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(ABSTRACT )

Numerical solutions are obtained for the quasi~compressible Navier-
Stokes equations governing the time dependent natural convection flow
within a horizontal cylinder. The early time flow development and wall
heat transfer is obtained after imposing a uniformly cold wall boundary
condition on the cylinder. Solutions are also obtained for the case of
a time varying cold wall boundary condition. Windward explicit differ-
encing is used for the numerical solutions. The viscous truncation
error associated with this scheme is controlled so that first order
accuracy is maintained in time and space. The results encompass a

range of Grashof numbers from 8.34 x 1oh to T x 107

which is within the
laminar flow regime for gravitationally driven fluid flows. Experiments
within a small scale instrumented horizontal cylinder revealed the time
development of the temperature distribution across the boundary layer
and also the decay of wall heat transfer with time. Agreement between
measured temperature distributions and the numerical solutions was
generally good. The time decay of the dimensionless ratio Nu/Gi/h is
found numerically and experimentally and, over mpst of the cylinder wall,
good egreement is obtained between these two results. The numerical
results indicate that the fluid exhibits a strong tendency to resist
first order motion within the inner core region. The early establish-
ment of a shallow positive upward temperature gradient within the core
enhances its stability. No first order vortical motion is induced by

the boundary layer and this is attributed in part to the fluid decelera-

tion near the bottom of the cylinder along with expulsion of fluid from

jur



the boundary layer in the lower portions of the cylinder.
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INTRODUCTION

Chapter I

Natural convection flows within closed containers have intrigued
mathematicisns and fluid dynamicists for many years. Part of the
motivation for understanding such flows was based upon an early
realization that many practical engineering situations are governed by
gravitationally driven fluid flows. Present day interestbis concerned
with the.flow of fluids within pipes, nuclear resctor cooling systems,
turbine blades, and stationary containers. These fluid flows may be
significantly influenced by natural or induced body forces. The
resultant fluid motion and heat transfer are the principle features of
interest and it is toward an understanding of these features that most
studies have been directed. The early work by Nusselt (reference 1),
Hermann (reference 2), Beckmann (reference 3), and Hermann (reference
L) established both the aﬁpropriate governing equations as well as the
general relationship between the non-dimensional heat transfer and the
Grashof number for externsl flows over cylindrical configurations.
Numerous experimental studies have confirmed the theoretical findings
(reference 5 through T) for large values of the Grashof number wherein
a boundary-layer flow is present. Not until the work reported by
Ostrach (reference 8), Lewis (reference 9), Batchelor (reference 10),
and Pillow (reference 11) was the internal natural convection problem
given a general theoretical treatment comparable to the external

problem. More recent enalytical studies involving somewhat restricted



wall boundary conditions have been reported by De Vahl Davis
(reference 12), Weinbaum (reference 13), Menold (reference 14), Hentman
and Ostrach, (reference 15) and Gill (reference 16).

The principsl problem that has thus far prevented a general
analytical solution stems from the coupling between the boundary
layer flow near the walls of the container and the core flow that is
driven by the boundary layer flow. In formulating the problem in terms
of a stream function most of the previous investigators except Hantman
and Ostrach (reference 15) have been faced with the necessity of
specifying a core stream function behavior that is not known a priori.
Thus, depending upon specified wall boundary conditions, the core
has been assumed to have either an isothermal constant vorticity
character or to be stratified with streamlines extending into the
boundary layer. Both analytical solutions and experiments have shown
that two entirely different flow configurations are possible. If the
flow is heated from below, the core streamlines are closed and the core
is isothermal. If the wall boundary condition is such that heating
occurs from the side, the core is stratified with isotherms and
streamlines éoinciding. The studies reported thus far are not able to
predict the critical heating phase angle at which a rotating flow
configuration changes to a stratified flow configuration. The Oseen
linearization used by Weinbaum does not help the problem because this
approximation decouples the core flow from the boundary layer flow.
The core is expected to be closely coupled to the boundary layer flow

because it is driven by the boundary layer.



3 .

A related problem with less troublesome'boundary conditions is
that of & horizontal cylinder with one half of its bounding walls
raised to a constant, uniform temperature'and the other half lowered
an equal amount below the initial fluid temperature. Thus a rotating
boundary-layer flow encircles the inside cylindrical walls'with the
flow rising over one half the circumference and falling over the other
half. This problem was studied numerically by Hellums (reference 16).
Hellums used what is now termed the windward or donor cell differencing
technique for the time dependent problem starting from\initia;ly imposed
wall boundary conditions. He obtained numerical solutions for the
velocity, temperature, and heat transfer distributions Qithin the
cylinder. Because fluid is both entrained and eJectedvby the boundary-
layer flow, the windward finite differencing scheme is.quite suitable
for this type of problem. Hellums was able to make favorable compari-
sons between his solutions and experiments carried out by Martini and
Churchill (reference 17). These comparisons were possible for the
steady state flow oniy. No unsteady flow measurements were reported.
For steady state flow, Hellums verified the relationship between the

1/4

Nusselt number and Grashof number; Nu = C Gr both from a formal
derivation of the dimensionless governing equations and from the
resultant numerical solutions. For unsteady flow the coefficient C
can be expected to be time dependent. The work reported by Hellums
is closely related to the present study and will be discussed in more

detail in the chapters following. At the present time oniy a very few

of the possible boundary conditions that could be imposed on a



horizontal cylinder have been studied and with only partial succesé
'in most of thevcasés reported.

The work reported here represents an attempt to clarify the flow
resulting from a new wall boundary condition that has not been
here-to-fore studied for the internal flow problem. A uniform cold
well is established at time zero and the early time development of the
fluid motion is studied. The fluid is initially at rest and will also
return to rest at very large times after flow initiation. Thus a
steady stgte is not of interest in the present work. In additionm,
solutions are obtained for the case in which the wall temperature
decays with time. This problem corresponds to experimental boundary
conditions that were imposed within a small cylinder in the present
work. The experiments are described and a discussion of the relation-

ship between the numerical work and the experimental work is given.



A Physical Description of the Problem

Chépter IT

The geometry and nomenclature of the horizontel cylinder to be
studied is shown in figure 1. The cylinder is of semi infinite length
to allow & region of two dimensionel flow to existl. One practical
application for such a geometry is related to a large blowdown wind
tunnel storage facility in which the major heat loss to the walls
occurs due to gravitationally driven natural convection fiows. When a
hot gas is stored in such a tank sppreciable azimuthal gas flow occurs
due to the imbalance between the gravitational body forces and the
existing hydrostatic pressure gradient in the fluid. The gas, which is
air, is initially at rest with a balance between the body force and the
hydrostatic pressure gradient. The gas is initially at a uniform
tempersature Ti' At time zero, & uniform cold wall is imposed on the
cylinder, and the resulting conduction of heat out of the gas near the
wall causes the convective motion to begin. As the flow develops, &
thin boundary layer is formed neer the wall and this layer thickens
with time. The initislly motionless inner fluid (the core)lis driven
by the boundary layer flow and gives.up energy to the heag conducting
boundary layer fluid. As time progresses the boundary layer will
éffect the inner-most regions of the core flow and eventually the gas

can be expected to give up all of its excess energy to the cold wall.

lA two dimensional flow within a horizontal cylinder has been observed
by Brooks and Ostrach (reference 21).



When this happeps the fluid will be once again at rest with a uniform
temperature now equal to the wall temperature. Several distinct fea-
tures are intuitivély apparent. Because of the uniform wall tempera-
ture, a mid-plane of symmetry is immediately established with the
dividing line running vertically upward through the center of the
cylinder. Along the mid plane of symmetry the azimuthal velocity is
zero. In each half cylinder there are two stagnation points which will
be at the intersection of the line of mid-plane symmetry and the wall.

The principle motion in the boundary layer will be azimuthal and
the induced motion will be radial. Because of the small coefficient
of viscosity for air we may expect velocities of lower order in the
core then in the boundery leyer as well as both inward and outward
radial velocities across the boundary layer. In addition it might be
anticipated that some stratification of the flow will occur in the
lower portions of the cylinder. The geometry and principle features
of the flow having been outlined, the remainder of this thesis will be
concerned with obtaining an understanding of the details of the flow
from numerical solutions to the governing equations as well as

experimental measurements.



Mathematical Formulation of the Governing Equations

Chapter III

The model chosen for this study is that of a viscous, heat
conducting, quasi-compressible fluid thet conforms to the Boussinesq
approximation. For small differences between the gas temperature and
the wall temperature, the density may be taken as a function of
temperature only and considered as a variable only where it modifies
the body force terms in the equations describing conservation of
momentum. This approximation has beep investigated extensively in
references 4, 8, 15, and 16.

