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1. INTRODUCTION

1.1 General

The apparent displacement of an object that results from light rays

from a source outside the atmosphere being bent in passing through the

atmosphere, is defined as Astronomic Refraction [Mueller and Rockie,

1966, p. 90]. This results in all objects appearing to be higher above

the horizon than they actually are. It is also called Celestial

Refraction.

The apparent displacement of an object located within the effective

atmosphere resulting from light rays being bent in passing through the

atmosphere is defined as Atmospheric Refraction.

Also in the reference quoted above, Electronic Refraction is

defined as "The refraction due to the effect of the atmosphere and the

ionosphere, which introduces appreciable changes in the quantities

measured by means of electronic devices, such as in the phase differences

measured with interferometers, in the rate of change of phase measured

with the Doppler systems and in the change in phase between the times

of transmitting and receiving a signal by the ranging instruments."

All of our measurements for the above quantities are, of necessity,

to be made through the atmosphere of the earth. This atmosphere is not

at all homogeneous but its composition continuously changes with place

and time. The non-uniformity of air density (and hence the refractive

index) due to the complex composition of the atmosphere introduces

1
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continuous change in the direction and velocity of propagation of

light or radio waves passing through the atmosphere. Thus, the observed

values of the quantities mentioned in the definitions given above are

I

not what they would have been if there had been vacuum in place of

variable atmosphere.

There is perhaps no branch of practical astronomy on which so much

has been said and investigated as on this and it is not in a completely

satisfactory state. The theoretical difficulties arising from the

uncertainty and variability of the density of the atmosphere and the

absence of any exact analytical relationship governing it offer main

A

obstructions to the solution of refraction integrals.

Before the advent of artificial satellites and development of

electronic techniques the problem was mainly confined to the astronomic

refraction. Consequently, various investigators of the Nineteenth Century

and early Twentieth Century worked on this very aspect. First, on the

basis of an admixture of speculation regarding the constitution of

atmosphere, since the meteorological data available by then was scanty.

As more and more meteorological data became available, better models

were devised on these bases.

Since 1960s, the increasing accuracy of geodetic instruments and

development of artificial satellite methods for various geodetic appli-

cations, have opened a new era in which refraction of radio waves in

the ionosphere also comes into play. The new techniques like laser

ranging, very long base line interferometry (VLBI), satellite radar

altimetry and direct mapping of gravity field of the earth through range

rate measurements, demand a new look at the measurements to spatial
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bodies. With accuracies of the order of 5 cm in laser ranging, 0.05
«•

nun/sec in satellite to satellite range rate, 0.001 in VLBI measure-

ments expected to be attained within a decade, it is essential that

accurate values of refraction corrections be available. In fact, in

most cases it is the refraction correction which is the main

obstruction to attaining such accuracies.

It is in this context that an attempt is being made in this

report to review the progress which has been made so far and the

possibilities which could provide solution to the problem in the

near future.

1.2 Arrangement of the report.

The report is being arranged in the following manner.

In the theoretical considerations we shall first state the

basic principles of optics, governing the phenomenon of refraction

and shall derive differential equations for the refraction corrections

under two main subheads: 1. Refraction effects due to change in the

direction of propagation, and 2. Refraction effects mainly due to

change in the velocity of propagation, of a ray of light or other

radiation (e.g., radio waves, etc.) propagating on the principle of

wave theory. Then will follow a short description of the atmosphere

(including ionosphere, etc.) regarding the factors affecting

propagation of light/radio waves.

Next, under the practical considerations, we shall review the

various assumptions made by the earlier investigators, and then better

empirical relationships being available, the basic principles of

improved models designed by the investigators of the Twentieth



century. For this purpose discussion will be divided into two

groups as shown in Table 1.1.

The above discussion will be followed by a review of the

accuracy problem for various quantities. Next, the future trends

and in that the elimination of refraction effect from range, etc.,

measurements will be discussed.

