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(ABSTRACT)

Numerical solutions are obtained for the quasi-compressible Navier-

Stokes equations governing the time dependent natural convection flow

within a horizontal cylinder. The early time flow development and wall

heat transfer is obtained after imposing a uniformly cold wall boundary

condition on the cylinder. Solutions are also obtained for the case of

a time varying cold wall boundary condition. Windward explicit differ-

encing is used for the numerical solutions. The viscous truncation

error associated with this scheme is controlled so that first order

accuracy is maintained in time and space. The results encompass a

range of Grashof numbers from 8.34 x 104 to 7 x 107 which is within the

laminar flow regime for gravitationally driven fluid flows. Experiments

within a small scale instrumented horizontal cylinder revealed the time

development of the temperature distribution across the boundary layer

and also the decay of wall heat transfer with time. Agreement between

measured temperature distributions and the numerical solutions was

generally good. The time decay of the dimensionless ratio Nu/G
1
/
4
is

r

found numerically and experimentally and, over most of the cylinder wall,

good agreement is obtained between these two results. The numerical

results indicate that the fluid exhibits a strong tendency to resist

first order motion within the inner core region. The early establish-

ment of a shallow positive upward temperature gradient within the core

enhances its stability. No first order vortical motion is induced by

the boundary layer and this is attributed in part to the fluid decelera-

tion near the bottom of the cylinder along with expulsion of fluid from

-7 ?



the boundary layer in the lower portions of the cylinder.
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INTRODUCTION

Chapter I

Natural convection flows within closed containers have intrigued

mathematicians and fluid dynamicists for many years. Part of the

motivation for understanding such flows was based upon an early

realization that many practical engineering situations are governed by

gravitationally driven fluid flows. Present day interest is concerned

with the flow of fluids within pipes, nuclear reactor cooling systems,

turbine blades, and stationary containers. These fluid flows may be

significantly influenced by natural or induced body forces. The

resultant fluid motion and heat transfer are the principle features of

interest and it is toward an understanding of these features that most

studies have been directed. The early work by Nusselt (reference 1),

Hermann (reference 2), Beckmann (reference 3), and Hermann (reference

4) established both the appropriate governing equations as well as the

general relationship between the non-dimensional heat transfer and the

Grashof number for external flows over cylindrical configurations.

Numerous experimental studies have confirmed the theoretical findings

(reference 5 through 7) for large values of the Grashof number wherein

a boundary-layer flow is present. Not until the work reported by

Ostrach (reference 8), Lewis (reference 9), Batchelor (reference 10),

and Pillow (reference 11) was the internal natural convection problem

given a general theoretical treatment comparable to the external

problem. More recent analytical studies involving somewhat restricted

1
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wall boundary conditions have been reported by De Vahl Davis

(reference 12), Weinbaum (reference 13), Menold (reference 14), Hantman

and Ostrach, (reference 15) and Gill (reference 16).

The principal problem that has thus far prevented a general

analytical solution stems from the coupling between the boundary

layer flow near the walls of the container and the core flow that is

driven by the boundary layer flow. In formulating the problem in terms

of a stream function most of the previous investigators except Hantman

and Ostrach (reference 15) have been faced with the necessity of

specifying a core stream function behavior that is not known a priori.

Thus, depending upon specified wall boundary conditions, the core

has been assumed to have either an isothermal constant vorticity

character or to be stratified with streamlines extending into the

boundary layer. Both analytical solutions and experiments have shown

that two entirely different flow configurations are possible. If the

flow is heated from below, the core streamlines are closed and the core

is isothermal. If the wall boundary condition is such that heating

occurs from the side, the core is stratified with isotherms and

streamlines coinciding. The studies reported thus far are not able to

predict the critical heating phase angle at which a rotating flow

configuration changes to a stratified flow configuration. The Oseen

linearization used by Weinbaum does not help the problem because this

approximation decouples the core flow from the boundary layer flow.

The core is expected to be closely coupled to the boundary layer flow

because it is driven by the boundary layer.
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A related problem with less troublesome boundary conditions is

that of a horizontal cylinder with one half of its bounding walls

raised to a constant, uniform temperature and the other half lowered

an equal amount below the initial fluid temperature. Thus a rotating

boundary-layer flow encircles the inside cylindrical walls with the

flow rising over one half the circumference and falling over the other

half. This problem was studied numerically by Hellums (reference 16).

Hellums used what is now termed the windward or donor cell differencing

technique for the time dependent problem starting from initially imposed

wall boundary conditions. He obtained numerical solutions for the

velocity, temperature, and heat transfer distributions within the

cylinder. Because fluid is both entrained and ejected by the boundary-

layer flow, the windward finite differencing scheme is quite suitable

for this type of problem. Hellums was able to make favorable compari-

sons between his solutions and experiments carried out by Martini and

Churchill (reference 17). These comparisons were possible for the

steady state flow only. No unsteady flow measurements were reported.

For steady state flow, Hellums verified the relationship between the

Nusselt number and Grashof number; Nu = C G1 / 4 both from a formalr

derivation of the dimensionless governing equations and from the

resultant numerical solutions. For unsteady flow the coefficient C

can be expected to be time dependent. The work reported by Hellums

is closely related to the present study and will be discussed in more

detail in the chapters following. At the present time only a very few

of the possible boundary conditions that could be imposed on a
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horizontal cylinder have been studied and with only partial success

in most of the cases reported.

The work reported here represents an attempt to clarify the flow

resulting from a new wall boundary condition that has not been

here-to-fore studied for the internal flow problem. A uniform cold

wall is established at time zero and the early time development of the

fluid motion is studied. The fluid is initially at rest and will also

return to rest at very large times after flow initiation. Thus a

steady state is not of interest in the present work. In addition,

solutions are obtained for the case in which the wall temperature

decays with time. This problem corresponds to experimental boundary

conditions that were imposed within a small cylinder in the present

work. The experiments are described and a discussion of the relation-

ship between the numerical work and the experimental work is given.



A Physical Description of the Problem

Chapter II

The geometry and nomenclature of the horizontal cylinder to be

studied is shown in figure 1. The cylinder is of semi infinite length

to allow a region of two dimensional flow to existl. One practical

application for such a geometry is related to a large blowdown wind

tunnel storage facility in which the major heat loss to the walls

occurs due to gravitationally driven natural convection flows. When a

hot gas is stored in such a tank appreciable azimuthal gas flow occurs

due to the imbalance between the gravitational body forces and the

existing hydrostatic pressure gradient in the fluid. The gas, which is

air, is initially at rest with a balance between the body force and the

hydrostatic pressure gradient. The gas is initially at a uniform

temperature T.. At time zero, a uniform cold wall is imposed on the

cylinder, and the resulting conduction of heat out of the gas near the

wall causes the convective motion to begin. As the flow develops, a

thin boundary layer is formed near the wall and this layer thickens

with time. The initially motionless inner fluid (the core) is driven

by the boundary layer flow and gives up energy to the heat conducting

boundary layer fluid. As time progresses the boundary layer will

affect the inner-most regions of the core flow and eventually the gas

can be expected to give up all of its excess energy to the cold wall.

1A two dimensional flow within a horizontal cylinder has been observed
by Brooks and Ostrach (reference 21).

5
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When this happens the fluid will be once again at rest with a uniform

temperature now equal to the wall temperature. Several distinct fea-

tures are intuitively apparent. Because of the uniform wall tempera-

ture, a mid-plane of symmetry is immediately established with the

dividing line running vertically upward through the center of the

cylinder. Along the mid plane of symmetry the azimuthal velocity is

zero. In each half cylinder there are two stagnation points which will

be at the intersection of the line of mid-plane symmetry and the wall.

The principle motion in the boundary layer will be azimuthal and

the induced motion will be radial. Because of the small coefficient

of viscosity for air we may expect velocities of lower order in the

core then in the boundary layer as well as both inward and outward

radial velocities across the boundary layer. In addition it might be

anticipated that some stratification of the flow will occur in the

lower portions of the cylinder. The geometry and principle features

of the flow having been outlined, the remainder of this thesis will be

concerned with obtaining an understanding of the details of the flow

from numerical solutions to the governing equations as well as

experimental measurements.



