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ABSTRACT .

A method for solving the three-dimensional compressible

laminar boundary-layer equations for the case of a circular

cone and a sphere-cone body at an angle of attack is pre-

sented. The governing equations are modified by a similarity

type transformation and then transformed into a Crocco-type

form. The resulting set of equations is solved simultan-

eously by an iterative method using an implicit finite dif-

ference scheme by means of an efficient algorithm for equa-

tions of tridiagonal form.

The effects of streamline swallowing on a sharp cone

are included by introducing'the true inviscid edge-conditions

at the distance from the wall equal to the boundary-layer

thickness. The validity of the approach was established by

comparison of, the computational results with similar results

by other methods and with experimental data.

It was concluded that at sufficiently high Mach number

and moderate to large angles of attack, the streamline swal-

lowing effects on a sharp cone result in higher values of

skin friction and heat transfer as compared with the class-

ical results for constant entropy.
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B, - B, . Coefficients in the governing

equations (2.23) through (2.25)
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C ,C Specific heat at constant vol-

ume and constant pressure,'
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p K

Cf Longitudinal skin friction

coefficient defined by

cfr
 = ~^2"
5 2 p~ u«
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velocity as defined by (2.09).
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velocity as defined by (2.10).

H . ..................... . ...... Non-dimensional normal veloc-

ity as defined by (2.12).
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ively; non-dimensionalized
h h

by h, = 3±. f h, = -£ .
1 L ^ L

h . . . . j ....... . . ............... Enthalpy

h., ...................... ...... Transformed normal scale

factor in the s., direction as

defined in (2,07) .

K ...... ..... . . . ............... Constant used in the pressure-

density relation (4.24).

k ............................. Thermal conductivity .

L ........... ..... ............. Reference length.
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'/. . Non-dimensional viscosity

defined by (2.13) .

?. Arc length as defined by

(4.02) and (5.02) .

M Free-stream Mach Number.
CO

Pr Prandtl_Number defined to be
V C

. - k .

p Dimensionless pressure non-

dimensionalized by p = £_.
P CO GO

q . . . Dimensionless heat-transfer

rate defined in (2.35) non-

dimensionalized by q = _ ̂ _.
. , . ' . - . ' . . p

CO CO

R Gas constant.

Re Reference Reynolds Number as
,_ L

defined by Re =
OT (JO

1Jr

Rex . Reynolds Number defined by
' p . u L

CO OO

Rex =

r Distance measured from the

origin of the r, 6, <j> coordi-

nate system as shown in Figure

4.1 non-dimensionalized by
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s Entropy

n,,s2/
s3 Arc lengths in the £, n,

direction, respectively,

t Dimensionless temperature

non-dimensionalized by

tt ~
U2/Rff\*

T Absolute temperature.

t Reference temperature defined
via,

by tr -^ .

u^ Free-stream velocity.

u Longitudinal velocity compon-

ent (in C-direction) non-dim-

ensionalized by u = ̂  .
u

on

v Specific volume.

v Transverse velocity component

(in redirection) non-dimen-

sionalized by v = 3— .
u

CO

w Normal velocity component

(in ̂ -direction) defined by

(2.08).

x,yrz Cartesian coordinates as shown

in Figure 4.1 and 4.2.

a Angle of attack as shown in

Figures 2.1, 4.1 and 4.2.
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a' , a' , a' , a' ,a^ Coefficients in (.3.08).
n n n n n

Ratio of specific heats de-

'•' c
fined to be = 2- .

6 ........ ..................... Boundary-layer thickness.

5 . . . . ........ ................. Normal coordinate as shown

in Figure 2.1.

n ......... .................... Surface coordinate as shown

in Figure 2.1.

8 ............. .. .............. Non-dimensional temperature

as defined by (2.11).

6 .................... . ........ Spherical coordinate system

angle as shown in Figure 4.1

y .............. ........ ...... . Viscosity defined by (2.06)

and non-dimensional ized by

y Viscosity evaluated at the

reference temperature, t

5 i Surface coordinate as shown

in Figure 2.1.

C* Scaling function in (2.07)

and (2.08).

7 , Parameter describing a conical

ray in shock layer (Fig. 4.3).
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n Free-stream, density.
oo •*

p Dimensionless density non-

dimensionalized by = £— .

T .. . Longitudinal wall shear stress

component (in ^-direction).

T Transverse wall shear stress

component (in n-direction).

$ Spherical coordinate system

angle as shown in Figure 4.1.

<j> Shear parameter defined in

(2.17).

w Variable used to represent

alternately <j>, G, or 0 in

(3.08).

AC Step size in the longitudinal

(5) direction.

An Step size in the transverse

(n) direction.
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Subscripts

e Inviscid condition at the
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w Conditions at the body surface,
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1. INTRODUCTION

The Navier Stokes equations of motion which describe

compressible viscous fluid flow past a body are highly non-

linear and present formidable obstacles to classical analyt-

ical or numerical methods of solution except in special cases.

However, since at high Reynolds number the effects of fluid

viscosity are confined to a thin layer near the body surface,

many terms in the full equations can be neglected by making

the boundary-layer approximation. The resulting equations

can be solved numerically for specified boundary conditions

at the wall and at the edge of the boundary-layer for pres-

cribed external inviscid fluid properties. This is possible

since the boundary-layer equations are parabolic whereas, the

original Navier Stokes equations are elliptic. Parabolic

equations are in general easy to solve numerically whereas,

elliptic equations are not.
v»'

In order to solve the boundary-layer equations, external

inviscid properties are needed. The usual assumption for the

external flow at the body surface for supersonic flow is

that it is of constant entropy corresponding to either the

oblique shock entropy or stagnation streamline entropy. How-

ever, as the boundary-layer thickens in the streamwise and

cross—flow directions in three-dimensional flow, streamlines

of variable entropy are entrained into the boundary-layer

and the isentropic condition, especially for a body at an

angle of attack, does not hold.

One objective of this study is to develop a method to

-1-
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account for the effect of the variable entropy layer

near the surface of a body at angle of attack on the solutions

for laminar three-dimensional viscous flows as compared with

the classical solutions for viscous flow which have been based

on constant entropy surface conditions. It is interesting to

note that despite a large body of literature related to three-

dimensional boundary layers, this particular area has remained

relatively unexplored.

The literature reviews by Cooke and Hall (ref. 1), Mager

(ref. 2) and Stewartson (ref. 3) reflect the major extent of

work done in the area of three-dimensional boundary-layers.

A case which has received considerable attention, because of

simplifications due to spanwise derivatives being zero, is

conical flow. The majority of the work done on viscous con-

ical flows has been concerned with approximate methods of

solution which are usually valid for small cross-flow and

small angle of attack. Only recently the restriction of small

cross-flow has been removed in work for sharp circular cones

by Boericke (ref. 4), McGowan and Davis (ref. 5), and others.

In conical flows the boundary-layer solution is actually two-

dimensional since similarity exists in the streamwise direction.

The flow near the windward side creates no problems and is

dominated by inviscid conical flow with a favorable pressure

gradient. The region near the leeward plane at high angles

of attack may be strongly influenced by inviscid viscous inter-

actions. There is flow turning toward the windward plane of

symmetry which may give rise to imbedded shocks if the local
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Mach number in the cross-flow plane is supersonic. This may

cause separation. The presence of an adverse pressure grad-

ient can cause the cross-flow velocity to reverse and cause

the flow to recirculate. Typically, the flow in this region

even at moderate angles of attack, exhibits a bump with stream-

lines diverging as they approach the leeside of the body,

(Fig. 1.1).