The report will finally be concluded by summing up conclusions

and enlisting recommendations.
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2. NOTATION
I

The following notations are used in this report for various

quantities. Exceptions to these will be explained in the report, where

applicable. The subscript o is used, in general for the quantities

pertaining to the place of observations:

n - refractive index

n - refractive index of air under standard conditions
(0° C, 760 mm of Mercury, 0.03% Carbon Dioxide).

ng- group refractive index

N - refractivity = (n-1) 106

u - phase velocity of light or microwave in air

X - wavelength

f - frequency

z - zenith angle

Az - refraction correction to zenith angle

S - range

As - refraction correction to range

E - elevation angle = 90° -z

T - absolute temperature

P - total pressure of air

e - partial pressure of water vapor

r - radius vector from the center of the earth

H - height above sea level

h - height relative to the place of observations

ho- height of homogeneous atmosphere above the place of observation

g - acceleration due to gravity

Of - coefficient of expansion of air

R - gas constant

R - radius of the earth



3. THEORETICAL CONSIDERATIONS

3.1. Laws of Refraction

For any refracting medium the propagation of light or

other electromagnetic wave is governed by the basic physical law,

formulated by Fermat more than three centuries ago, called FERMAT'S

PRINCIPLE, which states that light, for example, will follow that path

between two fixed points involving the least travelling time. [Hotine,

1969, p. 209]. Also, if c is the velocity of light in vacuum, v is

its velocity in the medium, then the refractive index n of the medium

is related by

n = (1)

From Fermat 's principle we deduce the following two laws of

refraction:

(i) Considering A and B two points

(Fig. 1) in media of refractive

indices nj_, n2, respectively.

Let A Q B be a ray of light between

them making angles

angles of incidence and of refrac-

tion as shown in the figure, then

time t for the ray to travel from

and 9? as the

Fig. 1.- Laws of Refraction



A to B is given by

t = ASL + SB.

c c '

c cos 9t c cos 02

According to Ferraat's Principle this time is to be minimum. Thus,

differentiating and equating to zero, we have (remembering that h,,

h9, are constant for the above points):

cdt = n^ sec0! tan 9t d^ + n^ sec 92 tan Q2 d02 = 0 (2)

Also, for the above two points we have distance PQ + QR as constant:

But

PQ = hi tan Ql QR = hs tan 92

Therefore,

h i t a n Q i + hs tan 92 = constant
Differentiating we get:

ht sec3Q ldf) l + h2sec292d02 = 0
Substituting for d0£ from this in equation (2), we get

h sec 0n^! sec Q! tan 9t d^ - nghs sec 03 tan 92 r-1 - 5^ d^x = 0
Hg SBC r72

This on simplification gives:

n1sm91 = n2 sin 92 (3)

which is Snell's Law.

(ii) Secondly, it is seen that the direct ray, the refrated ray and

the perpendicular at the point of refraction lie in the same plane.

3.2 Differential Equation for Change of Direction

Now we substitute for the change in the direction of ray:



9i - 92 = A R
also

r\2 = H! ^ A n

then (3) becomes

nt sin $! = (nt + An) sin(01 - AR)

Dropping subscript 1 for nt and Q! we have

n sin 9 = (n + An) sin (9 - AR)

- (n + An) (sin 0 cos AR - cos 9 sin AR)

or
n sin 9 - n [sin 9 cos AR - cos 9 sin AR]

i An rsin Qcos AR - cos 9 sin AR] (4)

Now if A- and B move closer to Q, so that their distance from

Q is infinitesimal, then in the limit

An -» dn

AR -* dR

cos AR -» 1

sin AR -* dR

An sin AR -» 0

Hence (4) becomes

n sin 9 = n sin 9 - n dR cos 9 + dn sin 9

or
n dR cos 9 = dn sin 9

i.e. (5)

dR = tan 9 —n
which is the differential equation for the change of direction of

propagation of a ray in a medium in which refractive index is

continuously changing from point to point. We may note here that this

is a rigorous equation and no assumptions have been made so far.
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3.3 Differential Equation for Change of Distance

Again, if A and B are two points in a

medium of varying refractive index n , then

the departure of the refractive index from

unity will cause both a deviation of the ray

from its straight line path (SQ) into a

curved path (S); and a change in the velocity

to v instead of its vacuum velocity c will

result in the measured range being different

from the geometric range S.

If T is the minimum time of travel from A to B, then the measured

range Sm will be given by

Sm = cT

where c is the velocity of light/electromagnetic wave in vacuum.

Also we have

Fig. 2 - Path
Difference of
a Ray.

T = dt = r\J Q
nds by(l)

Therefore,

SB = cT = T nds

Hence error caused by refraction is

AS = SB - So r nds -
JS

Now SB = p nds - P (1 + n - 1) ds
° J

= f ds + r (n - l)ds = S + P (n - 1) ds
Js Js -s
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consequently

AS - S •- r<n - l)cla - $,
JS

= (S - Sb) + r(n-l)ds
JS

Where integration is along the actual path travelled, i.e., S.

