of indicator I-ENTRY COUNT is used as the name of the entry
in T-NAME DICTIONARY. If the MARSYAS name of the second entry of table
T-NAME DICTIONARY should be accessed, (I-ENTRY COUNT) has to be
equal to 2. If the location of a data item in one table is dependent on the con-
tents of another data element in another table, one can write, for example,

(T-NAME DICTIONARY, (T-PARAMETER TABLE, ENTRY 5,
PARAMETER ID, SEQUENCE NO.), MARSYAS NAME).

This means that the entry name to be accessed in table T-NAME DICTIONARY
is given by the sequence number of the parameter ID of the fifth entry in table
T-PARAMETER TABLE. One could conceive a nesting of several parentheses
and names of data elements.



In searching a table, the case may be that not a specific data item
should be identified, but one that has a sp'ecific content. Thus, one could ask
for any sequence number (i.e., the first encountered in the search) in the
name ED of the fifth entry of table T-NAME DICTIONARY which is larger than
100. This would be specified in our notation as

Any (T-NAME DICTIONARY, ENTRY 5, NAME ID, SEQUENCE NO.)
> 100.

If no sequence number greater than 100 could be found in table T-NAME
DICTIONARY, this would be indicated by •

No (T-NAME DICTIONARY, ENTRY 5, NAME ID, SEQUENCE NO.)
> 100.

In the documentation, the same table and same entry, but different
words and fields, might be accessed repeatedly. In this case, one could
simply omit the table name and entry name and replace it with a dash, e.g.,
(T-, NAME ID, PREFIX), and thereby save writing of redundant information.

4. Description of Tables. The documentation of all the tables, in-
cluding temporary tables, should be separated from the description of the
programs. It should show the structure, formats, and contents of the tables.
Also", an explanation should be given of why a particular table is needed. The
documentation of the tables should comprise the following sections:

a. Purpose of Table (POT).

b. Table Structure Overview (TSO).

c. Table Format and Comments (FAC).

Each section and each table should start with a new page so that it can be
ordered differently for the different reader' s convenience. Normally, these
pages should be ordered alphabetically. 'To have the pages separately self-
contained has the advantage that one can take them out and place them on a
big display. Thus, one has them all available immediately when going through
the documentation of the programs because all tables have to be overlooked
all the time and quickly. Moreover, changes can be documented more easily.
Appendix A illustrates an example of the documentation of the MODEL TABLES
FILE used in MARSYAS. . . -

10



a. Purpose of Table (POT). This section explains briefly the
major contents of each table and the major usage of the table. If the purpose
of the table is not obvious from its contents, the reason for its existence
should be given.

• • ' "j

b. Table Structure Overview (TSO). The table structure
overview should be a graphical representation of each table (on one page only,
if possible). The overview should contain all data elements with their names
and a list of their possible contents. For variable-length data elements, it
should be shown what the length depends on. If a particular data element is
used throughout several tables, it may be shown separately. For instance in
MARSYAS, the NAME ID is used in different tables. ;

c. Format and-Comments (FAC). This section devotes itself
more to the machine-related specifications of each tablei It-shows the pro- n-
grammer in which format, order, and location in which the table data elements:
are stored. It also depicts the code of .specific words, the exact length, and
position o f fields a n d characters. • ' • - t • • - • • -

The comments explain the reasons-for the design of the table, its con-
text with other parts of the software, and more general thoughts about the
usage of the particular table.

^ . ' . ' . •

5. - Indicators. Indicators in a software'system are used to store . .;•
auxiliary information necessary to. control the processing. They can be used
by one program only or by many programs. The term "indicator" is generally
used for counters, pointers, switches, flags, etc.. Usually, they are of fixed
length. In addressing them and referencing their contents in shorthand nota'- • -
tion, they are treated like tables. Since these indicators do not contain-much
information, but are much larger in number compared to the tables, each indi-
cator can be briefly documented in the Indicator List by its name, function, '
contents, and format. The subroutines which communicate with the indicators
are listed in the table-subroutine affect diagram, and their names do not have
to be repeated in the Indicator List. '.

In the documentation, the Indicator List is ordered alphabetically (an
example is presented in Appendix B). The format for an-entry in this table
is as follows: - ' ' * t -.

NAME: \ Function and contents; memory space,

(FORTRAN-NAME) f " d a t a type, format. "-

11



NAME is the unique name used for the indicator in narratives, functional
and processing descriptions, and flow charts. There is no restriction on
the length of a name, though for practical purposes, it should not exceed 36
characters. To distinguish it from other names, it should start with an I-.
The associated FORTRAN name is given in parentheses. The ' function and .
content' contain a brief summary of the purpose, function, contents, and use
of the indicator. The ' memory space' indicates whether the indicator
occupies one or more computer words or parts thereof. The ' data type'
describes the type of data being stored; e.g., alphanumeric, binary, etc. The
' format' refers to the code and field positions of the data items in an indicator.

6. Buffers. Buffers store information for intermediate use. For
instance, when scanning a language statement it is read into an input buffer.
A buffer usually occupies several words and is of fised length. It is treated
and documented like an indicator except the name starts with a B- for dis-
tinguishing it readily. Usually, the buffer information is used once in the
processing and does not control the flow through several subprograms.
Therefore, it is less critical for remembering its information.

B. Subprograms

1. Description of Subprograms. The active parts of a software
system are its subprograms. They are performing the processing and com-
puting of the data stored in the tables, indicators, and buffers. They read
the data from these tables, process them, and store them back to the same
and/or other tables. A subprogram may callup some other subprograms
and/or it may transfer control to another subprogram without returning to
the same subprogram. A subprogram, therefore, is not an isolated entity,
rather it is in communication with many passive and active elements; i.e.,
tables and other subprograms (Fig. 3). In this paragraph, we want to con-
fine ourselves to the actions within a subprogram.

Within a subprogram, we distinguish between two types of actions; one
is again passive and the other is active. The passive action means reading
only data from a table, indicator, or buffer, comparing it with some other
data being read, and deciding what to do next. It acts like a status or condition
switch. Analogous to computer hardware, it functions like a logical combina-
tional network which has one input and as many outputs as there are logical
states. Graphically, we will represent a logical state by a circle with the
number inside (Fig. 4). For instance, when the contents of the indicator
I-WORD is examined whether its contents are any ' floating point number' or
' any fixed poing number' or' any alphanumeric name,' the outcome of this decision
has three possible states; i.e.,

12



S
U

B
P

R
O

G
R

A
M

CO

Of
o
2 «
o.
CO
'.3
«/>

Of a
O * Z
0 U <

ca CD

' t
_i ui a.
-J -1 CO
•< MI 3
O J >«
wt I- Q

_j G_ IL O

o 52 ao

E o p °
3-3 5*
I Q d "»•^ til — </>

8.511

-5 3 "

IU >. Z I-

-J «o o o
< Q o. z
U "J IU Z

2 < o =>

>: o

-a
73

-3

co
"«
^a

5 g g f
O

O, H

2 ^
S ^5;^
3 I 114 O
S -H Of UL

••

IU
I-
o
z

13



JR

Figure 4. Symbol for logical decision switch. (In this case, there are
three states or conditions possible: Ca. 1, Ca. 2 or Ca. 3. "a" is the

number of the switch and TR indicates the table from which the
information is being read.)

Ga. 1 = f Any floating point number.'

Ca. 2 = 'Any fixed point number.'

Ca.3 = 'Any alphanumeric name.'

The decision switch switches the control flow according to these states or
conditions.^

The active part of an action is the actual processing which reads data
from tables, manipulates them, and writes the results into the .same and/or
other tables. (It is assumed here that the processing does not overwrite
other programs or parts of the same program.) It may also take other sub-
programs (by subroutine calls) to perform this action. A processing element
lies always between two condition switches and it can consist of a simple
transfer instruction or of the arithmetic expression for a complicated formula.
Graphically, we represent the elementary processing action by a fat arrow
(Fig. 5). To indicate which subroutines and tables are being used by the
processing element P, we add a squared bracket which indicates the set of
subroutines (S) being used, the set of tables (T^) be ing read from, and set of

. • = R

tables (T ) being written into.W

The logical flow can also be directed by a GO TO type instruction in
the program which is depicted by a thin arrow. It is assumed that a sub-
program has only one entry point. By allowing for a decision switch at the
entry point, different entry points can be simulated. The exiting of a sub-
program is indicated in the diagram by the exit name E. Figure 6 shows a
simple flow diagram of a subprogram described by the symbols of Figures
4 and 5 only.

14



[VTR,TW]

Figure 5. ; Symbol for a processing element. (S is the set of subroutines

being used, T the set of tables read from, and T the set of tables

written into. .

r~

1
iiii
1
i
i

N](T3) .J nri TU T» • r 1 Id 1 r 1 R 1 , 1 W

• • ,__ • • ~^f - -

P3(fw3)V P2(TW2)J[ (£
V T3 WU -T

® Q) P5(f W5) 1
^ j 1 " " • . " . •

.1

ri, .- Tfc

E3 El

Ni(T3) INDICATES THAT
ON CONTENTS OF T3.

S1 = S1 TR l rT l fT2 TW1=T1, T3
S4=S1, S2 TR4 = T3 TW2 = T2

TW3=T4

- 1
i\ - • • • • • i
'' 1TI • !

(1) T5

• <s • !
|p4(S4,TR4fTw4) |

"" A J

E2

THE LOOP N] IS DEPENDENT

fw4=T5
TW5=T1

Figure 6. Example of graphical representation of a subprogram Si with
three exits — El, E2, and E3.

We will discuss later how this graphical representation can be utilized
for getting better visibility into software systems.

We will now specify the "primitive operations" that make up a processing
element using a shorthand notation. This notation should be machine and
language independent, but unambiguous and consistent. .These primitive opera-
tions only concern themselves with the handling of table contents and simple
control functions. They are very easy to memorize and close to the English .
language. The symbol -^ should clearly mark a writing into a table, the
symbol = marks a reading and compares a table. These symbols are readily

15



visible when scanning through the program description. A processing element
is labeled by P and a condition by *C to distinguish visually between them.

The "primitive operations" are listed in Tables 1 and 2. These tables
can be expanded if necessary. An example in Appendix C should explain the
notation in more detail. This notation separates the text from the flow graph.
However, the same unambiguous shorthand notation could be applied to the
flowcharts as commonly used.

The advantage of the proposed shorthand notation is mat it is textual if
one chooses meaningful names, and at the same time it is unambiguous. At
this detail level of software description, it does not use ambiguous terms like
•access* 'attach', etc. These terms may be used later during the description
of groups of processing elements where they are clearly defined by the un-
ambiguous "primitive operations."

The proposed flow graph does not contain text but merely reference
numbers to draw large diagrams more easily on a single sheet of paper and to
see their topological structure better. Nested loops become more visible.
The logical flow through a subprogram can be traced more easily and could
result in a higher reliability by having considered all possible branches in the
flow. In most cases, the number of tables being used by the processing
elements is pretty large and their references would not fit into the diagram.
They are omitted in such a case, but can be defined in the Processing/Table
Affect Diagram (PTAD), Figure 7.

A certain flow pattern can be observed. Figure 8 depicts a decision
tree if no loop is included. For each exit El... E5, only one path from B to
exit E. is possible and all process elements in that path are in series. One
could write a logical equation for each path, where "." denotes a logical "and"
for two elements in series. A "+" denotes a logical "or" and constitutes two
elements in a parallel path. The equations do not consider the sequence of the
processing operations. They are merely a reflection of the static path pattern.
This notation could be useful for identifying all paths which have to be tested
to verify a complete subprogram. Figure 9 contains two parallel branches
which result into four different possible flow paths. If a loop is introduced
into Figure 8, parallel paths are added. A bar over the elements in the logical
equation means repeated flows through these elements in a loop. It is not the
intention to develop a theory in this report rather to suggest that this notation
might help to gain insight into the functioning and couplings of software. The
relationship between the processing elements and the tables has not been shown
yet. Before we go to that we ask the question^ "How do we define the per-
formance of a subprogram?"

16



TABLE 1. LIST OF PRIMITIVE OPERATIONS OF PASSIVE ACTIONS
(CONDITION SWITCHES)

Notation Definition

(ADDRESS 1).= (ADDRESS 2)
or terma

Match in Pa, b =

Match in Pa,b

End of A

("A" may represent
stepping through (T-
TABLE))

Comparison between two data elements,
i. e., contents of ADDRESS 1 with contents
of ADDRESS 2 or any term, yields
equality.

Comparison between two data elements,
i. e., contents of ADDRESS 1 with contents
of ADDRESS 2 or any term, yields in-
equality.

Data element 1 greater than data element
2.

Data element 1 smaller than data element
2.

Comparison between two data elements
yields equality during search through one
or two tables in processing element Pa,
step b.

Comparison between two data elements
yields nowhere equality during search
through one or two tables in processing
element Pa, step b.

Indication that action; e. g., search through
the table

T-TABLE has ended.

a. Term may be'any name', 'any number\ 'number', '35,' etc., and/or logical
and/or arithmetic expression of terms and/or contents of addresses.

17



TABLE 2. LIST OF PRIMITIVE OPERATIONS OF ACTIVE ACTIONS
(PROCESSING)

Notation Definition

(ADDRESS 1) — (ADDRESS 2)
O .

or ' term'

Step through (T-TABLE,
ENTRY 1...N)

Step through (T-TABLE,
ENTRY 1...N) until
(T-ENTRY 1) = (ADDRESS
1) or'term*

Call S-SUBROUTINE

Go to Pa, b or Ca, b

RETURN

EXIT

The contents of ADDRESS 2 or any term
is transferred to memory element AD-
DRESS 1. A'term' might be'any name,'' any
number,'or logical and arithmetic expres-
sions of terms, and/or contents of
addresses.

The symbol O is present if this transfer
is not a one-to-one transfer, but performs
an additional operation such as skipping
"blanks."

It can also be combined with "until," which
means that the transfer is stopped when
the condition following "until" is reached.

One entry of the table T-TABLE after
another is taken for further processing
.(comparison, up-dating, etc.) from entry
1 until N.

One entry after another is taken from table
T-TABLE, starting with entry 1 until the
contents of entry 1 equals the contents of
ADDRESS 1 or a'term'. .

Call the subroutine S-SUBROUTINE for
execution.

Transfer of control to processing element
Pa, step b, or condition switch Ca, b.

Return to calling subroutine.

Transfer control to next subprogram.

18



PROCESSING
ELEMENTS

& EXITS

PI

P2

P3

P4

P5

El

E2

E3

SU
ROU1

SI

X

X

X

X

X

B-
FINES

S2

X

X

Tl

01.