A cone at angle of attack is characterized by the fact

that the streamlines around the periphery of the cone are

passing through a shock of varying strength and posses diff-

erent entropies. The surface streamlines pass through the

windward meridian plane and have the highest value of entropy.

The streamlines away from the windward plane pass through a weak-

er shock and posses lower values of entropy and enter the

flow field nearly meridionally. There is a layer near the

surface in which the entropy varies rapidly with the distance

from the surface, from the maximum value, to a lov/er value con- ^

sistent with a weaker shock. Thus, although the entropy at

the surface is constant, the entropy of the streamlines en-

trained by the boundary-layer is of varying magnitude. The

question of the magnitude of the effect of the variable entropy

on the viscous boundary-layer flow has been of considerable

concern and importance. This problem also occurs on a blunted

body at zero angle of attack with a bow shock which is normal

for the stagnation streamline wetting the surface. The

streamlines passing through an oblique shock have lower entropy

as they are "swallowed" by the boundary-layer downstream,
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(Fig. 1.2). The same phenomenon occurs on a sharp cone at

angle of attack (Fig. 1.3) where the streamlines away from

windward plane enter the boundary-layer with lower entropy

and create a thin vorticity layer. Of course, outer edge

boundary conditions accounting for streamline swallowing will

yield results different from the classical approach using edge

conditions of constant state as was concluded by Ferri (ref.

6) and Mayne and Adams (ref. 7). A more proper approach to

account for swallowing of a streamline as it enters the boun-

dary-layer, would be to use the edge conditions consistent

with the flow conditions at the distance from the surface

equal to the boundary-layer thickness.

In order to establish the extent of the influence of

the streamline swallowing upon the boundary-layer, a method

for accounting for the effects of vorticity swallowing has

been developed. The objective of the technique presented
>>

here is to determine the effects of the variable entropy edge

conditions on solutions to the three-dimensional boundary-

layer equations for supersonic flow over a right circular cone

at angle of attack. The second part of this work is devoted

to the solution of viscous laminar flows over blunted cones.

The governing boundary-layer equations will be first

modified by a similarity type transformation and then trans-

formed into a Crocco-type form. The resulting equations will

then be solved simultaneously by an iterative method using an

implicit finite difference scheme similar to one developed by

Dwyer (ref. 8) with modifications by Kraus (ref. 9).
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2. THREE-DIMENSIONAL COMPRESSIBLE LAMINAR BOUNDARY-LAYER
EQUATIONS* • •:,

An implicit finite-difference technique originally de-

veloped by McGowan and Davis (ref. 5) will be employed for

solving the three-dimensional compressible laminar boundary-

layer equations over sharp and blunt right circular cones.

The governing equations for a generalized body-oriented co-

ordinate system to be used in the analysis (see Fig. 2.1)

are as follows:

£ - momentum

+ 1- IH + "__ li + JJiL —1.:- _ii_ !Hl (201)
'h2

 9n H3 ̂  h^ ^ K1h2 .'*

+ 1 3 y 3U

n - momentum

u 1 uv 8 2

.fi3

- _ 1 3P . 1 3 y 3v
— •- — ' 3 —— ST" I — 3 /"

ph0
 n ph, [_h., _,

* Detailed presentation of the equations and transformations
discussed in this section is given by McGowan and Davis
(ref. 5) and Der (ref. 10).



and

-6-

energy

cpp

2au 2av

continuity

(2.03)

k at
hL 3C

IT ;- (E1E3?v) + g- = 0 , (2.04)

state

p = Rpt (2.05)

viscosity (Sutherland)

+ c

t + c

3/2

(2.06)

where C = 198.6°R for air.

The ^-coordinate is chosen to be the arc length along
ri. _ _ _ _

the body; therefore, h, will be a constant, L. h2 and h3 are

chosen to be arbitrary functions of the coordinates. C/ n/

and c are dimensionless, consequently the scale factors h,,
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h~ and h3 have the dimensions of length. Similarity-type

transformations for the normal coordinate and velocity are

defined as follows:

h3 «.?* ̂  ~- h., (2.07)
P

and

i p u

w = ±n- — -2- w (2.08)
5 o /Se

where 5* is an arbitrary function of 5 and n an<^ will be

chosen such that similarity conditions are satisfied. For

convenience the following definitions are made:

H _ , G = V r - , e = - , H = and Si = £ . (2.09-2..13)
e . e . e e

The equation of state in the dimensionless variables is

written as:

p = pe/t . (2.14)
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The scale factors h2 and h-j are defined such that the

equations will be in a Crocco-type form. The dimensionless

scale factor h2 is a function of £ and n? that is

h2 = h2(s/n) * (2.15)

The normal coordinate z, is defined as

r, = /I - F (2.16)

and finally we choose the shear parameter $ to replace F

as a dependent variables as

u-17)

Equations (2.09) to (2.17) are next substituted into the
• . ' - , *"

governing equations (equations (2.01) to (2.04)). These

variables are similar to those used by Der (ref . 10) . The

main advantage of these variables is that in the numerical

calculations the integration is always carried out between

£ = 0 (f reestream) to z; = 1 (wall boundary) . Thus use of a

specified finite region in the ^-direction can save large

amounts of computer time over other variables which extend

over an infinite region. This is important in three dimen-

sional boundary-layer calculations where computing times

can become excessive.

The governing equations (equations (2.01) to (2.04)) can



-9-

then be expressed in terms of Crocco-type variables as

follows:

A4(l-<;
2)2 + A5(1-C

2)G + A3 -^ - A6 G
2 = - A?6 - | f

(2.18)

(2.19)

TV Q J. * 9

- Aio° + t'Tc

Al (1^2) If + A2G U - A3 ̂ f If - [Â -Â ] (I-,2) e

(2.20)

1_ l'|_ U «,

and

*

(2.21)

(2A1? + A16) = 0.

The coefficients A,, Aj' ••• • Aig are functions of the

inviscid quantities and body geometry and are defined in

Appendix A by equations Al to A19. In order to reduce the

system to three governing equations, equation (2.18) is solved

for H as follows:
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(2.22)

Substituting equation (2.22) into equations (2.19) to (2.21)

leads to the final form of the three governing equations for

the dependent variables G, 6, and $-:

- T> If + B2G + B3 + B4 If + B5 If '

(2.24)

and

_
c2 *

(2.25)

where B,, B?, ... , B,. are defined in Appendix A by equations

A20 to A33.

The viscosity function appearing in the B. coefficients

(see equations (A20) to (A33)) is given by Sutherland's law as

1 + C/t.,. . _ 1/2
£ = -^ [ p- ] = r- • (2.26) .

9 .+ C/t e
' • ti
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ThCi quantity Dj?,/a-t (see equation (A31) ) is obtained by d i f -

Cercntiating equation ( 2 . 2 6 ) with respect to t; that i:-;,

iLL = £JLL t>e •
at - dQ a t

The boundary conditions on G and e at the body surface

are:

and

0 =
w

V '
or

G = 0

at = 1

(2.27)

(2.28)

(2.29)

where f (^,n) is related to some specified body surface heat

transfer, and t is some specified body surface temperature.

At the outer edge of the boundary-layer the boundary

conditions on G and 0 are:

^

and

G = 1

e =

at c = 0

(2.30)

(2.31)

The boundary conditions on <j) are more complicated.

