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ABSTRACT

A method for solving the thrge—diménéional ¢ompressible
laminar boundary-iayer_equations for thé case of a circular
cone and a sphere-cone body at an}aﬁgle of attack is pre-.
sented. The governiﬁéLequations afe modified by a similarity
type transformétion’and then transfofmed into a Crocco-type
form. The resulting set of equationS'isvsolved simultan-
eously by an iterative method using an implicit finite dif-
ference scheme by means of an éfficient algorithm for equa-
tions of ﬁridiagonal form.

The effects of streamline swallowing on ajsharprcdne
are included by ihtrodﬁcing'the true inviscid edge;conditions
. at the distance f;om‘the wallbequal to the bouﬁdary—layer
thickness;f The'validiﬁy of the'épproach vias establiéhéd by
compérisoh oflfhg computationaf'féSults With'similar results
by other methqu'and with experimental data. |

It wés condiuded that at sufficiéntly high Mach number
and moderate to large angles of attack, the streamline swal-
idwing_effects on a sharp cone result in higher values of |
skin‘friétion énd'héat transfer as compared with the class-

ical results for constant entropy.
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1. INTRODUCTION

The Navier Stokes equatioﬁs of motion which describe
compressible viscous fluid flow past a body are highly non-
linear and presént formidable obstaéles to classical analyt-
ical or nﬁmerical methods of solution except in special cases.
However, since at high Reynolds number the effects of fluid
viscosity are confined to a thin layer near the body surface,
many terms in the full equations can be neglected by making
the boundary-layer approximation. The resulting equations
can be solved numerically for spécified boundary conditions
at the wall and at the edge of the boundary—layer_for pres-
cribed éxternal inviscid fluid properties. This is possible
since the boundary-layer eéuations are paraboiic whereas, the
original Navier Stokes equations are elliptic. Parabolic
equations are in general easy to solve numerically‘whereés,
elliptic equations are not. | .

In order to solve the boundary-layer:equatiqns,'extefnal
inviscid propérties are needed. The usual aséumption for the
external flow.gtvthe body sufface for supersonic flow is
that it is of constant entropy corresponding'to,either the
obiique shéck'éntrqby or stagnation stréamline entropy. How-
ever, as the boundary-layer thickens in the streamwise and
cross—flow directions in three-dimensional flow, streamlines
of variable entropy areAenﬁrained into the boundary-layer
and the isentropic condition, especially for a body at an
angle of attack, does not hold.

One objective of this study is to develop a method to
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account for the effect of the variable entropy layer
near the surface of a body at angle of attack on the solutions-
for laminar three-dimensional viscous flows as compared with

the classical solutions for viscous flow which have been based

on constant entropy surface conditions. It is interésting to

note that despite a large body of literature related to three-
dimensional bbundary layers, this particular areé has remained
‘relatively unexplored.

Ihe 1iteratufe reviews by Cooke and Hall (ref. 1), Mager
(:ef. 2) and Stewartson (ref. 3) reflect the major extent of
work done in thé area of three-dimensional boundary-layers.

A case which.hés_recéived cpnsiderable attention; because of
simplifications due to spanwise derivatives being zéro, is

~ conical flow. The majority of the work done on viscous con-
ical flows has been concerned with approximate methods of
solution which are usually valid for small cross;flow and'
small angle of‘attack. Only recently the restriction of small
cross—-flow has been removed in work for sharp éircular cones

by Boericke (ref. 4),_McGowan and Davis (ref. 5), and others.
In'coniéal flowéAthe boundary—layer solutionvis actually two~-
dimensional sin@e similarity exists in thevstreémwise-diréction.
The flow near the windward side creates no piOblems and is
dominated by in#iscid conical'flOw with a fa&orable pressure
gradient. The region near the leeward planehat.high angles

of attack may.be‘stropgly infiuenced by inviscid viscous inter-
actions. There is flow turning toward the windward plane of

symmetry which may give rise to imbedded shocks if the local
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tlach number in the cross-flow plane is supersonicf This mnay
cause separagioﬁ. The presence of an adverse pressure grad-
ient can cause the cross-flow velocity to reverse and cause
the flow to recirculate. Typically, the flow in this region
evén at moderate angles of attaék, exhibits a bump with stream-
lines divergihg as they épproach the leeside of the Body,
(Fig. 1.1).

A cone at ahgle of attack is characterized by the fact
that the streaﬁlines around the periphery of the cone are
passing through a shock of varying strength and posses diff-
erent entropies. The surface streamlines pass through the
windward meridién‘plane and have the highest value of entropy.
The streamlines'éway from the windward plane paés through a weak—.
er shock and posses. lower values of entropy and enter the
-f10w field nearly meridionally. There is a layer near the
surface in which the entropy varies rapidly with the distance
from the sﬁrface(from the méxiﬁum value, to a lower value con- aﬂ
sistent with a weaker shock. Thus,lalthough therentropy at
the surface is'constant, the entropy of the streamlines én—
tiained by therboundary—layer is of varying magnitﬁde; The
question of the magnitude of the effect of the variable entropy
on the viscous-boundary—layer flow has been of considerable
concern and iﬁportanée; This problem also occurs on a blunted
body at zero éhgle of attack with a bow. shock which is normal
for the stagnation streamline wetting the surface. The

streamlines passing through an oblique shock have lower entropy

as they are "swallowed" by the boundaryFlayer downstream,
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(Fig. 1.2). The same phenomenon occurs on a sharp cone at
angle of éttack (Fig. 1.3) where the streamlines away from
windward plane enter thé boundary-layer with lower entropy'
and create a tﬁin vorticity layer. of course, outer edge
boundary cbnditions accounting for streamline swallowing. will
yield results different from the classical appfoach using edge-
conditions of constanﬁ state as was concluded by Ferri (ref. -
6) and Mayne aﬁd'Adamé (réf. 7). A more proper'approach to
accounﬁ for swallowing of a streamline as it enfers the boun-
dary-layer, would be to use the edge conditions consistent
with the flow conditions at the distance froﬁ the surface
equal to the boundary-layer thickness.

VIn,order to establish ihe e#tent of the influence of
the.streamline'swallowing upon the boundary—layer,~é method
for accounting for the effects of vorticity swallowing has
been developed. The objective of the techﬁiqﬁe presented )
here is to deteimine the effects of the variable entropy edge
conditions on solutions to the three-dimensional boundary-
layer equations for supersonic flow over a right circular cone
at angle of attack. The second part of this work is devoted
to the solution of viscous laminar flows over biunted cones..

| The governing boundary-layer equations will be first
modified by a similarity type transformation and then trans-
formed into a Cfocco—fype form. Thebresulting equations will
then be solved.simultaneously by an iterative method using an
implicit finite difference scheme similar to one developed by

Dwyer (ref. 8) with modifications by Kraus (ref. 9).



2. THPFE DIMENSIONAL COMPRESSIBLE LANINAR BOUNDARY LAYFR
FEQUNTIONS*.

An 1mp11c1t flnlte—difference technlque orlglnally de-
veloped by McGowan and Davis (ref.‘S) ‘will be employed for
solving the three-dihensional cdﬁérgséible lémihaf boundary-
1ayerAe§uationé'b?er;sharp and blunt right circular cones.
The.govérning equations for a generalized body-oriented co-
ordinate system to be used in the analjsis (Séé Fig;‘z.l)

are as follows: .

£ - momentum

= - .= == ahy

e T il 551'+“'V' 352 . (2.0
By h, By B, ° h,h,

__ 1 9p ., 1 3 [;__a_:} ,

n - momentum
Boav, v ey, w av_ &2 M & M 0
— et amti % fg o Tgg o 2%
hy R hyh, h,h,

_ 1‘_§' ¥ s fu av|

= - = *:- = |==| .

Lot

27 PRy

* Detailed presentation of the‘equations and transformations
discussed in this section is given by McGowan and Davis
(ref. 5) and Der (ref. 10). _



énergy‘-
S8t ¥ gt W 3t . [g_ £+ 3n] (2.03)
hy h, h, € Lhy °%  h, °N]
L _u 3u 2+ 3w ] 2 L X 3 |k
= —22 3 E13 & op. 9t g oc| !
.Cpph3 . pp 3 3
continﬁitz_

T T T

3 Bl + 3o (B)Rp®) + 5z B = 0, (2.00)
state*

p=RE , L (2.05)

and.

viscositz (Sutherland)

3/2

T+ = 1 - |
= _gg____[g_] - B (2.06)
t + CLt '

r .

tlFl

where C = 198.6°R for air.