In dimensionel form the_quasi—compressible Navier Stokes‘equations
applicable to the case of large Grashof Numbers and small gas to wall

temperature differences in cylindrical coordinates are:

_al _8_1& E'-._all- l—llz_ ! _!‘—--32
st Ve troe Ty - esin® -T2

29 ) Azimuthal Momentum 3.1

A v v ,udv _u_ cos @ -
at dr T 9 r € p or
pf®y  1av,1 8% v _2 3u
+p —5+;-—r+—2-_-2-—7-—2-36 _ Radial Momentum - 3.2
or r o0 r r
arv . du _ - .
are + 35T 0 Mass Continuity 3.3
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9T o7 wor _ k fa°r 13T, 1 3T

5 TV ar Tr3e " o 2 YTt 2 Energy 3.4
p \or r 99

Viscous dissipation end pressure work contributioné to the energy
equation are neglected at the outset as these terms have been shown
to be negligible for gravitationally driven flows. (See Ostrach

reference 18).

p. T,
p = —lil- Boussinesq Equation of State for
a perfect gas 3.5

This system of equations consists of three second order, non-
linear partial differential equations, one first order, linear partial
differential equation and an algebraic equation of sfate. For the
physical flow described in chapter two, the following initial and

boundary conditions are imposed:
at t=0
u(r,6,0) = v(r,0,0) =0
3'6

T(r,0,0) = Ti

P(r,eﬁo) = pi(r,ego)

p(r,G,O) = pi



at ‘ r

i}
3

ulr,,0,t) = v(r,,0,t) = 0 3.7

|
3

T(rw,e,t) =

end at r =20

P(anat) =

1
9

and on 6=0and m

==0 Mid Plane Symmetry 3.8

The equations 3.1 - 3.8 will be more conveniently dealt with in
non dimensional form. The following dimensionless quantities’are

defined:

U= Q V= A

vg Bo r vg Bor




10

‘Ti - T
Ti Tw g Bo pi rw
a=T, -~ T
1 w
~ T
p =& Bo = 1 - ;1
Py i
B =2
i
=t/ Ba/r, = R=I- 3.9

Substituting equations 3.9 into equations 3.1 - 3.8 and rearranging

gives:

U, W, UW U _=-sine 1 ¥
oT oR Ro6 R Ra ~_ 90
PR
3.10
2 2
. L (2, 180 .t1.+;_§_u+g_§y.)
2 ROR _2 2 29
\/G_;SR R© R° 36° R
3V v W U° cos® 1 9P
VR VW TR "B TS OR
3.11
2 2
S S - A W) A 1.3V VvV _2_ 3
T \ag? ROR 22 R 2708
r
B/, B .o 3.12
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> 2
1 %% . 13p . 1 3%
(2+R8R+R2 > 3.13

3.1L

Initial conditions

at T=20

U=v=20 3.15

Boundary Conditions

at R = 1.0

¢ = 1.0 3.16
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and at R=0
P=P
o
on =0 and T
%Y_ = _3% = -g—% =0 Mid Plane Symmetry 3.17

The nondimensionalization provides the unit order variables U, v, ¢,
and p. The reference pressure is pig Bo r, so that the dimension-
less pressure will be greater than order one. The reference time is of
order one, so the dimensioﬁless time can also be greaﬁer than unity.

In previous investigations some simplificaﬁion of equations 3.10
through 3.13 were made. Hellums (reference 16) derived the governing
equations for unsteady internal flows within horizontal cylinders.

v . .
R 36 1B the azimuthal

momentum equetion were shown to be negligible. In eddition, the

The Coriolis force w as well as the derivative

viscous terms in the radial momentum equation and the first three

terms on the left hand side of equation 3.11 are negligible. (see
2

Hermann, reference 4). Tinally, the derivative 2—%- was found to be

a low order term in equation 3.13. However the derivatives considered
negligible were in fact carried along within the present computational
scheme and systematic checks were made to verify that the small order

of the terms persisted. Formal ordering of equation 3.10 through 3.14



13

by asymptotic series expansions of the dependent‘variables and stretch-
ing of the normal coordinaﬁe is complicated by the eventual thickening
of the boundary layer. At large values of time the boundary layer is no
longer thin and the matched core expansions and inner expansions are
invalideted. An additional simplification to equations 3.10 through
3.14 involves the form of the pressure gradient terms.

It is convenient to divide the pressure into two separate parts:'
P = Pi + p% 3.18

P, is the initial zero motion hydrostatic pressure. P* is a "dynamic"
pressure that arises due to motion and thermal changes within the
fluid. The motivation for equation 3.18 is well founded in that the

initial hydrostatic pressure gradient is known exactly:

1 i _ s8in 6

R T S | 319
oP,

%-—R—J:-=%cos 6 - 3.20

For many gravitationally driven flows the contribution to the overall
. op* ) el

pressure gradient from 30 or IR~ is a small order effect. (see

Hellums reference 16 and Ostrach reference 18). Knowledge of the

hydrostatic pressure gradient facilitates solution of the governing

equations through the use of equations 3.19 and 3.20. With these

considerations and substituting equations 3.19 and 3.20 into equations



1

3.10 through 3.14 the governing system becomes:

U . LU UM_ ., (1 - ¢ Ba) 3P
sttt VSRR - - beinb-"Tx 30
3.21
+_1_.(.8.2_U.+;§3.1. u ,1 3%
2 ROR .2 2
/é:an R= R° 20
2
*
%=%’-¢cos6 3.2
SRV . 93U _
2, 428, U2 1(u+1gg)
3T 38 R p \sg2 R OR ,
r r
Initial conditions
at tT=0
U=V=0
$ =0

P* = 0 3.25

Boundary conditions
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Development of the Finite Difference Approximation
to the Governing Equstions
Chapter IV
Low velocity fluid flows have proven difficult to solve using
finite difference techniques. When the fluid velocity is ioﬁ, long
computational times are required, and for gravitationally driven flows
that start from rest, the situation is further aggravated. The fluid
flow studied here should develop meximum velocities on the order of
several feet per. second; thus long cémputational times sppear unavoid-
able. The second difficulty érises from the fact that both positive
and negative vglocity components may be expected as fluid will be both
entreined and expelled By the boundary layer. Numerical instebilities
are produced by'positive and negative coefficients of the convective
terms of a difference scheme unless special care is taken regarding the
form of the differéncing. For these reasons an explicit, windward |
diffefenping technique was chosen (also called the donor cell technique).
As shown recently by Roache (reference 19), the windward scheme along
with all but one other scheme (referenée 20) have only first-order
accuracy in the transient development of the flow. A diffusi#e trunca-
tion error is introduced whicﬁ afpears as an artificial wviscosity that
may override the physical viscous damping within the fluid. Because of
this, care must be taken with the windward scheme to insure that the
grid size is sufficiently small so that aftificial viscOgs effects do
not have & predominant effect on the numerical developﬁent of the flow.

From reference 19 it is seen that the artificial viscosity of the

16
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transient windward differencing scheme in dimensional form is:

= wdr ( _tudt
o, 5 (1 Ar) 4.1

If O is to be much less than fhe physical viscosity we may write:

Ar _ lwit.
o (1 Ar) << 1.0 L.2
or
Ar << 2B 4 wiat
hai
Providing that 5
u At << -di‘ g3

Thus, depending on the fluid velocity and the Qlléwable time step
obtained from stability constraints, the step size must be kept well
below the right hand side of inequality 4.3. For some flows that have
been studied, this requirement is over restrictive and can be relaxed.
(See Callens, reference 22). With these considerations the finite

difference equations approximating egs. 3.18 - 3.25 are written as:

g .
n .
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1 n n 1
——— b, ..~ 20 + ¢ — h.7
P Vo ( J,0+1 J, % J, -1 ARg _ ‘
r r
at T=0
U=V=0
¢ =0 h.B
P =P,
p=1
at R=1.0 and on 6 =0 aend T
p. = 1 U = U
Pw =T - Ba J+L,8 J-1,%
U=V=20 . k.o
¢y = 1:0 O5e1,2 = %3-1,2
at | R=0 P* = 0

Because both U &and ¢ are very small quantities near R=0
the boundary condition for P¥ given in equations 4.9 is ; close
approximation to the physical situation.

The stability and convergence of this system of equations is
inferred by apblying a Von Neumann stebility enalysis to the

linearized forms of the difference equations. Appendix A provides the
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details of the analysis. Although the procedure outlined by Richtmyer
(reference 26) is rigorously applicable to a limited class of linear
equations, it has worked successfully for the non-linear'equations

of fluid mechanics. The allowable time step obtained in appendix A is

given by:
At S N A ‘ 1 - 4.10
gl BlVapl w0
R(R)86 AR A (R(p)a0)° /G o8

The time step chosen for most of the calculations was 0.8 of the
right hand side of equation 4.10. The value provided stable calcula~-
tions over the majority of cases studied. Theoretically it is difficult
to establish optimum grid spacing ratios; Past work across boundary
layers has been dictated by the need to resolve large gradients over
short spatial lengths, and thus a fine grid spacing has been used in
the spetial dimension normal to e bounding surface. For the cylindrical
geometry the principal flow in the boundary layer is azimuthal, but it
was found that radisl flow is of primary importance in the core. A grid
network that is refined in only the radial direction (normél to the
cylinder walls) does not seem appropriate here. The computational
experience with different grid spacing ratios indicates that a ratio
%%-<< 1.0 is essential for stable results. This probably should not be
surprising in a cylindrical coordinate system because the azimuthal
grid expression appears as R(2)A6 in the difference equations, and it

is immediately seen that this value reduces to ARA® at the inner most
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grid location next to the origin of coordinates.
The formal accuracy of the windward difference scheme is related
to the computational cell Reynolds number. For the presenﬁ study this

number msy be written as:

R, =IUI AR/(';: 4.11

For ReA << 2 the windward differencing will have first order accuracy

in both the spatial and temporal differences.