Applying L1Hospital's rule to (2.17) evaluated at the outer

edge of the boundary-layer yields:

2h
(2.32)
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32FThe quantity -—j must vanish at the inviscid edge; therefore,
9C

at 5 = 0

* I = 0 ,t (2.33)
lo

The boundary condition on 41 at the wall can be derived from

(2.18) applied at the wall. Setting 5 = 1 and using the no

slip conditions result in:

- A- ̂  - $) (2 .34)
/ d> T W

The nondimensional heat- transfer rate can be shown to be:

t2

(2.35)
p u -- P e e w
"̂  eo oo r

Also the skin friction coefficients can be shown to be:

- - 2 4teVe ' , ,,,f m ~

and

C . £. ai ; a 2 . - V (2.37)
P *



-13-

Finally, the physical normal distance can be expressed as:

1
s., = - / -| c 6d? -^— • (2.38)J > 4

The governing equations and boundary conditions are

now in a convenient form for solution using numerical methods,

The next section will deal with developing an implicit finite

difference method of solution.
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3. NUMERICAL METHOD OF SOLUTION

The governing equations presented in Section 2 will now

be reduced to finite-difference form in order that they may

be solved numerically. The complete solution to be obtained

on a digital computer will be comprised of three separate

cases: a general scheme, a scheme in which similarity exists

in one of the surface variables/ and a scheme in which simi-

larity exists in both surface variables. Finally, the com-

plete computation scheme will be explained as a combination

of the three separate cases. This development is identical

to that presented in reference 5.

The governing equations are solved using a step-by-step

finite-difference method similar to that suggested by Dwyer

(ref. 8) with modifications by Krause (ref. 9). The method

2has accuracy. of order A , where A is either A£ or AIT and is

stable for negative transverse velocity if proper step sizes,

are chosen. A schematic of the difference model is presented

in Figure 3. a. It should be noted that the equations are

written at the point (0,n) and solved for the values of the

quantities 4,, 0 and G at the point. (2, n). Thus, the quantities

2
, (~) , (ff) • (~ ) , and co , where the

0,n 9? 0,n **- 0,n 9ri 0,n °'n

subscripts (0,n) refer to the point (0,n), can be expressed

as:



0,n
to O _ + to •} _ -)

= 2'n , 3'n + 0 ( A 2 ) , (3.01)

(3.02)

and

(3.03)

where

and

+ W

0 ( A ; ) ,

(3.04)

with i = 2,3

(3 .05)

_
> n + 0 ( A ) , (3.06)

and

U2,n • ^-.+ O ( A ^ ) . (3 .07)
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The governing equations (2.23) through (2.25) can be

written in the following general form:

o
^ - • • • » / i . . \ '/-... \ = 0 ,. . . 4. .

al (̂ 71 a2 un a3 a4 a
2 n J

(3.08)

Substituting equations (3.01) through (3.07) and re-

arranging yields the following expressions for -(3.08):

+ B- + Cw = D '
2,n-l n-2,n nw2/n+l n

where

"2
'B = -( >1 - _ 4 _ + ) (3.11).
n 2 . 2 Af; 2An '

al
C* = i (-iy + o-̂ ) ' , ' (3.12)n 2 2 2 A c

and

•
OT
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"51 n^ n
? - ̂ __

 W3,n-l " 21̂ "
 wl,n

a/i at; <* c
' n - "v 4. n

2 " A? 2An W3,n + 2A^ U4,n

In the special case for which there is similarity in the

^-direction for example at the tip of a sharp cone or the

nose of a blunted cone, a Crank -Nicolson finite-difference

scheme can be used in the cross-flow direction with accuracy

2
of order An . ' In this scheme, the equations are written at

the 0-point and solved for the value of the quantities 6, 4>,

and G at the 2-point. Thus, yields the following relations

(Fig. 3.1b) for the value and partial derivatives of a vari-

able:

•".^••V+.OUn2).

(3.15)

(3.16)



where

i/n

and

and
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O(AC )

(3.17)

>. with i = 1,2

(3.18)

^3n'0,n

to.

AAn
-n + 0(An). (3.19)

Similarly, as before, the governing equations can be

written in the form of equation (3.08) with a. = 0; upon
n

substituting the finite-difference form of the partial de

rivatives as specified in equations (3.14) through (3.19)

into (3.08) a relation of the form of equation (3.09) is

obtained. In this case,

n,
n

2AC

(3.20)

a. a

Bn =
n

T + ATT (3.21)
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Cn =•

a •
n,

4AC
(3.22)

and

D = -n

-
n

(3.23)

i
aln,

a-
n n,

0).

Equation (3.08) ban be evaluated in a similar way for the case
' .' • • '

similarity in the n-direction with o5 = 0.
• n

Finally, an iterative finite-difference scheme is used

for the case of similarity in both the ^-coordinate and the

n-coordinate. In this case the governing equations reduce

to ordinary differential equations with the equations being

written at the 2-point and the values generated at the 2-

2point; subsequently, the accuracy is of order AC . The par-

tial derivatives, which are now actually total derivatives,

become:

— to
(3.24)

and

w0_ 2 , n+1_ :

_

2 ,n ,,n-l_
.

9r;'2,n
(3.25)



-20-

Again, the governing equations can be written in the form

of equation (3.08) with a. = a^ ~ 0. Upon substituting the
n n

finite-difference form of the partial derivatives as expressed

by equations (3.24) and (3.25) into equation (3.08) equa-

tion (3.09) results, where:

i
a-i

' I nA = ( — —\ C***„ V ^ ^ _ / , \Jn

Bn = (-4̂  + a2 ), ' 0.27)
A n

C n = < 2 + ' • <3'28>

and D
n
 = ~ 03 • (3.29)

n

Thus, one can apply equation (3.09) at N-2 evenly spaced

points in the normal direction from point 2, one step away

from the outer edge, to point N-l one step away from the wall.

The general solution to equation (3.09), as given by

Richtmeyer (ref. 11) for example, is of the form:

03, = E-ou- „,T + F . (3.30')2,n n z,n+l n

If one applies the outer-edge boundary conditions at

5 = 0 and requires that equation (3.30) holds independently
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of step size, the resulting conditions are:

and F^ = 0,1,1 respectively for 4> , 6, and G.

Then the following recursion relations can be derived

E ' = -r-i - - - r (3.31)
A E T + Bn n-1 n

and

v* - n n n-1 a TO\r - — s — i - r . (3.32)
A E , + Bn n-1 n

With the known values of the variables at the wall and
i i . . . .

known E and F , one can calculate the values of to^ to

The boundary conditions at the wall for 6 and G are 7^-
' ' • ' e

and 0, respectively. However, the boundary condition at the

wall on tj> from (2.34) has the following form:

72N 2,N .
~ ' - - L --

,-j 7ov(3.33)

With a 3-point difference form for the above partial

derivatives at the wall, one obtains:

*2,N-2>



-22-

Now using equation (3.09) for <j> at the point N-l gives

and additional relation:

BN-1*2,N-1 + CN-1*2,N = °N-1 {3'35)

The final expression for this boundary condition is determined

by applying equation (3.30) for <j> at N-l:

FN-1 (3'36>

Applying equations (3.34) through (3.36) and evaluating

for <j>2 , one arrives at a quadratic equation having solution;

i 7 * 2 ' '
- /b - 4a c ._ _„(3'32a

with

' CN-1 ' ' BN-1r\ — .j___ -4- 4T*1 -4- T** •*• .» O A /* -. "5 I T X ft i

R

N-l ' "N-l
• i • "N-l

i = 4K, , •+ F,

and

c .= - A-,!*̂  M90 M2A? .. (3.40)
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It should be remembered that the coefficients A inn

equation (3.09) are functions of the dependent variables $,

0, and G and are unknown a priori. An initial guess for these

unknown variables is required and the result is iterated

upon until the values of these unknown variables are relaxed.