- The g—coorpinate is chosen to be the arc-léngth along
the body; thefe}ore, El will be a constant, L. 52 and E3 are
chosen to be arbitrary functions of the éoordinates. £, n,

and ¢ are dimensionless, consequently the scale factors h,,



h, and h3 have the dimensions of length. Similarity-type
transformations for the normal coordinate and velocity are

defined as follows:

hy = gr =2 = n, | (2.07)
. p VRe ' _ ‘
and
L e S, o |
o= %T,:S 2w | (2.08)
Z.p YRe ’ :

where £* is an arbitrary function of ¢ and n and will be
chosen such that similarity conditions are satisfied. For

convenience the following definitions are made:

u A t
F=grG6G=g5-+ 8=t
e e . e

The equation of state in the dimensionless variables is

written as:

b = P/t - B o (2.14)

n ' f -
t (2.09~-2.13)
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The scale factors h, and h; are defined such that the

equations will be in-a Crocco-type form. The dimensionless
scale factor hz_is a function of ¢ and n; that is

h, = hy(g,n) . | -~ (2.15)

The normal coordinate-; is defined as
g = /I -F - (2.16)

and finally we choose the shear parameter ¢ to réplace F

as a dependent variables as
(2.17)

Equations (2.09) to (2.17) are next substituted into the
governing equations %equations‘(Z.Ol) to (2.04)). These
variables are similar to those used by Der (ref. 10). ' The
main advantage of these variables is thaf in the numerical
calculations the integration is always carried out between
r = O'(freestream) to ¢z =1 (Wall-boundary); Thﬁs use. of a
specified finite region in the g-direction can save large
amounts of computer time over other variables.ﬁhich éxtend
over an infinite region. This is important in three dimen-
sional boundary-layer calculations where cﬁmputing'times

can become excessive. -

The goverhing equations (equations (2.01) to (2.04)) can
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then be expressed in terms of Crocco-type variables as

follows:

a,-cH? v aga-che v a, B A P = - - 22 (4o,

3 7% 6 78 3¢
(2.18)
_c2y 3G, g 3G _ 5 ¢H 3G 2y 2 _
Al(lc ) 5E +_A2G 5 A3 5 ;+A8(l'; )Gf-A9G =
| (2.19)
- 9 3 _ (4 36 -
B10® * ¢ dL (4 a;). ’
A (1-22) 28 4 a g 20 _ p oH D3O _ i o g .2
| | o (2.20)
| o 2
A - 2 3Gy 2, ¢ .1 ¢'3 . 386
B PR T UL E U PR T e -t i T L 12
and »
2009 &y . A 3 4Gy _ oH o 2, g
, (2.21)
+ (2A. . + A 8 _ 0.

17 16) 5

. The coeffiéients Al' AZ' ... ' Ai9 are fﬁnctions of‘the
inviscid quaﬁtiﬁies andlbody géqmetry and are aefined in
Appendix A by'équatiOns.Al to Al19. 1In order:to.reduce the
system to threefééverning equations, equation (2.18) is solved

for H as follows:
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A'G2£ 4 A G(l-c2)£ A (l—cz)zz A,6% _
H = 6 ) : _ 4 _ 1 o (2.22)
Aycé Ajzé- Ajtd A3To
1 5 '
KEE 3T (o) .

Substituting equation (2.22) into equations (2.19) to (2.21)
leads to the final form of the three governing equations for

the dependent variables G, 6, and ¢:

2 . i
% _ 1, 26 %6 , 5 26 _
acz + (Bl E—) a—g + B2G + B3 + B4 3§+ -B,S an o_l (2.23)
) . e
9_8 (1-Pr) 3¢ _ Pr 38 38
gz~ + [ Y T+ Bg ] 3% + B,6 + Bg + By Y
a9 " o :
-.{- BlO n —0 ’. i o (2.24)
and
2% (LB e s P12 P13 ag, Paaas _, .
2 T " T2 27 T¢ T T 2%t 7 T 2%n !
ac2 - ¢ T z ,? - ? p< °0
’ (2.25)
where B, Bz; -ee s By, are defined in Appendix A by equations

A20 to A33.
The viscosity function appearing in thle_,Bi coefficients

(see equations (A20) to (A33)) is,given-by'Sutherland's law as
; + C/tr, 5

p=—" T2 7 =

- (2.26)
o + C/te e
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The quantity 39/t (see equation (A31)) is obtained by dif-

ferentiating equation (2.26) with respect to t; that is,

8% - 9% 96 .
st 90 at

The boundary conditions on G and g at the body surface

are:
| G =0 - .2
and _ | | B v |
o = ;;! ;o Cat g =1 - | (2.28)
‘or |
38 = f£(¢,n) an (2.29)

where f(g,n) is related to some specified boay Sﬁrface heat
transfer, andf‘tw is some specifiéd body surfacghtemperaturé.

At-the outer edge_of'the boundary—layer‘the boundary
conditions on G and § are: |

\ . :

~and o - atetr= 0

e =1 . - ' L (2.31)

The boundaryvconditions on ¢-are more complicated._
Applying'L'Hbspital's rule to (2.17) evaluated at the outer

edge of the bbundary-layer yields:

2 3TF ) (2.32)
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2 A
The quantity'i—g‘must vanish at the inviscid edge; therefore,

oz
at r =0 o

o] =0 . ) | (2.33)
10 _

The boundary'conditioh on ¢ at the wall can be dgrivédrfrom
(2.18) applied at the wall. Setting ¢z =1 andHUSing the no

slip conditions result in:

3 - ¢ - - 28 _ ' ‘
?ﬂw.* (-2 -2, 28— o) (2.34)

The nondimensiqnal heat-transfer ratecén be shown to be:

N

- e -
= 9 __ = Y e 36 .
q=——=( - ) (6 —) (2.35)
0 ui y-1 Prg*/Re Lowh

Also the skinffriction coefficients can be shown to bLe:

- = 4t _¢_u '
- -2
c, = & -—gc 55,0 =gt (2.36)
g h3_ g vRe
4w
and
c. = H_av 1-=-2_ 2te4yVe BG\ (2.37
£ Tiar [2PMe TR 5g) 37
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Pinally, the physical normal distance can be-expressed as:

- V , 2 *
§3 = - / G edz

Lo . (2.38)
/Re '

The governing equations and boundary conditions are
now in a conﬁéniént form for solution using numerical methods.
The next section will deal with developing an implicit finite

diffefence method of solution.
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3. NUMIRICAL MITHOD OF SOLUTION

The governing equations presented‘in Section 2 will now
be redUced'to finite—difference form in.order that they may
be solved numerically. The complete solution to be obtained
on a diéital computer will be c6ﬁbrised of threé.sepéréﬁe
cases: a general scheme, a scheme in which siﬁilarity exists
in oneiof the Surface variables, and a scheme in which simi-
larity exists in both surface.vafiables. Finaliy, the com-
plete computatioﬁ schéme will be expiained as a combination
of the three sééarate cases. This development is identical
to that presénted in reference 5.