..

V

'-. £

*

0

1

T2

0

1

<t>'

0

0

•ABLE!

T3

1

0 _

•*"•

4>

<f>

T4

1

1

1

1

T5

1

0

0

LEGEND:

0 = DREADING"
1 £ "WRITING"

01 = "READING
FOLLOWED
BY WRITING"

<j> £ "READING"
AND "WRITING'

INCLUDES TABLES USED
BY CONDITION SWITCHES

I •= [(Tl), (T2), (T5)]
:1) = [(Tl), (T2), (T3),(T4)]

INPUT TABLE SET
OUTPUT TABLE SETS _ 0(E1)

0(E2) = [(Tl), (T3), (T4), (T5)]
0(E3) = [(Tl), (T3), (T4)]

PROCESSING COMBINATION EQUATIONS

P(E1) = PI -P3 (P2-P5 + P5)
P(E2) = PI • P3 • P4

P(E3) = PI • P3

CONDITION COMBINATION EQUATIONS
C(E1) = C2 + C3 -C4 + Cl • C6

C(E2) = C3 • C5 + Cl v C6

C(E3) = Cl • C7 + Cl • C6

Figure 7. Processing/Table Affect Diagram, state sets, and logic
equations of example in Figure 6.

19



B

PI

Tl~

i— HTP2

P3

WITHOUT LOOP:

E1 = P1

E2=P2 P3

E3=P2 P4 P5

E4=P2 P4 P6

E5=P2 P4

T2

T3

M

WITH LOOP:

E1 = P1

E2=P2P3 + P2 P4 P2 P3

E3 = P2 P4P5+P2JM P5

E4=P2P4P6 + P2P4P6

E5-P2P4 + P2~P4

T4

Figure 8. Example of a cascaded flow structure within a subprogram.

PI

|P3

Tl

IP2
T2

"is.

P5

E1 = P1 P3P5+P1 P4P5 + P2P3 P5+P2 P4 P5

P'l P'2 P5

Figure 9. Example of a parallel-series flow structure within a subprogram.

20



2. Performance of a Subprogram. In this paragraph we try to de-
fine the performance of a subprogram in general by knowing only the tables
it communicates with, other subroutines it uses, by its processing elements,
and by its flow pattern. In this discussion we refer to Figure 6 as a fictitious
example. We state first a few definitions.

We call the tables the subprogram is reading from the "input table sef'
and the tables it is writing into the "output table set." In Figure 6, the "input
table set?1 is [Tl, T2, T5]. Each of these tables can contain a particular in-
formation which we call the state of the table. Since a table and a set of tables
can contain many different information sets, the input table set can assume
many input state sets. And for each input state set, only one output state set
can be produced. If we assume k input state sets in example Figure 6, we
denote them I[ (Tl), (T2), (T5)] 1.. .k. Since a subprogram can exit at dif-
ferent points, we associate with each exit an output state set. Hence,
Figure 6 shows three output state sets:

O(E1) = Oil (Tl), (T2), (T3), (T4)l
.!•••• Kj

0(E2) = 02[(T1), (T3), (T4), (T5)l
J. • • • Ixo

0(E3)=03[(T1),(T3), (T4)] l 4^k

with the constraint k = kt + k2 + k3.

These three "output state sets" were taken from the PTAD of Figure 7
which shows what tables are being used by the processing elements. It is
assumed here that the called subroutines SI and S2 communicate with the
same tables as indicated for PI and P4.

A subprogram performs properly if it transforms all "valid input state
sets" into all required "valid output state sets." By "valid input state set," we
mean all those states of the input tables which are used by the subprogram.
In our following discussion, let us use the example of Appendix C which de-
scribes parts of the subprograms S-SCAN WORD plus the subprograms S-SCAN
CHARACTER and S-PLACE WORD. Indicators and buffers are treated like
tables.

In S-PLACE WX3RD, the valid states of I-OPERATOR INDICATOR are
'element mnemonic' and'no element mnemonic,' because only these two states

21



are being considered by S-PLACE WORD. In this case, the state 'no element
mnemonic* Includes ail other possible states such as * connect-operator, * f dis-
connect-operator,' 'parameter-operator,' etc., which are not 'element mne-
monic. * Other indicators can assume a larger number of states such as I-CHAR-
COUNT, which can assume any valid value between 0 and 36. If the sub-
program is supposed to distinguish between different values of (I-CHARACTER
COUNT), e.g., any number > 36 for error check, they have to be defined as
a separate valid input state. If the subprogram does not distinguish' between
the values of the numbers, any number of characters is a valiid input state.
If no decision is' made by the subprogram upon particular information contents
of buffer B-WORK AREA, its valid input state is ' any data.' However, for
checking out the proper performance of a subprogram, combinations of valid
states have to be considered. S-PLACE WORD branches on the condition C2;
i.e., if the sum of (I-INPUT AREA POINTER), (I-POINTER MODIFIER),
(I-CHARACTER COUNT), and (I-RIGHT PAREN) is > or ^ 73. This means
that "typical input states" have to be defined, which are selected input states
that exercise all paths of a subprogram. In our case, one set of values of the
four above-mentioned indicators has to be chosen which makes the sum
greater than 73, another which makes it equal to 73, and a third one which
makes the sum smaller than 73. From this simple example, it can be seen
that specifying the "valid input table states" requires thorough knowledge of the
detail functions of the subprogram. This is especially true when the subpro-
gram uses many input tables, extracts different data from these tables, and
performs many decisions on these data. Moreover, it may be necessary to
consider the contents of different entries and fields of a table as input table
states.

To find the input table set, we look at each table and determine
whether it can be read from before it can be written into by the subprogram.
If this is true, that table is part of the input table set. A systematical ap-
proach is given now.

We again use S-PLACE WORD as an example. First, we set up the
PTAD, which simply lists all tables used by the processing elements of the .
subprogram (Appendix C). A reading is marked by "O" and a writing by
1; the sequence "reading, writing" is marked by 01. To find the input table
set we look at one table after the other.(i.e., one column after the other). If
no O exists, we go to the flow diagram and see if a decision switch is dependent
pn that table. If no switch dependent on that table exists, no zero is en-
tered into the line INPUT TABLE SET of the PTAD. If a switch dependent
on that table exists, the i's in the appropriate column of the PTAD have to

22



be checked. They tell which P-elements write into the table. We now go
back to the flow graph and check all paths if any of the writing P-elements are
located before or after the decision switch when we follow the logic flow from
the begin B to every exit. If no writing occurs prior to the decision switch,
the table is part of the input table set. Otherwise, the table is not part of the
input table set. If there is an O in the column of the PTAD, the flow diagram
and the 1's of PTAD have to be checked whether a reading occurs before a
writing. If so, a 0 is entered in the INPUT TABLE SET line of PTAD. This
is done for each column. .

The output table set is found simply by checking each table (i. e., each
column of the PTAD) for 1' s. If.there is,at least one 1, it is entered into the
OUTPUT TABLE SET. This means that a table is considered part of the out-
put table set because it is written into regardless of whether that same table
appears in the input table set of another subprogram and its contents is used
by that other subprogram. . .

The tables of the output table set can contain different information, -..;
depending on the information in^lthe input table set. One can think that for each
input table state set, a corresponding output table state set exists. Without
knowing how the subprogram functions internally, the performance of the sub-
program could be defined by an input/output table which contains all valid
input table states and their corresponding output table states. An example of
this input/output table is given in Appendix C for S-SCAN CHARACTER.

One could specify in the design all valid input and output states in the
input/output table"and check the implementation of the subprogram against
them. When connecting the subprograms to form a system only the input/output
tables of each subprogram come into play. However, generating all valid out-
put table states becomes difficult when the subprogram such as S-SCAN WORD .
is of larger size. More research has to go into this problem to discover a
systematic way of generating the input/output table. It is the intent of this
report to instigate research to determine new ways of describing software for
gaining more-insight into its mechanism rather than to present a final solution.

3. Subdividing a Subprogram. To understand the functions of a sub-
program on a somewhat higher level than on the level of the "primitive opera-
tions," a subprogram, .can be subdivided into groups of processing elements and
decision switches. One can draw boundaries in the flow graph to minimize the
crossing of lines (i. e., interfaces) and'to define the function of each encircled
area using verbal text. The verbal text should contain references and labelk
so that its relation to the "primitive operation" is readily visible. In the verbal
text, ambiguities otherwise contradiction cannot be avoided, though the designer
in writing the text should choose words that as precisely as possible describe the

23



functions. If the reader of the documentation should encounter an ambiguity, he
has the possibility to clarify it by stepping one level down to the description of
the processing elements and decision switches.

Appendix C. 3 defines how a part of S-SCAN WORD is subdivided into
the function groups P' 1, P' 2, and P' 3. Their description is included in
Appendix D. 1. The reduced flow graph is shown in Appendix D. 2. The ref-
erence of the subroutines which are being called is included in brackets.

To indicate how often the major loops are being executed, the table
number responsible for the number of cycles through the loop is attached to
each loop in the flow graph. This feature should help to find more .quickly
those loops of the system which contribute 'mainly to the computation time.

When designing the software, the size of a subprogram should be
limited to such a number of processing elements that the number of function
groups is rather small (not more than ten), which can be overviewed readily.

C. Software.System
\

A software system is viewed as a highly coupled logical network of the
basic components that were described above; i.e., subprograms, tables, and
indicators. The functioning of such a system can be divided into the flow of
control through this network and the simultaneous processing of the data
stored in the tables. To know which paths the flow will take through the
network, the static connections between the subprograms have to be known.
These static connections are like roads which connect cities and towns, and
the road-map is the collection of all possible connections within a. given area.
The subprogram connection diagram (SCD) resembles a road map. Two
types of connections between two subprograms are possible. One is the sub-
routine call where the called subprogram returns after finishing its processing
to the calling subprogram. The other is a transfer of control from one sub-
program to another without return. In MARSYAS, nearly all connections are
of the first type which can be depicted graphically as shown in Figure 10. One
can foresee several subprograms nested up to many levels. Within a sub-
program, the same subroutine can be called at several locations; i.e., by
several processing elements. Later, when we wish to trace the flow through
the SCD, we would like to specify under which higher-level conditions a
subroutine is called. We therefore denote the location of the subroutine call
(i. e., the function group number) at the output of the subprogram block in the
SCD (Fig. 11).

24



ENCLOSED FORM

S-SUBPROGRAM 1

S-SUBPROGRAM 2

S-SUBPROGRAM
3

SERIAL

FORM

S-SUBPROGRAM
1

S-SUBPROGRAM
2

S-SUBPROGRAM
3

Figure 10. Two types of graphical representation of three nested
subprograms.

S-SUBPROGRAM

E1...E8

P1

1

3

6

Figure 11. Block used in SCD which denotes the function group numbers
PJ that call other subprograms and the exit point number E.

Since a subprogram can exit at different points, we mark the different
exit numbers in the block; e.g., El.. .E8. We assume that each subprogram
has only one input or begin-point B from which the flow can branch in any way.
An example of a system of subprograms which consists of calling subroutines
and is nested in three levels is shown in Figure 12.

25



CO

_J
LU

UJ

CM

-1
UI

UJ .

_J
UJ

UI

1

5

j

1

n. -

. *

t

:

i

0. <•

cs

t

1

0. -

CO

CM
IU

UJ

' "t

- CM

IU

^ t k A L

_

r
' ."*M •* in

ui
t

i __

4

IU

UJ

10
. *^ <**

UJ

A U b k

_ _ i :

•-

,. 1
tL ro in

jo 52
•

•t •- • r—
~ IU

J \

u
b
ro

u
tin

e
s

CO

t-H

1 "0

0

CO

09

a
0II

J
i-H <*H
0) 0

<rf "o
t-l >
bO Q)
O --1

Q, ®

t . *^^
C? TO
O

Q
O
en

o

— 1 1
ClJ
X
w

oj
r-i

26



One can trace through the SCD for each typical input table state set of
program SI. For different groups of input table state sets, different flows
exist through the SCD. Within each such group of input table state sets, the
flow within the subprograms is different, while at the same time the flow uses
the same connection lines between subprograms. To describe and exercise all
possible connection paths, the input table state sets have to be chosen properly;
which is not an easy task. One can mark the different flow paths by different
colors similar to marking travel routes on a road map, but the SCD would be-
come cluttered soon if one draws in all possible flow paths. Therefore, we
create another diagram, the subprogram sequence diagram (SSD), which
lists all subprograms of a particular flow in sequential order. Loops through
subprograms are marked by bars above the subprogram numbers involved
(Figs. 13 and 14).

'"I

Figure 13. Internal function flow diagram of subprogram S2 of Figure 12,
which contains three loops that involve Pf 2 (S3), P'4 (S3), and

P' 5 (S5). (Tjiis is indicated in Figure 14 by S22-S3-S24-S3-S25-S5.
.The subscript 2 in S2 is an abbreviation of P'2 of S2.)

27



II-

1 1

«o
*?
^ 1

il *--

i fl
= i
O"t

*?

Jr f~

L_2_t

3
UJ

UJ

«/>
1
in

•o

*?

i 1

1

'
CO

-J «
. "L_ J

,

r~ir
1 u»

1 '
5? 1_l

'

-
UJ

UJ

— iLT) 1
oo 1

1

CN .

2 1
; I —

cs '
•7 i

2-r~
U,J

.i

\

\

i 1

«/> 1 f"\1 1^, 1 ^v I
'XJ \ ^_

s" ^-

S ^ §

J ~ • *
1

1 ' 1

J 5* 1 zi
1 3 1
1 ' 11 <N '

CO 1

--^

CO

UJ

UJ

IN
i— i

2 |
j.1-1 to
PH ^
*(^ O

0 ^

w a

g t
bO O

(-< ^o, _o
X! "J5
faO £H

o ^
8 "3<
** 0) "

S n. "g

:̂ a) Q<
° w CD

-||

Q '-̂ H O
W -a •"
^ co .2

•S f"1 ;g

«> xA ®

S i— i

0) ""
w S

1 1
fab 03

CO ^

. a

» s§ «sa

28



The (SSD) helps to follow major flows through the software system
and to understand its functioning. But it can also be an aid to determine which
tables should be overlaid to save core storage. Applying the subprogram/table
affect diagram (STAD), we know which tables are being used by each sub-
program (Fig. 15). Let us assume subprogram S2 uses the two table sets
TIO and Til and subroutine S6 the two table sets T~10 and T12. Since S2 and
S6 are being executed at different points in the flow, the table set TIO, which
is common to both subprograms, could be kept in core, While the table set
that belongs to the subprogram which is not being executed is transferred to
bulk memory. Hence, table set T12 could be kept in bulk memory while S2
is running and table set Til while S6 is running.