Mathematical Formulation of the Governing Equations

Chapter III

The model chosen for this study is that of a viscous, heat

conducting, quasi-compressible fluid that conforms to the Boussinesq

approximation. For small differences between the gas temperature and

the wall temperature, the density may be taken as a function of

temperature only and considered as a variable only where it modifies

the body force terms in the equations describing conservation of

momentum. This approximation has been investigated extensively in

references 4, 8, 15, and 16.

In dimensional form the quasi-compressible Navier Stokes equations

applicable to the case of large Grashof Numbers and small gas to wall

temperature differences in cylindrical coordinates are:

au au u au UV I aD
a+ v + v ar + R= -g sin e - L BPat ar rDae r pr ae

+ 1 2 1 u 1 a 2 u + 2av\
P 2 r 2r -2 -2 r 2 aeJ Azimuthal Momentum 3.1

av av u av u 1 ap
at + r r r - = g cos ar

+ U2v + 1 v + 1 32v v 2u
P v2 r r 2 a 2 - Radial Momentum 3.2

P \ar r a r r

arv + a u Mass Continuity 3.3
ar ae

7
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aT aT u aT K /[2T I aT 1
aT+v aT+r a Ke =r apr + a 2 T a / Energy 3.4

~r r Op \r2 r+ r

Viscous dissipation and pressure work contributions to the energy

equation are neglected at the outset as these terms have been shown

to be negligible for gravitationally driven flows. (See Ostrach

reference 18).

p = fi BoussinesqEquation of State for
a perfect gas 3.5

This system of equations consists of three second order, non-

linear partial differential equations, one first order, linear partial

differential equation and an algebraic equation of state. For the

physical flow described in chapter two, the following initial and

boundary conditions are imposed:

at t = 0

u(r,E,O) = v(r',,O) = 0

3.6

T(r,6,O) = Ti

p(r,e,0) = pi(r,e,0)

p(r,e,0) = Pi
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r = rw

u(rw,O,t) - v(rw,e,t) = o

T(rw,O,t) = Tw

and at r = 0

p(O,,t) = po

0 = O and n

au =
7-8= Mid Plane Symmetry

aT
T= 

The equations 3.1 - 3.8 will be

non dimensional form. The following

defined:

U = u

'g Ea rw

more conveniently dealt with in

dimensionless quantities are

V = v
/g a( rw

at

3.7

and on

3.8
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g = Pi rw
g $ca pi r

= T. -T
1 V

T
Ba = 1 - w

T
i

R = r
R- r

=1

Ti

3.9

Substituting equations 3.9 into equations 3.1 - 3.8 and rearranging

gives:

a + vU UU U UV - sin 0
+T aR R ae R Ba

+ 2 1/2 + 1 U U
v rG 2 RR aR 2

~~Gr \aR R

+1 a2U

R2 ae2

1 aP

pR ae
3.10

+ 2R 1R2 v

+ V + U -DR De
U2 cose' 1 aP
R 6a ~ aR

+ av 1 a2v
R aR R aDe2

aRV + au = 0
aR ae

T. - T

T -T
1 w

Pi
Pi

T= t~g 6a/rwV

3.11

3.12

1 ~ a2
v

G- \aR

V 2 au2
R R2 aeR
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. + v X + u __ =
aT aR R ae

+ 1 a R+ 1
R DR R2 ae2 /

1
P 1- Bam

Initial conditions

T = O

3.15U= V = 0

= 0

P =Pi

Boundary Conditions

R = 1.0

1
Pw =1-a

U=V=O

$ = 1.0

3.13

3.14

at

at

1 a
P P 3R R2 ,

3.16
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and at R 0

P= P
0o

on e =0 and T

av 9 = = 0 Mid Plane Symmetry 3.17

The nondimensionalization provides the unit order variables U, V, *,
and p. The reference pressure is pig Oa r

w
so that the dimension-

less pressure will be greater than order one. The reference time is of

order one, so the dimensionless time can also be greater than unity.

In previous investigations some simplification of equations 3.10

through 3.13 were made. Hellums (reference 16) derived the governing

equations for unsteady internal flows within horizontal cylinders.

The Coriolis force as well as the derivative aV in the azimuthal
R at a

momentum equation were shown to be negligible. In addition, the

viscous terms in the radial momentum equation and the first three

terms on the left hand side of equation 3.11 are negligible. (see

Hermann, reference 4). Finally, the derivative 2 was found to be
ae

a low order term in equation 3.13. However the derivatives considered

negligible were in fact carried along within the present computational

scheme and systematic checks were made to verify that the small order

of the terms persisted. Formal ordering of equation 3.10 through 3.14
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by asymptotic series expansions of the dependent variables and stretch-

ing of the normal coordinate is complicated by the eventual thickening

of the boundary layer. At large values of time the boundary layer is no

longer thin and the matched core expansions and inner expansions are

invalidated. An additional simplification to equations 3.10 through

3.14 involves the form of the pressure gradient terms.

It is convenient to divide the pressure into two separate parts:

P = Pi + P * 3.18

Pi is the initial zero motion hydrostatic pressure. P* is a "dynamic"

pressure that arises due to motion and thermal changes within the

fluid. The motivation for equation 3.18 is well founded in that the

initial hydrostatic pressure gradient is known exactly:

1 i sin 3.19
p

1 4 i 1 
w = = cos e 3.20

For many gravitationally driven flows the contribution to the overall

pressure gradient from De or DR is a small order effect. (see

Hellums reference 16 and Ostrach reference 18). Knowledge of the

hydrostatic pressure gradient facilitates solution of the governing

equations through the use of equations 3.19 and 3.20. With these

considerations and substituting equations 3.19 and 3.20 into equations
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3.10 through 3.14 the governing system becomes:

+ V + a= - sin 6 _ ( - _a) a
YT- BR R M R Be

3.21

+ 1 a2
g \aR
r

'1 aU U
+ B+
R 3R R

1a2 u2

R a e2

a.. = -- _ cos 8
3 R R

aRV au

+ 3R + = 1 o

r r

Initial conditions

T=0

U=V=O

T = 0

P = 0

P* = 0

Boundary conditions

R = 1.0

3.22

3.23

3.24

at

3.25

at
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U=V=O 3.26

* = 1.0

and at R = O

P* = p*-

and on e = 0 and Tr

aDu= = 0 3.27
ae ae



Development of the Finite Difference Approximation
to the Governing Equations

Chapter IV

Low velocity fluid flows have proven difficult to solve using

finite difference techniques. When the fluid velocity is low, long

computational times are required, and for gravitationally driven flows

that start from rest, the situation is further aggravated. The fluid

flow studied here should develop maximum velocities on the order of

several feet per second; thus long computational times appear unavoid-

able. The second difficulty arises from the fact that both positive

and negative velocity components may be expected as fluid will be both

entrained and expelled by the boundary layer. Numerical instabilities

are produced by positive and negative coefficients of the convective

terms of a difference scheme unless special care is taken regarding the

form of the differencing. For these reasons an explicit, windward

differencing technique was chosen (also called the donor cell technique).

As shown recently by Roache (reference 19), the windward scheme along

with all but one other scheme (reference 20) have only first-order

accuracy in the transient development of the flow. A diffusive trunca-

tion error is introduced which appears as an artificial viscosity that

may override the physical viscous damping within the fluid. Because of

this, care must be taken with the windward scheme to insure that the

grid size is sufficiently small so that artificial viscous effects do

not have a predominant effect on the numerical development of the flow.