The governing equations are‘soived using a»Step—by—stép
finite-difference méfhod similar to that’squésted by Dwyer
(ref. 8) with.mbdifiéations by Kfause (ref;'9); JThe»method
has accuracy. of order A%, where A is either AE Or An, and is
stable fbf neééﬁive transverse velocity'if pfoper step siées
are chosen. A.sChematic of the differehce model is presented
in Figure 3.a. It shpu1d<be noted that the equations are |
written at thé’point (0,n)~and solved for the va1ues of the -

quantities ¢, p and G at the point (2,n). Thus, the quantities

2
(2w '

2 (2w ,  .'(§2). ;, () ., and Wy o7 where the
ac“ 0,n 9 0,n ‘ -

14

subscripts (0,n) refer to the point (0,n), can be expressed

as:
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w + w ' -
) . _ _2,n 3,n , 2 , S
o.n 5 — +.0(27), | , 1_ . (3.01)

L=+ o(Az), ’ (3.02)

and
(32w>' +(3 m)
2
2 3L 3z - ,
3w = 2,n 3.0 4 0(a%, o (3.03)
2 2 , .
9T O,n . . . :
where
Lon ey it eg 1 g Y
(l&) _ _i,n+1 ?1,n- + 0(az%) ' (3.04)
9% /i,n 25z - ' | .
and . | - . . _ ' >With'i = 2,3
2 L = 2. + . _ ' .
<3 U)) — (”l,n-*-.l wl,n wlrn"'l + O(Acz), : (3.05)
9¢"/i,n o ac? | )
. [V W . A' A
(39) = —2m 3.y 0%, . (3.08)
and
. . + . . . i .
29 “an 1) F Can T 03n) L2 (509
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The governing equations (2.23) through (2.25) can be

written in the following general form:

(32“) ' [awy ' ' ' fdw Y =0
25) 8, ok, o), 0,
3;2 n I\ec/y 2, n 3n 4a\0E/ rsnAa? n
_ (3.08)
Substituting equations (3.01) through (3.07) and re-

arranging yields the following expressions for (3.08) =

- ! ) . . )
Anwzln‘l + Bn.z,n + an2,n+l = Dn . ' . (3.09)
where
)
a- _ _
' 1 1 ' ™n C _ : : _ .
YA o - :
L} T ’
' “2_ 1 %4, *%5. . : .
B = 2 Ar23+ G + ZAn) ,. - (3.11);.
,
ey | o
! 1 1 n. . . . -
Ch =37 3t o) . (3.12)
»n 2 AQZ 2A1 .
and’

. R ¢
' { . 1 In . B S
Pn = - | =3t ) 93,04 - - 3.13)
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4'(“~L -~ 2w -
.2 Ane 3,n-1 2An *1,n
] . ] ] ) L
Q a [s] [s 3
+ 2n R '4n _ Sn) + _EE '
2 Atz AE Zan’ “3,n 7 2an Y4,n | -

In the special ¢ase for which there is simiiarity in the
E~direction for example at the tip of a.sharp cone or the
nose of a bluﬁted COne, a Crank—Nicolson,finite-difference
scheme can be ﬁéea in the cross-flow direction with accuracy
| of'éfder Anz; " In this scheme, thevéquations ére'written at
the O-point and solved for.the value of the qﬁantities 8, ¢,
and G at the 2-point. Thus, yields the following relations.

(Fig. 3.1b) for the value and partial derivativés:of a vari-

able:
0 + w R ' : -
_Y2,n " ¥ ,n 2 - . - :
wo’»n = ! 2 Lo 4+ O(An ), N ' (3.14)
(2&) "(Eﬂ) |
: \az/), . +\a¢ | . 3
(AQ) o= 2(3 LVZUA O(Anz), (3.15)
3L O,n o2 ' : o
azw azm
_ + [ —
(é;ﬂ) - f-2m L0y ooandy, (3.16)
2 T ) .
3z /0,n : : : o o
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where

\ w il ' - . Lo .
(aa) = Lentl il g2 (3.17)

and S | _ > with i = 1,2

2 W . - . . _ -
(a w) _ 1fn+1 1,2_ i,n 1‘+ O(Acz) | (3.18)

Similarly,fasvbefore; the governing equétions canAbé
written in théjform of equation (3.08) with @, = 0;'upon-
substituting:the'finite—difference_form»of'thgéparﬁial de-
rivatives as.épécified in equations_(3{14) through (3.19)
into (3.08) a relation of thé'fofﬁ‘oflequation'(3.09) is

obtained. 1In this case,

_ ;1 _ n o o
Bn = 37 1) o (3.20)
207 - '
1 | ]
' azn 1 asn : S



-19-

an | ' ' o
e = (L ‘ny o - (3.22)
r L
n ZACZ Y4AC _ |
and
B }

] r~ al .
! ! 1 n
D = - 6y + (——= + ) w : (3.23)
n L N AT Y: 1,n+%J.. |

o o o
- ( - ln) wq + ( 2n’_ 1. sn) Wy o
ZACZ: apr l,n-1 . 2 ACZ '-An 1,n

Equation (3.08)'Can be evaluated in a similar wéy for the case

similarity in fhe n-direction with a; = 0. |
Einally, an iterative.finite—dif2erence'scheme is used

- for the_casé'of'similarity in both the é—coordinate and the

n—coOrdinatef In this case the gdverning equatibns reduce

to ordinary differential equations with the equations beiﬁg;

written at the 2-point and the values generated at the 2-

point; subseqﬁehtly, the accuracy is.of order:Acz. -The par-

tial derivatives, which are now actually total derivativés, 

becone:
: 0, = o L s
(%ﬂ) = et 2entl o g(ag?) (3.24)
9t 2,n - c
and’
82m \ _ w2,n+l - 2N2,n + w2',n—l +0(AC2) ' 4 (3 25)
2 ; T 2 ' A )
3¢ -2,n Ag™ ‘ I
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Again, the governing equations can be written in the form

1 1) .
of equation (3.08) with @, =oag = 0. Upon substituting the

_ : n n
finite-difference form of the partial derivatives as expressed

by equations (3.24) and (3.25) into equation (3.08) equa-

tion (3.09) results, where:

. . . 0.1
ST S T .1 (3.26)
A = ( -— -
2 T Zag’ !
"L At
B = -2, o
AL n. .
R
. 1 1 _
C. = (—= + =) . ‘ (3.28)
.2 ’
Bt At :
’ ] ]
and D = - (3.29)
n ;

Thus, one can apply equation (3.09)‘at N-2 evenly spaced
points in the nofmal‘directidn_fiom point 2, oﬁé step away
from the outer edge, to point N-lvone step away from the wall.

Thé gené£al solution to equation (3.09)(_as given by '
Richtmeyer (ref} ll) for example,vis of the_form?

' P o o (3.30)

= Eﬁw2)n+l n

“2,n

" If one applies the ouﬁer—edge:boundary conditions at

r = 0 and réquires‘that equation (3.30) holds independently
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of step size, the resulting conditions are:

] . .
and Fl = 0,1,1 respectively for ¢, 6, and G.

Then the following recursion relations can be derived:

. ‘ "Cn )
E, = — | (3.31)
A E + B. - .
n n-1 n
and
) RN I |
! Dn - AnFn—l o
Fo= = T - - | (3.32)
AnEn.-l + Bn :

With thelknown values of the variables ét the wall and
: [ ] . ) o ) o :
known E_ and F_ , one can calculate the values of w to
o n - n. ) ‘ 2,N-1
w2,2.

o o t
The boundary conditions at the wall for 6. and G are EE
. . . ) . . . e

and 0, respectiVely. However, the boundary condition at the

wall on ¢ from (2.34) has the following form:

B4 0% 2,x

—3—9) = (-am, = 6. ).
(ac o e T Te, o T 2

(3.33)

With a 3-point difference form for the above partial

derivatives at the wall, one obtains:

+ 4 L)+ 0(az?y.  (3.34)

2,N-
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Now using equation (3.09) for § at the péiht N-1 gives

and additional relation:

L]
Py-1%2,n-2 T By-1%2,m-1 * Cy-1%2,n = Dy-1 (3.35)

The final expféssion for this boundary condition is determined
by applying equation (3.30) for ¢ at N-1l:
1 » v

%2,8-1 = En-1%2,n * Fy-a | | (3.36)

!

Applying equations (3.34) through (3.36) and evaluating

for $5 N ¢ one arrives at a quadrétic‘equation having solution:
14 . . . . .

¢ i (3.37)
2,N " 2a . :
with
[ | ]
[ C - N [ [ B - K ) .
a =Lt agg,  +E L HE- 200 -3,  (3.38)
A'I\]"']. AN--l
L} L i
' ' v Byo1 Pyog |
b = 4F_; + Fy ; — ——= - Aj20TH, o, (3.39)
oV R R
ahd
.t .
C 2A7 ., (3.40)
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It should be rémembered that.the coéffigients A;'in
cquatioh (3.09) are functions of the dependéht variables ¢,
0, aﬁd G and afevunknown a priori. An initial éuess for these
unknown variableé is required and the result_iéliférated
upon until the values of these unknown variabies'are relaxed.
It has been found that'the'1/¢ term ih equation (2.25)
and subsequentiy,in equation (3.08) caused the iteration

scheme to diverge. Therefore, a "quasi-linearization" of

this particulér term was introduced as follows:
 '1/¢ = 2/¢s = 0/¢ 2 | : o - (3 4i)
G. e 4 . » A
where ¢a is the.value of the shear parameter at the previous
iteration; with this modification the solution coverged

rapidly.