SI

S2

£ S3
<

8 S4
Q^

CO

2 S5

S6

S7

Tl

0

1

0

1

T2

1

0

0

1

0

TABLES

T3

1

<t>

0

1

T.4

^
/////

1

SS^sS
V ° \
\\v^
i

T5

/////
W.
/////
\N\V
$0N
^\\^

1

1

1!

CHANGE IN S2

AFFECTS S3

AFFECTS S5

AFFECTS S7

0 READ FROM TABLE 1
1 =\RITE INTO TABLE

= READ AND WRITE

Figure 15. Example of STAD.

One has to check several major flow paths through the SCD using dif-
ferent input table state sets to ensure that the transfer of tables to bulk
memory at different points in the flow is justified.

29



From the SSD, one can also see which subprograms are being used
more frequently and which appear in loops. This can be helpful in determin-
ing which subprograms should be refined first for improved computational
efficiency; e^ g., by writing it in machine-language rather than in FORTRAN.
One can draw the SSD in such a way as to show the hierarchical levels of
subprograms as they are called. One can see that some subprograms appear
in two or more levels of the SSD because they can be called from different
levels of the SCD. For instance in Figure 14, the subprogram S5 appears in
the first and second level of the SSD. 3The first level shows the flow through
the major subprograms.

D. Proposed Research

As indicated earlier, this report can give only guidelines for an im-
proved description and documentation of software. Research is required in
several areas to make software-engineering more a science than an art. In-
stead of handc rafting programs, software should be designed using mathemati-
cally rigorous principles and building blocks. The description and verifica-
tion of software should then follow proven rules in accordance with these
design principles.

In context with this report, the following research tasks are being
proposed:

1. Performance of subprograms — A clear definition of the perform-
ance of a subprogram, which might contain other nested subprograms, should
be established. Rules should be derived on how to measure and verify that
performance.

2. Hierarchical processing functions — The description of the
processing functions including the tables in a hierarchical order is done
presently more or less by narratives. However, a consistent and readable
notation should be found which describes unambiguously the higher-level func-
tions in terms of lower-level functions.

3. Methodology for software verification — A methodology for the
verification of hierarchically structured software systems should be developed
using the primitive operations, flow graphs, and diagrams of this report as a
start.

4. Expansion to real-time systems — In this report, no timing and
I/O requirements were included. However, for the design and verification of
real-time systems software, timing and I/O are very critical factors which
have to be considered in any new methodology.

30



SECTION II. DOCUMENTATION

A. Purpose

The purpose of the documentation of software systems is many-fold.
It depends on the various types of personnel who should use it and on the phase
of development which it should reflect. Proper documentation of software sys-
tems is extremely important because many persons who are dependent on each
other are involved in the systems design. Hence, good communication is
vital. Moreover, documentation is part of the software end product itself.
For certain real-time software systems, the documentation effort has been
estimated to be up to 30 percent of the total development costs.

The common purpose of any documentation on software is to inform
the reader about the functions of the software to such a detailed level that he
can understand these functions and make meaningful decisions on his level.

1. The documentation should serve several categories of personnel;
i. e.,

• User (primarily an engineer).

• Manager of several software projects.

• Project manager.

• Systems programmer.

• Novice to be trained.

2. The documentation should be useful for different phases, such as:

• Design.

• Testing.

• Verification.

• Change analysis.

31



• Training.

• Maintenance.

• Production.

3. The documentation should have certain qualities, which improve

• Visibility of the design for all phases.

• Automation of updating the documentation.

• Automation of retrieving selected information.

• Generation of the documentation.

Let us briefly state for each category of personnel what information it
needs and what functions it performs.

The user has to know how to formulate his problem to the computer.
This can be a higher-level, user-oriented language or a specific format of
input. He has to become familiar with the error diagnosis which tells about
formal errors he made in the input statements. To control the computer
program, he has to know all the options for executing the program and for
outputting the results.

The technical manager who is supervising software projects cannot
have the detail knowledge about the software design that the programmer re-
quires. However, he has to know the principles of the mathematical and com-
putational foundation of the software, the language structure, and the functions
of the major components of the software. He should have a good overview of
the total software system and its underlying mathematical/computational
schemes, and he should know why a particular design has been selected. He
should understand the functioning of the software to the subroutine and table
level, so that he can make decisions about major design changes, considering
trade-offs with regard to computation speed, storage space, manpower,
schedule, and money.

The project manager and systems analyst have to know the language,
the mathematical and computational foundation, and the software design to a
greater detail than the supervising manager. He should also have some
familiarity with the code of critical programs of the system, so that he can

32



make decisions on problems related to the implementation of the software.
He should have a good grasp of all facets of the overall system from design
through implementation to testing and verification. This requires that the
software structure from a higher level to detail level is clearly visible to him
so that he can plan and supervise the coding, checkout, and testing of the
individual software components and their integration into a total system. He
must be able to assess trade-offs in design modifications as part of his re-
sponsibility for the efficiency of the software design and implementation. He
is also responsible for establishing a development schedule and test plan based
on the hierarchical structure of the software system.

The systems programmer should have detail knowledge of the software
components and their interplay with each other and the operating system. He
has to be familiar with the coding, data formats, and listings of the software
during all phases of the development. He designs, codes, and checks out the
software, then tests the individual components and the integrated system or

\major modules of a complex system. He makes detail efficiency trade-offs for
modifications in the design and implementation.

The novice to be trained in either personnel category has to be brought
on board as quickly as possible. Therefore, he should quickly get an overview
of the total system and detail information about the special areas he has to
work in. Since the mobility of computer programmers is much higher than
compared to other disciplines, the problem of training is an important aspect
for documentation.

B. Structure

1. General. As stated in the previous paragraph, the different
personnel categories require the description of the software to different levels
of detail and with different emphasis. The documentation should reflect these
different levels of detail. An overview of all documents is given in Figure 16.
Ample references from one level to the next should be made to facilitate the
search through the documentation (Fig. 17). Also, the documentation should
give reasons why a particular method has been selected when alternative solu-
tions are available. The documents will be used as textbooks as well as ref-
erence or handbooks.

First, we begin with the User' s Manual which contains the information
that the user needs to set up his problem and operate the software system. It
explains particularly the language in a readily understandable way by using

33



</>
t—
•̂ r
UJ

£(J

UJ
«
z
h-

UJ

3

o
Q

K
!/>

Ŝ
UJ
Q£
-<C

U-

S!
UJ

5
UJ
a.

70
 S

E
T

 U
P

 P
R

O
B

LE
M

S
 A

N
D

 0
P

R
O

C
E

D
U

R
E

S
 '

_1

3
Z

</>
K
UJ
«/>
3

i
V)
>-w»
UJ

L
 F

O
U

N
D

A
TI

O
N

 O
F

 S
O

FT
W

A
R

M
A

T
H

E
M

A
T

IC
A

1-
z
UJ
2
U
oo
v»
U

i-

UJ
z
1-
<
•s.

"&•3
t-
in
>-
trt

UJ
O£

- 
SO

FT
W

A

S
H

D
E

S
IG

N
 S

P
E

C
IF

IC
A

T
IO

N
S

 O
F

C
O

N
C

E
P

T
U

A
L

t-

ÎU
•x
3

g|

55

?!"
= za.=
ZOoz
(JIU

^— S
Q 0 S •*u y f u

s ? — t; —
t — 8 3 •"

ll « is uifi I
I SS 5 -B'l tilth B - • • - , -
•- y C y O >8 u ! S - » - i u S S ! S!z f-

111 K i *Hsi5 | 1
S 5 2 2 5 3 « 3 lliisi |i 1
u l S s g J < ? 3 £ |§ t ̂ 5 ̂ ..H
s^i t !si^ sliln IIE^
ll?3 is*° Isllll l£g|
t c g g 2 £ S - I g s S l s l |g*^
111! 3121 !H3H |S2i
a < 3 .. 3 .. .. ..
Q . r - C N n f - r - ( N C * > Irt .•— M CO "* « K — CS (^

-§ii ~ g 5 § ^ 5 5 g g . § «• g i S
OCI- l -> - «"PPl- O C V - P l - t - p K l - l -P •
UJ U O U Ul o u O IU u U U U U W |_) U U
I - U J U J U J t - U J U J U J K l i J U J U J U J U J l -UJUJ lu
a.i/14/ii/) a.i/iuii/1 a . i / t i / i i / i v )< /> GL«/ * i / t i / i
< •< < <
5 5 5 5

•y

^e
UJZ<ts?ly£~ u_ ̂*H- i*
I-<J(J=
U_ZujU

S3 ̂ O
U.'w>O

S N O I i V O I d l D B d S 3 a V M i d

V̂)

_•
P
•< ^^2 s
UJ X
0. h-
0 0.
UJ ^ —> 3 2
p 2 "
1' S SK = "

iO
C

E
S

S
IN

G
 D

E
S

C
R

IP
TI

O
N

 
("

P

IM
M

E
N

TS

.O
W

 G
R

A
P

H
 A

iO
C

E
S

S
IN

G
A

A
B

LE
 A

F
F

E
C

T
 
t

iR
O

R
 

D
IA

G
N

O
S

TI
C

S
kB

LE
 D

E
T

A
IL

 F
O

R
M

A
T

T
E

R
F

A
C

E
S

 W
IT

H
 O

P
E

R
A

T
IN

G

•fc \J —I Ut. Ub "̂  -y
ft. U U- O. UJ H —

•̂  <N to r̂ in « rC

Siiiiii
t P P P F i- Pu u u u u u
UJ UJ UJ UJ Ul UJ UJ
*** »/t •/> t/t ist u> to

_

^•ll
uj3<tOf Zf lZ
5-4 — UJr* •» u_ •«* DC ~™ 2
f Oij3
u.OujU
O tt ft_ O
0^0.000

O S

&
o
u.
z

Iu

±

8

us
0,

«/>
O
jr

P
v>

_J

S,

34



SS3DOild lN3W3Nld3a QNV NOI1D3HHOD Nl

SSBDOHd NOIS3C1 Nl

u
o
a

in
>

uoa

fl
o

• iH

ts
4^a

.-s

aS
t-i
0)

•I-H

w

UJ
>
LLJ

UJ
>
UJ

O

35



engineering terms and examples. It should also contain operating procedures
such as setting up control cards or writing control statements on a tele-
typewriter. It acts as a tutorial and training manual. Although the User' s
Manual is probably the first document that a novice will read to learn about
the software system, it is generated after the software system has been
implemented and tested so that it reflects the latest modifications [4] .

Note: The examples referenced are MARSYAS documents, which in
their structure and contents are indicative of what is being strived for; how-
ever, they do not always comply with the standards set by this report.

2. Language Specifications Document. For the software designer
and implementer, a more rigorous Language Specification Document [ 5] has
to be generated. It describes the user-oriented language in mathematics-like
notation which does not contain ambiguities or inconsistencies. This document
explains the structure of the language and the meaning and format of the state-
ments (syntax and semantics). Besides the Mathematics Report, it is the
foundation of the software system.

3. Mathematics Document. The Mathematics Document [6]
describes the mathematical foundation of the software system. It contains
the analytical equations and the various mathematical steps which have to be
taken to arrive at the mathematical solution. The algorithms and formulae
to solve these analytical equations are then shown and explained. Special
conditions and constraints, such as the bounds within which the mathematical
methods are valid, should be given. Analysis of numerical errors such as
truncation, round-off, and propagation errors should be included. If avail-
able, results of numerical experimentation should be included.

4. Computation-Engineering Document. The Computation-
Engineering Document should provide the link between the Mathematics Docu-
ment and the various software documents. It describes the principles of the
computational schemes used and depicts major block diagrams and flowcharts
to show the logic flow of the major actions. This document should explain
each functional step such as a procedure is explained. The description of these
steps has to be of such detail than one can exercise the functions of the design
step-by-step manually on paper. One should make use of graphs, diagrams,
and narratives — whatever is the best means to expound the design. References
to the Mathematics Document and Software Functional Specifications Document
should be made whenever possible. For illustration, it should contain ex-
amples. This document should serve as a basis for the software design con-
veying the concept of the total design.

36



5. Software Specifications Documentation

a. General. The software specifications documentation should
be written in several levels so that the different personnel categories mentioned
above can obtain the depth of knowledge required. However, these documents
have to be linked together through extensive use of references and labels. One
can think of the software specification documentation as a hierarchy of various
documents. Each higher-level document in the hierarchy'builds on the one
underneath it (Fig. 17). The lowest-level document contains the listings of
the programs which are a precise description of the programs to be executed
in the machine. It would be ideal if one could build the document of the next
higher level in precise, unique correspondence to the listings and, at the same
time, reduce the detailed information without losing the meaning of the infor-
mation. However, at the present time, the process of generating the next
higher-level document requires human judgement which will introduce unavoid-
able ambiguities. Also, during the design process, the documentation is
generated from the higher level to the lower level until the coding'(reflected
in the listings) is generated. Because of corrections in the code during the
development, corrections of the higher-level documents have to be made.
The documentation has to go. through several iterations through all levels,
particularly the lower ones, until it reaches a version which can be officially
released. To go from one level to another, ample references and labels should
be used. Thus, the description of a function or a group of functions can be de-
fined by several functions of the next lower level. Through the labels one can
always obtain more detail information from the next lower level in case of
questions because of ambiguities in the higher-level document.

The human language also uses expressions of different hierarchical
levels which are often of ambiguous meaning. This ambiguity can be reduced
or even removed if one defines the higher-level expression by several lower-
level expressions. For example, the expression "to process the Tables A and
B" can be represented by several detail or primitive operations (Fig. 18).
Hence, in the documents of lower detail level, human language expressions of
a lower level will prevail over those of higher-level expressions of higher
level.

The description of software can be accomplished in different forms;
i. e., in form of narratives, of short-hand notation or symbolic, and of graphic
diagrams and charts. We will use all forms whenever best suitable.

We will briefly^describe the various software specifications documents
in their hierarchical order.

37



••

co
o
z
^

^J111
CD

|—

UJ

8
QC.
0.

0
^™

M

CQ

UJ

* d
L— Itr~
3E
O

U.