V Numerical Solutions

A. Constant Wall Temperature

The system of equations 4.4 - 4.9 was solved for values of U, ¢,
V, and P* over the entire gridvfollowing a step-function change in
the cylinder wall temperature at time zero. A flow diagram describing
the calculation sequence is shown in figure 3. It is seen that the
correct difference equations are selected at each grid‘point depending
upon the sign of Uj,l or vj,l such that stable computatiops will
result. The program was set up so that computations could be continued
from a previous computer run, and thus extended run times ﬁp to 5 hours
on the Langley Research Center CDC 6600 computer were made'possible.
Typical computationel speeds for a 51 by 31 grid for the helf cylinder
were 1.02 x 107 grid points per hour. The real time development of
the flow prégressed at & rate of 1.25 seconds per hour of machine tiﬁe.
An order of magnitude faster flow development time was obtained with a
26 x 16 grid network; however a formel first order accurac& is not
achieved with such a coarse grid.

The steps taken in the computational sequence of events were as
follows:

1. Equation 4.7 was solved over the entire grid for new values

of ¢.
2. Equation L.k was then solved for new values of U over the
entire grid.

3. Values of ¢ and U were updated.

22
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4. Equation 4.6 was solved for the current values of V over the
entire gfid.
5. Equation 4.5 was solved for current values of P* over the
entire grid.
6. Values of V and P* were updated.
7. Equation 4.10 was solved to determine an allowable time step.
8. Values of the Nusselt number at the wall were caléulated.
The process was repeated over the entire grid for the next time step.
The dimensionless heat transfer at the wall is given by the Nusselt

number and obtained from the following:

[

. = hd
Nu X 5.1
_ 1 aT. :
or h = - 7 k(57 5.2
i w =T
W
® = const
s0 that
1 d
‘N =—-—-—(T '-T _) 5°3
u Ti - Tw Ar J’zwall J’zwall 1
or in dimensionless form:
2
N =2=(1-9¢ ) 5.4
u AR J’lwall 1

Teble I lists the values of the input parameters that were used for
the solutions to be presented. Figure i shows the results obtained for

the case II solutions of Table I.
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From the simple physical geometry of the cylinder a raiher compli-
cated flow pattern is revealed by the numerical results. Figure ba shows
the azimuthal velocity distribution at 6 = n/2 for three different
time levels. The eafly time T = 3.05 can be consideréd as showing the
distribution prior to what is considered to be fully developed flow.

By this it is meant that pesak velocities at any given location have not
been achieved. The intermediatebtime, T = 4.57, shows the velocity
distribution at its peak value, and the late time, T = 1&.5, shows the
distribution after a decay in the velocity has taken place. Significant
inward displacement of the peek velocities is not apparent. The
distributions do thicken with time over about 20 grid point spacings,
and the viscous effects are transported further into the core of the
fluid as time progresses. The distributions shown in figure 4 are
typical of all the results obtained for the constant wall temperature
case. Figure 4b shows the velocity distribution near the bottom of

the cylinder at an azimuthal angle of 23.70. The momentum gathered Dby
the fluid falling downward has both thickened the boundary layer as
well as increased the peak azimuthael velocity. At values of © less
than 23O the fluid rapidly decelerates and comes nearly to rest in

the lower part of the cylinder. Figure bc shows the velocity distribu-
tion near the top of the cylinder. The boundary layer is well

defined, buf the azimthal velocities are substantially lower than in
the bottom portion of the cylinder near the wall. Figure 5a shows the
radial velocity distribution for case II of Table I. Here it is seen

that the peask velocities esre an order of magnitude less than
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corresponding azimuthal velocities. The radial velocities peak at
their maximum values at the later time, T = 1L.5, in contrast to the
azimuthal velocity peaks which occur near T = L.57T. At © = 23.70,
figure Sb, the radial velocity is negative which indicétes an explusion
of fluid from the boundary layer. As the lower portibn of the cylinder
"£i11s" with fluid that has moved downward in the boundary layer,
negative or radially inward flow takes place to accommodate the added
fluid. Thus, fluid is slowly forced into the boundary layer near the
top of the cylinder due to displacement effects from below. Figure 5c
shows the radial_velocity distribution in the upper portion of the
cylinder. At © = 161° the flow is still developing with peak
velocities occurring near T = 1bL.5. |

Thus the general picture of the flow field involves three major
features. First, there is a boundary-layer development near the wall
due primarily to downward azimuthal fluid flow near the wall. Secondly,
an inaﬁced radial velocity occurs that feeds fluid into the developing
boundaery layer in the upper and middle azimuthal locations of the
cylinder and ejects fluid out of the boundary-layer at lower azimuthal
locations. Third, a core region exists that strongly resists first-
order motions and only very slowly forces fluid at lower levels to
rise and enter into the boundary-layer. This is a striking example
of a flow in which the principal motion is confined to the boundary
layer.

The dimensionless temperature, T/Ti’ is shown as a function of

radial distance in figures 6. Here the thermal-boundary-layer is less
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well developed than the velocity-layer at a given time. The conduction
terms in the energy equation cause this behavior due to the very low
fluid velocities that occur at early times after the cold wall initial
condition is imposed. Thé accuracy of the results increases as the grid
network is refined, but the computationel time required for fine grids
is enormous. The eérly behavior of wall-heat transfer is of principle
interest, and figure T shows the Nusselt number decay with time for
three different azimuthel stations. The computationel results show that
heat is conducted out of the fluid at early times at a greater rate than
energy is convected into & fluid element. As the velocity field
develops, this trend is altered causing a slight steepening of the
temperature gradient near the wall. This result appears to be a valid
physical description of the flow development. The convective terms in
the energy equation are negligible when very low fluid velocities are
present during early times. The result is an energy balanée that is
dominated by conduction out of the fluid to the wall until the flow
field develops.

_The increasing value of Nusselt number with increasing 0 gives a
clear picture of the positive upward temperature gradient within the
boundery layer. This positive, upward gradient also exists in the
core fluid as indicated by figure 8. The early esteblishment of this
upward gradient produces a thermally stable core which tends to résist
dovnward motion. The low velocities calculated in the core flow are in

N
part, a result of this thermal behavior. Figure 9 shows a plot of —E%E
G

as a function of time. The cold fluid entering and residing in the T
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lower portion of the cylinder causes a rapid and nearly linear decay
of the dimensionless heat transfer function. For © near /2 and up
to O = m, the function decays less rapidly due to the flow of warm
fluid into the boundary layer from the core. At very lafge times the
heat transfer function must asymptotically approach zero because the
fluid gives up all of its excess energy to the wall. It is apparent
that Cl +® gg T+ 0 due to the step function cold wall initial
condition. The actual value of Cl at early times near ‘T =0 ié
dependent on the rédial grid spacing used, as might be expected. A
comparison of the effects of grid refinement is shown in figure 10.
Here the wvalue of T/Ti as a function of radial distance is shown for
three different grid networks. The radial coordinate grid spacings are
.02; .0l1; and .0067. The azimuthal location is 6 = 90° , and the time
is T = 2.7.

The profiles steepen as the grid is refined and convergence of
the finite difference solution is evident. Of interest is the velocity
distribution shown in figure 10b. Here convergence is also indicated
by the refined grid results. The coarse grid velocity peek is,
however, above the finer grid peaks. The slope of the diétributions
near the wall appears to be adjusting ifself from an "overshoot" where
AR = .01 to a c&nvergent result as AR Dbecomes smeller., Similar
results have been computed at Grashof numbers of 8 x th end T x 107
for the grid range.given above. Case I of table I was cémputed for a

N

Grashof number of 8.3 x 10 . The computational time increases

considerably at this relatively low Grashof number. Figure 1ll-a shows
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some representative azimuthal velocity distributions for this case.

Thé lower Grashof number results for this case can be interpreted as
being due to a more viscous fluid flow, and the distributions reflect
this. At a dimensionless time of T = 3.07 the boundary'laygr is
considerably thicker than for the comparable boundary layer thickness of
case II. Even at the early time of Tt = 1.31, the viscous effects are
more pronounced then for the higher Grashof number case. Figure 11-b
shows typical radial velocity distributions for the low Graghof number
case. At T = 3.07 the distribution shows the effects of higher
viscosity with a thicker profile than for the case II solution. Finally,
figure 1l-c shows the dimensionless temperature function distribution.
Again the more viscous fluid of case I sﬁows a thicker thermal

boundary layer thah the case II solution. All of the profiles for case
I have a qualitative resemblance to the results for case 1I. The lower
Grashof number solutions for the Nusselt-~Grashof relation are shéwn in
figure 11-d. These curves should be compared with the results shown

in figure 9.

The computations for the dimensionless dynemic pressure, P*,
indicate that the dynamic préssure gradient makes only & small order
contribution to the momentum balance within the fluid. This occurrence
ia consistent with the results reported by Ostrach in reference 18 and
ok,

The results of thevcomputations for case III at a Grashof number
of 1.3 x 106 are shown in figure 12. The velocity profiles and

temperature profiles represent a result that is intermediate to the case
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I and case II solutions.