3.1 General Solution Technique

The system of non-linear second order pataboiic‘equations
_develobed'in Séction.2 are solved simultaneously byvah
'iterative process.for a sharp circular cone and.for a spheri-
cally blunted cone. The éoverninéléquations (2;23) to (2.25)
are reduced by replacing the pa;tial derivatives.by finite
difference expressions, to algebraic equations having the

tridiagonal fo¥m‘of equation (3.085. The o) coefficients in

equation (3.08) are functions:of'the dependenﬁ variables o,

¢ and G which are to be determined and must be represented
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by their assumed initial values and are subsequently updated
during the iteration process. At the tip of a sharp cone or
at}the stagnation poiht of a sphere cone (which correspond
‘to £ =0 and n = 0) similarify in the ¢ and n difections
exist. The mathematical solutidn at this point is considered
as a limiting case as £ » 0 and n » 0; The goyerhing equations
at this point feduce to ordinary differential equations in

4 only; The solution to this two~point boundafy—value prob-
lem is a starting solution. For grid péints on.the surface.
correspondingAto £ 510 and n > 0, similarity in g exists(there
is no g-dpendanée_in the equations) and the solutions are
obtained using the starting solution andvmérching circumfer-~
entially around’the body in the n-direction. Thus, the sol-
dtion in the (n;t) piéne is reduced to a»twofdimensiénal
probleﬁ. In the plane (¢,z), with n = 0 and g'zf0,~similarity
ih n exists and two-dimensional solutions in the win@ward'
meridian plane are obtained. For points oﬁtside of the £ =0
and'n = 0 plaﬁes.thevdependanCe on g, n'and z exists and the
solutions arebobtained by using the solutidn at the windward
plane and marchiﬁg ih planes around the body in the n-direction
and stepping férWard in g—di:éction (Fig. 3.2).' At each.

(¢,n) grid point on the surface, iteration is”applied on the
values of 6, ¢ and G -in the nérmal directioﬁ uﬁtii the slope

of ‘the shear parameter in the normal direction is relaxed.
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A, SOLULLONS FOR SHARP CIRCULAR CONES AT ANGLE OF AITACK

WLEH STREAMLINE SWALLOWING ' '

The‘reCentfcontribution in the field of'three~diﬁension—
al boundary-layer studies by McGowan and DavisA(ref.‘S).has
extended the numerical analysis of4thr¢e—dimensional laminar
flow to sharp.circulaf or elliptical cones at angle of
attack. The-wérk by Boericke (ref. 4) treats 1aminar.flow
over circular cones at angle of attack using Moére's trans-
formation and*humefiéal as well as experimental surface
pressure distributions. Quite'recenfly the work‘by Mayne
-(ref.'12) presénts an analysis of:laminar boundary—layers
on right circulér-cones at angle sf attadk, indludiné the
effects of stféamline entrépy swallowing with,the‘assumption
of a negligibleiéffect of streamline swallowing in the
windward plane (a similarity éolution at £ = p =?0 has been
used to apply to the region g >0, n=0). |

In the pﬁesent work a method for solving -for flows ove;
sharp'cones-atﬁangle of attack with streamline eﬁtropy swal-
lowing is dévelopedf The details of this méthod will be |

_presented in the following sections.

4.1 The Geometry of the Problem

In spherical coordinates, an infinitesimal. arc length

is given byA(Fig._4.l):

ar? = ar? + r2(ae? + sin®edo?). L (4.01)
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n the €, n, ¢ bbdy—oriented coordinate system, as shown
in Figure 4.2, an infinitesimal arc length along the surface

of a sharp cone is

an“ o . (4.02)

2
hy =1, dn = sin¢ do , ' (4.03 a-f)
‘ah ~ 3h )
2 : oty
.E—g——Iandé—n——O

4.2 Conditions at the Outer Edge of the Boundary Layer

The usual proceduré of matching the viscous and inviécid
flow fieldS'at:the'édge of the'bouﬁdary.layer_a5sumes the in-
viscid value 6f the pressure at the bddy-surface and the eh-'
tropy value cbnsistent with the oblique.shodk or stagnation
streamline vaiue;‘ It has been indicated,_howé&er, that there
is a need to develop solutionAtéchniqués which include shock
layer vorticify'(ref.xl3). In the current scheme.the initial
step in determiﬁing the inviscid edge properties is to obtain
a boundary layer solution for»inviscid Valuesaat the surface.
Having obtained.tﬁe magnitude of the boundary-layer thickness,
new inviscid values are obtaiﬁed~by interpolating the inviscid

properties fonacones‘(ref{ 14) around the body at a distance
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from the wall equal to the boundary layer thickness. With
these inviscid properties, a new boundary-layer'$o;ution is
then obtained at the next downstream station.

The scheme adopted for determining the inViscid properties
is based on the invariance of total enthalpﬁy in the inviscid
part of the shock layer which is true if the tdtal enthalpy
in the freestream is constant. Due to the preéehce of vor-
ticity in theAinViscid flow, the velocity and temperature
gradiénts are no longer zero at the boundary layer edge. How-
ever, it is aséumed that the'net_ehergy flux”bétween adjacené,
fluid laminae in the edge region, particulariy:on sharp bodies

‘becomes negligible.

4.3 Non—ISentropic’Conditiohs

The entropy is defined by the expressién

Using the thermodynamic relation

dh 4’vdp_

ds = T

N

one can show for a perfect gas with constant specific heats

with
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pv = RT ', 
ép

- =Y

Cv

Cp - Cv = R

that the change of entropy is related to pressure and density

by the expression

= _ = ref
P/Pref
Therefore the parameter
K =p/oY | (4.04)

is a measure of the éhange of entropy and can be used to re-

late the value of entropy to pressure and'density.

4.4 Boundary iayer Thickness

The physicadl coordinate normal to the surface of the
body is defined by equation (2.38) as
1_ 
— o & %
Sy = / ;7 & 8de
%
which results in

L (4.05)
YRe '

—%——?— == f '%'»edc =.Y(c) ‘ - L (4.06)
L : :
g
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If we defiﬁe the thickness of the boundary layér at the point

where the local tangential velocity u in the streamwise -

direction reaéhes 90% of the edge value or where F = %— = .9,
' ' e

we obtain the boundary layer thickness § = S

= y(_N);]
o F=.9

* - :
where ¢ was replaced by /€ in order to insure similarity at

3 F=.9°

ol
3
O

all
;ﬂ_

the tip (see section 4.9). With Reynolds number defined by

=1

P
we obtain an expression for the.boundary layer thickness

L

":"‘/E Yp = .9

3 /Re

wni

§ =

(4.07)

4.5 Location of the Edge of the Boundary-Laver

_The‘loéation of the edge of the boundary-layer in the
shock layer is specified in terms of the & parameter which

identifies rays in the conical flow (Fig. 4.3):

o
]
el NEVE]

The expression for the 3 parameter When evaluated in terms
of the boundary-layer thickness § and body coordinate ¢,

takes the form
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- 2
. 8/cos ¢c

R ' , (4.08)
(¢eL - Stan ¢c)(tan ¢s(¢) tan ¢C)

wi

The shock angle ¢s is interpolated by the interpolation rou-
tine as ¢ = ¢§(n) and the 6 value is known from the previous

£ station.

4,6 Inviscid Data

The inviscid data used as an input to solve the boundary-
layer equations is obtained from Jones (ref. 14). In order
to obtain a ¢bnsistent'set of inviscid data for the case of

entropy swallowing, the input values of Ve

: P we,pe’and pe
at discrete points around the periphery of a body, and

Bernoulli's equation
- 2h, = 0 (4.09)
are used.