•̂
1 HI —

1

CO

H
111

o
a.
O

0
|—

~ o

O
V)
^_

QC

1—:~ z
ui

ae
UI
u.
z

_. •<ae
»-
o

uik
o

' »-

C
O

N
T

E
N

•»

i J*

u
• </>
oc
111
a
m
x
H
^^

Q

O

—

o

•••
0

III
X
ui

!F _i
CO

»-

aeut
i-
Ul
VI

0

C3

111
X
>•
oê
Z
UI

+

co
ui
CO

1-

u.
Q
>fi
>-
ae
i-
Ul

ui

00
X

u.
O

o

:
 E

N
T

R
Y
 1

O

.j.
ae

z
ca
I
»-
>:

CO

_!
ca
<
-»-

i-
0
UI
_l

O
H

<

F
 T

A
B

L
E

O

ae
UI
CO
2

Z

^Jae
O

W
O

R
D

-B
1

»

UI
1

ca

u.
O

u.
o

' 
L
E

N
G

T
H

o
»-

•*r

(N

^^ «

>• 111
ae _i
i- ca
z <

O u.
»- o

u. -s ~ «
>• J
" 5'z p
UJ

•

e
ss

io
n
s

S-l%
<u
0
bo
rt

3,
S

i— i

3s
X!

13
0

•r-t

- -§

'f 
h
ie

ra
r

Q

(U

"§•

co
OC
O

U
Q
Z

UJ

fN

ae
O :i_ m
< O

oe
o

u
o

o g
<~ 111

Kl

>-
111 " r CM

38



b. Software Functional Specifications Document. The Software
Functional Specifications Document is divided into several chapters. Chapter
1 (Program Module Specifications) describes the purpose and functions of
each program module and major tables or files used by these program modules.
A program module is a collection of programs which performs major functions.
It represents the first subdivision of a software system; e.g., the simulation
system MARSYAS contains six program modules. Chapter 1 also contains the
Program Module Connection Diagram (PMCD), which depicts all possible
interconnections between the program modules, and the Program Module
Sequence Diagrams (PMSDj, which lists all possible flow sequences along
the interconnections of the program modules.

Chapter 2 (Table Functional Specifications), in separate sections, de-
lineates the purpose and data contents of each table, indicator, and buffer.
(See Part 1, 1.4 for detail.) Examples are given in Appendices A and B.

Chapter 3 (Subprogram Overview Specification) describes the purpose
of each individual subprogram grouped by Program Module and outlines briefly
the major processing functions together with the major tables being used. The
description should not exceed about one-half a page per subprogram at the
average. This chapter includes also the SCO, which depicts all possible inter-
connections between the subprograms (see Section I.C of this report). The
Subprogram/Table Affect Diagram (STAD), the SSD, and the Subprogram
Change Affect Diagram (SCAD) are also part of this section (see Section I. C
of this report). The STAD shows tables, indicators, and buffers that are
being used by the subprograms. The SSD portrays the major flow sequences
through the SCO. The SCAD illustrates which other subprograms are affected
by a change in a subprogram. (An example is given in Appendix E.)

Chapter 4 (Subprogram Functional Specifications) goes into more depth
than the overview specifications of Chapter 2 and is based on the Software
Programming Specifications Document. The first section (Description of
Functions) describes a functional group of processing elements and decision
points in a condensed textual form for each subprogram. These functional
groups are well defined by encircling a coherent area of the detail flow graph
A, which is part of the programming specifications. The second section con-
tains the flow graph B which is a topographical representation of the subprogram
at a higher level than that in the programming specifications. The same labels
as used in the programming specifications allow easy referencing to the more-
detailed specifications. The third sectioln contains the input table set and out-
put table set. (Also see Part 1.2/2.) An example is presented in Appendix D.

39



c. Software Programming Specifications Document. The next
lower level document (just above the program listings) is the Software Pro-
gramming Specifications Document, which describes in its Section 1 the various
subprograms by primitive operation in shorthand notation. From these spec-
ifications, programs in any computer language, e.g., FORTRAN or Assembly
Language, can be written. This section should also contain a glossary of the
shorthand notation so that it can be expanded any time if necessary. Section
2 gives comments to the description of the primitive operations. Since the
primitive operations contain the essential information about the actual steps
within the computer program, the comments contain explanatory information
a.s narratives. The comments also explain why certain functions are being
performed and in which context with other functions. They should be labeled
and located in such a way that they can be read together with the primitive
operations of Section 1. In Section 3, the detail logic flow graph A is depicted.
It illustrates the logical structure of a subprogram by its processing elements
and decision points. Section 4 constitutes the PTAD which demonstrates the
relationship between the processing elements of each subprogram and the
tables they write into and read from. Also, from this diagram the input table
set and output table set can be derived. Section 5 describes the error diag-
nostics exits of each subprogram. In Section 6, the detail format of the table
should be documented if it is not feasible to include the format already in
Chapter 3 of the Software Functional Specifications Document. (Also see
Part 1.1.4.) An example is given in Appendix C.

The labels used in,Section 1 should be used in all other sections for
easy reference. Sectiori 7 describes the interfaces of the software system
with the operating system. This includes the assign and control statements,
files, subroutines, and procedures of the operating system used by the sub-
programs.

d. Program Listings. The program listings are a printout
of the actual computer code in FORTRAN or assembly language with comments
further explaining the code. These comments,should also contain labels used
in the Software Programming Specifications Document to reference readily
pieces of code to the "primitive operations" and from there to the functions
in the Software Functional Specifications Document. This is important when
changes in the design or code are made so that all related parts of the documen-
tation are updated. .

C. Updating of Documentation

The software documentation consists of may parts that are related to
each other. This means that a change made in any one document may result

40



in changes in other documents and/or in other chapters or sections of the
same document. The more related parts that exist, the bigger the update
job becomes.

The updating can be divided into two tasks: (l) the places in the
documentation have to be found where to update; i.e., one has to identify all
locations that are related to a change, and (2) the information at these places
has to be changed.

To facilitate mainly (l) above, certain rules in uniting the documenta-
tion should be observed:

1. Within each chapter and/or section, the text should be grouped
in a systematic way according to the items being described; such as program
modules, subprograms, tables, etc. Within each group, the items should be
documented in alphabetical order of their names.

2. Each item should start with a new page.

3. The item name and date should appear on the head of each page.

4. Consecutive page numbers should be used within the description
of each item. . . •

5. Use labels as much as possible.

These rules also allow different users to compose the documentation in a
different order suitable to them.

The STAD' s can also be used for cross referencing to locate the places
where updates are required.

To reduce the graphic arts work, it is suggested to simplify the flow
graphs so that they contain only referencing labels instead of text.

In the process of the development of a complex software system, the
documentation has to be modified in several iterations. First, the designer
starts out with a Language Specifications Document after he received the re-
quirements from the potential user. He then, or simultaneously with the
language, formulates the mathematical foundation in the Mathematics Document.
From those two documents, he developes the Computation-Engineering Docu-
ment, which is the basis for the Software Functional Specifications Document,

41



which describes the software design on a functional level. From this docu-
ment and knowing the capabilities of the computer operating system, he can
generate the Software Programming Specifications Document which defines
the logical detail of the various elements of the software and the total inte-
grated system. This final document then allows him to generate the program.
Each step in the development process will require a revision of the next higher
level documents since at each step, which leads to a more detailed design,
changes have to be expected. For instance, when the programming specifica-
tions are being generated, the designer may find that certain processing ele-
ments are repetitious according to the functional specifications. He would
then combine these processing elements and may define a new subroutine.
These changes would then have to be reflected in the functional specifications.
Hence, the process will iterate several times between design steps, more
frequently between adjacent steps (Fig. 19). When the design is finalized,
all labels and reverences have to be checked. Also, one has to ensure that
the description of the function groups in the functional specifications are con-
gruent with the processing elements in the programming specifications.

[

1
t

LANGUAGE

SPECIFICATIONS

~ 1
1

I
Y

MATHEMATICS

r
FUNCTIONAL

SPECIFICATIONS

* 1 1

->•

1
1

PROGRAMMING

SPECIFICATIONS

1

PROGRAM

CODE

1

*- MORE FREQUENT ITERATIONS

—»- LESS FREQUENT ITERATIONS

Figure 19. Major steps in software development.

D. Verification of Software

The verification of software is a difficult task and no general method
is available which could be applied to prove that all parts of the software and
the integrated system are working properly. Much research is required to
derive generally applicable methods which verify complex software systems
in a systematical way. Therefore, in this report, only a few comments can
be made as to how the proposed approach of software description can help
the software testing and verification.

42



It is assumed that the software is of modular design; i. e., it consists
of a hierarchy of subprograms and tables.

First, we try to define the process verification in the same way as we
do for a hardware system. Verification is the process of comparing the
measured performance of an actual system with the performance specified in
the design document. Usually, a complete hardware system is verified by
first testing the performance of the individual units, then that of functional
groups or subassemblies, and finally that of the total system. The perform-
ance of a piece of hardware (e. g., a linear electronic feedback amplifier)
can be clearly specified by a few parameters and functions regardless of the
detail implementation of the hardware design. The power supply of the ampli-
fier is described by the main voltage and wattage. The dynamic characteristics
of the amplifier are described by the frequency gain and phase responses.
The input and output impedances are the interface characteristics; i.e., they
determine the coupling effect on the system when the amplifier is connected
to other units in the system. Tolerances and environmental operating condi-
tions can be specified by numbers. However, the performance of a subprogram
cannot be specified as clearly as that of a piece of hardware. As is indicated
in Section I. B. 2 of this report, there are so many output table state sets to
the input table state sets that typical state sets have to be selected. The
definition of these typical state sets is not a simple task. For this reason,
in praxis the design of a subprogram is more or less specified by its im-
plementation; i.e., by its processing elements, decision points, and tables.

The checkout and verification of a complete software system is per-
formed in several steps. The lowest level subprograms in the hierarchy are
checked out first, then those of the next higher level. Then a group of sub-
programs that perform a major function is checked out. Thereafter, these
groups are put together to form the system. Then, the interplay of these
groups in a system is checked out.

In the checkout and verification of a subprogram, two basic steps can
be distinguished. First, all possible paths through the tree-type flow graph
(including loops) which depend on the various states of the decision switches
are checked for proper flow. (We assume here, that those switches can
change their state during the execution of the subprogram; however, they will
not be deleted or modified during the execution.) Secondly, the processing
of the processing elements using the tables is checked by testing the contents
of thie tables. For this purpose, the typical input table state sets and their
associated output tables state sets at critical points in the flow graph should
be specified from the functional specifications. Then the subprogram is

43



executed with these input table state sets as initial conditions until it reaches
the specified points in the flow graph. The contents of the affected tables are
compared to the specified output table state sets. If they match, the particular
input table state set/output table state set (which might be called the transfer
state set) and involved processing elements are checked out. This is done
for each typical input table state set.

After all subprograms, or groups of subprograms, of the same
hierarchical level (starting with the lowest level) have been verified, the
subprograms of the next higher level are verified in the same way until the
complete system is verified. The typical input table state sets for the com-
plete system can be generated by using typical test cases of input data. The
process of verification was described here rather coarsely. However, it
should be pointed out that the various diagrams and notations used in the
description of the software are very helpful for a more systematic approach
of software verification. For instance, the PTAD can be used to set up the
input table sets and output table sets. The Table Functional Specifications
indicate the possible states of the tables. The primitive operations tell quick-
ly which operations are performed and which parts of the tables are used.
The SCADs tell which subprograms affect other subprograms. The applica-
tion of the diagrams can be more refined and it might be possible to generate
rules on how to verify a complex software system in various well-defined
steps. Instead of verifying the total system whenever a change is made, only
those portions which are affected have to be verified. This reduces the veri-
fication process considerably.

The tables and diagrams should help to establish a test plan for the
checkout and verification of the software. This plan should show the sequence
in which the various components (from the lower level to the higher level)
are tested. It should also contain the various table sets and state sets used
in the test process.

If the software system is large, an overlay diagram should also be
generated. This diagram should depict graphically which tables are overlaid
in core during major flows through the SCO. During the verification, the
overlay structure has to be tested to assure that no data needed for processing
are destroyed.

E. Automating the Documentation

Since the documentation of a complex software system and its updating
becomes a horrendous effort, the use of the computer should be contemplated
for various phases in the documentation process. The compute^ could be used
for the following major operations:

44



1. Storage of documentation.

2. Extraction of essential information.

3. Selective retrieval of information.

The various documents could be stored in the computer and when
changes have to be made, the computer could perform updating including for-
mat editing and provide a clear printout quickly. However, the print of the
documents would be restricted to capital letters and standard key-punch sym-
bols. The tradeoff in economics between the manual update and the computer-
ized one should be performed first before one decides on how far in the auto-
mation one should go. A program for automatic documenting is available on
the UNIVAC 1108 and it is used for documenting the UNIVAC 1108 operating
system.

The computer could perform the tedious operation of extracting infor-
mation from various types of documents. For instance, if Section 1 of the
Software Specifications Document (subprogram description using primitive
operations) is stored in the computer, most diagrams and flow graphs could
be generated automatically from it, and requires extracting the names of
those tables that are written into and read from. The alphabetical ordering
of the names is also a much easier task for the computer than for the human
being. The same information could be extracted from the listings, either by
a special program or by the compiler. However, if indirect addressing is used
in a primitive operation or statement, it becomes difficult to find the possible
contents of the variable with the indirect address. In that case, the Table
Specifications Document is needed which specifies all possible contents of a
table, indicator, and buffer. From the call statements, the SCD can be
generated.

Once certain documents are stored in the computer, specific portions
of a document can be searched for and retrieved much faster than by hand.
For instance, if a subroutine is being changed, the programmer could ask the
computer to print or display on a CRT the names of those subprograms that
are affected by this change through the SCAD. The computer could also generate
cross references between any names or labels which could be presented to the
user. For instance, the user might want to find out quickly by which sub-
programs and decision switches a particular indicator is used. This capability
might be especially useful if a complex software system is being developed by
many programmers who are at different locations. If the names of the pro-
grammers working on different subprograms are stored in the computer, the

45



names of those programmers affected by a change could be notified im-
mediately. Also, the impact of a proposed change on the total software could
be assessed more quickly by obtaining the names of subprograms and tables
being affected.

Presently used data management systems which have a more general-
ized structure such as MSFC' s Management Information and Display System
(MIRADS) could be used for this purpose (Fig. 20) [10].

46



IU
I-
u

218 :P H e< ;„
"- - 2; z
Q a: £ z

o

8
z u, i a. o:

11 M e2 s" L
i ?S < - »u oo o u. m

to
UJ

s M
5.s s-a- 5 3

ui ^ o

I e t
t sss s g

III

< >

DC
111

i
u

c^ •/>
<UJ

o
u

Zc §1
5l

CQ

'CQ

o

O.