B. Time Varying Wall Temperature

Comparison of the experiments to be described in Chapter VI with
numerical solutions necessitated the use of a time-dependent wall
temperature boundary condition. The experimental wall temperature
decay can be described by solution to the one-dimensionél heat conduc-
tion equation.,.For 8 wall of thickness X, initially at a‘temperature

®(x,0) = 1 vhere: .

T -T
w X : )
=TT 5.5
i X
o)
And t =0
Tw = T1
®(x,0) = 1
5.6
Tx = Temperature of surface at x = xo

©  after the cold wall boundary

condition has been applied.

the temperature history at the inner face x =o0 is given by:

2, - (2n+1)x
o0,7) = 1 = D (<L) [2 + erfe 2 (g Ba/rw)l/h(pC)l/z] 5.1

n=o 2vkx * T

With the solution to equation 5.7 we may calculate the time dependence
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-1/2

of the coefficient (Gr) thet appears in equations L.k, 4.7, and

4,10 thus:

7z - RV >
1/2 1/2 :
()77 (37D (1 - ﬁ“)] (1 - #(0,1))

With this value calculated at each time step, the system of difference
equations 4.4t through 4.10 can be solved using each new value of Grashof
number which results from the time-varying well temperature. As an
example of the complementary error function solution for eq. 5.7,
‘figure 13 shows the time-dependent dimensionless wall temperature decay.
Several different limits on the number of terms teken in the summation
of equation 5.7 showed rapid convergence for values of n greater than
about 6. In figure 13 n = 9 was used for the temperature function
solution.

A fundamental difficulty is encountered using the error function
solution given by equation 5.T7. At very early times the function is so
close to unity that a near singularity is introduced into equation 5.8.
The difference scheme is limited, however, to small time steps for
solution of the momentum and energy equations. The wall temperature
decay obtained from equation 5.7 is numerically incompatible with the
difference scheme. This difficulty can be overcome by approximating

equation 5.7 at early times by linear functions of the form:

®(o,T) = a - bT 5.9
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An approximation to the error function solution can be made using
equation 5.9 if we choose: & < 0.99 and b = 0.050. Figure 1k shows
the azimuthal velocity distribution for the case where the wall

temperature decays according to equation 5.9 rearranged:

T, = ®(o0,)(Ty - Txo) + Txo 5.10

The results shown in this figure correspond to the case II inpuf values
of Teble I. |

The time-dependent wall temperature solutions exhibit seversal
interesting differences from the constant wall témperatﬁre golutions.
In effect, a slowly cooled well-boundary condition produées an early .
time driving force that is quite smell. This is characterized by the
time development of the Grashof number. Figure 15 shows a typical time
history of the Grashof number for the case II input values and a wall
that follaws a temperature history given by equations 5.9 and 5.10.
The development of the flow field is directly related td the time
dependent Grashof number. The immediate consequence of a'slowly cooled
wall should esppear as & less fully developed flow at any given time then
one for which & step function wall temperature change has been imposed.
The early time behavior is closely related to a lower Grashof number
flow field. The boundary layer development follows the rising Grashof
number with a different behavior than for the constant wall temperature
results. In effect the driving force increases with time, and thus

the flow experiences a longer and more pronounced acceleration. Figure
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16-8, shows a typical temperature distribution for the time-dependent
wali bouﬁdarj condition as well as for the constant wall temperature
cage. The details revealed by these curves are physically valid in
that the constant wall temperature case, of necessity, must have a
steeper slope near the wall and, in addition, must have a thinner
thermal boundary layer due to the higher Grashof number at equal
values of time. These features are clearly evident in figure 16-a.

A comparison of the constant and variable wall temperature cases
at equal values of the Grashof number reveals thé fundamental differences
between the two cases. Figure 16-b shows that the variable wall
temperature still has the effect of producing a more viscoug flow
by maintaining 1owér Grashof numbers throughout the entire time
development than the constant cold well case maintains. A comparison
with the constant Grashof number case is difficult becauée of the
fundamental difference between the two case histories. If the two
boundary layer thicknesses are compared at equal values of. R and
time, we find the results shown in figure 1T-a. The difference in the
peak values of the dimensional velocity are of course even greater than
shown in this figure because of the different value df reference velocity
used in the non~dimensionelization, i.e. u QVETEGFE::_ U. A
comparison of the dimensionless azimuthal velocity distributions at
equal values of both Grashof number and time is sﬁown in figure 17-b.
As expected the time varying wall case shows a thicker profile but
with lower peek velocities. Similar results were observed for the

temperature distribution which is also an indirect result of the



33

viscous behavior 6f the fluid. Perhaps the most significant single
consideration regarding the energy transfer to the walls is the time
dependent Nusselt-Grashof correlation. Hellums (reference 16)
established the constant C 1in the relation Nu =C Gi/h . vFor

steady flow within a horizontal éylinder C = 0.326. If a fully
developed flow occurs in the present problem, the time dependent C(T)
should approach thevsteady valué prior to a decay in the fluid motion.

As time increases indefinitely in the present unsteady flow, C (t) =+

o, since the fluid will then have given up all its excess energy to the
cold walls. Figufe lé shows the time—dependent behavior for the NuséeltA

/h is seen to rapidly approach

Grashof correlation. The relation Nu/Gi
the steady state or fully developed value. The unsteady flow value of
this relation for the present problem must be asymptotic with zero at
large values of time. This behavior is demonstrated by the numerical
results represented in figure 18.

Figures 19-a through 19-d illustrate the time history of "fluid
particles" within the flow field from a sequence of photographs which
were taken from an oscilloscope display of the particle displacements as
computed from the numericel solutions. As shown in these figures par-
ticles were located, at t = 0, along rays separated by an azimuthal dis-
tance of /8. From R = 0 to R = .64 the particles were spaced radially
with AR = .0Lk. From R = .64 to R = 1.0 the radial spacing was AR = .0Ol.
A two dimensional interpolation was used to obtain particle displacements

between grid locations for the 31 by 101 mesh used for this case. The

time dependent wall temperature decay for case II-T of table I was used.
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The sequence of photographs shows the fluid deceleration and strati-
fication near the bottom of the cylinder. Regions where the number of
particles increase represent regions of higher fluid density as might
be expected. Figure 19-e is a plot of the displacements at 6.6
seconds. In this figure the particles belonging to each original ray -
have been faired in to illustrate the displacement profiles. Real
time mo&ies were made from plots such as these to give & physical
picture of the flow field development. Because of the low velocities
within the core flow, large values of time must be obtained with the
numerical solutions before substantial particle displacements can be

observed within the core.



Chapter VI - EXPERIMENTAL STUDIES

Apparatus

The instrumented stainless steel cylinder used for measuring
temperature distributions in a gravitafionally driven flow field is
shown in figure 20-a. Experiments were made with the cylinder in a
horizgntal position, and ;otation of the cylinder allowed measurements
to be mede at different azimuthal locations. Gage marks and internal
thefmocouple probes were used as references in setting the cylinder
in a desired position, and a positive lock cradle was made to insure
that the cylinder maintained a given position. An optical trensit was
used for preciée orientation of the entire system. Figure 20-b is &
schematic diagram of the entire apparatus. The cylinder was made of
schedule 40 non magnetic stainless pipe with 300 series stainless steel
eﬁd caps welded in place. The inside diameter was nominally 5.94
inches and the length was 60 inches. The cooling manifolds were
insulated from the outer cooling Jacket by meéns of one inch thick‘
micarta rings. The purpose of this insulation was to allow f;lling of
the coolant tanks prior to a run, and cooling the liquid to a uniform
température without introducing conduction effects downward to the
actual test cylinder. A threaded connection between thg outer jacket
and the test cylinder established a conduction path that had to be
accounted for, and thus the insulator rings were installed.

The inside surface of the test cylinder was machined to a smooth

finish with average surface projections not greater than 220 micro

35
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inches from peak to valley. The cylinder was cleaned and vacuum leak
tested prior to installation of the instrumentation. The cylinder
maintained a pressure of less than 10“6 mn of mercury for a 24 hour
period.

Figure 21 is a photograph.of the cooling tanks, inlet manifolds,
and outer cooling Jacket surrounding the test cyiinder. The valves
for dumping the cooling fluid into the outer cooling Jacket were
manually operatéd, and the liquid coolant in the tenks could be .
completely discharged in less than one second. The "o" ring sealed
valves shown in figure 20-b proved exceptionally reliable, and because
of their large size the effective discharge rate from the coolant tanks

was in excess of 2500 gallons per minute.

Instrumentation

Two sets of thermocouple probes were installed through the walls.
of the test cylinder. Initially coppér-constantan thermocouple probes
were installed as shown in figure 20-b for the purpose of determining
whether or not a région of two dimensional flow existed in the region
awaey from the end walls. Near the mid section of the c&linder there
appeared to be no end wall effects and the thermal field was two
dimensional.

The cylinder was then instrumented with a series of thermocouple
probes to measure temperatures across the boundary layer at an 1/d = 5.
The boundary-lesyer probes were made from 30 gage copper=-constantan

wire with fiber sheathing left on the probes to reduce exial-conduction
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losses along the wires. The probes were installed as shown in figure
22, the intent being to leave the flow field as nearly undisturbed as
lﬁossible. At large values’of time the probes could affect the flow
recirculating from the core into‘the boundary layer, but the very low
core velocities and core stratification found in the numerical solu-
tions indicated that such disturbances should be negligible.