From reference 19 it is seen that the artificial viscosity of the

C
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transient windward differencing scheme in dimensional form is:

= IIlUAt 4.
~e 2 Ar

If ae is to be much less than the physical viscosity we may write:

1u1r (1 _ ulit) << 1.0
2o Ar< +A

~~~or Ar << 2 + luAt
lul

Providing that
u At << 2P

uuA

Thus, depending on the fluid velocity and the allowable time step

obtained from stability constraints, the step size must be kept well

below the right hand side of inequality 4.3. For some flows that have

been studied, this requirement is over restrictive and can be relaxed.

(See Callens, reference 22)'. With these considerations the finite

difference equations approximating eqs. 3.18 - 3.25 are written as:
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+ J,-1) AR2
4.7

T= 0

U=V=0

4.8

=Pi

= 1

R = 1.0

1
Pw 1 - Baa

U=V=O

w = 1.0

R= 0

and on e =0 and w

UJ+1, 
=

-UJ-1, 

4.9

OJ+1,Z 
=

J-1,Z

P* = O

Because both U and * are very small quantities near R - 0

the boundary condition for P* given in equations 4.9 is a close

approximation to the physical situation.

The stability and convergence of this system of equations is

inferred by applying a Von Neumann stability analysis to the

linearized forms of the difference equations. Appendix A provides the

at

r nQ 1 r

at

at
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details of the analysis. Although the procedure outlined by Richtmyer

(reference 26) is rigorously applicable to a limited class of linear

equations, it has worked successfully for the non-linear equations

of fluid mechanics. The allowable time step obtained in appendix A is

given by:

- 21|UJ S 21V i 4.10
'~a~ne + + 1 +
R(.)AO -AR g (R(p)A6) 2 G AR2

r r

The time step chosen for most of the calculations was 0.8 of the

right hand side of equation 4.10. The value provided stable calcula-

tions over the majority of cases studied. Theoretically it is difficult

to establish optimum grid spacing ratios. Past work across boundary

layers has been dictated by the need to resolve large gradients over

short spatial lengths, and thus a fine grid spacing has been used in

the spatial dimension normal to a bounding surface. For the cylindrical

geometry the principal flow in the boundary layer is azimuthal, but it

was found that radial flow is of primary importance in the core. A grid

network that is refined in only the radial direction (normal to the

cylinder walls) does not seem appropriate here. The computational

experience with different grid spacing ratios indicates that a ratio

AR << 1.0 is essential for stable results. This probably should not be

surprising in a cylindrical coordinate system because the azimuthal

grid expression appears as R(L)AO in the difference equations, and it

is immediately seen that this value reduces to ARAE at the inner most
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grid location next to the origin of coordinates.

The formal accuracy of the windward difference scheme is related

to the computational cell Reynolds number. For the present study this

number may be written as:

ReA =IUI ARG 4.11

For ReA << 2 the windward differencing will have first order accuracy

in both the spatial and temporal differences.



V Numerical Solutions

A. Constant Wall Temperature

The system of equations 4.4 - 4.9 was solved for values of U, *,

V, and P* over the entire grid following a step-function change in

the cylinder wall temperature at time zero. A flow diagram describing

the calculation sequence is shown in figure 3. It is seen that the

correct difference equations are selected at each grid point depending

upon the sign of Uj,1 or V j, such that stable computations will

result. The program was set up so that computations could be continued

from a previous computer run, and thus extended run times up to 5 hours

on the Langley Research Center CDC 6600 computer were made possible.

Typical computational speeds for a 51 by 31 grid for the half cylinder

were 1.02 x 107 grid points per hour. The real time development of

the flow progressed at a rate of 1.25 seconds per hour of machine time.

An order of magnitude faster flow development time was obtained with a

26 x 16 grid network; however a formal first order accuracy is not

achieved with such a coarse grid.

The steps taken in the computational sequence of events were as

follows:

1. Equation 4.7 was solved over the entire grid for new values

of ~.

2. Equation 4.4 was then solved for new values of U over the

entire grid.

3. Values of $ and U were updated.

22



23

4. Equation 4.6 was solved for the current values of V over the

entire grid.

5. Equation 4.5 was solved for current values of P* over the

entire grid.

6. Values of V and P* were updated.

7. Equation 4.10 was solved to determine an allowable time step.

8. Values of the Nusselt number at the wall were calculated.

The process was repeated over the entire grid for the next time step.

The dimensionless heat transfer at the wall is given by the Nusselt

number and obtained from the following:

N -hd 5.1
u k

or h= k( r 5.2
Ti w r r

e = const

so that

1 d
N -(T -T) 5.3

i Tw wr J wall wall

or in dimensionless form:

N = 2 (1 5.4
uwall

Table I lists the values of the input parameters that were used for

the solutions to be presented. Figure 4 shows the results obtained for

the case II solutions of Table I.



From the simple physical geometry of the cylinder a rather compli-

cated flow pattern is revealed by the numerical results. Figure 4a shows

the azimuthal velocity distribution at e = i/2 for three different

time levels. The early time T = 3.05 can be considered as showing the

distribution prior to what is considered to be fully developed flow.

By this it is meant that peak velocities at any given location have not

been achieved. The intermediate time, T = 4.57, shows the velocity

distribution at its peak value, and the late time, T = 14.5, shows the

distribution after a decay in the velocity has taken place. Significant

inward displacement of the peak velocities is not apparent. The

distributions do thicken with time over about 20 grid point spacings,

and the viscous effects are transported further into the core of the

fluid as time progresses. The distributions shown in figure 4 are

typical of all the results obtained for the constant wall temperature

case. Figure 4b shows the velocity distribution near the bottom of

the cylinder at an azimuthal angle of 23.70. The momentum gathered by

the fluid falling downward has both thickened the boundary layer as

well as increased the peak azimuthal velocity. At values of e less

than 230 the fluid rapidly decelerates and comes nearly to rest in

the lower part of the cylinder. Figure 4c shows the velocity distribu-

tion near the top of the cylinder. The boundary layer is well

defined, but the azimuthal velocities are substantially lower than in

the bottom portion of the cylinder near the wall. Figure 5a shows the

radial velocity distribution for case II of Table I. Here it is seen

that the peak velocities are an order of magnitude less than
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corresponding azimuthal velocities. The radial velocities peak at

their maximum values at the later time, ¶ = 14.5, in contrast to the

azimuthal velocity peaks which occur near T = 4.57. At e = 23.7 ,

figure 5b, the radial velocity is negative which indicates an explusion

of fluid from the boundary layer. As the lower portion of the cylinder

"fills" with fluid that has moved downward in the boundary layer,

negative or radially inward flow takes place to accommodate the added

fluid. Thus, fluid is slowly forced into the boundary layer near the

top of the cylinder due to displacement effects from below. Figure 5c

shows the radial velocity distribution in the upper portion of the

cylinder. At e = 1610 the flow is still developing with peak

velocities occurring near T = 14.5.

Thus the general picture of the flow field involves three major

features. First, there is a boundary-layer development near the wall

due primarily to downward azimuthal fluid flow near the wall. Secondly,

an induced radial velocity occurs that feeds fluid into the developing

boundary layer in the upper and middle azimuthal locations of the

cylinder and ejects fluid out of the boundary-layer at lower azimuthal

locations. Third, a core region exists that strongly resists first-

order motions and only very slowly forces fluid at lower levels to

rise and enter into the boundary-layer. This is a striking example

of a flow in which the principal motion is confined to the boundary

layer.

The dimensionless temperature, T/Ti, is shown as a function of

radial distance in figures 6. Here the thermal-boundary-layer is less
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well developed than the velocity-layer at a given time. The conduction

terms in the energy equation cause this behavior due to the very low

fluid velocities that occur at early times after the cold wall initial

condition is imposed. The accuracy of the results increases as the grid

network is refined, but the computational time required for fine grids

is enormous. The early behavior of wall-heat transfer is of principle

interest, and figure 7 shows the Nusselt number decay with time for

three different azimuthal stations. The computational results show that

heat is conducted out of the fluid at early times at a greater rate than

energy is convected into a fluid element. As the velocity field

develops, this trend is altered causing a slight steepening of the

temperature gradient near the wall. This result appears to be a valid

physical description of the flow development. The convective terms in

the energy equation are negligible when very low fluid velocities are

present during early times. The result is an energy balance that is

dominated by conduction out of the fluid to the wall until the flow