(U

oj

'o
CQ

o
•FH

N

a>
3

I
O

0
oq

s,
•l-l

Pq



APPENDIX A. The "Table Functional Specifications" of the

MODEL TABLES FILE of the Software System MARSYAS1

The tables used in the DESCRIPTION MODULE of MARSYAS were
selected to illustrate how tables should be documented. This selection of
tables comprises the MODEL TABLES FILE, which contains the output
information of the DESCRIPTION PROGRAM MODULE. This program mod-
ule translates the statements of a MARSYAS program into these tables. The
SIMULATION PROGRAM MODULE then takes the information from these
tables and generates the object program which is a FORTRAN program ready
for subsequent compilation and execution [8,9l.

1. These appendices are extracts of Functional and Programming Specifica-
tions from DESCRIPTION Program Module of MARSYAS as an example. The
specifications presented in these appendices are not of the latest MARSYAS
version. They are taken from the MARSYAS Programming Specifications,
October 1968.

48



L Purpose of Tables (POT)

49



a. MODEL TABLES FILE. The MODEL TABLES FILE contains in
compact form all the information which is written in the DESCRIPTION
MODULE of a MARSYAS program describing a model. These tables contain
an image of the block diagram of a model and serve as intermediate tables
for the SIMULATION PROGRAM. The DESCRIPTION PROGRAM MODULE
scans the statements of a MARSYAS program and fills the MODEL TABLES
FILE in such a form and with such additional bookkeeping information that
the SIMULATION PROGRAM MODULE can generate the FORTRAN object
program file. The MODEL TABLES FILE is necessary since the statements
of a MARSYAS program can be written in any order and the CONNECT state-
ments for the same model can be written differently using different connection
paths. Therefore, the MARSYAS statements can be processed by the SIM-
ULATION PROGRAM MODULE only after the MODEL TABLES FILE has been
created.

50



b. T-CONNECTIQN TABLE. The CONNECTION TABLE is a list
of terminal pairs which are connected. Each pair consists of a predecessor,
which is the terminal transmitting the signal flow, and a successor, which
is the terminal receiving the flow. Each terminal is uniquely identified by
its NAME ID.

51



c. T-ELEMENTS TABLE. The ELEMENTS TABLE is a list of
NAME IDs corresponding to the elements contained in the model. (It also
contains the ID of any submodels which are contained in the model.) It con-
tains information about the type of each element and it points to submodels.

} i
52



d. T-MODEL INPUT TABLE. The MODEL INPUT TABLE is a list
of the name IDs which correspond to the input terminals of the model. Usual-
ly, these IDs will agree in their sequence number and attribute fields. Their
subscript fields (terminal numbers) will go from 1 to the final value, ascend-
ing by 1. However, if a model has been MODIFIED, it'is possible that ter-
minals have been deleted, etc. This necessitates this table, which identifies
each model input terminal uniquely.

53



e. T-MODEL OUTPUT TABLE. The purpose of this table is analogous
to that of the MODEL INPUT TABLE, except the information in this table is
related to the model output terminals instead of the model input terminals.

54



f. T-NAME DICTIONARY. The NAME DICTIONARY is a table which
provides the MARSYAS processor with the capability of translating user
MARSYAS names into their appropriate NAME ID words, and vice versa. An
entry in the dictionary consists of an alphanumeric name, immediately followed
by its NAME ID.

55



g. NAME ID. Each user-assigned MARSYAS name, which can be up
to 36 characters long, is given one unique compact UNIVAC 1108 computer
word (36 bit), NAME ID. In the internal operation of the MARSYAS processor
(in the various model tables, etc.), this ID is used instead of the alphanumeric
name. The NAME ID gives information about the object it refers to and is of
uniform length, thus making processing easier and conserving storage.

56



h. T-PARAMETER TABLE. The PARAMETER TABLE is a list of
the parameter values of each parameterized element of the model. An element
which does not have any parameters has no corresponding entry in the PARA-
METER TABLE. Those parameters which are given by their name and their
numerical value in a PARAMETER STATEMENT are identified as named
parameters.

57



For each table, one page is used to depict the structure and
contents of a table. For use with the subprogram description, these pages
may be assembled on one sheet and reduced in size so that they can be viewed
immediately. These tables are TJNIVAC 1108 word oriented; i. e., one line of
names represents one or a multiple integer of words. For instance, in
T-NAME DICTIONARY, the header consists of one UNIVAC 1108 word with
the two fields MODEL SEQUENCE NO. and HEADER POINTER. First, the
collection of all model tables.; i.e., the MODEL TABLES FILE is presented.

59



MODEL TABLES FILE2

T-NAME DICTIONARY

T-MODEL INPUT TABLE

T-MODEL OUTPUT TABLE

T-ELEMENTS TABLE

T-PARAMETER TABLE

T-CONNECTION TABLE

1

N2

1

N3

1

N4

1

Variable Number of Entries

N2

N3

N4

N5

Number of MARSYAS names in model.

- Number of model inputs.

= Number of model outputs.

- Number of elements.

Number of parameters.

= Number of connections.

2. Sequence of tables is the same as they are stored in the file.

60



NAME

T-NAME DICTIONARY

T-MODEL INPUT TABLE

T-MODEL OUTPUT TABLE

T-ELEMENTS TABLE

T-PARAMETER TABLE

T-CONNECTION TABLE

CONTENTS

Cross-reference between each (long)
MARSYAS name and (short) packed
identification code word NAME ID.

List of all input terminals of a model.

List of all output terminals.

List of all elements of a model in
short form (i.e., ELEMENT NAME
ID).

List of all parameters of all elements.

List of all connections between two
terminals.

61



T-CONNECTION TABLE

MODEL SEQUENCE NO. HEADER POINTER

PREDECESSOR NAME ID

SUCCESSOR NAME ID

NAME

MODEL SEQUENCE NO.

HEADER POINTER

PREDECESSOR NAME ID

-, SEQUENCE NO.

-, PREFIX

-, SUFFIX

-, SUBSCRIPT

SUCCESOR NAME ID

-, SEQUENCE NO.

-, PREFIX

-, SUFFIX

-, SUBSCRIPT

Header

Entry 1

Entry N

CONTENTS

Sequence number of the model.

Number of UNIVAC 1108 words in
T-CONNECTION TABLE.

See structure overview of NAME ID.

Sequence number assigned to model or
element to which the terminal be-
longs .

"Undefined," "model," or "element."

"Model input terminal" or "element
output terminal."

"Any terminal number."

Sequence number assigned to model
or element to which the terminal
belongs.

"Undefined" or "model" or "element."

"Model output terminal" or "element
input terminal"

"Any terminal number."

62



T-ELEMENTS TABLE

MODEL SEQUENCE NO. HEADER POINTER

ELEMENT NAME ID

Header

Entry 1

Entry N

NAME

MODEL SEQUENCE NO.

HEADER POINTER

ELEMENT NAME ID

-, SEQUENCE NO.

-, PREFIX

-, SUFFDC

-, SUBSCRIPT

CONTENTS

Sequence number of the model.

Number of UNIVAC 1108 words in
T-ELEMENTS TABLE.
Packed name identification code word
(see structure overview of NAME ID).

Sequence number assigned to element.

"Undefined," "defined," or "pointer."

"Element."

"Any element type."

63



T-MODEL INPUT TABLE

MODEL SEQUENCE NO. HEADER POINTER

MODEL INPUT COUNT

INPUT TERMINAL NAME ID

Header

Entry i

Entry N

NAME

MODEL SEQUENCE NO.

HEADER POINTER

MODEL INPUT COUNT

CONTENTS

Sequence number of the model.

Number of UNIVAC 1108 words in
T-MODEL INPUT TABLE.

Number of model input terminals.

INPUT TERMINAL NAME ID See structure overview of NAME
ID.

-, SEQUENCE NO.

-, PREFIX

-, SUFFIX

-, SUBSCRIPT

Sequence number of model.

"Undefined," "defined," or "pointer."

"Model input terminal."

"Any terminal number."

64



T-MODEL OUTPUT TABLE

MODEL SEQUENCE NO. HEADER POINTER

MODEL OUTPUT COUNT

OUTPUT TERMINAL NAME ID

Header

Entry 1

Entry N

NAME

MODEL SEQUENCE NO.

HEADER POINTER

MODEL OUTPUT COUNT

OUTPUT TERMINAL NAME ID

-, SEQUENCE NO.

-, PREFIX

-, SUFFIX

-, SUBSCRIPT

CONTENTS

Sequence number of the model.

Number of UNIVAC 1108 words
in T-MODEL OUTPUT TABLE.

Number of model output terminals.

See structure overview of NAME
ID.

Sequence number of model.

"Undefined," "defined," or "pointer."

"Model output terminal."

"Any terminal number."

65



T-NAME DICTIONARY

MODEL SEQUENCE NO.

NAME LENGTH

HEADER POINTER

CHAIN ADDRESS

MARSYAS NAME

NAME ID

•

•

]

/

]

Header

Entry 1

Entry N

NAME

CHAIN ADDRESS

HEADER POINTER

MARSYAS NAME

MODEL SEQUENCE NO.

CONTENTS

Address of next entry (begin).

Number of UNIVAC 1108 words
in T-NAME DICTIONARY plus 2.

MARSYAS - name of up to 36
characters.

Sequence number of the model.

NAME ID Packed name identification code
word (see separate structure
overview). The code of the
SUFFIX and SUBSCRIPT depend
on whether the name belongs to
a model, element, terminal,
or parameter.

66



NAME ID3

35 18, 17 16, 15 12 11

SEQUENCE NO.

ATTRIBUTES

PREFIX SUFFIX

SUBSCRIPT

NAME

SEQUENCE NO.

PREFIX

SUFFIX

SUBSCRIPT

CONDITION CONTENTS

Sequence number assigned to each
model and each element.

"Undefined," "defined," or "pointer."

"Undefined," "model," or "element."
"Model input terminal," "model
output terminal,'' "element input
terminal," "element output ter-
minal," or "element parameter."

(SUFFIX) - "0"
undefined
(SUFFIX) = "0"
model
(SUFFIX) =
element
(SUFFIX) =
... terminal
(SUFFIX) - "Any parameter position."
element para-
meter

T tAny element type" (e. g., "adder")

"Any terminal number."

3. The NAME-ID word is used in most MARSYAS tables; it is UNIVAC 1108
word-oriented.

67



T-PARAMETER TABLE

MODEL SEQUENCE NO. HEADER POINTER

ELEMENT NAME ID

PARAMETER COUNT

PARAMETER VALUE 1

PARAMETER VALUE M

NAME

MODEL SEQUENCE NO.

HEADER POINTER

ELEMENT NAME ID

-, SEQUENCE NO.

-, PREFIX

-, SUFFIX

-, SUBSCRIPT

PARAMETER COUNT

PARAMETER VALUE i

Table Header

Entry
Header

\ Entry 1

Entry N

CONTENTS

Sequence number of the model.

Number of UNI VAC 1108 words
in T-PARAMETER TABLE.

See structure overview of
NAME ID.

Sequence number of the element
the parameters belong to.

"Undefined/' "defined," or "pointer."

"Element."

"Any element type."

Number of parameters per ele-
ment (=M)

Value of ith parameter in float-
ing point or 11... 112 if param-
eter is referenced by name.

68



3. Format of Tables and Comments



a. MODEL TABLES. FILE

(1) Format^ The tables of the MODEL TABLES FILE are stored for
each model in the same sequence as depicted in the TSO. In the Functional
Data Base (FDB), they are stored one file after the other as the models have
been entered into the FDB.

All tables are of variable length. However, at the end of the DESCRIP-
TION PROGRAM MODULE and MODIFICATION PROGRAM MODULE, the
tables of the MODEL TABLES FILE have been completed and their length is
known.

All headers are of the same format; i.e., the first UNIVAC 1108 com-
puter word of a table is the sequence number of 18 bits assigned to the model
and the second computer word is the header pointer which indicates the length
of the table. An entry is deleted from a table by simply overwriting it with
binary 1's; i.e., giving a word the value 236 -1.

(2) Comments. The MARSYAS processor represents a model inter-
nally by the six model tables given in the TSO.

The headers are used to step easily through the MODEL TABLES FILE
to find the appropriate table.

The NAME ID is employed in constructing entries in all of the tables.
The only tables which have entries containing information which is not in the
form of a NAME ID are the PARAMETER TABLE (which, besides the ID, has
numeric entries) and the NAME DICTIONARY (which has alphanumeric entries).

Each table is composed of a header and the table proper. The header
consists of several computer words immediately preceding the table proper.
It provides information such as the model number and the number of entries
in the table. The PARAMETER TABLE has additional headers contained
inside the table proper.

During the time the DESCRIPTION or MODIFICATION PROGRAM
MODULE runs, the model tables, are in the process of being constructed and
each of the tables is open-ended. When the description of the model has
been completed, its tables become closed. (Closing the tables requires no
special action if the table headers have been properly maintained.) In the
local dictionary approach, these tables are then moved adjacent to one another,
thereby providing a description of the model in one unit. In the global diction-
ary approach, there is only one NAME DICTIONARY for all the models, and
closing a model's dictionary actually means closing a section of the global
DICTIONARY and keeping the various model tables distinct in their global
tables.

70



b. T-CONNECTION TABLE

. (1) Format. The Header.of the CONNECTION TABLE is of the same
format as the headers of all other model tables; i.e., the first UNIVAC 1108
computer word contains the model sequence number, and the second word
contains the header pointer.

An entry in the CONNECTION TABLE consists of two computer words.
The first word of the entry is the NAME ID of the predecessor. This ID may
be of an element or submodel output terminal, of a model input terminal, or
of an element (if the element has one input and one output). The second word
of the entry is the NAME ID of the successor. This ID may be of an element
or submodel input terminal, of a model output terminal, or of an element
(if the element has one input and one output). (See TSO.)

(2) Comments. The TEMPORARY CONNECTION TABLE and TEM-
PORARY DISCONNECT TABLE are tables used in core during the DESCRIP-
TION or MODIFICATION for generating the final CONNECTION TABLE of a
model. They are not stored with the model, in the FDB or otherwise. They
are described separately in the documentation.

71



c. T-ELEMENTS TABLE

(1) Format. The entries in the ELEMENTS TABLE are one UNIVAC
1108 computer word long, consisting of the element or submodel ID. (See
TSO.)

(2) Comments. Although deletions may be made from this table
(and from any other), no necessity exists for a model element count because
that number is never used.

72



d. T-MODEL INPUT TABLE

(1) Format. The MODEL INPUT COUNT and the entries are one
UNIVAC 1108 computer word long. (See TSO.)

(2) Comments. The MODEL INPUT COUNT word contains a count
of the model input terminals. This value may not be computable from the
header pointer if terminals have been deleted and, hence, is necessary.