The thermocouple wires passed through stainliess steel sheathé
that were‘silver soldered into the cylinder wall. The sheaths were
then encapsulated with rubber sealant, and the tank was vacuum leak
tested as previously described. The thermocouple leads were housed -
in a controlled ice point cold jJunction box. The output wires from
the cold junction were then lead to an analog to digitel data-
recording system where they were reed out on computer tape. Care was
taken in locating the.boundary-layer thermocouple probes. These fine
wires were quite easily displaced from a given position so that after
being located in the correct position no further instruments or
probes were inserted into the test cylinder. Also charging and
purging of the cylinder was done at a slow rate to minimize convection
velocities. Pressure measurements within the cylinder were made with
a 0 to-l5 psi gbsolute Stathem gege and for the high Grashof number
test with a O to 100 psi Statham gage. These gages were calibrated
prior to each series of tests using a Wallace and Tiernan absolute
gage as reference. The coolant temperature was monitored both in
the coolant tanks and in the annular space surrounding the test

cylinder by thermocouples that also lead through the cold Junction to



38

the data recording system.

Test Procedure

The test procedure consisted of charging the cylinder with dry
air at embient temperature, sealing off the inlet and outlet valves to
the cylinder, and then allowing e two hour waiting period for convec~
tion currents to damp out within the cylinder. Thirty minutes prior
to a test, water and cracked ice were introduced into the coolant
tanks, and the coolant was brought to a uniform and steady temperature
that typicelly was 4oLOR. With all thermocouples displaying steady
state readings the plug valves were opened, and the coolant ﬁas dumped
over the test cylinder walls. Immediately upon opening the plug
valves, a circulating pump was activated to minimize temperature
gradients in the cold liquid by drawing cold liquid out of the
annular region surrounding the test cylinder, and spraying the coolant
back over the ice crystals in the coolant tanks. Straingrs at the
bottom of each tank prevented solid ice from going past the plug
velves and into the annular tank chamber.

For a period of spproximately five minutes folléwing the coolent
dumping, deta sampling of all thermocouples and pressure instrumen-
tation was taken. The digital system sampled each channel LOO times
per second and stored the values on tape. A printer output from the
digital system gave separate channel print‘outs at 8 rate of about 5
channels per second for convenience in visually following the témperature

and pressure changes from the digital system.
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Following a test, the coolant was removed from the system and room
temperature water was flushed through the coolant tanks, valves, and
annular chamber. Dry, ambient air was pumped through the test cylinder
and it was sealed off when all thermocouple readings showed stead&,
anbient temperatures existed within the cylinder. A two hour waiting
period, was then used as previously described.

Two series of tests were made using Freon and dry ice as the
coolant. Wall temperatures down to 400°R were achieved but it was found
almost impossible to maintain uniform coolant temperatures. The problem
was due to the formation of "snow" when dry ice was sublimed in Freon.

A more reliable a.pproach’for raising the Grashof number was teken by
pressurizing the cylinder. The experimental data reported here was
obteined at a nearly constant gas to final wall temperature ratio of

T

.
T .936.
1

Attempts to Measure Gas Velocities

Considerable effort was put into an attempt to measure gas velo-
cities near a wall in natural convection flow. Early studies by
Martini and Churchill (reference l7)_using titanium dioxide dusf were
difficult aﬁd with considerasble uncertainty. The attempt made here
involved the use of helium filled soap bubbles. A flat plate was
constructed to test against previous experiments and thgory. This
plate is shown housed in a plexiglass cage in figures 234a and 23-b.
At time zero hot water was forced through three passages internal to-

the plate. At the seme time, bubbles that were filled with mixtures of
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He and N2 and‘were neutrally buoyant were introduced to the lower
leading eq§e region of the plate. Color movies were taken of the repid
entrainment of the bubbles into the plate boundary layér, and their
subsequent acceleration vertically upward. Time displacement studies
were made of the bubbles. Almost independent of bubble éize, the bubbles
all seek out a single streamline in the plate boundary leyer. Thus it
appears nearly impossible to measure a velocity profile. The reasoning
for why the bubbles behave in this manner is based on the fact that the
boundary layer is quite thin for the plate tested, and thus a steep
velocity gradient normel to the plate exists which in effect'produces

a gradient across the bubble. Such a velocity gradient would ‘act to
draw the bubble laterally inward to & position of peak felocity within
the boundary layer. A comparison of the measured velocities for both
transient and steady flow conditions indicated that the bubbles were in
fact traveling with close to the maximum theoretical velocities deter-
mined by Siegel (referenée 25). The solution to the difficulty appears
to be in producing & very thick boundary layer such that the bubble
size is small compared to the change in velocity across a distence of
one bubble diamefer.‘ Extensive tests were made to produce extremely
small bubbles but below about .05 inches diameter neutral buoyancy
cannot be achieved at standard atmospheric conditions. The hope of
mepping out the velocity distribution within the cylinder by tracing

the bubble displacements had to be abandoned.



Discussion of the Experimental Results

Chapter VII .

Comparison of the numerical results and the experiments necessitated
a consistent formulation of both the dimensionless varisbles as well as
jidentical wall boundery conditions. Also the numericel solutions must
have the initial conditions imposed at the same time zero as actually
occurred in the experiments. It was found that within 0.4 sec after
application of the cold liquid to the cylinder wall, temperature drops
were detected within the gas near the wall. Thus time zero could be
determined withinvd.h second by thermocouple signals alone. For
comparison with the numerical results, the heat conduction equation was
used for determiqing time zero for the experiménts by allowing time
zero for the coﬁduction problem to occur when the liquid was first
dumped from the hoppers. Time zero for the numerical computations and
the fluid was taken when a 0.2° Rankine decrease in wall temperature
had occurred due to conduction. (See equation 5.9)

As discussed in chapter 5, the near singularity in ,-2;- for a
time dependent wall temperature, limits the value of the cgﬁstant, a,
in equation 5.9 to values less than about .99,

With these considerations the measured and computed temperature
distributions for an azimuthal angle of 90o are shown in figure 2L.
These results correspond to case II of table I with the exception of
a variable wall temperature as mentioned above. The numerical solutions

for 1.2, 4.0, and 8.0 seconds of real time compare favorably with the
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measured results. The large computing time for the program prohibits
carrying out the numerical solutions to iarger values of time. The
graduai thickening of the thermsl boundary-layer is seen in these
figures. Because the core acts &as a reservoir of warm fluid for supply-
ing the boundary layer, the temperature distributions within the layer
tend to retain their profiles over a long period of time after the
velocity field starts decaying. To illustrate the temperature decay,
figures 25 show typical plots of both the experimental and theoretical
temperature at a selected radial location. Figure 25-a shows an early
time behavior both from experimentel measurements, and from the numerical
solutions that clearly indicates the inflection produced by the flow as
the velocity distribution shifts toward a more developed profile.
Similar behavior is seen in figure 25-b at 0 = 700. Finally at the
bottom of the cylinder where the azimuthal motion of the fluid ceases,
the temperature decay appears as shown in figure 25-c. The numerical
results predict a more rapid decay than wasyactually measured. Several
possible reasoﬁs for the disagreement are available. The most likely
source of error lies within the framework of the differencing scheme
near the mid-plane of symmetry. Because both the azimuthal and radial
velocities are negative near the bottom of the cylinder, forward
differencing is used throughout the momentum and energy eqguations. But
forward differencing carries the grid points into regions of largest
change and tends not to balance with the backward grid points that,

for the present physicel system, lie in regions of lesser change. Near

the mid~plane the azimuthal velocity goes to zero but forward differencing
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tends to override this due in part to the finite grid size, and tﬁus it
appears that errors may be largest near the bottom mid~plane of symmetry.
In this respect the solutions are dependent upon the cylindrical geo-
metry being considered. This represents a limifation or at least an
undesireble aspect of one sided finite difference techniques.

It is of some interest to observe the experimentally measured
pressure decay within the cylinder. This decay represents a three-
dimensioﬁal (closed volume) phenomenon that is in a sense primafily
dependent on the two-dimensional flow field that transports heat to the
eylinder walls. Figure 26 shows a typical measured pressure decay for
the case of a maximﬁm Grashof number of T x 107. The pressure decay
is a direct measure of the over all energy loss from the fluid.

The mass in the enclosed cylinder'remains constant over the total
volume and thus velues of the average tank pressure are a function of
the average fluid temperature within the cylinder.

The single most important comparison made between the numerical
results and the experiments is that of the Nusselt-Grashof relation
for the time dependent flow. vFigure 27 shows the measured time
dependent variation of this dimensionless grouping. The comparison is
favorable. Many steady state natural convection flows can be described
by the Nusselt-Grashof correlation and from figure 27 it appears that
a time dependent correlation could be written for an internal flow

with the boundary conditions presently under consideration. The

formulation of such & relation was not attempted in this study.
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The Nusselt-Grashof relation is asymptotic with zero at large

time as seen by:

- l _ ¢ )
Nu _ 2 (» s 2lim 1 7.1
T AR 3 -1/k4 )

Grl/l& r g VIi - T‘L]
v NI
i

When T > © we find ¢J 2 + 1 and the right hand side of equation T=1
*"lim-1

1/k

goes to zero. The value of Nu/Gr'

will pass thfough Hellum's steady
state value (0.326) about 14 seconds efter initiation of the flow.
If figure 27 is compafed to figﬁre 18 the effect of a‘steadily decaying
wall temperature is apparent. The curve shown in figure 27 cen be
interpreted as being a result of lower values of heat transfer when the
wall is cooled unsteadily than when a step function cold wall is applied,
such as for the figure 18 conditions.