Here (S-S0) is the correction due to curvature of the ray from

Ji /•
(n - 1)ds is the retardation due to decrease in
S

the velocity.

Several authors e.g., [Bean and Thayer, 1963] have shown that

curvature effect is negligible above about 6° altitude. Since no

range distances are measured at elevations less than 5°, the

retardation effect only is taken into account. Then

"-1"* "" (6)
O

which is the basic refraction integral for the correction to measured

distance due to the variation in the velocity of propagation. If

dS denotes the correction in the measured range due to propagation in

an elemental distance ds, then equation (6) can be written as:

dS = (n - l)ds (6a)
which is the differential equation for the correction to the

measured range.

3.4 Earth's Atmosphere

The practice, initially, had been to regard the complex

atmosphere of the earth by various models of constantly decreasing

temperatures with height. This was according to the data then

available. However, from the beginning of this Century, with more and
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more meteorological data pouring in, various layers and the terms

Troposphere, Stratosphere have been introduced.

In recent years, on the basis of evidence provided by radar wind-

sounding balloons, radio wave investigations, and from rocket and

satellite flights, the following division is put forward. Although

there is a difference of opinion regarding terminology and extent of

layers [Barry and Chorley, 1970, p. 37J give the composition as follows:

(i) Troposphere. It is the lowest layer of the atmosphere. It

( ontains 75% of the total mass of the atmosphere and virtually all the

water vapor and aerosols. It is characterized by large scale

convective air movements and marked frontal activity involving the

movement of fairly well identified air masses. There is a general

o
decrease of temperature with height at an average rate of about 6.5 C/km.

The whole zone is capped by a temperature inversion level (i.e.,

relatively warm air above cold air). This inversion level is called

Tropopause, whose height varies with latitude, season and changes in

surface pressure. Its height is about 16 km at the equator and about

8 km on the poles.

(ii) Stratosphere. This extends above Tropopause to about 50 km. It

contains much of the atmospheric ozone reaching a peak density at about

22 km. It is free from water vapor and clouds. Although it used to be

regarded as somewhat isothermal region, recent investigations show some

marked seasonal changes in temperature and temperature increase with

height, with a warm Stratopause enveloping it.

(iii) Mesosphere. Above Stratopause temperature decreases to about

-90° C around 80 km. This layer is called Mesosphere. Above 80 km
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temperatures, again, begin rising with height and this inversion is

referred to as Mesopause. ,

The pressure is very low in the Mesosphere, decreasing from 1 mb

at 50 km to 0.01 mb at 80 km.

(iv) Ionosphere (Thermosphere). From Mesopause upwards densities are

extremely low. The lower portion of this layer consists mainly of

nitrogen (N£) and oxygen in molecular (02) and atomic (0) forms. Above

200 km atomic oxygen predominates over nitrogen. Temperatures rise with

height owing to absorption of ultraviolet radiation by atomic oxygen,

probably approaching 1200° K at 350 km. But these temperatures are

essentially theoretical, e.g., artificial satellites do not acquire

such temperatures because of the rarefied air.

Ultraviolet radiation from the sun and high energy particles from

outer space (cosmic rays) enter the atmosphere above 100 km at high

velocity and cause ionization, or electrical charging, by spearating

negatively-charged electrons from oxygen atoms and nitrogen molecules.

(v) Exosphere and Magnetosphere. The base of exosphere is between

500 and 750 km. In this atomic oxygen, ionized oxygen, and hydrogen

atoms form the tenuous atmosphere and the gas laws cease to be valid.

Gas particles, especially helium with low atomic weight, can escape

into space since chances of molecular collision to deflect them

downwards become less with increasing height.

Neutral particles are predominant, but beyond about 2000 km, in

the magnetosphere there are only electrons and protons and the earth's

magnetic field becomes more important than gravity in their

distribution.
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While discussing refraction effects of the atmosphere the term

Tropospheric correction is generally meant to include the effect of

Troposphere, Stratosphere and Mesosphere; or in other words, the whole

of nonionized atmosphere. Similarly, Ionospheric refraction effect is
< f

meant to include the effect of all the ionized atmosphere.

As we shall see later that the Troposphere, Stratosphere and

Ionosphere are the regions which play the most prominent part in

refraction of light/radio waves propagating trhough them.