It has been found that the l/4> term in equation (2.25)

and subsequently in equation (3.08) caused the iteration

scheme to diverge. Therefore, a "quasi-linearization" of

this particular term was introduced as follows:

= 2/4,G - 4,/«t,G (3.41)

where <f>r is the value of the shear parameter at the previous

iteration; with this modification the solution coverged

rapidly. • .

3.1 General Solution Technique

The system of non-linear second order parabolic equations

developed in Section 2 are solved simultaneously by an

iterative process for a sharp circular cone and for a spheri-

cally blunted cone. The governing equations (2^23) to (2.25)

are reduced by replacing the partial derivatives by finite

difference expressions, to algebraic equations having the

tridiagonal form of equation (3.08). The a- coefficients in

equation (3.08). are functions of the dependent variables 0,

4> and G which are to be determined and must be represented
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by their assumed initial values and are subsequently updated

during the iteration process. At the tip of a sharp cone or

at the stagnation point of a sphere cone (which correspond

to C = 0 and n = 0) similarity in the £ and n directions

exist. The mathematical solution at this point ,is considered

as a limiting case as 5 -»• 0 and n -»• 0. The governing equations

at this point reduce to ordinary differential equations in

£ only. The solution to this two-point boundary-value prob-

lem is a starting solution. For grid points on the surface,

corresponding to c = 0 and n > 0, similarity in £ exists(there

is no £-dpendance in the equations) and the solutions are

obtained using the starting solution and marching circumfer-

entially around the body in the n-direction. Thus, the sol-

ution in the (n>£) plane is reduced to a two-dimensional

problem. In the plane (£,£), with n = 0 and C > 0, similarity

in n exists and two-dimensional solutions in the windward '

meridian plane are obtained. For points outside of the E; = 0

and n = 0 planes the dependance on E., n and c exists and the

solutions are obtained by using the solution at the windward

plane and marching in planes around the body in the n-direction

and stepping forward in ^-direction (Fig. 3.2). At each

(£,n) grid point on the surface, iteration is applied on the

values of 0, <j> and G in the normal direction until the slope

of the shear parameter in the normal direction is relaxed.
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4. fJOLUTlOMS FOR SHARl* CIRCULAR CONKS AT ANGLE OF ATTACK
WITH STREAMLINE SWALLOWING

The recent contribution in the field of three-dimension-

al boundary-layer studies by McGowan and Davis (ref. 5) has

extended the numerical analysis of three-dimensional laminar

flow to sharp circular or elliptical cones at angle of

attack. The work by Boericke (ref. 4) treats laminar flow

over circular cones at angle of attack using Moore's trans-

formation and numerical as well as experimental surface

pressure distributions. Quite recently the work by Mayne

(ref. 12) presents an analysis of laminar boundary-layers

on right circular cones at angle of attack, including the

effects of streamline entropy swallox^ing with the assumption

of a negligible effect of streamline swallowing in the

windward plane (a similarity solution at £ = n = 0 has been

used to apply to the region 5 > 0, n = 0).

In the present work a method for solving for flows over

sharp cones at angle of attack with streamline entropy swal-

lowing is developed. The details of this method will be

presented in the following sections.

4.1 The Geometry of the Problem

In spherical coordinates, an infinitesimal arc length

is given by (Fig. 4.1) :

d£2 = dr2 + r2(d$2 + sin2*de2'). , (4.01)
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l.n the e, n, r, body-oriented coordinate system, as shown

iri Figure 4.2, an infinitesimal arc length along the surface

of a sharp cone is

where one can identify

r = £ and h_ =

dn2 (4.02)

h, = 1, dn = sin(|> d0 (4.03 a-f)

-r—- = 1 and =0

4.2 Conditions at the Outer Edge of the Boundary Layer

The usual procedure of matching the viscous and inviscid

flow fields at the edge of the boundary layer assumes the in-

viscid value of the pressure at the body surface and the en-

tropy value consistent with the oblique shock or stagnation

streamline value. It has been indicated, however, that there

is a need to develop solution techniques which include shock

layer vorticity (ref. 13). In the current scheme the initial

step in determining the inviscid edge properties is to obtain

a boundary layer solution for inviscid values at the surface.

Having obtained the magnitude of the boundary-layer thickness,

new inviscid values are obtained by interpolating the inviscid

properties for cones (ref. 14) around the body at a distance
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from the wall equal to the boundary layer thickness. With

these inviscid properties, a new boundary-layer solution is

then obtained at the next downstream station.

The scheme adopted for determining the inviscid properties

is based on the invariance of total enthalphy in the inviscid

part of the shock layer which is true if the total enthalpy

in the freestream is constant. Due to the presence of vor-

ticity in the inviscid flow, the velocity and temperature

gradients are no longer zero at the boundary layer edge. How-

ever, it is assumed that the net energy flux between adjacent

fluid laminae in the edge region, particularly on sharp bodies

becomes negligible.

4.3 Non-Isen'tropic Conditions

The entropy is defined by the expression

ds = T rev

Using the thermodynamic relation

, _ dh - vdp

one can show for a perfect gas with constant specific heats

with
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pv = RT ,

C
-£. = Y
C
V

C - C = R
P v

that the change of entropy is related to pressure and density

by the expression

- - p/prefS - S f = C
 rer

ref v *" 7^7= 77
(p/P r e f)

Y

Therefore the parameter

K = p/P
Y (4.04)

is a measure of the change of entropy and can be used to re-

late the value of entropy to pressure and density.

4.4 Boundary Layer Thickness

The physical coordinate normal to the surface of the

body is defined by equation (2.38) as

S, = - /. £ 6 d c — ( 4 . 0 5 )

c
which results in

= Y(O ( 4 . 0 6 )
L e . \
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If we define the thickness of the boundary layer at the point

where the local tangential velocity u in the streamwise £-

direction reaches 90% of the edge value or where F = — = .9,
e

we obtain the boundary layer thickness 6 = __ Q:E — . y

= Y(N)

F = .9

/—where g was replaced by /g in order to insure similarity at

the tip (see section 4.9). With Reynolds number defined by

p u L
Re =

we obtain an expression for the boundary layer thickness

=
/Re"

(4.07)

4.5 Location of the Edge of the Boundary-Layer

The location of the edge of the boundary-layer in the

shock layer is specified in terms of the 1 parameter which

identifies rays in the conical flow (Fig. 4.3):

C =
b

The expression for the £ parameter when evaluated in terms

of the boundary-layer thickness 5 and body coordinate E,,

takes the form
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_ 6/cos <j>
€ = — : (4.08)

(€L - 6tan A )(tan A (A) tan A )c s c

The shock angle <j> is interpolated by the interpolation rou-s

tine as A = A (n) and the 6 value is known from the previous
S S

£ station.

4.6 Inviscid Data

The inviscid data used as an input to solve the boundary-

layer equations is obtained from Jones (ref. 14). In order

to obtain a consistent set of inviscid data for the case of

entropy swallowing, the input values of v , w , p , and p
' N^ ti • \2 ^2

at discrete points around the periphery of a body, and

Bernoulli's equation

? o o
Q + wo + u * + —- -JL. - 2hn = 0 (4.09)e e e p Y-l 0

are used.