73



e. T-MODEL OUTPUT TABLE

Format and comments are analogous to T-MODEL INPUT TABLE.
(SeeTSO.)

74



f. T-NAME DICTIONARY

(1) Format. Since a MARSYAS name is of variable length, provision
is made for efficient utilization of storage by grouping the NAME DICTIONARY
into six subdictionaries according to the length of a name.

A MARSYAS name may be at most 36 characters long. In the UNIVAC
1108, a character is represented by six-bits, and a word is 36-bits long.
Thus, a MARSYAS name may be up to six complete UNIVAC 1108 words long.
Names which are at most one word long are placed in the first subdictionary,
names which are more than one word and at most two words are placed in the
second subdictionary, and so on, up to names which are more than five and
at most six words long, which go into the sixth subdictionary. When the
MARSYAS name does not consist of an integral number of words, the unused
bits in the last words are set to zero. (See TSO.)

(2) Comments. The header pointer is used in two ways. During the
DESCRIPTION and MODIFICATION MODULES, when the model is being des-
cribed and the tables are open-ended, the header-pointer provides the location
of the first word of the next entry in subdictionary. Thus, for example, if
a 19 character name is to be entered in the dictionary, it is first filled out with
zeros to occupy four computer words. Then it is entered into the four-word
subdictionary with its NAME ID, beginning at the location obtained by adding
the header-pointer to the address of the first header word. When an entry
is made in a subdictionary, the header pointer should be increased by the
length of the entry. Thus, after the above four-word name is entered in the
subdictionary, the header-pointer is increased by six.

The second use of the header-pointer is for searching the NAME
DICTIONARY. If, for example, it is desired to find the ED number of a
name of 19 characters, the name is first filled out with zeros to occupy four
computer words. Once the NAME DICTIONARY has been accessed, the
header-pointer of the first subdictionary is used to access the header of the
second subdictionary; the new header-pointer is used to access the header
of the third subdictionary, and, similarly, the header of the fourth subdictionary
is found. Then, the program steps through the entries of the fourth subdiction-
ary, comparing each entry's alphanumeric section with the given word, until
a match is found. The ID of the match entry is then easily accessed.

For this search procedure to work, it is necessary that the ordering
of the subdictionaries be known. Thus, the two-word subdictionary should
immediately follow the one-word subdictionary, and the three-word sub-
dictionary should follow the two-word subdictionary, etc.

75



The search procedure described above may also be used to access a
desired table. The model tables are placed in a fixed order, that of the list
at the beginning of this section. Thus, to access the model ELEMENTS
TABLE, the program goes to the beginning of the entry for the model in the
FDB, accesses the one-word subdictionary header, steps through the sub-
dictionaries, uses headers to step through the INPUT and OUTPUT TABLES,
and arrives at the ELEMENTS TABLE header.

76



g. NAME ID

(1) Format and Comments. The bit length of each field is given in
the TSO. The field formats are presented in this paragraph.

(2) SEQUENCE NO. The 18-bit sequence number field contains the
sequence number of the object addressed by the NAME ID. Each model and
element receive a unique sequence number. Objects such as input /output
terminals and element parameters use the sequence number of their associated
element or model.

The sequence number of a new element or model is assigned by the
MARSYAS processor, using the value stored in the indicator I-SEQUENCE
NUMBER. At the beginning of a user program, the I-SEQUENCE NUMBER
is initialized at the first free value; i.e., at one more than the highest se-
quence number used in the FDB. Each time a new sequence number is
assigned, the I-SEQUENCE NUMBER is incremented by one.

(3) PREFIX. The permissible prefix values and the conditions they
stand for are as follows:

00 - ' Undefined.'

01 - ' Pointer.'

11 - ' Defined.'

A PREFIX set to ' defined' means that the MARSYAS name has been
used in a context which generates all the necessary NAME ID information.
For example, when an element name appears in an ELEMENT statement, it
is assigned a ' defined' prefix. Since, at the end of the DESCRIPTION and
MODIFICATION MODULES, all names should be properly defined, the
PREFIX field, as used here, becomes extraneous. It may be decided to
store other information in this field for other modules. (If necessary,
the ID code may be redesigned for this purpose to allow three bits in the
prefix field and three bits in the suffix field.)

A PREFLX set to'undefined'means that the MARSYAS name has been
used, but only in contents which do not define it completely. This condition
arises even in valid MARSYAS programs, although temporarily. This is a
result of the source program statements that are processed sequentially
by the MARSYAS processor, and the user may choose to use a name in a

77



statement appearing before the statement in which it is completely defined.
For example, in the instructions,

ELEMENTS, AD, ALPHA.

CONNECT, ALPHA, BETA.

INPUTS, BETA.

The MARSYAS name BETA will be 'undefined' after the connect state-
ment is read. The prefix will change to defined when the next statement is
read. The element ALPHA willhave a'defined'prefix after the first statement*

If an 'undefined' prefix is used, the sequence number field is zero. A
PREFIX set to 'pointer'means that the MARSYAS name has been defined in
terms of another name (by a NAMING statement), and as yet neither of
these names has been defined completely. Also, this is a temporary prefix.
An example of situations in which it arises is the following:

NAMING, GAMMA, DELTA.

ELEMENTS, AD, DELTA.

GAMMA is designated by the user to represent the same object as
DELTA, in the user NAMING statement. In the above example, DELTA
is still undefined when the NAMING statement is processed. Hence, the
ID prefix for GAMMA is set to 'pointer.' The sequence number field of
GAMMA ID is set to the address of the ID of DELTA in the NAME DICTION-
ARY. In general, this is the meaning of the SEQUENCE NUMBER for a
pointer prefix; i.e., the sequence number field contains the address of the
ID which defines the original name. When DELTA has been defined in the
succeeding ELEMENTS statement, the GAMMA ID can be changed to a
defined ID.

(4) SUFFK. The SUFFK field of the ATTRIBUTES' FIELD supplies
the general description of the object type. The possible codes and their mean-
ings are as follows:

0000 -' Undefined' (temporary designation).

1000 - ' Model.' . . . .

1001 - 'Model input terminal.'

78



1010 - ' Model output terminal.'

1100 - ' Element.'
\

1101 - ' Element input terminal.'

1110 - ' Element output terminal.'

0100 - ' Element parameter.'

When used with a prefix of 'defined,' these suffix codes describe the de-
fined object type. When the prefix is 'undefined1 or 'pointer,' these codes refer
to attributes which have been implied by the context of usage. For example,
if an undefined name EPSILON appears in the statement:

PARAMETER, BLOCK, EPSILON, 01.

The suffix "element parameter" is implied in the EPSILON ED.

For the subscript field, the distinction between defined and implied
characteristics is the same.

(5) SUBSCRIPT. The meaning of the SUBSCRIPT depends on the
attributes field SUFFIX. -

If SUFFIX is 'undefined,' the subscript field is zero. The whole name
ID should be zero.

If SUFFIX is 'model,' the subscript field is zero. (Exception: See
note in description of SUBMODEL operator.)

If SUFFIX is ' element,' the subscript field contains a code for the
element class. The code is as follows (numbers are in octal.):

0000 — 'Undefined'

79



1 Input
1 Output

Linear
Case '

0001 - 'Adder'4

0002 - 'Block'

0003 - ' Constant multiplier'

0004 - ' Limiter'

0005 - 'Integrator'

0006 - 'Ideal realy'

0007 - • Sample and hold'

0010 - ' Time delay1

0011 - 'Switch'

0012 - 'Threshold device'

0013 - ' Differentiator'

0014 - Absolute value'

\ Parametrized

0015-'Multiplier'

0016 - 'Divider'

0017 - 'Boolean relay' (BM)

0020 - 'Boolean relay' (BR)

0021 - ' Resolver.'

If SUFFIX is a terminal (model or element, input or output), the sub-
script field is the terminal number. Thus, in the present ID code, a model
may have a maximum of 212 -i input or output terminals.

4. The input terminals of an adder are not distinguished.

80



number (i.e.,
If SUFFIX is ' element parameter,' the subscript field is the parameter

• (i.e., its numerical position in the element parameter list).

81



h. T-PARAMETER TABLE

Format and Comments. An entry is made in the table for each
parameter element and its parameters. Since entries are of variable length,
each entry is given a header (element header). The element header is two
words. The first word contains the element NAME ID. The second word
contains the number of parameters required by the element. This, in effect,
is a pointer to the end of the entry. (See TSO.)

The values of the parameters of the element immediately follow the
element header. Each numeric value is stored in single precision floating-
point format. The only exception is the first parameter of a block, which is
stored in fixed point format.

During the DESCRIPTION or MODIFICATION MODULES, a parameter
value may be set to 236 -1 (11.... 112). This is not the true numeric value,
but a code. The code indicates that as yet no numeric value has been given
to the parameter. This condition is only temporary, and in defined models,
such as models stored in the FDB, does not occur.

The TEMPORARY PARAMETER TABLE is not to be confused with the
PARAMETER TABLE. The former is a table used to generate the final
status of the PARAMETER TABLE during the DESCRIPTION or MODIFICA-
TION of a model.

82



APPENDIX B. AN EXAMPLE OF AN "INDICATOR LIST"

Name
(FORTRAN Name)

I-ALPHA:
(IALPM)

I-ATTRIBUTES SWITCH:
(IATTSW)

I-BASIC ID:
(IBASID)

I-BTABLE:
(IBTABL)

I-CHARACTER COUNT:
(1C NT)

I-NUMBER:
(INO)

Function - Contents - Format

Stores 'any NAME ID' of the element given at the
beginning of the argument of a PARAMETER
statement; one UNIVAC 1108 word, binary, for-
mat of NAME ID.

Stores 'any NAME ID'to be assigned to an element
name; one UNIVAC 1108 word, binary, format
of NAME ID.

Stores 'any NAME ID' to be assigned to parameters
of an ELEMENTS statement or to model tables in
an INPUTS or OUTPUTS statements; one UNIVAC
1108 word, binary, format of NAME ID.

Stores 'any address' of the first location of a table
which is being referenced; one UNIVAC 1108 word,
binary code.

Counts the 'length of a user word' excluding word
terminator; one UNIVAC 1108 word, binary.

Contains designation of internal representation of
a number; i.e., ' number type' : 110= floating
point, 210 = fixed point, 310 = integer, 0 = unknown;
one UNIVAC 1108 word.

83



APPENDIX C. Extract of "Software Programming
Specifications" from DESCRIPTION Program

Module of MARSYAS

Description of the subprograms S-PLACE WORD, S-SCAN CHARACTER,
and part of S-SCAN WORD (function groups P'l, P'2, and P'3) is given in this
appendix.

84





ou

D_

U.

o%
oe.

oa.
i

UJ

Oo.

=>
a.

-co *

on
a.
i-
o
5

f !
Ul <
t- UJ

2 §
UJ
tt
<

II =•
UJ

u
D£

2
< ul

VI
UJ
oe

.- <

Of
UJ

Oo.
UJ
at:

00 -L

w— fM CO

Q.

O
I-
o
'O

u :
£, o. =

I
CO

S 51 S t-o z < i
^^ "^ I K
i i. i- 2

CD C^ 3 Q£
0- ^^^

7= Z

1 I

CM
a. UJ

u
*

u
*

CN
U

cs
ol.

86



o
Q.
u

u
UJ

o:
IU
«/»
=}
.1
CD

O<c
DC
<c

o
•?
e/o

Ol
c
0

O
u
0

e
o

1% *

o
u
0

U

s.g
u
*•
I/I

£ "

o =>
O. Q.
U 2

•? J.

tt u ,
5

Q *
oc
o ¥•

o
p£

D£
O

Ul
I

O
U0

X
0e

o
•E °-
f uS

— 0£

Qi
O

o
Q.
U

Of
Ul

O
o.

5 p g 1
4_ o k. >-̂

COa.

O
O

x0

a

vi

u
*

<

I

in
_^
c

Q.
Q.

UJ

o

" It/> 3

_L £

CM
o. UJ

u
*

u
*

CM
O

U

87



II

3
O
U
Q£

O

<

ee.

H

Of
111

O
Q.

csi
Q-

CO

o

111

DC
O

1
CO

o

I
UJ
t-
z
o
0.
<
Ul

o
_^

CN

T

1
1-
z
3
O
U
Q£
111
1-
u
<

u

•
CO

Ul
1-
u
Of

u

<
u

"o

O 2.
 (

I-
C

H
A

R
A

C
T

E
R

 C
O

U
N

T
)-

* 
(I

-C
H

A
R

A
C

P
z
o

111
1-
o
Of

I
u

-<
UJ

Of
o

1
CO

Of
o

1
o
Q.

Ul
Of

Of
O

_^

en

VI

Q?
Ul
H
Z

^^ CO

Ul

< A

O <N" CN
* 0- U
_L o *^

oo

•>

c
o

1
O

y
o

oe
O

Ul
1

Ul
z
1-
o

o
C£
Ul

1
to
ô

CO
Q.

p
«

CM
U

cs
U I

88



u
*•

-D
O

-C
.

o
c

II ;-
^ i
I c

o

u

n <£
O
U

o
u _o

H

O
c/>

O
u
01

u
DC. ^

x 5
U H

-L *

UJ
Q£

Q.
1

<
UJ

<

O

I

Qe
O
<
Z

II
*-L Z

I is <j
m Z

" S
_L <
—, Q.

UJ <
K- 0.
U I

Of
<

U
I

— 4 z

H P

« °
O Z

1
CO

i 8

Q£
<
Q.
I

8

3

U
I

I
z
D£

a. m •—
U "f
« U

U

•<"

Of
o

i— CM

at
i

O£
O
Of
Di

Q£
CO

O
Q£

UJ
I

X

•

«O
Q. Of

u
*

CO
U

CO
U U

-x

<N
•*f
U

*

in
U

89



«
E

o

O
QC
O

O

7ts»

e
E

o

"
u

* „"

H

5: 5
"~ Of
o ooe i-
O •<
* u
o o

u oe
u oo. oe
X C£
UI UI
I I

UI

o
oe
ea

oe
Ooe
oe
ui
i

3
e

u
•k

Ut-
§t
oe
O

u
<ae
<

± O

Of
UJ
I- U

to

D
U

8
Of
UJ
I-
O

UI

oe
<

oe
i

I

UJ

oa.

u

-Oo_c
_£.

a
x
o

CMa.

oo

Xc
o

5

UI

5o.
u

* o
</> of
C£ O
O *

< *"
5 •<
oe o.

u

ui

U
oe.

u
.
UI
0£<

Ôf
O
3C
I
BO

II

II

ou
UJ

5oe
u

" iz ̂
i- <
3 UJ

8
o ° 2
^ d co

O BO

x«>

UJ
z
t-
o

X

x

CO
ae

o
OL. UI

(N •—
• •

o u o
*

ao
U

GO
U u

*

90



Comment'

91



a. S-PLACE WORD

PI - The POINTER MODIFIER is set to 5 since the argument
list for an element begins in column 20 rather than 15.