Examples of typical experimental radial temperature distributions
aré shown in figure 28. 1In figure 28a at t = 4.0 seconds, the wall
has cooled to about .983 of the initial temperature, and thus the
distribution terminates at the wall (R=1.0) in the manner shown.

The thermocouple located at R = 0.2 was considered essential for
monitoring the core temperature. If a very low ratio of Tw/Tivhad
been utilized, it could be anticipated that fluid would fall downward

from the upper most walls of the cylinder. In such a case a negative

vertical temperature distribution within the core might have been
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observed. For the Tw/Ti ratio of these experiments the flow was
almost completely confined within the wall boundary layers, and no
negative upward distributions were measured. Figure 28-b shows the
temperature distribution at 8f0 seconds after flow initiastion. The
measured profile has broadened more than the numerical solutions
predict. Figure 29-a shows a similar result for 6 = TOO.

A series of experiments at Grashof number values uf to about
1.8 x 106 were made and some results ere shown in figures 30. The
very slow time development of the flow field is indicated byrboth the
numerical celculations which teke almost an order of magnitude longer
computational time, than the case II solutions and by the experiments.:
The agreement between the numerical solutions and the experiments is not
as good at low values of the Grashof number as at the higher Grashof
numbers. The very slow development of the flow reduces the early time
accuracy because of the small differences in temperature that must be
measured. Figure 31 is a plot of the time history of the boundary-
layer temperature at R = .966. The slow decay is an example of the
lower Grashof nuﬁber behavior. However, the relatively more rapid
reduction of the gas to wall temperature ratio for the lower Grashof
number case produces an undershoot of the Nusselt-Grashof relation.
This is due to the differences betweén the velocity field development'
and the thermal field development and is shown in figure'32. An
initial response to the near singularity at earlf times due to low
values of the Grashof number causes the undershoot in the numerical

results. Thus although the disturbance is damped by the difference
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scheme, the accuracy of the results is severely lessened by the
destabilizing influence of a very low early time Grashof number. Re-
stated, the low Grashof number computations are characterized by a
relatively rapid wall cooling which raises the wall heat transfer more
rapidly than the one fourth power of the Grashof number. The Nusselt-
Grashof behavior in both figure 27 and figure 32 must be viewed as
being representative of one specific flow configuration, and also'a
very specific boundary'condition. The difference between figures 27
and 32 indicates that a single correlation equatibn from the numerical
results presented here, may not be possible to achieve for the entire
range of unsteady laminar natural convection flow within a horizontal

cylinder.



Conclusions

Chapter VIII

The present investigation has revealed the dynamic and thermal
behavior of a confined fluid subjected to gravitetional body forceé.
For a semi-infinite horizontal cylinder with uniformly cold walls the
principle features of the flow involve avrépid development of the
boundary layer adjacent to the walls, a tendency for fluid stratifica-
tion in the lower regions of the cylinder, and a slow décay of the
velocity and thermal fields with time. Experiments made in this
investigation substantiate the thermal behavior predicted by numerical
solutions to the quasi-compressible Navier-Stokes equations for the case
of & time dependent wall teﬁperature decay. Because the thermel and
velocity fields are strongly coupled, the experimental findings imply
that the velocity field may also be accurately described 5y the
numerical results.

The following conclusions can be drawn from this study:

1. For very low velocity natural convection floﬁs, windward
finite differencing, which gives first order accuracy in time and space,
is a suitable numerical scheme when positive and negative velocities
occur. The large computing times required for such flow fields rules
out more time consuming differencing schemes at the present time.

2, The windward scheme in cylindrical coordinates was not
extremely sensitive to grid spacing ratios except when the ratio

%% > 0.2. Above this value, numerical instabilities occurred regardless

b7
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of the time step used.v

3. The differencing scheme appeared to lose accuracy near the
bottom of the cylinder where both the radiel and azimuthal velocities
are negative, and the azimuthal velocity is decelerating to zero at
6 = 0.

4, The early esteblishment of a positive upward temperature
gradient within the central core flow, slong with the effects of fluid
viscosity combine tobproduce a strong resistance to induced fluid
motion within the core. After initistion, the flow within the
boundary layer develops rapidly, and decays over a long period of time.
5. The dynamic pressure gradient terms 1 E% an L)l are

R 998 oR
negligible in the azimuthal and radial momentum equations for the
conditions considered in this investigstion.

" 6. The relastionship between the Nusselt and Grashof numbers is
found both numerically and experimentally for the case of unsteady
natural éonvection flow within a horizontal cylinder subjected to
uniformly cold wall boundary conditions. For the case of a time
dependent wall bouﬁdary condition,'the Nusselt-Grashof relation inter-
cepts the steady state value of the dimensionless group about 1k
seconds after the commencement of flow down the cylinder walls. For
the case of & constant cold wall condition from time zero, the numerical
results show that the Nusselt-Grashof relation intercgpts the steady
state value at about 3 second after commencement of the flow.

7. No first order vortical motion was found within the core flow.

The absence of this motion is attributed to the boundary conditions
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which require azimuthal deceleration of the boundary layer flow near
the bottom of the cylinder. Both the theoretical and experimental

models establish a mid plane of symmetry that satisfies the boundary

conditions imposed in this study.
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Stability Analysis

Appendix A

The von Neumann stability anslysis deals with linearized forms
of the governing.equations. The coefficient velocities are all consi-
dered constant in equations 3.10 through 3.13. The effects of amplifi-
cation of disturbances due to non linear terms is not wifhin the scope
of this method, however, the von Neumann criteria does provide an
approximate stability limit that has proved quite suitable for non-
linear fluid flow problems. fhe analysis will be made for the coupled
system composed of the azimuthal momentum equation and the energy
equation. The differences for fhe cross derivatives that do not ﬁppear
in equations L.4 and 4.7 will be included for stability considerations.

Define the following equalities:

At At
AR S (RAG)?

AT - lv]at PrJE;

Use of sbsolute values on U and V allows the results of the

analysis to be applied to fluid flows with either positive or negative
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velocity components. Substituting equations A-1l into the energy

equation gives:

n+l n : n EF
¢J o ¢J’1(1 - G- B - 2DE - 2EC) + ¢J’2_1(G + EC - 3 )

n n n ’ EF
+ 05y ,q(B + D)+ 05y (ED) + &y g4 (BC * 37 A-2

"Similarly equation 3 10 yields

+l__ - _
Ug,z—U?,z[l G- B CH(R

- 2DH]
R - AR) |

2

="
2
* U7 g [G+CH( ] J-1£B+DH)

R + AR
G =R AR)]+ o 58

R +
- sin 6(1 - ¢§ AT - G ug . A-3
9 ;]

For equation A-2 we define

1 ~-G-B- 2DE - 2EC

®
"

EF
G + EC - 5

)
[

B + ED

ED

EC + 2£
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and for equation A-3 we define:

R-3
=B +
b3 B + AH
bh CH R + ﬁR A5
R + 28
2
= DH
®s
Substituting equations A-4 into A-2 gives
¢n+l = ¢n +a ¢n +a ¢n + 8 ¢n +a ¢n A=6
J,2 17,4 277 ,8-1 37J-1,% L¥I+1,8 57J,2+1
and substituting equations A-5 into equation A~3 gives:
+1 _
Ug,z =b)U5 o+ b2Ug,2—l * b3ug-l,2 * bh”?,z * b5U3+1,2
o n At
- sin 8(1 - o7 (AT - U3 V1,0 2R AT

The amplification matrices formed from the coefficlents in egs. A-6

and A~7 have characteristic values (eigenvalues), hl and h2.