In the above equation the expression for.v is found

from the 5-momentum equation

9ue £ue
 9u

e r 8pe
v = ±. + ±. _; E + s e ( A
Ve 8n ,ve 85 vep.e 35 . (4

9ueand a 5-point difference expression for is used, i.e



-31-

The follov;ing two expressions require special attention

in the plane of symmetry where v = 0:

3u 1 3pe

The first expression is obtained by a limit process and the

second one is obtained from the £-momentum equation

' L. ̂  - L- (v - ̂ - i- 1_ !!S)
ve H ~ ue

 (ve an pe ve 35 '

With equation (4.10), equation (4.09) becomes

2 2 2'

/z. j_ JE.N + 2u fi_ ̂ N /
\ Pe v 3C / e\v

e H / \
, + w 2

' e ' e " ̂ : ' . ~ ̂ " e v* x * p e ve ^ ' e

-l 1
K - ho = F) =

which is of the form

9u au_ ap
F / hA, u. , v , w , p , K, £, —-, —-, —-,1 0' e' e'e'^e' ' ^ 9 £ 9 n 3 £



-32-

Introducing equation (4.11) and evaluating the equation (4.14)

at W points/ a set of N simultaneous nonlinear equations in

u =

is obtained and is solved by the Newton-Rapson iteration tech-

nique using the Gauss-Jordan method.

Defining

3F.(u)
(4.15)

J.J dU .

with the starting velocity vector

»0 = (U10' U20 Un0}

the solution vector for velocity is

"* K • . "T • J\ / A t *• \u = u + 6 (4.16)

— K
where 6 is the solution vector for the set of simultaneous

linear equations

(u) 6 . = - F±(u) (4.17)

and is obtained by the Gauss-Jordan method.
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With

6 . = - AU. (4.18)

the solution vector for velocity is determined for the k-th

iteration

u k+1 = u K - Au K . (4.19)
J J J

In order to compute the values of u which are consistent
t£

with the entire set of the inviscid data, the following in-

viscid values have to be given or generated:

Pe
 9Pe

 3pe 9ue
pe' ue' ve' we ' K = ̂ ~7' TT' W

where u can be used as initial values. In evaluating the

inviscid values, the symmetry relations for the windward and

leeward planes are utilized. All interpolations are made by

the cubic spline method (Appendix B) .

In the present analysis, including the effect of the

entropy swallowing, the edge conditions are determined at

the normal distance 6 from the wall and they vary from station

ri O
to station in the £ direction giving rise to gradients -^— ,

3ve
 3C

where Q = u , v , p , and t . The derivative -%-=— is obtained
t- tp \2 ti O ̂

from the n-momentum equation (2.02) as
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3ve _ / V0 . .r . 3p,

a!

and the — — derivative is obtained from the energy equation
o 5

(2.03) as . . .„

u
e
 e

(4.21)

3t
In order to obtain - - in this expression, the equation

on

Y-l 1

te = Pe
 Y K(n)

 Y

is used as follows:

(4*22)

For the case of constant entropy with zero values of deriva-

9 Qtives in the quantities -r-jr / the inviscid E.-momentum equation
o t,

applied at the surface yields:

(4'23>

and using the fact that the entropy is constant on the sur-

face of a cone:
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peK = -^- . (4.24)

One can then generate the entire set of inviscid data by

the method described previously.

The value of the inviscid, outer edge temperature is

obtained from (4.18) along with the perfect gas law (2.05) to

(4.25)

and therefore

an • Y Pe ' }

From the inviscid n-momentum equation, one can get an ex-

pression for the pressure derivative:

, Dp 3v . .
— T—- = - v (_-£•+ u) . . (4.27)pdn e 3n e'

This form of the pressure derivative is convenient since the

1 pe " 8pevalue of — -—— is necessary in (A10) and although both -—v d n o r\

3P,
and v go to zero at certain points, the quantity — -r

does not, for example at the windward streamline.

The inviscid flow properties are determined by the

previously described method wich reduces to a solution of

a set of non-linear simultaneous equations for u . In solv-

ing this system the following two cases are considered:
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1) for isentropic conditions the surface entropy is

Yassumed to be constant for the entire shock layer, K - p/p

- constant

2) for entropy swallowing the entropy varies with n,

5 and £, therefore, for each 5 station the value of K at the

edge of the boundary layer'is K = K(n) = P —. Since both
P(n)y

pressure and density vary in the normal and circumferential

directions, p = p(n/?) and p = (r\,$) are obtained by a double

interpolation routine using cubic splines as p(n) = p(n><5)

and p(n) = p(n/6)« With the p(n) and p(n) values known, the

velocity u is obtained by the method described in this

section. In order to make the inviscid values generated by

Jones (ref. 14) consistent with this program, certain con-

version factors have to be introduced:

P

and

p = -— = pT, where subscript J denotes data by Jonesp j .

p = £_ = pJ(J M
2 sin2 <j>c)

4.7 Limitations of the Inviscid Flow Methods

The boundary layer equations can be solved once the

inviscid edge conditions are prescribed. The computation

of the inviscid properties is complicated by the existence

of a strong entropy gradient and the occurrence of a singu-

larity at the leeward symmetry plane.
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The flow around a cone at an angle of attack, which is

of interest in this work, is rather complex. One can dis-

tinguish the region on the lower surface of the cone which

can be represented by elliptic equations. In this region

the effect of the boundary layer is present but one can

assume that the results of the inviscid theory are valid.

The flow above the body is represented by hyperbolic equations

and can be solved by the method of characteristics reaching

in some cases as far as leeward plane. However, the flow

symmetry is not satisfied in this region for high angles of

attack which indicates in general the possible presence of

internal shocks (ref. 27). The region near the leeward plane

with separated flow and i-nternal imbedded shocks is dominated

by strong viscous effects and should be handled by equations

which include viscous effects even outside of the boundary

layer (ref. 15). The possibility of the presence of internal
»>•

shocks can be inferred from the fact that the flow Mach number

.in the cross-plane reaches values greater than unity on the

upper surface (Fig. 4.4). It can be concluded from the scatter

of the inviscid data that the computed inviscid data are not

accurate for these conditions and the computed viscous para-

meters may not be precise.

Current techniques for obtaining the inviscid flow

properties include perturbation methods (refs. 16-18) and

numerical methods (refs. 19-22). The perturbation methods

rely on first order perturbation solutions for the velocity

components and lead to considerable inaccuracy in velocities



-38-

and pressure at large Mach numbers and at moderate to large

angles of attack. The numerical methods for computing the

inviscid conical flow are applicable at relative angles of

attack ct/<j> up to unity. The computed pressure distribution

is generally fairly accurate, however, the computed values

of velocity components u and v are not. A more consistent

set of inviscid data is possible by using the computed or

experimental pressure distribution and entropy value at the

windward plane and computing v, p, and u from cross-flow

momentum, conservation of total enthalphy and constancy of

entropy at the surface (ref. 4). A comparison of the pressure

distributions computed by various methods (ref. 4) including

the values used in this analysis is given in Figure 4.5.

The pressure by Moretti (ref. 19) and by Jones (ref. 14)

give the best agreement with the test data by Tracy (ref. 23).

Since the present method accounts for the effects of entropy
v-

swallowing and the pressure distribution across the entire

shock layer is required, the readily available inviscid values

by Jones were used. It should be noted that this pressure

is a fairly good approximation to experimental pressure over

most of the body, but may become inadequate in the leeward

region where the strong interaction with the viscous flow is

not accounted for.