In the aboVe equation the expression for‘ve is found

from the g-momentum equation

Ju_ gu_ 3u ap
Ve.=ae+_.veée+vi a'e (4.10)
_ aué o
and a 5-point difference expression for Fre is used, i.e.
au " 8(u. . -u. = (u., 6 ,~u.
e _ ( J+1 j—l) ( j+2 3—2) (4.11)

on o 12an :
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The following two expressions require special attention

in the plane of symmetry where Ve = 0:

au
e 1
-5-5—- - and {;—

e : e

ape

T (4.12)

1
v

The first expression is obtained by a limit process and the

second one is obtained from the g-momentum equation

. ou : : S
g _e_ 1 __e_E 1 "Te (4.13)
Vo 98 u v .

AUy 2 2., . 2(¢g 3ug)2 £ 3Py 2 Uy r2g e
— + u +u —_— + v T E + u-e '5———' v 3F
van e . _? Ve 3 PeVe 2@ o en. e 96/
au R au 3p
+___e_<2__s____s>+ 2 /5_7_2><L-___3)+w2
on Pe Ve aE)., , e\.ve 9 peVe ok e
2y Y Y - = o 4.14
+ 2 (Y-l P, ' K ho) F ( )
which is of thé_form
: : 3u_  au_. ap 3P_ "\
4 _ e e e ‘Fel _
F(ho, U,r Vor Wor Por X, &y 3¢ 7 an ' 3¢ an ) 0 .
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Introducing equation (4.11) and evaluating the équation (4.14)

. at N points, a set of N simultaneous nonlinear equations in

u = (ui, Uyy eee 5 oup)

is obtained and is solved by the Newton-Rapson iteration tech-

nique using the Gauss-Jordan method.

Defining

_. [ 3F;(u) _ |
Fij () = _aij‘" = ¢ (u) | (4.15)

with the starting velocity vector

By = (Upgr Upgr --- v Vpg)
the solution vector fornvelocity is

-K

a Ml oGy (4.16)

where § X islthé solution vector for the set of simultaneous
linear equations
¢ (u) éj = - Fi(u) | : - (4.17)

and is obtained by the Gauss-Jordan method.
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With
5. = ~ AU | | (4.18)

the solution vector for velocity is determined for the k-th

iteration
=u, - Au. . (4.19)

In order to compute the values of ué which are consistent
with the entire set of the inviscid data, the«following in-
viscid values have to be given or generated:

Py ape ~ape aue 3ue

e’.K=peY' 3 ' 3an ' 3& ' 3n

P u ”‘Ve; W

e’ e’
where u, can be used as initial values. In evaluating the
inviscid values, the symmetfy relations for the windward and
leeward planes are utilized. All interpolations are made by
the cubic spline method (Appendix B).

In thefprésent analysis, inéluding the.effect of the
entropy swallowing, the edge conditions aréﬂdetermined ét

the normal distance'é from the wall and they vary from station

to station in the £ direction giving rise to gradients %% ,
- av
where Q = Ugr Vg pe,-and te’ The derivative —L is obtained

X3
from the n-momentum equation (2.02) as '
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AV v . 4. . 3P v v
:__2=_<£+ 1 e+ _¢ e) (4.20)
3E £ Epglg N gu, 3n
oty _
and the 52—-derivative is obtained from the energy equation
(2.03) as ‘ ~ .

At C /AP v_ 3p v_ at
- e _ %_ t y=-1"1 u e, & e> _ _e e] .

el Y Pe\€2E E 2n £ on
(4.21)
3ty f L
In order to obtain 5;—-in this expression, the -equation
Rt 1
= Y Y
te' Pe K(n)
is used as follows:
3t y-1 % e 1 /% (1-v) 5k ' L
- o - — re. (4022) v
p on

an y pe an Y

For the case of constant entropy with zero values of deriva-
30

tives in the quantities 3E the inviscid E£-momentum equation

applied at the surface yie1ds:4

~—S =y, 4 ' : (4.23)

and using the fact that the entropy is constant on the sur-

face of a cone:
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K= -2 . . (4.24)

One can then generate the entire set of inviscid data by
the methéd described preViously.

The value of the inviscid, oﬁtef edge température is
obtained from (4;18) along with the perfect gaé law (2.05) to

- y-1,1/y - |
ty, = (Kp," ) ' (4.25)

and therefore

3ty = {y-1) fg Pg

3n v Pe an

. |  (4.26)

From the inviscid n-momentum equation, one can get an ex-

pression for the pressure derivative:

———-'.="V (..__.g
e on

©
<8}
3

+ ue) . R (4.27)

This form of the pressure derivative is convenient since the

P , 3p
value of %— EFS is necessary in (Al0) and although both 5;3
e . :
: . ape
and v, 90 to zero at certain points, the quantity ST
. : e

does not, for éxample at the windward streamline.
The inviscid flow propérties4are determinédiby the

previously'described method wich reduces to'a solution of

a set of'noﬁ;iihear gimultaneous'equations for'ﬁe. In solv-

ing this system the following two cases are considered:
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1) for isentropic conditions the surface-entropy is
~assumed to be cohstant for the entire shock layef, K = p/pY
= constant

2) for entropy swallowing the entropy varies with n,
¢ and ¢, therefore, for each & stafion the value of K at the
edge of the boundary layer 'is K = K(n) = Eiﬂl;». Since both
pressure and aensity vary in the normal a;énlircumferential
directions, p = p(n,z) and p = (n,z) are obtained by a double
interpdlétion routine using cubic éplines as p{n) = p(n;3)
and p(n) = p(n,g). With the p(n) and p (n) vaiués'known, the
velocity u, is obtained by the method described in this
section. In order to make the inviscid values generated by
Jones (ref. lé)'consistent with this program, certain con-
version factors have to be introduced: |

p&,'where subscript J denotes data by Jones

ko)
Il
olol

and
_P__ Y M2 sin? 4 )
p S py (5 M7 sin™ ¢ )

4.7 pimitations of the Inviscid Flow Methods

The boundary layer equations can be solved'once the
inviscid edgé‘conditionsAare prescriﬁed;' The computation
of the inviscid‘éroperties is compliéated by the existence
of a strong ehtropy gradient and the occurrence of a singu—

larity at the leeward symmetry plane.
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The flow around a cone at an angle of attack, which is
of inferest_in this work, is rather complex; One can dis-
tinguish the.région on the lower surface of the cone which
can be represented by elliptic equations. In this region
the effect of the boundary layer is present but one can
assﬁme thaﬁ thelreshlts of the_inviséid theory are valid.
The flow above the body is représented by hyperbolic equations‘
and can be_solved:by the method bflcharacteristics reaching
in some cases as far as leeward plane{ However, the flow
symmetry is not satisfied in this region for high angles of
attack which ihdicates in general the possiblefprésence of
internal shocks (ref. 27). The‘regioh near the leeward plahe
with separated flow and intefnal imbedded shocks is dominated
by strong viécous effects and should be handled by equations
which include viscous effects even outside of'the boundary
layer (ref. 15). The possibility of the presence of internal
shocks can be inferred from the fact that the flow Mach nu;ber
.in the cross—plane reaches vélues greatef than unity on the
upper surface (Fig. 4.4). It can be concluded from the scatter
of the inviscid data that the computed inviscid data are not
accurate for these conditions>and the computédiviscous para-
meters may not be precise. |

Current techniques for obtainiﬁg the inviscid flow
- properties include perturbation methods (refs. 16-18) and
numerical methbds (refs. 19-22). The perturbation methods
rely on first order perturbaﬁion’solutions for the velocity

components and lead to considerable inaccuracy in velocities
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and pressure at large Mach numbers and at moderaﬁe to large
angles of attack. Tﬁe numerical methods for computing the
inviscid coniqal flow are applicable_ét relative angles of
attack a/cbc up to unity. The computea pressure distribution
is generally fairly accurate, however, the computed values
of Velocity'compbnents u and v are not. A more consistént
set of inviscid data is possible by using the computed or
experimental pressure distribution and entropy. value at the
windward plane and computing v, p, - and u from cross-flow
momentum, conservation of totai enthaiphy and constancy of
entropy at the surface (ref. 4)."A comparison of the pressure
distributions computed by various methods (ref. 4) including
the values used in this analysis is given in Fiqure 4.5.