P3 - If the last character of the argument word were to go
beyond column 73, the B-INPUT AREA (without the pre-
sent argument) is printed and then set to all blanks. In
the listing, columns 15 through 73 are reserved for the
argument list. The arguments are printed one after
another on the same line, until this area is about to over-
flow, when a new line is begun.

P4 - Transfer the characters of the argument from B-WORK
AREA to B-INPUT AREA.

92



b. S-SCAN CHARACTER

P2 - The nonblank character is placed into the appropriate posi-
tion in B-WORK AREA by using I-WORK AREA POINTER.

93



c. S-SCAN WORD

(l) General. DEFINITION OF (WORD) : For the purposes of S-
SCAN WORD, * word1 is used in a special sense a word is a set of alphanumeric
characters which is read in from the user code and processed in one execution
of S-SCAN WORD. As such, a word begins with the alphanumeric character
directly following the last character process; it ends with a terminator. The
S-SCAN WORD terminators are ".", ",", and"(." For example, in the
MARSYAS statement;

INPUTS, ALPHA, BETA,

the words are * INPUTS,' 'ALPHA,1 and 'BETA.1 Also, the expression

ELEMENT (U10)

gives rise to the two words ' ELEMENT* and ' U10). *

S-SCAN WORD assumes that the I-EXPECTED WORD TYPE indicator
has been set to show which word types are permissible in the current context.
In most contexts, only one word type will be permissible. For example, after
a period, an operator must follow so the I-EXPECTED WORD TYPES is set
to 'OPERATOR.' However, in some situations, more than one possibility exists.
For instance, in the parameter list of an ELEMENTS statement, a parameter
may be designated by a number or by the name of the parameter. In this case,
I-EXPECTED WORD TYPE will be set to 'name' or 'number.'

GENERAL LOGIC: S-SCAN WORD reads the user word, character by
character, placing it in the B-WORK AREA. The reading terminates when a
word terminator ['.', ',', or '('] is read, or, in the special cases of a COM-
MENT or = operator, when a V or '=' is read. The processing then branches on
the first character of the word. If the first character is numeric, the word is
processed as a number and its value is calculated. If the first character is
alphabetic, the word is processed as an operator, mnemonic, standard func-
tion, subscript, or name, depending on the I-EXPECTED WORD TYPE. For
the first three word types, the basic output of S-SCAN WORD is contained in

the I-OPERATOR INDICATOR. This is set to the location of the operator,
mnemonic, or standard function routine. For a name, the address of the name
in the T-NAME DICTIONARY and its NAME ID are returned. For a subscript,
the subscripted name ID is adjusted to its appropriate reading.

94



(2) Detail;.

PI I-CHARACTER COUNT is initialized to -1, so that
the terminator of the word will not be included in
the count.

P2, P3 Using S-SCAN CHARACTER, the next nonblank
character is read into B-WORK AREA until a
'terminator' (i.e., ".", ",", "(", "*", or "="
is encountered, which means that a complete
word is being read. In this process, the I-WORK
AREA POINTER is tested to be less than or
equal to 36. If it is not, the word has exceeded
the MARSYAS word-length limit, and an error
condition is generated (Rl) .

P4 After one complete word has been read, the ter-
minator symbol is stored in I-TERMINATOR
SWITCH for subsequent processing by the subpro-
gram which called S-SCAN WORD.

P5 If the terminator is " (", the I-PAREN COUNT is
increased by 1.

P6 If the character preceding the terminator is ' (,'
the I-PAREN COUNT is decreased by 1. (This is
the only valid position for a right parenthesis.)
Also, the I-CHARACTER COUNT is decreased by
1 so that it addresses the word proper in B-WORK
AREA. Further, the I-RIGHT PAREN indicator is
set to 1. (This counter is used, in conjunction with
the I-CHARACTER COUNT, to determine the total
number of characters in the B-WORK AREA, when
they are to be moved to the B-INPUT AREA for
printing.)

P7 If .the character preceding the terminator is not a
'),' I-RIGHT PAREN is set to zero.

*C5 C5 checks the first character of the scanned word.
C5. 2 states that the first character is numeric
(+, -, 1, 2, . . ., 9, 0).

95



*C7, P8 C7 checks if the terminator is ".". However, the
"." can also be a decimal point. By examining
the character following the ".", one can find out if
the "." is a terminator or decimal point. There-
fore, S-SCAN CHARACTER is called to read the
next character.

If the character is a digit, the period actually was
a decimal point. S-SCAN WORD goes back to the
reading of the user word in order to complete the
number (P2).

P9 If the character is not a digit, I-SCPO INTER is
decreased by 1. (I-SCPO INTER is the pointer
used by the S-SCAN CHARACTER to access the
next character. It must be reset so that the next
word to be read by S-SCAN WORD begins with the
proper character.)

P10 When the numeric argument has been completed
(or it was complete to begin with), the following
processing occurs:

S-PLACE WORD is called. This routine places
the alphanumeric word, with its terminator, in the
appropriate section of the B-INPUT AREA so it
will appear in the listing of the user deck.

S-CALCULATE VALUE is called. This routine
constructs the internal representation of the num-
ber. It sets the I-TYPE SWITCH to 'fixed point' or
'floating points,' depending on the type of the number.
It also returns the internal machine representation
of the number.

96



3. Flow Graphs A

97



S-PLACE WORD

i T15

P2

P3

T2,6,

14, 16

El

98



S-SCAN CHARACTER

T12

PI

Rl

-T7

99



CM
^
o.

o

100



~l

- r

OS
o

o

|

101



4

102



Q
Q£
o

IU
CD

^*

I.

oo

ae
o

Q_

J,

aaiMiod vaav *y<DM-i o

AmiHOM-r..

»idi<io«i aaiNiOd-i 2

aoivDiaw aoivaado-i 12

uaiNiOd vaHV indNi-i ^

INHOD lll̂ VIO-, ~

VMVMM-IV

vaav indNi-a p

-

a!

— >

-

CN
Q.

-

•"

-^

CO
o.

o

o

o

o

o

o

-

a.

o

0

-. o

0

o

1-
UJ

CO

1—
1-
0.
z •

-

-

-

-

UJ

o
H
111

111

CO

l-
1-
a.
H

O

103



S-SCAN CHARACTER (PTAD)

PI

P2

INPUT TABLE SET

OUTPUT TABLE SET

O.(El)'

0 (Rl)

1

U
ui
o
ae
UI

I
efl

T 10

0

0

2

ui
0£
•̂

«™

O

1
GQ

1

1

1

3

00

DC.
Os
o
Z '

Q£
O
O£
DC
111
i

11

1

4

Q£
UJ
u.

o
0.

«

7

1

01

0

1

5

i-
z
o
0_

Ul

^f

^

o
1

9

0

0

6

o
Of
ou
111
0£
H
3
O.
Z

1
Z

12

0

104



oat
o

.."J

_i
Q.

H3ldiaOWH31NIOd-|-

IOUOKINI *oiva3do-. 2

U31NIOdV3HVindN|-|2

v3avindN.-8«

aaoDaa a.ndNi-H 2

XD3Q a3Sn-fl 2

HJ1IMS dUlVNInddl 1 °°

daJ.NIUdJ5 1 ̂

Nadvd XHDId 1 *°

J.NI1QJ Nadvd 1 "»

3dAI QyOM a3I33dX3~l ̂ r

91 aOlVDiaNI dOaUB-l ^

InilUJ aalJvaVHJ 1 *"•

V3a7 jiauM a (—

r-

0

o

o

_
o

CN

,_

O

en ^

^
o

^

o

0

•o ^

o

o

o

£

.0

o.

-

0

o

-

0

a.

o

0

0

o

o

1-

IN
P

U
T

 T
A

B
L

E
 S

E

l-

O
U

T
P

U
T

 T
A

B
L

E
 S

E

-

-

-

^*
Ul

o

m
Ul

0

(N
Ul

O

'-

~
0£

O

-

CO
DC

o

OS

O

"

-

-

-

,_

M
E

R
G

E
D

 O
U

T
P

U
T

 
T

A
B

L
E

 S
E

105



APPENDIX D. Extract of "Subprogram Functional
Specifications"from DESCRIPTION Program

Module of MARSYAS

Functional description of subprograms S-PLACE WORD, S-SCAN
CHARACTER, and part of S-SCAN WORD (P'l, Pf 2, and P'3) is given in this
appendix.

106



10?



S-PLACE WORD

PI, P2 s Initialize pointers for locating word in B-INPUT
AREA and B-WORK AREA.

P3 : If an argument word is larger than B-INPUT AREA,
i. e., if it goes beyond column 73, then the con-
tents of B-INPUT AREA is printed. The B-INPUT
AREA and its pointer are reset.

P4 : Transfer the characters of the argument from
B-WORK AREA to B-INPUT AREA.

108



S-SCAN CHARACTER

PI- Check for error condition.

P2, P3 ; Read and transfer one noiiblank character from
B-USER DECK to B-WORK AREA.

109



S-SCAN WORD (P'l, P'2. AND P'3)

p'l : Initialize indicators and read characters from
user's deck one by one into B-WORK AREA until a
terminator (*C1.2) or '=' or '*' (C1.3) is read.

P'2 : Control the proper number of parentheses; i.e.,
'(' and').'

P'3 : The word is treated as a number, since the first
character of a scanned word is a 'numeric' (*C5.2).
The word is converted from an integer, fixed point,
or floating point decimal number into its proper
UNIVAC 1108 binary format. The number is also
printed in the listing at the appropriate place (El).

110



S-SCAN WORD (P'4. P'5. P'6)

P'4 : The word is treated as an 'operator,' 'mnemonic,' or
'standard function1 (*C5.3 : In either case, the word
is printed in the listing at the appropriate place.
The location of the subroutine to which control is
being transfered is found in T-OPERATOR LIST -
(E2), T-MNEMONIC LIST (E3), or T-STANDARD
FUNCTION LIST (E4), respectively.

The wprd is treated as a 'name' (*C12. 2): In this
case, T-NAME DICTIONARY is searched. If the
same name is formed in this table, I-WORD TYPE
SWITCH memorizes this fact (E6). Otherwise, the
word is entered into T-NAME DICTIONARY as a
new name (E9).

P'5 : The word is treated as a 'subscript' (*C12.3 : In
this case, the suffix of the ID of the current entry
of T-NAME DICTIONARY is filled with element,
subscript ID, element output terminal, or element
input terminal (E5) .

P'6: If the character is'=' or '*' (*C1.3 , the proper con-
trol switches are set to direct the control flow to
S-CONTINUATION (E8) or S-COMMENT (E7) ,
respectively.

Ill



r ~i

a:
o

o
oo

l»« oo
111 III

CN

a.

(§>*

CO 0»a; ee.

Tt 10 •«

a: tt tt

<N to -^ «r>in in m in

COto

CO

a.

I

113



3-
Sets

114



S-PLACE WORD

Input table set = I [(Tl) (T2) (T14) (T15) (T6)]

Valid Input Table States

(Tl) = (B-WORKAREA) = 'Any data.1 ;. , ,

(T2) = (I-CHARACTER COUNT) = ' Any number of characters.'

(T14) = (I-INPUT AREA POINTER) = 'Any number between 0. and 80.'

(T15) = (I-OPERA TOR INDICATOR) = 'Element mnenomic,' 'no element
mnenomic.'

(T6) = (I-RIGHT PAREN) = ' No right parenthesis,' ' right parenthesis. V

Resulting Output Table Set

0(E1) = O [(T13) (T14) (T16) (T9)]

115



S-PLACE WORD

Typical Input Table State Set Resulting Typical Output Table State Set

I[(T1)1(T2)1(T14)1(T15)1 O(Elh

(T6) ior (T6) 2 ] (*)

(T2)j (T14)i (T15)2 O (El)2

(T6) l 0 r (T6) 2 ] (* )

I t (T l ) 1 (T2) 2 (T14) 2 (T15) 2 O ( E l ) 3

(T6)!](**)

(* ) The number in T2 and T14 are chosen in such a way that they fulfill
condition C 2.1.

(**) The numbers in T2 and T14 fulfill condition C 2. 2.

116



S-PLACE WORD

Typical Output Table States

(T13) = (B-BSfPUT AREA) = ' Any data 1 of B-WORK
AREA.'

(T14) = (I-INPUT AREA POINTER) = ' Any number cal-
culated in P 4, 2.'

(T16) = (I-POINTER MODIFIER) = »5.»

( T9) = (I-WORK AREA POINTER) = ' Begin of B-WORK
AREA.'

O (El)# (T13) = (I-WORK AREA POINTER) = f Any data 1 of B-
WORK AREA.1

( T14) = (I-WORK AREA POINTER) = ' Any number cal-
culated in P4, 2.'

t n »( T16) = (I-WORK AREA POINTER) = ' 0

(T9) = (I-WORK AREA POINTER) = ' Begin of B-WORK
AREA.'

O (El)3: (T13) = (I-WORK AREA POINTER) = 'Any data 2 of B-
WORK AREA.'

(T14) = (I-WORK AREA POINTER) = ' Any number cal-
culated in P 4, 2.'

(T16) = (I-WORK AREA POINTER) = ' 0.'

(T9) = (I-WORK AREA POINTER) = ' Begin of B-WORK
AREA. •

117



S-SCAN CHARACTER

Input table set = I [ ( Tl) (T7)* (T9) (T12)]

Valid Input Table States

(Tl) = ( B-USER DEC £) =; 'Any data.'

(T7) = (I-SC POINTER = ' Any character position smaller than input
^record buffer length.' .
'Any character position greater than input
record buffer length.'

(T9) = (I-WORK AREA POINTER) = ' Any character position.'

(T12) = (H-INPUT RECORD) = 'Available,' 'not available' = (T12)lt

(T12)2.

Resulting Output Table Sets

O (El) = O [(T1)"(T7)]

O (Rl) = O [(Til)]

118



S-SCAN CHARACTER

Typical Input Table State Set Resulting Typical Output Table State Set

I C(Tl) t (T7h (T9), (T12h O (El) t

or (T12)2]

IC(T1) 1 (T7) 2 (T9) 1 (T12) 1 J O ( E l ) 2

I [ (T1) 1 (T7) 2 (T9) 1 (T12) 2 ]

0(El) t: (Tl) = (B-WORKAREA) = ' Any data of I (T2) without
blanks. '

(,T7) = (I-SC POINTER) = ' Any character position of I
(T7) + 1.'