field develops.

The increasing value of Nusselt number with increasing e gives a

clear picture of the positive upward temperature gradient within the

boundary layer. This positive, upward gradient also exists in the

core fluid as indicated by figure 8. The early establishment of this

upward gradient produces a thermally stable core which tends to resist

downward motion. The low velocities calculated in the core flow are in
N

part, a result of this thermal behavior. Figure 9 shows a plot of X

as a function of time. The cold fluid entering and residing in the r
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lower portion of the cylinder causes a rapid and nearly linear decay

of the dimensionless heat transfer function. For e near w/2 and up

to e = TI, the function decays less rapidly due to the flow of warm

fluid into the boundary layer from the core. At very large times the

heat transfer function must asymptotically approach zero because the

fluid gives up all of its excess energy to the wall. It is apparent

that C1 *+ as T - 0 due to the step function cold wall initial

condition. The actual value of C1 at early times near T = o is

dependent on the radial grid spacing used, as might be expected. A

comparison of the effects of grid refinement is shown in figure 10.

Here the value of T/Ti as a function of radial distance is shown for

three different grid networks. The radial coordinate grid spacings are

.02; .01; and .0067. The azimuthal location is 6 = 90° , and the time

is T = 2.7.

The profiles steepen as the grid is refined and convergence of

the finite difference solution is evident. Of interest is the velocity

distribution shown in figure 10b. Here convergence is also indicated

by the refined grid results. The coarse grid velocity peak is,

however, above the finer grid peaks. The slope of the distributions

near the wall appears to be adjusting itself from an "overshoot" where

AR = .01 to a convergent result as AR becomes smaller. Similar

results have been computed at Grashof numbers of 8 x 10 and 7 x 107

for the grid range given above. Case I of table I was computed for a

Grashof number of 8.3 x 10 . The computational time increases

considerably at this relatively low Grashof number. Figure 11-a shows
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some representative azimuthal velocity distributions for this case.

The lower Grashof number results for this case can be interpreted as

being due to a more viscous fluid flow, and the distributions reflect

this. At a dimensionless time of T = 3.07 the boundary layer is

considerably thicker than for the comparable boundary layer thickness of

case II. Even at the early time of T = 1.31, the viscous effects are

more pronounced than for the higher Grashof number case. Figure 11-b

shows typical radial velocity distributions for the low Grashof number

case. At T = 3.07 the distribution shows the effects of higher

viscosity with a thicker profile than for the case II solution. Finally,

figure ll-c shows the dimensionless temperature function distribution.

Again the more viscous fluid of case I shows a thicker thermal

boundary layer than the case II solution. All of the profiles for case

I have a qualitative resemblance to the results for case II. The lower

Grashof number solutions for the Nusselt-Grashof relation are shown in

figure ll-d. These curves should be compared with the results shown

in figure 9.

The computations for the dimensionless dynamic pressure, P*,

indicate that the dynamic pressure gradient makes only a small order

contribution to the momentum balance within the fluid. This occurrence

is consistent with the results reported by Ostrach in reference 18 and

24.

The results of the computations for case III at a Grashof number

of 1.3 x 106 are shown in figure 12. The velocity profiles and

temperature profiles represent a result that is intermediate to the case
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I and case II solutions.

B. Time Varying Wall Temperature

Comparison of the experiments to be described in Chapter VI with

numerical solutions necessitated the use of a time-dependent wall

temperature boundary condition. The experimental wall temperature

decay can be described by solution to the one-dimensional heat conduc-

tion equation. For a wall of thickness x initially at a temperature

O(x,o) = 1 where:

T -T
w x

T= o 5-5
Ti - T

0

And t = 0

Tw = T
i

(x,o) = 1

5.6

T = Temperature of surface at x = x
X o

after the cold wall boundary

condition has been applied.

the temperature history at the inner face x = o is given by:

co·I2 (2n+l)xo r w

O) = n(-lo )n [2 * erfc °- (g aC/r )/4(PC)'/2] 5.7
n=o 2&XX · T

With the solution to equation 5.7 we may calculate the time dependence
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of the coefficient (Gr)-l / that appears in equations 4.4, 4.7, and

4.10 thus:

115.8

(G r) 3 2 1/2,) .Tl (1 - ( - ,T))

With this value calculated at each time step, the system of difference

equations 4.4 through 4.10 can be solved using each new value of Grashof

number which results from the time-varying wall temperature. As an

example of the complementary error function solution for eq. 5.7,

figure 13 shows the time-dependent dimensionless wall temperature decay.

Several different limits on the number of terms taken in the summation

of equation 5.7 showed rapid convergence for values of n greater than

about 6. In figure 13 n = 9 was used for the temperature function

solution.

A fundamental difficulty is encountered using the error function

solution given by equation 5.7. At very early times the function is so

close to unity that a near singularity is introduced into equation 5.8.

The difference scheme is limited, however, to small time steps for

solution of the momentum and energy equations. The wall temperature

decay obtained from equation 5.7 is numerically incompatible with the

difference scheme. This difficulty can be overcome by approximating

equation 5.7 at early times by linear functions of the form:

(o,T) = a - bT 5.9

Di
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An approximation to the error function solution can be made using

equation 5.9 if we choose: a 4 0.99 and b = 0.050. Figure 14 shows

the azimuthal velocity distribution for the case where the wall

temperature decays according to equation 5.9 rearranged:

Tw = b(OT)(Ti TX ) + Tx 5.10
0 X0

The results shown in this figure correspond to the case II input values

of Table I.

The time-dependent wall temperature solutions exhibit several

interesting differences from the constant wall temperature solutions.

In effect, a slowly cooled wall-boundary condition produces an early

time driving force that is quite small. This is characterized by the

time development of the Grashof number. Figure 15 shows a typical time

history of the Grashof number for the case II input values and a wall

that follows a temperature history given by equations 5.9 and 5.10.

The development of the flow field is directly related to the time

dependent Grashof number. The immediate consequence of a slowly cooled

wall should appear as a less fully developed flow at any given time than

one for which a step function wall temperature change has been imposed.

The early time behavior is closely related to a lower Grashof number

flow field. The boundary layer development follows the rising Grashof

number with a different behavior than for the constant wall temperature

results. In effect the driving force increases with time, and thus

the flow experiences a longer and more pronounced acceleration. Figure
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16-a shows a typical temperature distribution for the time-dependent

wall boundary condition as well as for the constant wall temperature

case. The 'details revealed by these curves are physically valid in

that the constant wall temperature case, of necessity, must have a

steeper slope near the wall and, in addition, must have a thinner

thermal boundary layer due to the higher Grashof number at equal

values of time. These features are clearly evident in figure 16-a.

A comparison of the constant and variable wall temperature cases

at equal values of the Grashof number reveals the fundamental differences

between the two cases. Figure 16-b shows that the variable wall

temperature still has the effect of producing a more viscous flow

by maintaining lower Grashof numbers throughout the entire time

development than the constant cold wall case maintains. A comparison

with the constant Grashof number case is difficult because of the

fundamental difference between the two case histories. If the two

boundary layer thicknesses are compared at equal values of R and

time, we find the results shown in figure 17-a. The difference in the

peak values of the dimensional velocity are.of course even greater than

shown in this figure because of the different value of reference velocity

used in the non-dimensionalization, i.e. u =-g Oa r
w

U. A

comparison of the dimensionless azimuthal velocity distributions at

equal values of both Grashof number and time is shown in figure 17-b.

As expected the time varying wall case shows a thicker profile but

with lower peak velocities. Similar results were observed for the

temperature distribution which is also an indirect result of the



33

viscous behavior of the fluid. Perhaps the most significant single

consideration regarding the energy transfer to the walls is the time

dependent Nusselt-Grashof correlation. Hellums (reference 16)

established the constant C in the relation N = C G1 /4 . For
u r

steady flow within a horizontal cylinder C = 0.326. If a fully

developed flow occurs in the present problem, the time dependent C(T)

should approach the steady value prior to a decay in the fluid motion.

As time increases indefinitely in the present unsteady flow, C (T) 4

o, since the fluid will then have given up all its excess energy to the