The pressure by Moretti (ref. 19) and by Jones. (ref. 14)

give the best:agreemeht with the test data by Tracy (ref. 23).
Since the present method accounts for the effects of entropy |
swallowing and the pressure distribution across the entire ”
shock layer is fequired, the readily available inviscid values
by Jones were used. It should be noﬁed that this pressure

is a fairly good approximation to experimental pressure over

most of thegbody; but may become inadequafe in the leeward
region where_the Strong'interactiOn with the Viécous flow is
not accountedvfér. |

4.8 Difficulties at the Leeward Plane

In solving three-dimensional laminar boundary layer

equations, difficulties were encountered in obtaining solutions
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at the leeward symmetry plane where a complex interaction
between the inviscid flow and the boundary layér occurs,
(Moore, ref. 24). Moore showea that the cross—flow mémentum
equation has a unique asymptotic solution at certain condition
and non-uniqueness occurs otherwise. ‘This indéterminacy was
attributed by Mobre to a lack of previous history of the

fluid which ehters the leeward region from around the cone.
‘Solutions in-thi§ region were studied by a number of authors,
Moore (ref. 25); Cheng (ref. 26); VVedénskaya (ref. 27);
Libby (refs. 28-29), and Dwyer (ref. 30). Murdock (ref. 31)
obtained sqluﬁiOns in the leeward region which were not

kno&n previously and determined conditions for thch the
boundary layer in this region is independent of the out-of-
plane flow. - He investigated cases for which complete boundary
layer solution does not exist and concluded that the boundary -
layer model has‘a defect in this case which results in dié—“
continuous derivatives in the leeward plane. This is the
region where.thé boundary layer quél breaks down and the
continuity of mass is not éatisfied. ‘

It was found in this study that the boundary layer
solution at the leeward plane does nofvexist, and that the
region within;whiqh convergence cannoﬁ be obtained grows with
angle of attack.. It is believed that the bouhdary layer
equations afé'inadequate in this region Which.was demonstra-
ted by the iﬁabiliﬁy to produce solutions except at small
and moderate angles of attack. :This-seems“to be confirmed

by the fact that the boundary layer thickness does not grow
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as fast as was observed experimentally in the. leeward region.

4,9 Solution to the Problem

The governing equations to be solved are (2.23) fhrough
(2.25). Iﬁplicit'within this set of three.equations, the
quantities Al,AAz, cee A,y (see equations (Al) through
(A19)) need to.be specified. Thesé nineteen Qﬁantities de-
termine all the inviscid and géometric restrictions on the
flow. However, the qﬁantity g* has yet to be determined.

In order for the quantities Ags Ag, and A 5 to remain finijite

1
at the tip of the sharp cone, g*'must be chosen to be /g
(this could have been deduced from the usual form of the
similarity trénSformation as is used for most compreséible
cone solutions). Note that now ﬁhe three govefning equations
(2.23)‘through (2.25) are similar in ¢ for the case of con-

stant entropy since . there is no'dependencerf the inviscid

gquantities on ¢ and since there is no explicit dependence of

the set Al’ A2, ree A19' A4, A7, All' and‘-A18 are zero
along with terms such as %% p %% ’ and‘%% . For this set of

cases, injection will not be considered so that HQ will be
zero. Therefore, the boundary condition on ¢ as in equation
(2.34) reduces to the following:

3¢ - _ _ |

. T %o . (4.28)

w
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The problém of obtainiﬁg the starting sélution for the
step-by-step integration in the n-direction around the cone
still remains. Note that a similarity solution exists at
the point at:which the transverse pressufé gradient, ahd
.likéwiée the ﬁransberse velocity given by equation'(4,27)

. 1is zero. For a circular cone this occurs at the windward
and leeward streamlines only. The integrationvwill advance
in the positive n—-direction from the windward streamline
(at n = 0) in the case of a circular cone.

Thus, the entire set of equations has‘been specifiéd,
and the finite-difference scheme has been developed so that
the solution can be integrated step-by-step around the body

(Fig. 3.2).

4.10 Results

Based on{the analytical model presented, a compﬁter
program for solving the system of parabolic boﬁndary-layef
equations for a circular cone waé developed. This program
is a modification of the one developed by McGowan and Davis
(ref. 5). Thiévprogram begins computations for: constant
entropy at first, computes the boundary-layernthickness at
the second stép, énd switches.to the program with entropy
swaliowing at the third step and approximates the boundary
layer thickness at this stepl(thch is not known a priori)
by the boundary layervthickness at the preceding step.
To be more accurate, after the completion of~éomputations

over the prescribed number of steps in the first sweep, a
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second swveep can be.initiated by returninq to the beginﬁing
of the program'and using theitrue boﬁndary layer thickness
at each station, respectively from the first.sweep, The
option for performing the second sweep has been provided.

- As will be shown later, the error resultiﬁgEf:9m>the’gpprox—
imation of the boundary layer thickness by the value from
the’previous step is negligible.

The computed results include: skin friétion,'heat
transfer, boundary layer thickness, displacement thickness,
Stanton number and the normal direction profiles of velocities,
temperature, density, and shear parameter. The results of
the computations will now be discussed in detail for partiéular
cases presented in Table I. Comparison of results with ex-
perimental data and results from other sourceé‘will be made.

V.The computations were performed at conditions which cor-

respond to the tests performed by Tracy (ref. 23) and are:

M_ = 8 ' "Re =-4.04x104 where i = 1 ft.
b, = 10°, o, =25°  y =1.4
T = 84.2°R Pr = .738
T = .46 T o R = 1718 ft%/sec?°R
w " 7o A
198.6°R

- Q
il

The computed cases are tabulated in Table I. The computations
were performed on an IBM 360-65 computer and required a .
storage capacity of 400K. For the computed cases, 76 points

in normal direction from ¢ = 1 to ¢ = 0 and 6l'points in
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transverse direction n were used.. It was found that this
combination of steps represented an optimum from the point of
view of convcrgencé, accuracy, and computing.fime. It took
approximately 2.3 seconds to compuﬁe thé solﬁtion at a grid
point. The cbmpile time was 4 min. The skin friction and

heat transfer were normalized by values C and g at zero

fto VO

angle of attack, respectively (Table II). Longitudinal and
transverse skin friction and heat transfer distributions in

(o]

the transverse direction for ¢c = 107, and o = 80, 10°

’ ahd
12° and variqus values of the Reynolds number.are shoWn in
Figures 4.6 £0“4.15. The same parameters are éhown for ¢c
= 25° and o = 12.5° in Figures4.16 and 4.17. These figures
show values.fOr the constant entropy. cases (ho swallowing)
and for entropy éwallowing wheré_inviscid daﬁa were interpo-

lated at a distance from the wall equal to the thickness of

the boundary layer, §. Heat transfer results for ¢c =‘lboﬁ

are compared with the tests by Tracy (ref. 23).

The longitudinal and transverse skin friction distribu-
tions for ¢C'=<10?, a = SO, and Re = 4.04 x 10% are shown in
Figure 4.6. The Reynolds number is modérate and the boundary
layer has a significant thickﬁéss. As a result‘of eﬁtropy
swallowing the values of the'skin friction are hiéher than
those for constant entropy over almost the entire periphery:

" about 2% at.the-windward and 4% éf the leeward region. A
similar trend is displayed by the heat transfer in Figqure 4.7.