0(E1)2: (Tl) = (I-SCPO INTER) = 'Any data of I (T2) without
blanks. '

(T7) = (I-SCPOINTER) = '2. character position. '

O(Rl) i : (Til) = (I-ERROR INDICATOR 18) = 'On.'



S-SCANWORD (P'l. P'2. P'3)

Input table set = I [(T4) (T5) (T7) (T10) (T12) (T14) (T15)]

Valid Input Table States

(T4) = (I-EXPECTED WORD TYPE) = 'Numeric,1 'no numeric' (T4)lt

(T4)2 ('no numeric' = 'operator,' 'mnemonic,1 'subscript,'
' name,' ' standard function').

(T5) = (I-PAREN COUNT) = ' Any number of uncancelled left
parentheses.'

(T7) = (I-SCPOINTER) = ' Any character position =£ input record
buffer length.'
' Any character position > input record
buffer length.'

(T10) = (B-USERDECK) = ' Any MARSYAS word.'

(T12) = (H-INPUT RECORD) = 'Available,' 'not available' = (T12)lt

(T12)2.

(T14) = (I-INPUT AREA POINTER) = ' Any number between 0 and 80.'

(T15) = (T-OPERATOR INDICATOR) = ' Element mnemonic,' 'no ele-
ment mnemonic.'

Resulting Output Table States

O (El) = O [(Tl) (T2) (T5) (T6) (T7) (T8) (T9) (Til) (T13) (T14)
(T16)J .

O (E2) = O (E3) = O [(Tl) (T2) (T5) (T6) (T7) (T8) (T9) (Til)].

O (Rl) = O (R2) = 0(R3) = O [(Tl) (T2) (T3) (T5) (T6) (T7)
(T8) (T9) (Til)].

120



S-SCAN WORD

Typical Input Table State Set Resulting Output Table State Set

I [ (T4) 1 (T5) t (T7) 1 (T10) 1

I [ (T4) 2 (T5) 1 (T7) 1 (T10) 1 O ( E l ) 2

(•mhCmMTlS)!]

I [ (T4) 1 (T5) 1 (T7) 2 (T10) 1 O(E1)3

o(Ei) 4

0(E1)5

121



S-SCAN WORD

Typical Output Table States

O(El ) i : (Tl) = (B-WORKAREA) = 'Any data of I (T10) without
blanks.'

(T2) = (I-CHARACTER COUNT) = '' Length of the scanned
word in B-WORK
AREA without termi-
nators.1

(T5) = (I-PAREN COUNT) = ' Number of uncancelled
parentheses.'

(T6) = (I-RIGHT PAREN) = 'I1 or '0.'

(T7) = (I-SCPOINTER) = ' Any character position
in word.'

(T8) = (I-TERMINATOR SWITCH) = ' Any terminator.«

(T9) = (I-WORK AREA POINTER) = 'Begin of B-
WORK AREA.'

(Til) = (I-ERROR INDICATOR 18) = 'Off.'

(T13) = (B-INPUT AREA) =' Any data of B-WORK
AREA.'

(T14) = (I-INPUT AREA POINTER) = 'Any number
calculated in
P4, 2 of
S-PLACE
WORD.'

(T16) = (I-POINTER MODIFIER) = » 5' or ' 0.'

122



APPENDIX E. Extract of "Subprogram Overview:

Specifications" from DESCRIPTION Program
Module of MARSYAS

An overview description of subprograms S-PLACE WORD, S-SCAN
CHARACTER, and S-SCAN WORD is given in this Appendix.

123



S-PL ACE WORD

S-PLACE WORD places an argument of MARSYAS statement from
B-WORK AREA into an appropriate argument field of B-INPUT AR£A lor
printing program listing.

125



SCAN CHARACTER

SCAN CHARACTER reads the next nonblank alphanumeric character
in MARSYAS Language program from the USER DECK into B-WORK AREA.

126



SCAN WORD

SCAN WORD reads the next word of the MARSYAS-Program from the
USER DECK and determines the word type, addresses of operator routines,
and status of name. A new name is placed into the T-NAME DICTIONARY
together with suffix and subscript information. SCAN WORD places the word
into the print area INPUT AREA for the program listing.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama 35812, May 23, 1972

127



UBPROGRAM CONNECTION DIAGRAM (SCO) ] MARSYAS - DESCRIPTION PROGRAM MODULE
AND MODIFICATION PROGRAM MODULE

MAIN PROGRAM

EXIT CONDTIONS A SHOULD BE REPLACED BY
FUNCTION GROUP NUMBER f .
EXIT NUMBERS ARE MISSING AND HAVE TO BE ADDED

I I
OPERATOR ROUTINES

128



SUBPROGRAM/TABLE AFFECT DIAGRAM (STAD)
(DESCRIPTION MODULE OF MARSYAS)

Subprogram
Name

S- Block

S-Calculate Value

S-Connect

S- C ontlnuation

S-^ Disconnect

S- Elements

S-End

S-Enter Name

•S- External

S- Initialization

S- Inputs

S- Inputs/Outputs

S- Model

S- Naming

S-Nopar

S-Outputs '

S- Parameter

S- Parameter

S- Place Word

S- Process Terminals

S-Read Argument

S-Read Argument List

S-Read Name

S-Read Terminal

S-Scan Character

S-Scan Operator

S-Scan Word

S-Search Connect

S-Search Table

X
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Tables
-C

on
ne

ct
io

n 
T

ab
le

1

<f>

1

0

0

l

-E
le

m
en

ts
 

T
ab

le

2

0

1

0

1

0

2

-I
nv

al
id

 C
on

ne
ct

 T
ab

le

3

l

0

3

-M
od

el
 I

np
ut

 T
ab

le

4

0

0

1

1

0

0

4

-M
od

el
 O

ut
pu

t 
T

ab
le

5

0

1

1

0

0

0

5

-M
od

el
 M

od
ul

e 
T

ab
le

6

f

1

,

1

0

6

-M
ne

m
on

ic
 L

is
t

7

0

7

-N
am

e 
D

ic
tio

na
ry

8

0

0

*

1

1

t>

0

8

-O
pe

ra
to

r 
L

is
t

9

0

9

-P
ar

am
et

er
 T

ab
le

10

1

*

1

1

1

0

*

0

10

-S
ta

nd
ar

d 
F

un
ct

io
n 

L
is

t

ll

0

11

-T
em

po
ra

ry
 C

on
ne

ct
 T

ab
le

12

1

0

1

0

12

-T
em

po
ra

ry
 D

is
co

nn
ec

t 
T

ab
le

13

1

0

1

0

13

-T
em

po
ra

ry
 P

ar
am

et
er

 T
ab

le

14

0

1

0

0

0

14

-U
nc

on
ne

ct
ed

 T
er

m
in

al
 T

ab
le

15

l

I

0

15

-U
nd

ef
in

ed
 N

am
e 

L
is

t

16

1

0

16

17

17

16

18

Buffers

a

<

.4
19

1

1

1

19

B
-U

se
r 

D
ec

k

20

0

20

B
-W

or
k 

A
re

a

21

1

0

1

1

21

22

22

23

23

Indicators

1<
24

»

24

I-
A

tt
rl

bu
te

a 
Sw

itc
h

25

l

1

1

0

25

I-
 B

as
ic

 I
D

26

1

t

.1

*

1

1

1

26

I-
B

 T
ab

le

27

1

0

1.

*

27

I-
C

ha
ra

ct
er

 C
ou

nt

28

»

0

»

28

1-
C

on
po

ln
te

r

29

»

t

29

I

1
w

30

1

0

30

I-
E

rr
o

r 
In

di
ca

to
r 

1.
..N

31

1

1

1

1

1

1

*
1

1

1

1

1

1

I

1

1

1

1.

1

1

1

1

1

1

31

I-
 E

xp
ec

te
d 

W
or

d 
T

yp
e

32

1

1

0

1

1

1

1

1

1.

1

0

32

I-
F

 T
ab

le

33

1

1

0

1

0

0

1

0

33

A

34

*

1

0

*

34

a
35

35

Observations

1. Column with many O's and a few 1' s

2. Column with many 1' s and a few 0' s

3. Line with many 0' a and a few 1* s

4. Line with many 1' a and a few 0' s

5. Line with 1' a in columns with no 0' s

Comments

A few subprograms with the 1 in that column
affect many other subprograms with the 0.

Many subprograms with the 1 in that column affect
a few other subprograms with the 0.

This subprogram is likely to be affected by many
other subprograms.

This subprogram is likely to affect many other
subprograms.

This subprogram does not affect another
subprograms.

Example

Column T45: Subprograms S7, 10, and 13 may affect
the subprograms S3, 4. S, 6, 9, 11, 14, 16, and 17.

Column T31: Nearly all subprograms set error
indicators (T31) which are processed by only one subprogram S7.

Line S9: Subprogram 89 may affect -. nly the subprograms S7, 20, and 12;
however, it may be affected by subprograms SlO, 13, 11,12, 16, 18, 21,
5, 6, 14, 17, 23, 26, 7, 4, 6, 27, 29, 8, and 2.

Line S13: Subprogram S13 may affect the subprograms S7, 28, 29, 20,

Line S19: Subprogram S19 may affect only one other subprogram, S25.

129



SUBPROGRAM/TABLE AFFECT DIAGRAM (STAD)
(DESCRIPTION MODULE OF MARSYAS)

Subprogram
Name

S-Block

S-Calculate Value

S -Connect

S-Continuation

S-Disconnect

S-Elements

S-End

S -Enter Name

S-External

S-Initialization

S -Inputs

S-Inputs/Outputs

S-Model

S-Namlng

S-Nopar

S -Outputs

S-Parameter

S-Parameter

S-Place Word

S-Process Terminals

S-Read Argument

S-Read Argument List

S-Read Name

S-Read Terminal

S-Scan Character

S-Scan Operator

S-Scan Word

S-Search Connect

S-Search Table

S\

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17-

18

19

20

21

22

23.

24

25 .

26

27

28

29

Indicators

i
I
TJ

J.

36

0

1

36

o
CO

8

Pi
•o

J.

37

*

37

I-
In

cr
em

en
t

38

1

0

38

£

I

£

A

39

»

1

39

J.

40

1

40

I-
L

ts
t 

Sw
itc

h

41

1

1

0

1

41

•S
a

42

1

42

|

43

0

43

I-
M

od
el

 S
eq

ue
nc

e 
N

um
be

r
44

44

I-
M

od
ul

e 
N

um
be

r

45

0

0

0

0

*

0

1
0

*
0

0

0

45

azJ,
46

0

f

0

1

*

46

2

47

0

*

0

47

t4

g

I

48

1

1

0

0

1

1

48

(J

49

0

0

1

?

49

I-
 P

o
in

te
r 

M
od

if
ie

r

50

1

50

I-
 P

o
in

te
r 

V
al

ue

51

1

51

o
CD
CO

1
Pi

52

52

1

53

53

a

Sa
J,
54

0

1

54

s.
55

1

o

<?

1

55

I-
S

eq
ue

nc
e 

N
um

be
r

56

1

1

56

COJ
57

0

57

I-
S

ta
rt

 D
is

c

58

1

58

1

j

2
59

1

1

59

o
CO

J1
60

1

60

I-
T

ab
le

 S
w

itc
h 

.

61

1

1

0

1

61

i<

62

f

62

I-
T

D
 P

oi
nt

er

63

1

63

I-
T

er
m

ln
at

o
r 

S
w

itc
h

64

0

0

0

0

0

0

0

0

0

0

0

0

1

64

I-
 W

or
d 

T
yp

e 
Sw

itc
h

65

0

t

1

0

0

0

0

f

1

65

I-
W

or
k 

A
re

a 
P

o
in

te
r

66

1

0

1

66

67

67

68

68

130



< z 5 ? j 5 S < * - o u j i u o

i| Liii M * o PE IIPpipl"s

îillilllslllli&lsl̂ iislslilill!
isttsSKSEHsxsiHSftmHHSissui

•»*si
I II5g

§
:~

m
uL-li
§ I
1 1

I I

* : ti
8-8- I B-g

^

i^'M

£ '1 II I

s-sw

•PI IM 'fsl 'M • (al

E!l
i < J_L I ' S* _i

I UJ

"

S-5"
t

!•Î
ss

k

g§
O BC
ec ^

MSt-
£3

Ult

!iII

I I
to «o
I

8"

f*|

ii

l 5~
L|_

5-5

I 1

I 8-8"
. I

I if

I I I

131



REFERENCES

1. Wanted for the 70Ts: Easier-to-Program Computers. Special Report,
Electronics, September 13, 1971, p. 62.

2. Boehm, B. W.: Some Information Processing Implication of Air Force
Space Missions in the 1970' s. Astronautics & Aeronautics, January
1971.

3. UNIVAC Systems Programming: Vocabulary for Information Proces-
sing. Sperry Rand Corp., 1968.

4. MARSYAS-User Manual. Interim Version, MSFC, Computation
Laboratory, July 1, 1971.

5. MARSYAS Language Specifications. Up-dated Version, Computer
Applications, Inc., March 1970.

6. Prasad, N. S., and Reiss, J.: The Digital Simulation of Interconnected
Systems (Up-dated Version). Computer Applications, Inc., September
1970. ,

7. Prasad, N. J., and Gabow, H.: ADEPT-An Algebraic and Differential
Equations Processor and Translator. Systems Consultant, Inc.,
June 1971.

8. Trauboth, H., and Prasad, N.: MARSYAS-A Software System for the
Digital Simulation of Physical Systems. Proc. of Spring Joint Computer
Conference, May 1970.

9. Trauboth, H., and Prasad, N.: MARSYAS-A Software Engineering
System for the Digital Simulation and Analysis of Physical Systems.
Proc. of IFAC Symposium on Digital Simulation of Continuous Process,
Budapest, Hungary. September 1971.

10. Marshall Information Retrieval and Display System (MIRADS), A Data
Management System, User' s Mannual. Computation Laboratory,
Computer Science Corporation, Doc.No. MA-010-001-2H.

11. APOLLO Configuration Management Manual. Exhibit XVffl, NHB 8040.2
(formerly NPC 500-1), NASA, Office of Manned Space Flight,
January 1970.

132 * U ' s- G O V E R N M E N T P R I N T I N G O F F I C E : 1973 - 736-JilO, REGION NO. 3-II



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE S3OO' FIRST CLASS MAIL

POSTAGE AND FEES PAID

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

451

POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

'The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and.special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,

. Technology Utilization Reports and
Technology Surveys.

Details on fhe availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N
Washington, D.C. 20546