cold walls. Figure 18 shows the time-dependent behavior for the Nusselt-

Grashof correlation. The relation N /G1/4 is seen to rapidly approachIu r

the steady state or fully developed value. The unsteady flow value of

this relation for the present problem must be asymptotic with zero at

large values of time. This behavior is demonstrated by the numerical

results represented in figure 18.

Figures 19-a through 19-d illustrate the time history of "fluid

particles" within the flow field from a sequence of photographs which

were taken from an oscilloscope display of the particle displacements as

computed from the numerical solutions. As shown in these figures par-

ticles were located, at t = 0, along rays separated by an azimuthal dis-

tance of w/8. From R = 0 to R = .64 the particles were spaced radially

with AR = .04. From R = .64 to R = 1.0 the radial spacing was AR = .01.

A two dimensional interpolation was used to obtain particle displacements

between grid locations for the 31 by 101 mesh used for this case. The

time dependent wall temperature decay for case II-T of table I was used.



The sequence of photographs shows the fluid deceleration and strati-

fication near the bottom of the cylinder. Regions where the number of

particles increase represent regions of higher fluid density as might

be expected. Figure 19-e is a plot of the displacements at 6.6

seconds. In this figure the particles belonging to each original ray

have been faired in to illustrate the displacement profiles. Real

time movies were made from plots such as these to give a physical

picture of the flow field development. Because of the low velocities

within the core flow, large values of time must be obtained with the

numerical solutions before substantial particle displacements can be

observed within the core.



Chapter VI - EXPERIMENTAL STUDIES

Apparatus

The instrumented stainless steel cylinder used for measuring

temperature distributions in a gravitationally driven flow field is

shown in figure 20-a. Experiments were made with the cylinder in a

horizontal position, and rotation of the cylinder allowed measurements

to be made at different azimuthal locations. Gage marks and internal

thermocouple probes were used as references in setting the cylinder

in a desired position, and a positive lock cradle was made to insure

that the cylinder maintained a given position. An optical transit was

used for precise orientation of the entire system. Figure 20-b is a

schematic diagram of the entire apparatus. The cylinder was made of

schedule 40 non magnetic stainless pipe with 300 series stainless steel

end caps welded in place. The inside diameter was nominally 5.94

inches and the length was 60 inches. The cooling manifolds were

insulated from the outer cooling Jacket by means of one inch thick

micarta rings. The purpose of this insulation was to allow filling of

the coolant tanks prior to a run, and cooling the liquid to a uniform

temperature without introducing conduction effects downward to the

actual test cylinder. A threaded connection between the outer Jacket

and the test cylinder established a conduction path that had to be

accounted for, and thus the insulator rings were installed.

The inside surface of the test cylinder was machined to a smooth

finish with average surface projections not greater than 220 micro

35
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inches from peak to valley. The cylinder was cleaned and vacuum leak

tested prior to installation of the instrumentation. The cylinder

maintained a pressure of less than 10
' 6

mm of mercury for a 24 hour

period.

Figure 21 is a photograph of the cooling tanks, inlet manifolds,

and outer' cooling Jacket surrounding the test cylinder. The valves

for dumping the cooling fluid into the outer cooling Jacket were

manually operated, and the liquid coolant in the tanks could be

completely discharged in less than one second. The "o" ring sealed

valves shown in figure 20-b proved exceptionally reliable, and because

of their large size the effective discharge rate from the coolant tanks

was in excess of 2500 gallons per minute.

Instrumentation

Two sets of thermocouple probes were installed through the walls

of the test cylinder. Initially copper-constantan thermocouple probes

were installed as shown in figure 20-b for the purpose of determining

whether or not a region of two dimensional flow existed in the region

away from the end walls. Near the mid section of the cylinder there

appeared to be no end wall effects and the thermal field was two

dimensional.

The cylinder was then instrumented with a series of thermocouple

probes to measure temperatures across the boundary layer at an l/d = 5.

The baundary-layer probes were made from 30 gage copper-constantan

wire with fiber sheathing left on the probes to reduce axial-conduction



37

losses along the wires. The probes were installed as shown in figure

22, the intent being to leave the flow field as nearly undisturbed as

possible. At large values of time the probes could affect the flow

recirculating from the core into the boundary layer, but the very low

core velocities and core stratification found in the numerical solu-

tions indicated that such disturbances should be negligible.

The thermocouple wires passed through stainless steel sheaths

that were silver soldered into the cylinder wall. The sheaths were

then encapsulated with rubber sealant, and the tank was vacuum leak

tested as previously described. The thermocouple leads were housed

in a controlled ice point cold Junction box. The output wires from

the cold Junction were then lead to an analog to digital data-

recording system where they were read out on computer tape. Care was

taken in locating the boundary-layer thermocouple probes. These fine

wires were quite easily displaced from a given position so that after

being located in the correct position no further instruments or

probes were inserted into the test cylinder. Also charging and

purging of the cylinder was done at a slow rate to minimize convection

velocities. Pressure measurements within the cylinder were made with

a 0 to 15 psi absolute Statham gage and for the high Grashof number

test with a 0 to 100 psi Statham gage. These gages were calibrated

prior to each series of tests using a Wallace and Tiernan absolute

gage as reference. The coolant temperature was monitored both in

the coolant tanks and in the annular space surrounding the test

cylinder by thermocouples that also lead through the cold Junction to
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the data recording system.

Test Procedure

The test procedure consisted of charging the cylinder with dry

air at ambient temperature, sealing off the inlet and outlet valves to

the cylinder, and then allowing a two hour waiting period for convec-

tion currents to damp out within the cylinder. Thirty minutes prior

to a test, water and cracked ice were introduced into the coolant

tanks, and the coolant was brought to a uniform and steady temperature

that typically was 4940 R. With all thermocouples displaying steady

state readings the plug valves were opened, and the coolant was dumped

over the test cylinder walls. Immediately upon opening the plug

valves, a circulating pump was activated to minimize temperature

gradients in the cold liquid by drawing cold liquid out of the

annular region surrounding the test cylinder, and spraying the coolant

back over the ice crystals in the coolant tanks. Strainers at the

bottom of each tank prevented solid ice from going past the plug

valves and into the annular tank chamber.

For a period of approximately five minutes following the coolant

dumping, data sampling of all thermocouples and pressure instrumen-

tation was taken. The digital system sampled each channel 400 times

per second and stored the values on tape. A printer output from the

digital system gave separate channel print outs at a rate of about 5

channels per second for convenience in visually following the temperature

and pressure changes from the digital system.
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Following a test, the coolant was removed from the system and room

temperature water was flushed through the coolant tanks, valves, and

annular chamber. Dry, ambient air was pumped through the test cylinder

and it was sealed off when all thermocouple readings showed steady,

ambient temperatures existed within the cylinder. A two hour waiting

period, was then used as previously described.

Two series of tests were made using Freon and dry ice as the

coolant. Wall temperatures down to 4000 R were achieved but it was found

almost impossible to maintain uniform coolant temperatures. The problem

was due to the formation of "snow" when dry ice was sublimed in Freon.

A more reliable approach for raising the Grashof number was taken by

pressurizing the cylinder. The experimental data reported here was

obtained at a nearly constant gas to final wall temperature ratio of
T
w = .936.

T.
1

Attempts to Measure Gas Velocities

Considerable effort was put into an attempt to measure gas velo-

cities near a wall in natural convection flow. Early studies by

Martini and Churchill (reference 17) using titanium dioxide dust were

difficult and with considerable uncertainty. The attempt made here

involved the use of helium filled soap bubbles. A flat plate was

constructed to test against previous experiments and theory. This

plate is shown housed in a plexiglass cage in figures 23-a and 23-b.

At time zero hot water was forced through three passages internal to

the plate. At the same time, bubbles that were filled with mixtures of
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He and N2 and were neutrally buoyant were introduced to the lower

leading edge region of the plate. Color movies were taken of the rapid

entrainment of the bubbles into the plate boundary layer, and their