Heat transFer shows good agreement with the test values by

Tracy (ref. 23) except toward the leeward region and windward
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regyion where the computed Valuévis about 3% higher than the
test results. Figures 4.8 and 4,9 show the same parameters
for higher Reynolds number, Re = 4.04 x 10%.  Because of the
thinner boundafy léyer, smaller entropy swallowing effects
are noticeable as is expected. Figures 4.10 and 4.11 show
the computatiohai résultsrfor e« = 10° and Re = 4.04 x 104.
As before, there is a marked éffect of entropy $Wallowing
Cc

on C and q,- A fair agreement of computed heat trans-

feg!' Tfq
fers is still épparent, although the differences are larger
near the planes of symmetry and are about 4% a£ thé windward
sidé. The effe¢t of entropy swallowinguis reduced by a high-
er Reynolds number, as is noticeable in Figures 4.12 and 4.13.
Considerable difficulties .were encountered in bbtaining solu-
tions for u/¢c > 1. This is the limit of validity of the
inviscid data Which becomes prégressively mofe inaccurate as

a increases. -Figure 4.4 indicates the scatter of the computed
inviscid data fqr a = 127, ¢C = 10° as obtained by dones |
(ref. 14) and the distribution of the flow Mach number in the
cross-flow plgne, M- It is obvious that th¢ inviscid valués
are inaccurate and tﬁe fact that Mc reaches a value of unity
at 0 = 95° indicates a possibility of internal imbedded shocks
(ref. 27). Results for o = 12° are shown in Figpres 4.14

and 4.15. Figures 4.16 and 4.17 show results for ¢c = 25°

©. Although the trends are still the same, the

and a = 12.5
differences between results for entropy swallowing and no
swallowing seem to increase. Figure 4.18 represents a com-

pilation of héatAtréﬁsfer distributions for a 10° cone at
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« = 8° and includes experimental data by Trdacy, results of
computationsnby Boericke (ref; 4). based on exéerimental pre-
ssure, and pressﬁre by Moretti for Mm = 7.95,ahdithe.results
by the present method for M_ = 8. The results of this analy-
sis for entropy,swalldwing at M_ = 8 are higher than the
results based Qn pressure by Moretti at M°° = 7.95 as should
be expeéted. A similar comparison of heat transfer results
for o = 12° is shown in Figure 4.19.

The results obtained in this analysis can be,comparea
with the recent 301utiohs by Mayne (ref. 12). :The_results

for ¢ = 10°

and d;= g° (Fig. 4.6, 4.7) show good agreement
of skin friction values and heat transfer exéep£ in the
Windward’aréé where Mayne's results.show that longitudinal
skin frictioﬁ ié identical with the classical value and heat
transfer whidhtis lower than the classical value. In the
case for ¢ = 25° and o = 12.5° (Fig. 4:16,.4.17), there is
qualitative agfeement in the skin friction, except that thew
results by Méyne for transverse skin friction is becoming
‘lower than thé élassical toward the leeward side, while the
heat transfer reéults by Mayne are slightly higher near the
windward sidé-and become lower for 0 > 60° thaﬁ the classical
values. The heat‘££ansfer results by Ma&ne.foﬁ these two
cases seem tb lack consistency as compared with the results
of this analysis which are consistently higher or identical
for decreasing o values and high Reynolds numbers with stream-

line swallowing for the range of computed cases. It is be-

lieved that these differences are due to the fact that the
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streamline:swallowing effects in the windward plane have been
neglected by Mayne. Mayne argues that the vorticity effects
are negligible in this region and assumes the_similarity
solution at £ = 0, n = 0 to be valid for ¢ > b and n = 0.
Although the variation of flow properties in the windward
plane is small, they are finite. The effects in the adjacent

meridian planes are increasing and result in different cross-
20
an

parameters in this area.

wise derivatives, » which lead to higher values of viscous

The circumferential boundary layer thickness distribution
for o = 80, 100, and 12° is shown in Figure 4.20. The rate
increése of the computed values of § toward £héAleeward plane
is not as high.as of the e#perimental data by TraCy. The
streamWise boundary layer thickness distribution in the mer-

(o]

idian planes g = 02, 90°, and 150° is shown in‘Figure 4.21.

It follows the law:

Q
b3

(ﬂ
()
b

The variation of the entropy pérameter_p/pY in the circumfer-
ential direétioh is.shown in Figuré‘4.22. .The”entropy decrea-
se 1s larger fof increasing anglg of éﬁtack'a and for decreas-
ing Reynblds number-(larger §), which is consistent. It can-
be concluded that the entropy layer grows with the increase
of o« and 5; |

It has Been observed that the computed results fluctuate

somewhat after the program switches to the variable entropy
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scheme as shouh'in Figure 4;23: This is due to the impact
of the different.invisoid data set used in the'variable
entropy part of the program, different_parameters used in
the finite difference schemesfand computed in the cohstant
entropy phase of the proéram._-This is also consistent with
a.slightly different'inviscid data set-and.due to nonsimilar-
ity of the present scheme (%% # 0) . These.fluctuations
- practically vanish after'thevthird-step. |

It was pointed out that,the entropy swallowing effects
are accounted for by estimating the.inviscid datadat the
distance from the wall equal.to_s from the previous step.
~ This approsimation results ih some'error-whioh”isAshown for

a = 10°

in Flgure 4.24. The results from the second sweep
(second set of: computatlons based on true 6 from the first

set of computatlons) are hlgher by l% at the w1ndward 51de,

.3% and .5% at 90° for q vand Cf, respectlvely and go to 3%

and 1% for qw-and Cf in the leeward area. For most practical -
purpoSes.this'error is 'small, and in view of the fact that

the leeward results arehhot precise, the first>sweep can be

considered as satisfactory.

4.11 Conclusions

The results of the present method for solv1ng the laminar
boundary layer equatlons for a c1rcular ‘cone Wlth entropy
swallow1ng have, demonstrated the valldlty of the approach of
this analysis for the representation of viscous flow with the

effects of entropy'swallowing. - In particular,‘the computed
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heat transfé;.results qw/qwo are in good agreement with the
experimental results by Tracy and with results produced by
other methodé_(réf. 4,12). The effects of entrdpy swallowing
result in values higher than the values for constant entropy
V§nd this trend is gonsi;tent within the range of the ¢ §
and Re values used in these computations. Laréer-differéhces
occur near the leeward region and this is believed to be due
to the inadequééy of the boundary—layer equations as demon-
strated in:
1. The inability to predict a sharp rise of boundary layer
thickness in this region i
2. The inability to produce a solution near the leeward
plane which is deteriorating with increase in angle
of attack «a. |
The inviscid flow variables by Jones (ref. 14) seem to be
satisfactory-for a/¢c up to unity and become inaccurate for
larger relative o values over most of the bodyf They become
inadquate néar the leeward plane where étrongAinteracﬁion'
effects may be important.
.fhe error resulting from apéroximating the boundary
layer thickness 8 by a valueiférm the_previous-step is
practically hegligible and singlé sweep computatibns are

sufficient.
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5. SOLUTIONS FOR BLUNTED CONES AT ANGLE OF ATTACK

Nearly all réal cohfigurations for hyperéonic vehicles
or lifting bodies require a bluntness of finite radius in
order to reduce the heat transfer. Since a blunted body is
of considerable importance, the second part of this work is
devotedvto,the biunted-coné‘cohfiguration, in particular to
sphérically blunted circular cones at angle of_éttack. The
method of solution is similar to-the one.used for a sharp
cone; consequently the same computer program can be used with

proper modifications.

5.1 The Geometry of the Problem

| The analysis of the viscous boundary layer flow around
" a blunted cone is performed as follows. The sphéfical part
with symmetrical flow is solved first (Fig. 5.1, region I).
After the computations have beén‘carried out ‘a cértain distance
beyond the body'axis; a transfer oficoordihateé to the spher:
ical part about the body axis with unsymmetrical flow takes
place (region II). At the sphere-cone junction, the program
switches to the conical coordinate system (region III) and
computations é;eicontinued in the same way as.éh a sharp cone.

From the expression for the square of a line element in

an orthogonal curvilinear system

‘A2 = h,% a® + h,° dan‘ + hyC dg (5.01)
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one can write for a spherical system (Fig. 5.2)

ar? = ar? + r2as? + (r sin¢)? as? . . (5.02)

"and identify the scale factors for the surface coordinates
as |

When nondimensionalized by the radius of the sphere r . the

following relations hold for the surface of the ‘sphere

h

h 3
1 T2
hl =‘f; =1 , 52—-= cosd v
_ (5.04 a-d)
h . 3h :
2 2 _
h2 = ;g = sin¢$ and Fraati o .