For the energy equation:
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-iszR -ik RA6 1k2AR ik2RA6

h, = a, + a.e + a_e 1 + g€ + ase A-8

1 1 2 3

For the momentum equation:

-ik2AR -iklRAB ikgAR iklRAe
2e + b3e + bhe + bse A-9Q

h2 = bl +b
The von Neumann condition can bé written as |h| < 1.0. The a, and
bk are all real and positive except for 8y and bl which ﬁay be
either positive or negative. As indicated by Richtmyer (reference 26)
end Hellums (reference 16) the largest absolute values of h, and h,
will occur when sll terms in equations A-8 and A-9 are real i.e.
when

k. RA® = kAR

"
E |

or k.RAB = k.AR 2m

For the maximum real value of hl we write:

h =g, +a. + 8

1 max 1 2 3 A-10

+ah+a'

>

or substituting from equation A-4 we get:

’ EF
h -1 -G-B-2DE-2CE+G+CE- 2L *B+2DE+CE+3™A-11
1 max 2



56

or h =1 : A=12
1l max

For the minimum value we find:

hl min ~ 8 " % " a3 -8, - a.5 A-13

Substituting from equations A-L gives:

By =1 -G-B-2DE - 2CE -G~ CE +EE - B - 2DE - CE ~ =& A1k

min . 2 2

or h. . =1-2-0G=2B- LUDE - 4CE A-15
1l min

For stability we must have

2G + 2B + UDE + UWCE < 1 A-16
Equation A-16 is the stability equation governing the energy equation.
Substituting equations A-1 into equation A-16 gives:

leAAT . 2AXLAT . hgr . 2hAt <1 A1T
(RAD) Pr/G: AR Pr/G_r

or rearranging gives the maximum allowable time step for staebility

of the energy equation:
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1

AT < —

Telvl , 2lu] 4 b

4+
AR RA®  (prg)2p /G,  ARPP_/G
rr ror
Similarly for the momentum equation we find that:

h2 max = bl + b2 * b3_+ bh +o

5

Substituting equation A-5 into equation A=19 we get:

R R

hzmax=l"G"B'CH( =t _Ag_)'zDH

R + E— R - 5

AR
2

+G+CH(B—'—-A3>+B+DH+CH(R+AR

R - R +

+ DH
Simplifying gives:
- CH R CH AR CH R
Bomax =1t BT _ ML IR

2 2 2

+ CH AR CH R CH R

_ - AR ~ AR

R + > R + 5 R - 5

or

oy

N

[{]

H

+

Q

fas}
—~
>
> 4]

>

o]
l\)gg
S’

A-18

A-19

A-20

A-21

A-22
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If we exclude the origin then R will never be less than AR so from
equation A-22 we see that h2 cannot exceed unity. (If R is
large the term in parentheses in equation A-22 will be small). Now if

R = AR equation A-22 gives:

- Yy
h2 =1 - 3 CH A-23
This leads to the expression
At < ORCVG A-2)
- r

For large Grashof number flows equation A-24 does not impose a severe

restriction on the allowable time step. For the minimum value of h2

we write:
h . =b -Db,~-Db, ~ bh - bs | A-25

or substituting equations A-5 into equation A-25 and simplifying gives:

h =1-2G-2B- 4DH - CH R-OR R _ . R A-26
2 max R R R
2 2 2
For stability we write:
2G + 2B + UDH + 4CH < 1 A=2T
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Substituting equations A-1 into equation A-2T gives:

2|XR|AT J2lular | bAT L bAT A-28

Rearrsnging equation A-28 gives:

At < ‘ : A-29
= 2]v] +2|U| + L + L

AR TORAO  (mae)2/E  ARP/E

Thus from the von Neumann approach the most stringent stability
requirement for the present system of equations is given by equation
'A-29. (For the case where NPr < 1.0). This criteria is at most an
approximation a@d requires validation by computer experiments. The
studies reported hére have in fact verified that the von Neumann.criteria
- is a good approximation and gny local violation of the limit given by
equation A-29 resulted in large scale instabilities that develop quite

rapidly in the computation.



Thermocouple Errors

Appendix B

There are four sources of temperature measurement error in
addition to actual signal readout errors that must be investigated for
any experimental study. These errors can be classified as being due to:
(1) fluid velocity past the semsor; (2) conduction losses along the
thermocouple wires; (3) radiation of energy from the fhermocouple to its
surroundings; (b) trensient error dué to a finite time lag in response
caused by the thermal éapacity of the sensor. .These errors will be
evaluasted for operating conditions that are typical of the experiments
carried out. Moffat (reference 27) givés é detailed discussion of the

pertinent equations for such an analysis.

Thermocouple velocity error

The difference between the gas total temperature TT and the

temperature, TJ, given by the Junction is:

U2
P - = (1-0)o— B-1
T J v’ 2gJC
p
where:
T. - T,
¢ = Recovery Factor =
r TT—TOO
T, = fluid static temperature
U_ = fluid velocity

The recovery factor for wires perpendicular to the flow has been

extensively studied and a summary of the results is shown in reference
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27. For the very low fluid velocities encountered in the present work
the recovery factor can be conservatively teken as: o, = 0.61. For a
maximum fluid velocity of 4 feet/second the velocity error is

calculated as:

; .39)16 _ -4 o
To = T3 = 2[5 (25778 - >-19 x10  °F

The velocity error appears to be negligible for the present experimental

conditions.

Conduction Error

The losses due to axiasl conduction along the thermocouple wires

are given by the following equation:

T,-T
Tp = Ty = cosn g(hhc?aks) B-2
where:
TT = Fluid Total Temperature
TM = Mount Temperature
L = Distance from the Wall to the Sensor Junction
d = Wire Diameter
hC = Convective Heat Transfer Coefficient
ks = Thermal Conductivity of Sensor
kG = Thermal Conductivity of'the Gas Evaluated at Stagnation
Conditions '

The Reynolds number based on wire diameter is given as:
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Prlad _ 4(8.33 x 207%) _ 8 -
by 1.46 x 107

_ Bed =

If the correlation equation of reference 27 for wires and perpendicular

to the flow is used, the following results are obtained:

- 1/2
N o= (Jbh + .06)Red B-L
k N
with . , h =22 B-5
c d
so that B-6

For a fluid total temperature T 536°R and a mount temperature

T

TM = 492°R equation B-2 gives:

Ly '
Tp - Ty = Sosn L1k B-T

Thus

T - 7T, << 1°R - B-8

The conduction losses are seen to be entirely negligible even for the

shortest thermocouple sensors used in this investigation.

Radiation Losses

- The radiation loss for a thermocouple within an enclosure is given by:

kro € AR

T -T_ = — (7] - T) B-9
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where
Kr = Radiation Form Factor
0 = Stefan Boltzman Constant
§£-= Ratio of Area Available for Radiative Loss to Area Available
c for Convective Loss.
€ = Bmissivity Compared to a Black body

For an enclosure that is large compared to the wire dimensions it is

known that Kr < 1.0.

. A
For the present problem we may also write K;-= 1.0. Also for oxidized
c
base metal thermocouples € = .85. And
Bt
o =475 x 207> — 4 . B~10
Ft~ sec R

Considering the largest gas to wall temperature difference to be 20°R
for the unsteady wall temperature decay of the preéent experiments,
equation B-8 gives:
0

)

Ty - T; = 3.70 x 1071 (1.1 x 10t

O.

Thus (T; - Tp) ., = 0:42'R : B-11

J ‘max
Thus the radiative losses for the case of an unsteady wall temperature
decay can be of significance. Within the boundary layer there is
some reduction of the loss due to lower fluid temperatures. This

affect is partially overcome by a reduction in the value of hc within
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boundary layer. As a percentage of the total gas temperature, equation

B-11 represents a very small correction. It is however a known source

of error and equation B-8 must be applied to the thermocouples that

reach a junction to wall temperature difference near the values used to

give equation B~1ll.
Transient Error
The lag in thermocouple response can be characterized by:
TT - TJ = W = ' B~12

where w = E%‘l B-13

w 1is a characteristic time that depends directly on the thermal
storage capacity of the thermocouple and inversely upon the heat input
to the thermocouple per degree of temperature difference.

For Copper

BTU
Ib R

C = .0918

so that

Y (1430)(.0918_)_2 =2 = 754 seconds B-14
4(1.09 x 10 %)

Thus
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dTi o
(-a:g—) nax = 0.55 "R/sec.

The maximum transient error is close to the radiative error and very
neatly compensates for the radistive error calculated previously.

Other errors were reduced éo a minimum for the system by calibra-
tion of the pressure instrumentation prior to each series of tests
end also by performing a precise balance of the readout system prior
to each test. |

A large numﬁer of tests were carried out and each test éondition
reported here was duplicated at least three individual times. The
comparison of temperature and pressure histories for duplicate tests
is very close with random variations in temperature readings of no
more than 1 OR petween two tests run at the same conditions. The time
history of pressure and temperature within the horizontal cylinder
could be duplicated within 0.5 o/o from one test to another. ‘This
close repestability was obtained over the entire Grashof numﬁer range of
the experiments. Systematic errors are established by the limits of
output accuracy of the sensors and pressure transducers énd ﬁhe total
resdout system. The rapid sempling rate of the sutomatic readout system
removes the need for anelyzing the experimental uncertainty by means
of a Gaussian errof curve. Instead, it is seen that the fluctuations
shrink the distribution curve inside the smallest scale divisions of
the readout system. As an illustration date samples are taken at a rate

of 400 samples per second. The peak rate of temperature change measured
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was close to 1°R per second so that effectively 100 sample readings
were teken within each 1/k °r change in the value of temperature. For
mechine plotted data this is about the limit of scale size that can
usefully be worked with. The daﬁa readings are truly scale limited
rather than being pertu:bation limited. The absolute uncertainty of
the temperature measurements is set by the error 1imits of the
thermocouple junction itself. All known system errors Are far below
the thermocouple error which commercially is given as + 1 l/2°F.
Calibrations of the thermocouples within a controlled ice point ingtru-
ment showed less than 1/2 O discrepancy between recorded siénal and
the ice point temperature. The temperature measurements have an overall
uncertaipty of something on the order of + 1 1/2°F whiceh is within about

+0.2 o/o of the measured values.