subsequent acceleration vertically upward. Time displacement studies

were made of the bubbles. Almost independent of bubble size, the bubbles

all seek out a single streamline in the plate boundary layer. Thus it

appears nearly impossible to measure a velocity profile. The reasoning

for why the bubbles behave in this manner is based on the fact that the

boundary layer is quite thin for the plate tested, and thus a steep

velocity gradient normal to the plate exists which in effect produces

a gradient across the bubble. Such a velocity gradient would act to

draw the bubble laterally inward to a position of peak velocity within

the boundary layer. A comparison of the measured velocities for both

transient and steady flow conditions indicated that the bubbles were in

fact traveling with close to the maximum theoretical velocities deter-

mined by Siegel (reference 25). The solution to the difficulty appears

to be in producing a very thick boundary layer such that the bubble

size is small compared to the change in velocity across a distance of

one bubble diameter. Extensive tests were made to produce extremely

small bubbles but below about .05 inches diameter neutral buoyancy

cannot be achieved at standard atmospheric conditions. The hope of

mapping out the velocity distribution within the cylinder by tracing

the bubble displacements had to be abandoned.



Discussion of the Experimental Results

Chapter VII

Comparison of the numerical results and the experiments necessitated

a consistent formulation of both the dimensionless variables as well as

identical wall boundary conditions. Also the numerical solutions must

have the initial conditions imposed at the same time zero as actually

occurred in the experiments. It was found that within 0.4 sec after

application of the cold liquid to the cylinder wall, temperature drops

were detected within the gas near the wall. Thus time zero could be

determined within 0.4 second by thermocouple signals alone. For

comparison with the numerical results, the heat conduction equation was

used for determining time zero for the experiments by allowing time

zero for the conduction problem to occur when the liquid was first

dumped from the hoppers. Time zero for the numerical computations and

the fluid was taken when a 0.2 Rankine decrease in wall temperature

had occurred due to conduction. (See equation 5.9)

1
As discussed in chapter 5, the near singularity in for a

Gr
time dependent wall temperature, limits the value of the constant, a,

in equation 5.9 to values less than about .99.

With these considerations the measured and computed temperature

distributions for an azimuthal angle of 900 are shown in figure 24.

These results correspond to case II of table I with the exception of

a variable wall temperature as mentioned above. The numerical solutions

for 1.2, 4.0, and 8.0 seconds of real time compare favorably with the
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measured results. The large computing time for the program prohibits

carrying out the numerical solutions to larger values of time. The

gradual thickening of the thermal boundary-layer is seen in these

figures. Because the core acts as a reservoir of warm fluid for supply-

ing the boundary layer, the temperature distributions within the layer

tend to retain their profiles over a long period of time after the

velocity field starts decaying. To illustrate the temperature decay,

figures 25 show typical plots of both the experimental and theoretical

temperature at a selected radial location. Figure 25-a shows an early

time behavior both from experimental measurements, and from the numerical

solutions that clearly indicates the inflection produced by the flow as

the velocity distribution shifts toward a more developed profile.

Similar behavior is seen in figure 25-b at 8 = 70° . Finally at the

bottom of the cylinder where the azimuthal motion of the fluid ceases,

the temperature decay appears as shown in figure 25-c. The numerical

results predict a more rapid decay than was actually measured. Several

possible reasons for the disagreement are available. The most likely

source of error lies within the framework of the differencing scheme

near the mid-plane of symmetry. Because both the azimuthal and radial

velocities are negative near the bottom of the cylinder, forward

differencing is used throughout the momentum and energy equations. But

forward differencing carries the grid points into regions of largest

change and tends not to balance with the backward grid points that,

for the present physical system, lie in regions of lesser change. Near

the mid-plane the azimuthal velocity goes to zero but forward differencing



tends to override this due in part to the finite grid size, and thus it

appears that errors may be largest near the bottom mid-plane of symmetry.

In this respect the solutions are dependent upon the cylindrical geo-

metry being considered. This represents a limitation or at least an

undesirable aspect of one sided finite difference techniques.

It is of some interest to observe the experimentally measured

pressure decay within the cylinder. This decay represents a three-

dimensional (closed volume) phenomenon that is in a sense primarily

dependent on the two-dimensional flow field that transports heat to the

cylinder walls. Figure 26 shows a typical measured pressure decay for

the case of a maximum Grashof number of 7 x 107. The pressure decay

is a direct measure of the over all energy loss from the fluid.

The mass in the enclosed cylinder remains constant over the total

volume and thus values of the average tank pressure are a function of

the average fluid temperature within the cylinder.

The single most important comparison made between the numerical

results and the experiments is that of the Nusselt-Grashof relation

for the time dependent flow. Figure 27 shows the measured time

dependent variation of this dimensionless grouping. The comparison is

favorable. Many steady state natural convection flows can be described

by the Nusselt-Grashof correlation and from figure 27 it appears that

a time dependent correlation could be written for an internal flow

with the boundary conditions presently under consideration. The

formulation of such a relation was not attempted in this study.
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The Nusselt-Grashof relation is asymptotic with zero at large

time as seen by:

Gr1/4 rwg i - Tw 

2 i d

When 'T * J we find 1 and the right hand side of equation 7-1

goes to zero. The value of NU/Gr/4 will pass through Hellum's steady

state value (0.326) about 14 seconds after initiation of the flow.

If figure 27 is compared to figure 18 the effect of a steadily decaying

wall temperature is apparent. The curve shown in figure 27 can be

interpreted as being a result of lower values of heat transfer when the

wall is cooled unsteadily than when a step function cold wall is applied,

such as for the figure 18 conditions.

Examples of typical experimental radial temperature distributions

are shown in figure 28. In figure 28a at t = 4.0 seconds, the wall

has cooled to about .983 of the initial temperature, and thus the

distribution terminates at the wall (R=1.0) in the manner shown.

The thermocouple located at R = 0.2 was considered essential for

monitoring the core temperature. If a very low ratio of Tw/Ti had

been utilized, it could be anticipated that fluid would fall downward

from the upper most walls of the cylinder. In such a case a negative

vertical temperature distribution within the core might have been
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observed. For the Tw/T
i

ratio of these experiments the flow was

almost completely confined within the wall boundary layers, and no

negative upward distributions were measured. Figure 28-b shows the

temperature distribution at 8.0 seconds after flow initiation. The

measured profile has broadened more than the numerical solutions

predict. Figure 29-a shows a similar result for e = 700.

A series of experiments at Grashof number values up to about

1.8 x 10 were made and some results are shown in figures 30. The

very slow time development of the flow field is indicated by both the

numerical calculations which take almost an order of magnitude longer

computational time, than the case II solutions and by the experiments.

The agreement between the numerical solutions and the experiments is not

as good at low values of the Grashof number as at the higher Grashof

numbers. The very slow development of the flow reduces the early time

accuracy because of the small differences in temperature that must be

measured. Figure 31 is a plot of the time history of the boundary-

layer temperature at R = .966. The slow decay is an example of the

lower Grashof number behavior. However, the relatively more rapid

reduction of the gas to wall temperature ratio for the lower Grashof

number case produces an undershoot of the Nusselt-Grashof relation.

This is due to the differences between the velocity field development

and the thermal field development and is shown in figure 32. An

initial response to the near singularity at early times due to low

values of the Grashof number causes the undershoot in the numerical

results. Thus although the disturbance is damped by the difference



scheme, the accuracy of the results is severely lessened by the

destabilizing influence of a very low early time Grashof number. Re-

stated, the low Grashof number computations are characterized by a

relatively rapid wall cooling which raises the wall heat transfer more

rapidly than the one fourth power of the Grashof number. The Nusselt-

Grashof behavior in both figure 27 and figure 32 must be viewed as

being representative of one specific flow configuration, and also a

very specific boundary condition. The difference between figures 27

and 32 indicates that a single correlation equation from the numerical