4•8 Difficulties at the Leeward Plane

In solving three-dimensional laminar boundary layer

equations, difficulties were encountered in obtaining solutions
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at the leeward symmetry plane where a complex interaction

between the inviscid flow and the boundary layer occurs,

(Moore, ref. 24). Moore showed that the cross-flow momentum

equation has a unique asymptotic solution at certain condition

and non-uniqueness occurs otherwise. This indeterminacy was

attributed by Moore to a lack of previous history of the

fluid which enters the leeward region from around the cone.

Solutions in this region were studied by a number of authors,

Moore (ref. 25); Cheng (ref. 26); Vvedenskaya (ref. 27);

Libby (refs. 28-29), and Dwyer (ref. 30). Murdock (ref. 31)

obtained solutions in the leeward region which were not

known previously and determined conditions for which the

boundary layer in this region is independent of the out-of-

plane flow. He investigated cases for which complete boundary

layer solution does not exist and concluded that the boundary

layer model has a defect in this case which results in dis-

continuous derivatives in the leeward plane. This is the

region where the boundary layer model breaks down and the

continuity of mass is not satisfied.

It was found in this study that the boundary layer

solution at the leeward plane does not exist, and that the

region within which convergence cannot be obtained grows with

angle of attack. It is believed that the boundary layer

equations are inadequate in this region which was demonstra-

ted by the inability to produce solutions except at small

and moderate angles of attack. This seems to be confirmed

by the fact that the boundary .layer thickness does not grow
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as fast as was observed experimentally in the leeward region.

4.9 Solution to the Problem

The governing equations to be solved are (2.23) through

(2.25). Implicit within this set of three equations, the

quantities A^ , A~ / ... / A,g (see equations (Al) through

(A19)) need to be specified. These nineteen quantities de-

termine all the inviscid and geometric restrictions on the
*

flow. However, the quantity £ has yet to be determined.

In order for the quantities AR, A,-, and A,_ to remain finite
*

at the tip of the sharp cone, s, must be chosen to be /£

(this could have been deduced from the usual form of the

similarity transformation as is used for most compressible

cone solutions). Note that now the three governing equations

(2.23) through (2.25) are similar in £ for the case of con-

stant entropy since there is no dependence of the inviscid ^

quantities on £ and since there is no explicit dependence of

the set A,, A2, ... , A, g. A., A.,, A,,, and A,g arc zero
S (~* S fl S rK

along with terms such as -^- , — , and -r-|- . For this set of
at, at, at,

cases, injection will not be considered so that H will be

zero. Therefore, the boundary condition on <|> as in equation

(2.34) reduces to the following:

If - - +„
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The problem of obtaining the starting solution for the

step-by-step integration in the n-direction around the cone

still remains. Note that a similarity solution exists at

the point at which the transverse pressure gradient, and

likewise the transverse velocity given by equation (4.27)

is zero. For a circular cone this occurs at the windward

and leeward streamlines only. The integration will advance

in the positive n-direction from the windward streamline

(at n = 0) in the case of a circular cone.

Thus, the entire set of equations has been specified,

and the finite-difference scheme has been developed so that

the solution can be integrated step-by-step around the body

(Fig. 3.2).

4.10 Results

Based on the analytical model presented, a computer

program for solving the system of parabolic boundary-layer

equations for a circular cone was developed. This program

is a modification of the one developed by McGowan and Davis

(ref. 5). This program begins computations for constant

entropy at first, computes the boundary-layer thickness at

the second step, and switches to the program with entropy

swallowing at the third step and approximates the boundary

layer thickness at this step (which is not known a priori)

by the boundary layer thickness at the preceding step.

To be more accurate, after the completion of computations

over the prescribed number of steps in the first sweep, a
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socond sv/eep can be initiated by returning to the beginning

of the program and using the true boundary layer thickness

at each station, respectively from the first sweep. The

option for performing the second sweep has been provided.

As will be shown later, the error resulting from the approx-

imation of the boundary layer thickness by the value from

the previous step is negligible.

The computed results include: skin friction, heat

transfer, boundary layer thickness, displacement thickness,

Stanton number and the normal direction profiles of velocities,

temperature, density, and shear parameter. The results of

the computations will now be discussed in detail for particular

cases presented in Table I. Comparison of results with ex-

perimental data and results from other sources will be made.

The computations were performed at conditions which cor-

respond to the tests performed by Tracy (ref. 23) and are:

M = 8 Re = 4.04xl04 where L = 1 ft.

*c -

T =

10°, *c

84.2°R

= 25° Y = 1.4

Pr « .738

T = .46 T R = 1718 ft2/sec2°Rw : o

C = 198. 6°R

The computed cases are tabulated in Table I. The computations

were performed on an IBM 360-65 computer and required a .

storage capacity of 400K. For the computed cases, 76 points

in normal direction from t, = 1 to c = 0 and 61 points in
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transverse direction n were used. It was found that this

combination of steps represented an optimum from the point of

view of convergence, accuracy, and computing time. It took

approximately 2.3 seconds to compute the solution at a grid

point. The compile time was 4 min. The skin friction and

heat transfer were normalized by values C,;,. and q at zeroJ f£O MWO

angle of attack, respectively (Table II). Longitudinal and

transverse skin friction and heat transfer distributions in

the transverse direction for <f> = 10 , and a = 8°, 10 , andc

12 and various values of the Reynolds number are shown in

Figures 4.6 to 4.15. The same parameters are shown for 4>
t*

= 25° and a = 12.5 in Figures 4.16 and 4.17. These figures

show values for the constant entropy cases (no swallowing)

and for entropy swallowing where inviscid data were interpo-

lated at a distance from the wall equal to the thickness of

the boundary layer, $. Heat transfer results for $ =10 ...c

are compared with the tests by Tracy (ref. 23).

The longitudinal and transverse skin friction distribu-

tions for 1> =10°, a = 8°, and Re = 4.04 x 10 are shown in

Figure 4.6. The Reynolds number is moderate and the boundary

layer has a significant thickness. As a result of entropy

swallowing the values of the skin friction are higher than

those for constant entropy over almost the entire periphery:

about 2% at the windward and 4% at the leeward region. A

similar trend is displayed by the heat transfer in Figure 4.7.

Heat transfer shoxvs good agreement with the test values by

Tracy (ref. 23) except toward the leeward region and windward
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region where the computed value is about 3% higher than the

test results. Figures 4.8 and 4.9 show the same parameters

for higher Reynolds number, Re = 4.04 x 10 . Because of the

thinner boundary layer, smaller entropy swallowing effects

are noticeable as is expected. Figures 4.10 and 4.11 show

o 4the computational results for a = 10 and Re = 4.04 x 10 .

As before, there is a marked effect of entropy swallowing

on Cf , Cf and q . A fair agreement of computed heat trans-

fers is still apparent, although the differences are larger

near the planes of symmetry and are about 4% at the windward

side. The effect of entropy swallowing is reduced by a high-

er Reynolds number, as is noticeable in Figures 4.12 and 4.13.