5.2 Flow About a Sphere-Cone

With the séale_féctors hl'and hz.identifiea, fhe invis-
cid coefficients'A;'are»determined for the symmetrical region
I with special attention given to the case of ﬁhelstagnation
point (¢ = 0) and thé region outside the stagnation point
(6 > 0). |

The progrém for thelflow about the sphere at an angle of

attack is broken up into two parts. (Fig. 5.1):
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a)  symmetrical flow about the wind axis with zero crossflow
velocity_ve and azimuth symmetry'(%% = 0), this is denoted
by region I. |

b) unsymmetrical flow about the body axis with non-zero
crossflow velocity Ve and crossflow derivatives (%%-# 0),
this ié denoted by region II.

Thus, these two regions must be treated separately. One
set of inviscid coefficients A, is specialized to region I
and 4is used to obtain solutions up to an angle ¢ = 3a.
During this phase the results in the plane of symmetry from
point ISI to ISF (Fig. 5.3) are stored and will be used as
- starting solﬁtibns for the unsymmetrical region II. Using
the geometrical relations between the wind and body systems,
the results at a finite number of points from ISI to ISF
are interpolated evenly over tHe entire n region at IWEND
points and are used to obtain solutions at the ISF+1 stream-
wise station and up to the sphere-cone junctioﬁ'CJ.

The positiqn of a point and the sphere in terms of the
body coordinate system (x,r,0) is related to‘the coordinate
x in the symmetrical wind system for a given angle of attack
a by the folldwing expression (Fig. 5.4) |

Xk = Rnn+‘.(x0 - Rn) cosao + r, sina cose_ : (5.05)

Thus, any point on the sphere in the body system along line
1-1 can be reached from the wind system by determining the

coordinate ka
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Since a sphére has no preferred orientation the flow
is symmetric in the wind system. The flow in-the-body system
is unsymmetrical. Any point on the sphere and the correspond-
ing flow variables at this point can be obtained from the
;syamétfical-fidw about the sphere in the wind system by ro-

tation about the wind axis.

5.3 Method of Solution

The method of solution of ﬁhellaminar bouhdary—layer
equations for a.Sphere-cone is essentially the same as the
one applied to a sharp cone. For solving the symmetrical

sphere flow in region I, it was established (eqﬁations 5.03,

5.04) that
_ , ah2
£ = ¢ h, =1 3f = ©os ¢
A 3h, )
n = 0 h2 = sing —a-T]— = 0

and for similarity to exist at the stagnation point (Appendix

C)
=1 - (5.06)

With these relations the inviscid coefficie:nts*Ai are special-

ized to region I by realizing that the crossflow velocity

Ve = 0 and crossflow derivatives are %% = 0 and that the

streamwise derivatives exist, %% # 0. 1In order to be able
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to transfer to region II where unsymmetrical flow exist,

the computatiéns are carried out to a value of & = 3a. The
compﬁted parameters in the leeward plahe are stored and in-
terpolated over'the half-range of n in the plane normal to
body axis and passing through the last computed point in

the leeward plane ISF and are used as starting values in the
region II. This region is handled the same way:as region I,
except that the crossflow velocity and crossflbw derivatives
are not zero (V_ # 0,‘%% # 0). After the sphefe—cone junc-
tion has been reached, computations are performed in the
conical coordinate system as for a sharp cone,»éxcept that

*-
§ = 1.

5.4 TInviscid Data -

The invisgid flow variables for the sphefe—cone analysis
were obtained by the method of characteristics by Rakich -
(ref. 32). The inviscid input data for region I consists of
the pressure distribution p = p(¢), for ¢ = 0 to $1 = .7986
radians (Fig. 5.5). With stagnation values spécifiéd one

obtains the entropy parameter K = po/poY and total enthélpy

XY ‘ i =
and velocity u, .ue(¢)

/ VT ' - A
u, =\12(‘ho»j (" TK)Y (Y_IT ‘ , (5.07)

In the region II about the body axis, the pressure distrib-

ution is‘genefated from the symmetrical pressure p(¢) from
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region L in 7 meridian planes spaced evenly 30O apart by
means of relations from section 5.2. These pressure curves

are matched with specified pressure distributions in the

. .same meriaian planes respectively, beginning at the first

location at the axial coordinate X170 ° The longitudinal

veloéity in the windward plane is generated using the re-

lation-

X (5.08)

The longitudinal velocity in each cross-plane is obtained
by the Newton-Rapson itefation method described in section .
4.6 and the crossflow velocity is obtained from the g-momen-

tum equation

u_ 3u du_ '
_ e e 1 e 1 3p
Ve = tand (GZ 3 * simg ot 5 v 5E) (5.09)
e ‘ e'e
. 1  ape . :
The relation 3 is computed from equation . (5.8). &An

e
alternative method for computing the crossflow velocity is

determined by the following method. Bernoulli's equation

(4.09) is differentiated with respect to £ and the derviative

ap .
EES is introduced into the momentum equation (2.01) which is

specialized to inviscid flow. After some rearrangement one

‘obtains the irrotationality condition on the surface

v) =0, : (5.10)
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Using a two-point backward finite difference expression

A .
for EEE one arrives at
S : " h, 3u u_ sh oh.
- . Sl e e l> : AE 2
vV . = .+ T - p—— — £
e [Vei.' A"=(hz 7wk, im J @+ g 5! 61D

i+l

Equation (5.11) is much easier to apply than (5.09). -Equa-
tion (5.10) must be modified if the surface of the body is

not a'surface of'constant entropy.

5.5 Results
Computations for spherically blunted cone were performed

for the folloWing_conditioﬁs:

'M_ =8
4o = 10°
T_ = 418.87°R
T, = .6 T
R = 1.0x10°
e
R =1 ft.

The results for region I are shown in Figure 5.6 and include
skin friction, heat transfer, pressure, velocity, u, . and
longitudinal de;ivatiVes of pressure and velocity. Skin
friction and heét transfer results for region ITI and III

are shown in figures 5.7 and 5.8. The matching of computed
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values at transition from region I to II and from region II
to III is good. The circumferential distribution of the
skin friction and heat transfer parameters in twoicross~
planes at ¢ = 560 and ¢ - 92° is shown in Figure '‘5.9. Long-
ituéinal préssﬁre and«velocity distributions iﬁ 7 meridian’
planes is shown in Figure 5.10; and longitudinal derivatives
of pressure and velocity are shown in Figures 5.11 and 5.12.
A typical circumférential distribution at ¢ = 560 of Pos

v

v_ and 533 is shown in Figure 5.13. The above results

u
e’ Te

for CroccolVariables are compared with viscous fldw’solﬁtions
for laminar flow on a blunted cone at the same cquitions
using Levy-Lees variables (ref. 33) in Figures 5.7 and 5.8.
The.same pressure was uséd.in both cases, however, the in-
viscid data were handled differently. This probably aécounts
for somé differences in results. Oﬁherwise, the résults

show fair agreement as far as magnitude and distribution éfw

parameters are concerned.

5.6 . Conclusions

The solutions for'viscous lamihar flow over a épherically
blunted cone were 6btéined by-éolving the conservation equa-
tions in Crocéb variables. The results show fair agreement
with similar'computations based on Levy-Lees variables and
match. fairly well aﬁ transition boints from region I to II
(unsymmetrical flow in body system) and from region II to
III (conical flow). | k

Considerable difficulties werxe encountered in handling



-57~

the inviscid data, pressure, velocity and their derivatives.
In particular'it was difficult to obtain smooth distributions
of these curves. Lack of continuity of these curves causes
scatter of reéulfs or renders a solution imposéible. There-
fore, a more accurate set of inviscid data wouid be desirable,
and work needs:tolbe done on determining the best way to

handle the inviscid data.
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TABLE I. CONDITIONS OF COMPUTED SHARP CONE CASES

Case M b (o) Tw/To Re a (o)
1 g 10 .46 4.0ax10% 8
2 g 10 .46 4.04x10° g
3 8 10 .46 4.04x10" 10
4 e | 10 .46 4.04x10° 10
5 8 10 .46 | 4.08x10? 12
6 8 25 .46 4.04x10% 12.5°
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TARLE LI,  COMPUTED SHARP CONE PARAMETERG AT o = 0O

: a le o s | 5 3y /i
Case M, | ¢.(@) | alo) T./To Cfg\/xRe q,/ (pu”) , VxRe
1 8 | 10 0 .46 |0.39925 ~.05537
2 8 25 0 .46 .71229 -.11582
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