results presented here, may not be possible to achieve for the entire

range of unsteady laminar natural convection flow within a horizontal

cylinder.



Conclusions

Chapter VIII

The present investigation has revealed the dynamic and thermal

behavior of a confined fluid subjected to gravitational body forces.

For a semi-infinite horizontal cylinder with uniformly cold walls the

principle features of the flow involve a rapid development of the

boundary layer adjacent to the walls, a tendency for fluid stratifica-

tion in the lower regions of the cylinder, and a slow decay of the

velocity and thermal fields with time. Experiments made in this

investigation substantiate the thermal behavior predicted by numerical

solutions to the quasi-compressible Navier-Stokes equations for the case

of a time dependent wall temperature decay. Because the thermal and

velocity fields are strongly coupled, the experimental findings imply

that the velocity field may also be accurately described by the

numerical results.

The following conclusions can be drawn from this study:

1. For very low velocity natural convection flows, windward

finite differencing, which gives first order accuracy in time and space,

is a suitable numerical scheme when positive and negative velocities

occur. The large computing times required for such flow fields rules

out more time consuming differencing schemes at the present time.

2. The windward scheme in cylindrical coordinates was not

extremely sensitive to grid spacing ratios except when the ratio

AR
A 0.2. Above this value, numerical instabilities occurred regardless



of the time step used.

3. The differencing scheme appeared to lose accuracy near the

bottom of the cylinder where both the radial and azimuthal velocities

are negative, and the azimuthal velocity is decelerating to zero at

e = 0.

4. The early establishment of a positive upward temperature

gradient within the central core flow, along with the effects of fluid

viscosity combine to produce a strong resistance to induced fluid

motion within the core. After initiation, the flow within the

boundary layer develops rapidly, and decays over a long period of time.

5. The dynamic pressure gradient terms 1 BP and BR are

negligible in the azimuthal and radial momentum equations for the

conditions considered in this investigation.

6. The relationship between the Nusselt and Grashof numbers is

found both numerically and experimentally for the case of unsteady

natural convection flow within a horizontal cylinder subjected to

uniformly cold wall boundary conditions. For the case of a time

dependent wall boundary condition, the Nusselt-Grashof relation inter-

cepts the steady state value of the dimensionless group about 14

seconds after the commencement of flow down the cylinder walls. For

the case of a constant cold wall condition from time zero, the numerical

results show that the Nusselt-Grashof relation intercepts the steady

state value at about 3 second after commencement of the flow.

7. No first order vortical motion was found within the core flow.

The absence of this motion is attributed to the boundary conditions
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which require azimuthal deceleration of the boundary layer flow near

the bottom of the cylinder. Both the theoretical and experimental

models establish a mid plane of symmetry that satisfies the boundary

conditions imposed in this study.
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Stability Analysis

Appendix A

The von Neumann stability analysis deals with linearized forms

of the governing equations. The coefficient velocities are all consi-

dered constant in equations 3.10 through 3.13. The effects of amplifi-

cation of disturbances due to non linear terms is not within the scope

of this method, however, the von Neumann criteria does provide an

approximate stability limit that has proved quite suitable for non-

linear fluid flow problems. The analysis will be made for the coupled

system composed of the azimuthal momentum equation and the energy

equation. The differences for the cross derivatives that do not appear

in equations 4.4 and 4.7 will be included for stability considerations.

Define the following equalities:

B = IUIAT
RAQ

C= D=
AR

2
(RAe)2 1

E =- A-1

__T IVIAr r r
FRAR G = AR

1H=

r

Use of absolute values on U and V allows the results of the

analysis to be applied to fluid flows with either positive or negative
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velocity components. Substituting equations A-1 into the energy

equation gives:

n+Jl n (1-G-B-2DE-EC)+- F
.l= nz(1 - G - B - 2DE - 2EC) + on ,(G + EC - )

J,k i Jz-1 2

+ l i, (B + ED) + *Jn+1 (ED) + ,+1l(EC + 2E )

Similarly equation 3 10 yields

Un+1 = Uj [
, 9, 9 R

- G- B- CH(RrR

2

+ R
2

+ j [G + CH AR
+ UJ 1n (B + DH)

UJ-l,t

U L QaR + UR+1 (DH)

- sin 6(1 - fjn )At - G UnJ~~k iJk

For equation A-2 we define

al =1 - G - B - 2DE - 2EC

EF
a2 = G + EC 2-2 ~~~2

A-4

a3
= B + ED

a
4
= ED

a5 =EC +2

A-2

- 2DH]

A-3
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and for equation A-3 we define:

b1 = 1 - G - B - CH A( + R 2DI
( 2 2R

b2 = G + CH
R

-

b = B + AH

b~ CH R + AR
R + AR

b
5
= DH

Substituting equations A-4 into A-2 gives

n+l n n n n n
J, = aljQ + a2 j Z-1 +a 3 J-1, + a4oj+l,, + a5 J,Q+1

and substituting equations A-5 into equation A-3 gives:

Un+l =blUn +bUQ + bUn lA b4 U, 5 J+1,
J,- i JY 2 nJ,.- 3 J-1,k 4 + U J+1,

iJk iPJ,. J,£ AR

A-5

A-6

The amplification matrices formed from the coefficients in eqs. A-6

and A-7 have characteristic values (eigenvalues), hl and h2.

For the energy equation:
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-ik2AR

hi = a1 + a2e

-ik RAe
+ a3e

ik2AR
+ age

ik2RAe
+ a5e

For the momentum equation:

-ik2AR

h2 =1 + b2e

-ik RAE
+ b3e

ik2 AR
+ b4e

iklRAe

+ b5e

The von Neumann condition can be written as IhI < 1.0. The ak and

b
k

are all real and positive except for al and b I which may be

either positive or negative. As indicated by Richtmyer (reference 26)

and Hellums (reference 16) the largest absolute values of h
I

and h
2

will occur when all terms in equations A-8 and A-9 are real i.e.

when

klRAB = k AR = T

or klRAE = k2AR = 2a

For the maximum real value of h
I

we write:.1

hi max = a + a + a + a + a 5l max 12 2 3 4 5 A-10

or substituting from equation A-4 we get:

EF
h = 1 - G - B - 2DE - 2CE + G + CE 2EF + B + 2DE + CE A-11

1 max 2

A-8

A-9
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or h = 1
1hi max

For the minimum value we find:

h min al1 - a2 - a3 - a4 - a5

Substituting from equations A-4 gives:

EFhm = 1 - G - B - 2DE - 2CE - G - CE + 2
1 min2

- B - 2DE - CE - 2 A-14

h mi = 1 - 2 - G - 2B - 4DE - 4CE1 mmn A-15

For stability we must have

2G + 2B + 4DE + 4CE < 1 A-16

Equation A-16 is the stability equation governing the energy equation.

Substituting equations A-1 into equation A-16 gives:

2IVIAT + 2IUIA + A 
AR RAe (RAO)2 p vr'

r r

4AT 

ARp r- -
r r

or rearranging gives the maximum allowable time step for stability

of the energy equation:

A-12

A-13

or

A-17
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AT < 1

-21V 2I + 4 +
AR RAe (RAe)2P vG AR2p vr

r r r r

Similarly for the momentum equation we find that:

h max bl + b2 + b3 + bq + b5

Substituting equation A-5 into equation A-19 we get:

2 max
=1 - G -_B - CH R + R - 2DHA R-- 1 - G" B - CH(R 2 /AR+ -- - 2DH

R~ R

+ G + CH(R - R + B + DH +

2R -

CH(R + AR\

+ DH

Simplifying gives:

h CHA R CHAR CH Rh - 1 + R R
2 max AR AR R + AR

R-- R-- R+-
2 2 2

CH AR CH R CH R
R + AR R R R+ R+ R-

2 2 2

or

2 m (CH AR R AR
h2 max = 1+CHR AR 

\R+F R-i--

A-18

A-19

A-20

A-21

A-22
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If we exclude the origin then R will never be less than AR so from

equation A-22 we see that h2 max cannot exceed unity. (If R is

large the term in parentheses in equation A-22 will be small). Now if

R = AR equation A-22 gives:

h 1--CH A-232 max 3

This leads to the expression

A T < AR2G- A-24A( < r

For large Grashof number flows equation A-24 does not impose a severe

restriction on the allowable time step. For the miniamum value of h2

we write:

h2 min = b - b2 b3 - b4 - b5 A-25

or substituting equations A-5 into equation A-25 and simplifying gives:

h2 = 1 - 2G - 2B - 4DH - CH [ hR R A-26
2 max we write:

2 R+

For stability we write:

2G + 2B + 4DH + 4CH < 1 A-27
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Substituting equations A-1 into equation A-27 gives:

2IIAT + 2UIAT + 4AT + < A-28AR RA 1 A-28
AR RAe (RAe)2G (AR)e2

r r

Rearranging equation A-28 gives:

AT < - A-29
-21Vl 21Ul + ,"m + + 2 + 4
AR RAO (RAe)2 vG AR2 vG

r r

Thus from the von Neumann approach the most stringent stability

requirement for the present system of equations is given by equation

A-29. (For the case where NPr < 1.0). This criteria is at most an

approximation and requires validation by computer experiments. The

studies reported here have in fact verified that the von Neumann criteria

is a good approximation and any local violation of the limit given by

equation A-29 resulted in large scale instabilities that develop quite

rapidly in the computation.



Thermocouple Errors

Appendix B

There are four sources of temperature measurement error in

addition to actual signal readout errors that must be investigated for

any experimental study. These errors can be classified as being due to:

(1) fluid velocity past the sensor; (2) conduction losses along the

thermocouple wires; (3) radiation of energy from the thermocouple to its

surroundings; (4) transient error due to a finite time lag in response

caused by the thermal capacity of the sensor. These errors will be

evaluated for operating conditions that are typical of the experiments

carried out. Moffat (reference 27) gives a detailed discussion of the

pertinent equations for such an analysis.

Thermocouple velocity error

The difference between the gas total temperature TT and the