Considerable difficulties -were encountered in obtaining solu-

tions for <x/<j> > 1. This is the limit of validity of the
C "~

inviscid data which becomes progressively more inaccurate as

a increases. Figure 4.4 indicates the scatter of the computed

inviscid data for ex = 12 , <f> =10 as obtained by Jones
^̂

(ref. 14) and the distribution of the flow Mach number in the

cross-flow plane, M . It is obvious that the inviscid values

are inaccurate and the fact that M reaches a value of unityc

at Q = 95 indicates a possibility of internal imbedded shocks

(ref. 27). Results for a = 12° are shown in Figures 4.14

and 4.15. Figures 4.16 and 4.17 show results for <J> = 25°

and a = 12.5°. Although the trends are still the same, the

differences between results for entropy swallowing and no

swallowing seem to increase. Figure 4.18 represents a com-

pilation of heat transfer distributions for a 10 cone at
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a - 8° and includes experimental data by Tracy, results of

computations by Eoericke (ref. 4) based on experimental pre-

ssure, and pressure by Moretti for M^ = 7.95, and the results

by the present method for M^ = 8. The results of this analy-

sis for entropy swallowing at M^ = 8 are higher than the

results based on pressure by Moretti at M^ - 7.95 as should

be expected. A similar comparison of heat transfer results

for a = 12° is shown in Figure 4.19.

The results obtained in this analysis can be compared

with the recent solutions by Mayne (ref. 12). The results

for <j> = 10° and a = 8 (Fig. 4.6, 4.7) show good agreement
C " • . .

of skin friction values and heat transfer except in the

windward area where Mayne''s results show that longitudinal

skin friction is identical with the classical value and heat

transfer which is lower than the classical value. In the

case for <}> =25° and a = 12.5° (Fig. 4.16, 4.17), there is
C*.

qualitative agreement in the skin friction, except that the

results by Mayne for transverse skin friction is becoming

lower than the classical toward the leeward side, while the

heat transfer results by Mayne are slightly higher near the

windward side and become lower for 0 > 60° than the classical

values. The heat transfer results by Mayne for these two

cases seem to lack consistency as compared with the results

of this analysis which are consistently higher or identical

for decreasing a values and high Reynolds numbers with stream-

line swallowing for the range of computed cases. It is be-

lieved that these differences are due to the fact that the
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streamline swallowing effects in the windward plane have been

neglected by Mayne. Mayne argues that the vprticity effects

are negligible in this region and assumes the similarity

solution at £ = 0, n = 0 to be valid for £ > 0 and n = 0.

Although the variation of flow properties in the windward

plane is small, they are finite. The effects in the adjacent

meridian planes are increasing and result in different cross-

aowise derivatives, -^ , which lead to higher values of viscouso n
parameters in this area.

The circumferential boundary layer thickness distribution

for a = 8°, 10°, and 12° is shown in Figure 4.20. The rate

increase of the computed values of 6 toward the leeward plane

is not as high as of the experimental data by Tracy. The

streamwise boundary layer thickness distribution in the mer-

idian planes 0 = 0°, 90 , and 150° is shown in Figure 4.21.

It follows the law:

cx

/Re~x

The variation of the entropy parameter p/pY in the circumfer-

ential direction is. shown in Figure 4.22. The entropy decrea-

se is larger for increasing angle of attack a and for decreas-

ing Reynolds number (larger 6), which is consistent. It can

be concluded that the entropy layer grows with the increase

of a and 6 .

It has been observed that the computed results fluctuate

somewhat after the program switches to .the variable entropy
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scheme as shown in Figure 4.23. This is due to the impact

of the different inviscid data set used in the variable

entropy part of the program, different parameters used in

the finite difference schemes arid computed in the constant

entropy phase of the program. This is also consistent with

a slightly different inviscid data set and due to nonsimilar-

ity of the present scheme (&Q- £ 0) . These fluctuations
3 C

practically vanish after the third step.

It was pointed out that the entropy swallowing effects

are accounted for by estimating the inviscid data at the

distance from the wall equal to 6 from the previous step.

This approximation results in some error which is shown for

a = 10° in Figure 4.24. The results from the second sweep

(second set of computations based on true 6 from the first

set of computations) are higher, by .1% at the windward side,

.3% and .5% at 90° for q. and Cf/ respectively and go to 3%

and 1% for q and Cf in the leeward area. For most practical

purposes this error is small, and in view of the fact that

the leeward results are not precise, the first sweep can be

considered as satisfactory.

4.11 Gonelusions

The results of the present method for solving the laminar

boundary layer equations for a circular cone with entropy

swallowing have demonstrated the validity;of the approach of

this analysis for the representation of viscous flow with the

effects of entropy swallowing. In particular, the computed
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heat transfer results q /q are in good agreement with the

experimental results by Tracy and with results produced by

other methods (ref. 4,12). The effects of entropy swallowing

result in values higher than the values for constant entropy

and this trend is consistent within the range of the $ , a
- --- • . _ C^

and Re values used in these computations. Larger differences

occur near the leeward region and this is believed to be due

to the inadequacy of the boundary-layer equations as demon-

strated in:

1. The inability to predict a sharp rise of boundary layer

thickness in this region

2. The inability to produce a solution near the leeward

plane which is deteriorating with increase in angle

of attack a.

The inviscid flow variables by Jones (ref. 14) seem to be

satisfactory for a/<$> up to unity and become inaccurate forc

larger relative a values over most of the body. They become

inadequate near the leeward plane where strong interaction

effects may be important.

The error resulting from approximating the boundary

layer thickness 6 by a value form the previous step is

practically negligible and single sweep computations are

sufficient.
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5. SOLUTIONS FOR BLUNTED CONES AT ANGLE OF ATTACK

Nearly all real configurations for hypersonic vehicles

or lifting bodies require a bluntness of finite radius in

order to reduce the heat transfer. Since a blunted body is

of considerable importance, the second part of this work is

devoted to the blunted-cone configuration, in particular to

spherically blunted circular cones at angle of attack. The

method of solution is similar to the one used for a sharp

cone; consequently the same computer program can be used with

proper modifications. ,

5.1 The Geometry of the Problem

The analysis of the viscous boundary layer flow around

a blunted cone is performed as follows. The spherical part

v/ith symmetrical flow is solved first (Fig. 5.1, region I).

After the computations have been carried out a certain distance
V"

beyond the body axis, a transfer of coordinates to the spher-

ical part about the body axis with unsymmetrical flow takes

place (region II). At the sphere-cone junction, the program

switches to the conical coordinate system (region III) and

computations are continued in the same way as on a sharp cone.
i

From the expression for the square of a line element in

an orthogonal curvilinear system .

2 2
 2

2 2da = h d£ + h dr, + h d.^ (5.01)
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one can write for a spherical system (Fig. 5.2)

di2 = dr2 + r2d<fr2 + (r sin<j.)2 d82 . (5.02)

and identify the scale factors for' the surface coordinates

as

h, = r , h» = r sin<J> ,

(5.03 a-d)

C = <t> and n = 0.

When nondimensionalized by the radius of the sphere r , the

following relations hold for the surface of the sphere

hl i ^2— =1 , -̂g— = COS<p ,
o

h2 3h2— = sin<i> and ~ = 0r OT\
o

(5.04 a-d)

5.2 Flow About a Sphere-Cone

With the scale factors h, and h2 identified, the invis-

cid coefficients A. are determined for the symmetrical region

I with special attention given to the case of the stagnation

point (<j> = 0) and the region outside the stagnation point

U > 0). • •

The program for the flow about the sphere at an angle of

attack is broken up into two parts (Fig. 5.1):
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a) symmetrical flow about the wind axis v/ith zero crossflow

s o
velocity v and azimuth symmetry (—• = 0), this is denoted

by region I.

b) unsymmetrical flow about the body axis with non-zero

30crossflow velocity v and crossflow derivatives (~ ^ 0),
G of]

this is denoted by region II.

Thus, these two regions must be treated separately. One

set of inviscid coefficients A. is specialized to region I

and is used to obtain solutions up to an angle $ = 3a.