Table I

Parameter Variations for Numericel Studies

Case I ' _ Case II Case III
- L - 7 - 6
NG = 8.34 x 10 Ne =7 x10 Ne = 1.36 x 10
r r r
Pr = ,T15 Pr = ..T15 Pr = ,T15
Tw Tw . Tw
== .936 - = .936 -— = .936
T, T T
i i i
T = constant T = canstant T = constant
w W v o
r, = 0.1 ft. r, = .25 ft. r, = .25 ft.
‘Pi =1 atm. Pi = 6.T4 atm. Pi = 1 atm.
Case II - T Case III - T
Identical to Case II except: Jdentical to Case III except:
Tw = <I>(o,'t)(Ti - Tx ) + 'I‘x Tw = Q(o,T)(Ti - Tx ) + Tx
(e} o] (o} o]
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Figure 1.~ Geometry of horizontal cylinder.
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T0

Call SETK

k=1, utvt

k=2, u-,v-
k=3, ut+,v-
k=4, u-,v+

!

CALL DIF to get
¢ differences

'

Compute terms in ¥ equation
varying with signs of u,v

Y
(pl
Compute h)

!

All SETK

!

CALL DIF to get
u differences

Y

Compute terms in  equation
varying with signs of u,v

]
Compute uJ,l

rReplace u with uT]

y
1
Compute vJ,l

s this step to
be printed?

Yes

Figure 3a.- Flow diagram for finite difference calculation.
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MAIN

Y
Read Namelist/N1/input
Compute Ar, AO

! .

Is this a continuation
of an earlier run?

NO

Read T, AT, U, V, ¢a ¢'

from Tape 1

Set initial values of u,v, to zero

set initial values of ¢, ¢' to zerg
lat interior and = 1. at wall.

A

Compute functions at Ar, A0

A
Compute functions of 61

Compute functions of ri( )

Set Uo’T = .99999
121+A1
|
Uo,T’uB’al

Figure 3-b.- (Continued).



T2

o
ompute Nu

Compute AJ’Q

print ut, vt, €', v, A, T, AT, J, L
add to KQUNT for output lines count

1

Compute Ny average over lower half,
total upper half, and
Print N, averages

2l

Yes

HAS TALL
readed limi

STOP 1

No
Compute ATJ,l

¥

IF At € - CPT/1.€7
Write debug output of AT

Y
Find minimum AT for next step

Replace ¢ with ¢'
1

Save Iqu, ', v, r at’
desired 6, T, and all r stations

for plotting in following program
if desired.

Figure 3-c.~ (Continued).
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Has maximum of T200 print lines
or maximum computer time limit
been reached?

Write tape 2 T, AT, u, v, ¥ , ¥
Print final 't, At

STOP 2

Figure 3-d.- (Concluded).
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Figure 11b.- Radial velocity distribution.
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Figure 20a.- Instrumented natural convection chamber.
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Figure 20b.- Schematic diagram of experimental natural convection apparatus.
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Figure 23a.- Vertical flat plate used for natural convection velocity measurements.
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Figure 23b.- Vertical flat plate apparatus concluded.

Tl



113

SN
T
|

Figure 2ba.- Temperature distribution for a time dependent wall boundary condition.



! IR
RN
t
+7
B! *
1= i
1SR4 0
T+ 7 »
1y ad fog —4d
I IR
Tt
+
7
It
9} i
-

Figure ol .- Temperature distribution for a time dependent wall temperature.

nTT



115

1 1T

ul T A.Hr;
H Sul EHH

8 ]

TR LT TR T T I ENANANE

14 Fi . uRass
M 1 HHEBEHL g
Yy 4 -
~

T
"

{

1

1
1
T3]
T

HESNSEEREENDE S

JERNBERNRE T ANEEEES
- 14
L EERRE
3 - N NS RAEERRSES
L gunsun L1

L

H-H- e 1t llllll
NS AESEEE I
T Il

B NN EESNENERE SRR
"JENBN SRREERREERERDE!

AR ]
mRaREEY xS sumEEEsar-a T

Figure 24c.- Temperature distribution for a time dependent wall boundary condition.



116

el

-

11
1

.

1

Imal
117

Figure 25a.- Boundary layer temperature decay at 6 =90° and R = .966.



117

HHHH 14 hass a 14
=R H
s
il My HHHTH
N : THIHH T .
m n 11y : 1L 111 e
¥ an T
X T g
NE LT 1
I TR
& H
EREN . lL. “ {4 -
R [] SR NREREE
CHA T e
T ' T
R H H
S HA A _
Cer A T R )
- H REERRERRAIRRRENAaREGS : H
HHHAH ue
: an
[
)
1
1 "l

)
11

Figure 25b.- Boundary layer temperature decay at R = .966.



118

nn
RN P T35 1T
ol |~ =11

L /oed st
Y
L
[

N
\
b
LA
mEL = N EBERAENEEE NSRS AMssssNENSsEEEsEnNasRENEENEERRERERRENSAEENREREARSEANE
- 1 , T TS T N =
(L1 puE 1 11

1
1
i
1
I BEN

{44

S

-t

Figure 25c.- Boundary layer temperature decay at 0= Oo and R = .966.



119

i

H 1
- Eg NS
] T
BhEhaRESRE ] L
BARES NENEENS }
NERREND i
[l 31713 s
| | 4414 f4 142
B
: T T H
N N e - .
T 1 CHAE A l | .
] § o I O ]
- V 44 4
» 444 - - {~
- s +]
T2 1 ZARuRNE o
EEEEN . I .

ot

[
1]

b1

171 1T

Figure 26.- Measured pressure decay in natural convection flow within a horizontal cylinder.



120

4

B

NEERE T
A | I
I 7
-
T BEns . H
[ 19 ) . ] gapass
o SaEh H 1 .
SERNBREE D 29 s
_ 1as T NS
- W 1 e i
T ] I . :
BEet ke i I
: } , I
! EmanEn M H
] _ AREmaE o
1 -
.
H H & i\ T m_ 1
1
R

Figure 27.- Nusselt-Grashof relation for natural convection flow within a horizontal cylinder.



.
i
R
4
1
I

T

R
FHH R

HH .
EENEEAERRNNSEN BN -t -
M At T T

u. 13
. g -
H Sae
g M

. o
Figure 28a.~ Radial temperature distribution at 6 =907, t = 4.0 seconds.



122

T

[

T1IT
IR

13

——

1Nl
1

- L: - - B o e iy 1
anunEERfERRRuES in T3 E u.h
1] f [ 1 TI1T
o HH REE 1w
SHRE| : 2
4 (a 4 - }——4 H
N 1 L- mupnh \ HEN
EEREN THIE H.IT_M B
| ] 4300 H »
" 0
. .

Figure 28b.- Radisl temperature distribution at © = 90°, t = 8.0 seconds.



123

EEE ARANRRREE i
e it
EEINE 1
1 BB - I3 T
u L TR SEEAN 11 ) 1T
aanni AARANE 111
- T uup
ARund N IENEaNgRaRn a8 - =
FECE | AR 1 -4
1 ]
T " T : mas T
T N - BN I . " 11T 1113
ESR Nt N T A4 - H EEngaw auee
. S
] b v 4 - ] - -
WARRNR ¢ PR L T 1L 7l
- o ' . - - - 1 . b3 .
- LR IY - , A RESES 1HH
e | S 1 L wllany
- . _ -
Anun § — AT
A . e agiR i B - T & :
ERSN (o - e ” 1
i . crd : i 1
N 1! t
; Jil L]
| |
| L1
HH A - . 1 %l ..Mﬂ
T u LaREL
jas |

=3

700, t = 4 seconds.

Figure 29a.- Radial temperature distribution at 6



12k

{4

TTT1 ]
Tt

1
1

)t
1y

UN .
M 1H
158 <ANEk ] :
HH . 3]
o
1 | M

REpun i

1F

RN ﬁ
NEENE A Ew
BEE, 58

£
-~

x

111D

113N

Figure 29b.- Radial temperature distribution at 8 = 700, t = 8.0 seconds.



125

<%r

AR

S T
11 4 hd NEes
11 T ;! T
1 Hh 4T3

SuRRRTERCERN SERRE EERRSRARE
o 1 -
suERavasu dEnpydRng g in

T

I
L1
R

T
i

ARG
]

RuESERRNER NN I
1]

.
H‘iﬁ%i‘ T 1] H
whRsRagly e P 1 e

1 7] i id ]

] 11 - 11

1 1 N t—4 =
IIIII 4 ~ 1 [ -
. ERNNNEE NN i T D T

LT

|

o]
Figure 30a.- Radial temperature distribution at 6 = 90, t = 2.0 seconds.



126

INEEEENN;

IEERNEAS)

WL

Ll
NN

e

Xa

ey

Figure 30b.- Radial temperature distribution at 6 = 900, t = 4.0 seconds.



127

Tlﬁ.
i
[ SEREREEN - 1 ue TH-
: TR R R L L L
A HE T A L
5 BENSRREENEN TR
g ] - SHEH
HHEHH T ‘
¥ T T ARESSARAREE kas .
! Lrritta Ll | " N
M i
i R AR R A R
- e spEanEbus 113t
U T R

T
RN
Y

I it T
LR o8 i
M Ra | gEEs N
( . RERSEREOEN gESESERy .
T R as
T . N
AR SNmEaNE s RRN pass RnES
T T
guE I~ T AR N EENEEEEN

i
Ty

6
o - —
Figure 31.~ Boundary layer temperature decay gt =90 and R = ,966, Gr = 1.3 x 10".
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