temperature, Tj, given by the Junction is:

U2

TT T = (1 - r) 2gJCp

where:
T - T

ar = Recovery Factor = T T
T co

T = fluid static temperature

UQ = fluid velocity

The recovery factor for wires perpendicular to the flow has been

extensively studied and a summary of the results is shown in reference
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27. For the very low fluid velocities encountered in the present work

the recovery factor can be conservatively taken as: a = 0.61. For a
r

maximum fluid velocity of 4 feet/second the velocity error is

calculated as:

T -T = (.39)16 5.19 x 10T J 2(32.174)(.2)7781 

The velocity error appears to be negligible for the present experimental

conditions.

Conduction Error

The losses due to axial conduction along the thermocouple wires

are given by the following equation:

TT - TM
TT - TJ = cosh L(4hc/dk s) B-2

where:

TT = Fluid Total Temperature

T
M
= Mount Temperature

L = Distance from the Wall to the Sensor Junction

d = Wire Diameter

h
C
= Convective Heat Transfer Coefficient

k
S
= Thermal Conductivity of Sensor

kG = Thermal Conductivity of the Gas Evaluated at Stagnation

Conditions

The Reynolds number based on wire diameter is given as;
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PTUod 4(8.33 x 10-4 ) 228

Red PT 1.46 x 10 -

B-3

If the correlation equation of reference 27 for wires and perpendicular

to the flow is used, the following results are obtained:

N = (.44 + .06)Rl/2 B-4
u ed

k N
h = u

c d B-5

so that

For a fluid total temperature

TM = 4920 R equation B-2 gives:

B-6

TT = 5360 R and a mount temperature

T - T = h44
T - TJ cosh 414 B-7

Thus

TT - TJ << 1°R B-8

The conduction losses are seen to be entirely negligible even for the

shortest thermocouple sensors used in this investigation.

Radiation Losses

-The radiation loss for a thermocouple within an enclosure is given by:

k a E AR 4 4
TT -T rh A (T -T) B-9

c c

with
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where

K = Radiation Form Factor
r

a = Stefan Boltzman Constant
A
Ar = Ratio of Area Available for Radiative Loss to Area Available
c for Convective Loss.

c = Emissivity Compared to a Black body

For an enclosure that is large compared to the wire dimensions it is

known that K z 1.0.
r A

For the present problem we may also write -Ar= 1.0. Also for oxidized
c

base metal thermocouples E - .85. And

Bt
0 = 4.75 x 10-1 3 4 B-10

Ft sec R

Considering the largest gas to wall temperature difference to be 200 R

for the unsteady wall temperature decay of the present experiments,

equation B-8 gives:

T
T
'- TJ = 3.70 x 10 (1.14 x 1010

Thus (T -T)max 0. 420 R B-ll

Thus the radiative losses for the case of an unsteady wall temperature

decay can be of significance. Within the boundary layer there is

some reduction of the loss due to lower fluid temperatures. This

affect is partially overcome by a reduction in the value of h within
C
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boundary layer. As a percentage of the total gas temperature, equation

B-ll represents a very small correction. It is however a known source

of error and equation B-8 must be applied to the thermocouples that

reach a Junction to wall temperature difference near the values used to

give equation B-ll.

Transient Error

The lag in thermocouple response can be characterized by:

dTi
B-12TT - TJ = W dt

where B-13
c

w is a characteristic time that depends directly on the thermal

storage capacity of the thermocouple and inversely upon the heat input

to the thermocouple per degree of temperature difference.

For Copper

C = .0918 BTU
Lb OR

so that

= (430)(.0918) 01 = .754 seconds B-14
4(1.09 x 10 2 ) 12

Thus



(I-) x = 0.55 OR/sec.

The maximum transient error is close to the radiative error and very

neatly compensates for the radiative error calculated previously.

Other errors were reduced to a minimum for the system by calibra-

tion of the pressure instrumentation prior to each series of tests

and also by performing a precise balance of the readout system prior

to each test.

A large number of tests were carried out and each test condition

reported here was duplicated at least three individual times. The

comparison of temperature and pressure histories for duplicate tests

is very close with random variations in temperature readings of no

more than 1 OR between two tests run at the same conditions. The time

history of pressure and temperature within the horizontal cylinder

could be duplicated within 0.5 0/o from one test to another. This

close repeatability was obtained over the entire Grashof number range of

the experiments. Systematic errors are established by the limits of

output accuracy of the sensors and pressure transducers and the total

readout system. The rapid sampling rate of the automatic readout system

removes the need for analyzing the experimental uncertainty by means

of a Gaussian error curve. Instead, it is seen that the fluctuations

shrink the distribution curve inside the smallest scale divisions of

the readout system. As an illustration data samples are taken at a rate

of 400 samples per second. The peak rate of temperature change measured
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was close to 10 R per second so that effectively 100 sample readings

were taken within each 1/4 OR change in the value of temperature. For

machine plotted data this is about the limit of scale size that can

usefully be worked with. The data readings are truly scale limited

rather than being perturbation limited. The absolute uncertainty of

the temperature measurements is set by the error limits of the

thermocouple Junction itself. All known system errors are far below

the thermocouple error which commercially is given as + 1 1/20 F.

Calibrations of the thermocouples within a controlled ice point instru-

ment showed less than 1/2 OF discrepancy between recorded signal and

the ice point temperature. The temperature measurements have an overall

uncertainty of something on the order of + 1 l/20 F which is within about

+0.2 °/o of the measured values.



Table I

Parameter Variations for Numerical Studies

Case II

NG = 7 x 10
7

r

P = .715r

w = 936

T = constant

rw = .25 ft.

Pi = 6.74 atm.

Case II - T

Identical to Case II except:

T= (o,T)(T
i

Tx ) + T
O O

Case

NG =
r

P =
r

T
W

T
i

T =

r =
v

Pi

III

1.36 x 106

.715

.936

constant

.25 ft.

1 atm.

Case III - T

Identical to Case III except:

T =c (o,T)(Ti Tx ) + T
O O
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Case

NG =
r

P =
r
T

W

T.
1

T =
w

Pw

Pi

I

8.34 x 104

.715

.936

constant

0.1 ft.

1 atm.
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Figure 3a.- Flow diagram for finite difference calculation.
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Read Namelist/Nl/input

Compute Ar, AO

Is this a continuati(
of an earlier run?

Figure 3-b.- (Continued).

initial values of u,v, to zero
initial values of *, *' to zer
interior and = 1. at wall.
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Compute Nu 

Compute hJ

print u', v', ft, v, A, T, AT, J, i
add to KQUNT for output lines count

Compute Nu average over lower half
total upper half, and
Print Nu averages

Yes

IF AT c - CPT/1.E7
Write debug output of AT

Find minimum AT for next step

X _-
I Replace P with 'P'

Jr

I

I

Figure 3-c.- (Continued).

4 

Save (u'f, I', v', r at
desired e, T, and all r stations
for plotting in following program
if desired.

STOP 1 I
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Has maximum of 7200 print lineE
or maximum computer time limit
been reached?

Figure 3-d.- (Concluded).
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t -= 0 ~3(:." J*

Gr = 9.7 X 106

a. t=O and t=1.97 seconds

Figure 19.- Oscilloscope photographs of fluid element displacements
from the numerical solutions for natr-al convection flow within a
horizontal cylinder.



103

............ ......

" .. .:.. ..... ..

t= 3.o) a4o, J

G, = I.( x I °7

X= 3. o

Figure 19.- (Continued).
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G.-r z2 Ao 7

6r = 3 . x ,o 7

Figure 19.- (Continued).
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= - C 7 secod.s.

&r = 4. 2 X/o 7

G- = 6. /o 7

GC= 4/. 9 r/ 7

Figure 19.- (Continued).
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e. t=6.6 C. = SSSo 

Figure 19.- (Concluded).
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Figure 20a.- Instrumented natural convection chamber. 
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Figure 21.- Cooling manifolds for natural convection chamber. 
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Figure 23a.- Vertical flat plate used for natural convection velocity measurements, 



Figure 23b.- Vertical flat plate apparatus concluded. 
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The author was born 2.

After moving to Seattle, Washington in 1938 he graduated from Garfield

High School in Seattle. Two years after entering the University of

Washington he entered the Naval Aviation Training program and in 1954
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years he flew with an operational Marine Jet fighter squadron. Follow-

ing completion of military service the author enrolled in the University

of Colorado School of Engineering. In 1960 had earned a Bachelor of

Science degree in Aerospace Engineering from the University of Colorado

and in that same year began full time employment with the National
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Through the NASA cooperative study program, the author earned a Master

of Aerospace Engineering degree from the University of Virginia in 1964.

In September of 1968 the author entered graduate school at Virginia

Polytechnic Institute to begin study for the degree of Doctor of

Philosophy in Aerospace Engineering.

The author resides in Yorktown, Virginia with his wife, Patricia,
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