During this phase the results in the plane of symmetry from

point ISI to ISF (Fig. 5.3) are stored and will be used as

starting solutions for the unsymmetrical region II. Using

the geometrical relations between the wind and body systems,

the results at a finite number of points from ISI to ISF

are interpolated evenly over the entire n region at IWEND

points and are used to obtain solutions at the ISF+1 stream-
v^

wise station and up to the sphere-cone junction CJ.

The position of a point and the sphere in terms of the

body coordinate system (x,r,0) is related to the coordinate

x in the symmetrical wind system for a given angle of attack

a by the following expression (Fig. 5.4)

X, = R , + (x - R ) cosa + r sina cosG (5.05)jc n ' o n o

Thus, any point on the sphere in the body system along line

1-1 can be reached from the wind system by determining the

coordinate X, .
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Since a sphere has no preferred orientation the flow

is symmetric in the wind system. The flow in the body system

is unsymmetrical. Any point on the sphere and the correspond-

ing flow variables at this point can be obtained from the

symmetrical flow about the sphere in the wind system by ro-

tation about the wind axis.

5.3 Method of Solution

The method of solution of the laminar boundary-layer

equations for a sphere— cone is essentially the same as the

one applied to a sharp cone. For solving the symmetrical

sphere flow in region I, it was established (equations 5.03,

5.04) that

3h2
hi = 1 H~ = °OS *

3h2
n = 6 h« = sin<j> - — = 0

£ O Tl

and for similarity to exist at the stagnation point (Appendix

C)

£* = 1 (5.06)

With these relations the inviscid coefficients A. are special-

ized to region I by realizing that the crossflow velocity

V = 0 and crossflov; derivatives are -̂ =- - 0 and that the
e 3 n

streamwise derivatives exist, —j- ̂  0. In order to be ablea t,
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to transfer to region II where unsymmetrical flow exist,

the computations are carried out to a value of £ = 3a. The

computed parameters in the leeward plane are stored and in-

terpolated over the half-range of n in the plane normal to

body axis and passing through the last computed point in

the leeward plane ISF and are used as starting values in the

region II. This region is handled the same way as region I,

except that the crossflow velocity and crossflow derivatives

30are not zero (V ^0, -r̂ - ̂  0). After the sohere-cone junc-e d rj

tion has been reached, computations are performed in the

conical coordinate system as for a sharp cone, except that
*

e = i.

5.4 Inviscid Data '

The inviscid flow variables for the sphere-cone analysis

v/ere obtained by the method of characteristics by Rakich

(ref. 32). The inviscid input data for region I consists of

the pressure distribution p = p(<|>), for $ - 0 to $-,- = .7986

radians (Fig. 5.5). With stagnation values specified one

obtains the entropy parameter K = p /p Y and total enthalpy

fi "V
H = '-T- and velocity u^ = u (<f>)
o o Y~J- e eo '

, 1
Ue =2(ho ~ (Pe

Y K)Y

In the region II about the body axis, the pressure distrib-

ution is generated from the symmetrical pressure p(<|>) from
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roqion I in 7 meridian planes spaced evenly 30 apart by

means of relations from section 5.2. These pressure curves

are matched with specified pressure distributions in the

same meridian planes respectively, beginning at the first

location at the axial coordinate x . The longitudinal

velocity in the windward plane is generated using the re-

lation

I/
V -<pe

 K) T±T (5-08)

The longitudinal velocity in each cross-plane is obtained

by the Newton-Rapson iteration method described in section

4.6 and the crossflow velocity is obtained from the j;-momen

tum equation

u 3u , 9u ,
v • tan+ + + > <5-09'e *

?̂ ' \2 ti

1 3pe
The relation — T7~~ ̂ -s computed from equation , (5 .8) . An

ve
alternative method for computing the crossflow velocity is

determined by the following method. Bernoulli's equation

(4.09) is differentiated with respect to C and the derviative
ape
- is introduced into the momentum equation (2.01) which is
o C
specialized to inviscid flow. After some rearrangement one

obtains the irrotationality condition on the surface
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Using a two-point backward finite difference expression
3ve

for T—— one arrives at

r h, 8u u 8h,v
ve •*• A« ir^ + ir inr)i 2 n 2

V

Equation (5.11) is much easier to apply than (5.09). Equa-

tion (5.10) must be modified if the surface of the body is

not a surface of constant entropy.

5.5 Results

Computations for spherically blunted cone were performed

for the following conditions:

M == 8

T = 418.87°R

Tw = -6 To

R = l.OxlO6e

RQ = 1 ft.

The results for region I are shown in Figure 5.6 and include

skin friction, heat transfer, pressure, velocity, u , and

longitudinal derivatives of pressure and velocity. Skin

friction and heat transfer results for region II and III

are shown in Figures 5.7 and 5.8. The matching of computed
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values at transition from region I to II and from region II

to III is good. The circumferential distribution of the

skin friction and heat transfer parameters in two cross-

planes at 4> = 56° and <j> = 92° is shown in Figure 5.9. Long-

itudinal pressure and velocity distributions in 7 meridian

planes is shown in Figure 5.10, and longitudinal derivatives

of pressure and velocity are shown in Figures 5.11 and 5.12.

A typical circumferential distribution at <f> = 56° of p ,
3v

u , v and -r is shown in Figure 5.13. The above results

for Crocco variables are compared with viscous flow solutions

for laminar flow on a blunted cone at the same conditions

using Levy-Lees variables (ref. 33) in Figures 5.7 and 5.8.

The same pressure was used in both cases, however, the in-

viscid data were handled differently. This probably accounts

for some differences in results. Otherwise, the results

show fair agreement as far as magnitude and distribution of

parameters are concerned.

5.6 Conclusions

The solutions for viscous laminar flow over a spherically

blunted cone were obtained by solving the conservation equa-

tions in Crocco variables. The results show fair agreement

with similar computations based on Levy-Lees variables and

match fairly well at transition points from region I to II

(unsymmetrical flow in body system) and from region II to

III (conical flow).

Considerable difficulties were encountered in handling
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the inviscid data, pressure, velocity and their derivatives.

In particular it was difficult to obtain smooth distributions

of these curves. Lack of continuity of these curves causes

scatter of results or renders a solution impossible. There-

fore, a more accurate set of inviscid data would be desirable,

and v/ork needs to be done on determining the best way to

handle the inviscid data.
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TABLE I. CONDITIONS OF COMPUTED SHARP CONE CASES

Case

1

2

3

4

5

6

M
CO

8

8

8

8

8

8

*c(o)

10

10

10

10

10

25

T /T
w' o

.46

.46

.46

.46

.46

.46

Re

4.04xl04

4.04xl06

4.04xl04

4.04xl05

4.04xl04

4.04xl04

a(o)

8

8

10

10

12

12.5
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TAUI.K i:r. COMPUTED SHARP CONE PARAMETERS AT n •-- oo

Case

1

2

M
CO

8

8

+ c(o)

10

25

a.(o)

0

0

VTo

.46

.46

Cf /xRe
5

0.39925

.71229

_ 3
3W/ (PU ^ /xRe

-.05537

-.11582
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APPENDIX A

Coefficients A. and B.
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Al = -uepe a Ve *2 PeA- = T— E, —^2 h2 2
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N = • -f ue '

*2
8U
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2 ̂ '2 e e
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Vb*£e 2 e
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3(veh2;

(A7-A8)

e 2e e 2

*2

e 2

**A
10 h2vete

(A9-A10)
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