In addition, we should not forget that the region immediately

surrounding the observer is the most turbulent and may cause significant

refraction errors.
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4. PRACTLCAL CONSIDERATION

4.1 Effect Due to Variation in Direction of Propagation

4.1.1 Spherically Symmetric Refractive Index

In order to tackle the complex atmosphere, almost

universally-accepted practical assumption made is that the earth is

regarded as a sphere and that the index of refraction n is radially

symmetric, i.e., it is a function of r the distance of the point

from the center of the earth. This also follows from the fact that

as we go higher the density of air and, hence, the refractive index

(which depends on the density) decreases.

In Figure 3, let SPP'O be a ray of light reaching an observer

at 0. C is the center of the earth, r,r" the radii vector to

points P, P1, and ro the radius vector to the observer.

Then if index of refraction at P is n, after a differential

path distance at P1 it will be n+dn. The angles that ray makes with

radius vectors at P and P1 be z and z+dz, respectively. Also the

differential element of refracted ray, i.e., P P1 makes angle z1 with

radius vector at P.

Therefore, by (3)

n sin z - (n + dn) sin z' (7)



Zenith 16

R

Fig. 3 Deviation in Direction of a Ray

Fig. 3a Deviation in Direction by an Elemental Layer
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From triangle C I'?'

sin (z i dz) - sin z'

eliminating sin 2' with (7) we have

r _ . (n + dn)
sin (z + dz) ~ r n sin z

or nr sin z = (n + dn) r' sin (z + dz)

which gives the invariant

nr sin z = constant (8)

At the observer if n = n0 then we have

nr sin z = r^ r0 sin z0

sin z = — a — Q sin ZQ
nr

then - -, ,
n£rcf 2 ^Ecos z = ,1 - --% a sin z0 ix n r /

HQ rQ sin z0
tan z v(n r3 - nô ro" sm̂  ZQ)S

Now differential equation (5) becomes in the notation of

Figure (3) for point P as

dn
dR = tan z —

since z the variable angle along the ray will not be known, we

eliminate it between (10) and (11) and get

sin ZQ ^ dn
dR = (n3r2 - noV sin2 z^ n

Refraction correction for the observed zenith distance ^z = TdR
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A P , 2 2 2 2 2 ~? dn
Az -- nor0 sin z0 (n2r - HO r0 sin ZQ)j 10 o «v) n (12)

where the integral is taken from the limit of the effective atmosphere

(for objects outside it) or from the object (if inside effective

atmosphere) to the observer.

The equation (12) gives refraction correction in terms of variables

n and r and the quantites no, ro, and ZQ which could be known at

the observer's position. If we knew the relation between n and r we

could integrate (12) and get the correction. Since there is no such

exact relationship, the integral is treated on the basis of various

models, usually through development into series. The convergence of

the series determines the upper limit of ZQ, to which the formula is

applicable.

Since refractive index depends on the density of the air in the

atmosphere, the problem "boils down" to the modelling of density

distribution with respect to r or height and a relationship between

n and density p

A.1.2 Atmosphere as perfect gas in hydrostatic equilibrium

For the variation of density in the atmosphere, almost

universally the air is considered to obey the perfect gas law. The

equation of state for a perfect gas being:

PV = RT (13)

where P - is the pressure

V - volume of the gas

T - absolute temperature

R - the appropriate gas constant.
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For unit volume, V can be replaced by — hence
P

l>
— - UT
P

where p - is the density

°r p = -jfi (14)

Differentiating (14) with respect to the height h we have

dp J_ dP _1_ dTi (15)
dh P LP dh T dhj

From the hydrostatic equlibrium condition, if we consider a

column of air of unit cross section and of infinitesimal height

around a point where density is P and value of gravity is g, then

pressure dP caused by it is given by

dP = -pgdh (16)

the negative sign indicating that pressure decreases with height.

Eliminating dP between (15) and (16) and using (14), we have

_ .
dh T \R dh )

4.1.3 Classical Hypotheses of Atmospheric Density

Among the various hypotheses propounded [Newcomb, 1906,

p. 183] we shall give three more important ones here.

(i) Newton's Hypothesis of constant temperature

Newton adopted that the -temperature at all altitudes was constant.

Thus making T constant, from (17) we get:

RT dhP RT (18)

Disregarding variation of g with altitude i.e. considering it

constant and integrating (18):
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log p - - ; h + C

when h = o, p = ft , therefore C = log p0

Ht-nce

If we consider a column HQ of constant density p0 exerting the

same pressure at the place of observation as the atmosphere, then

pressure at the place is

From (14) P0 = p0 RT T being constant

These give

JL - JL. (20)

ho RT
Hence (19) becomes

(ii) Bessels* Hypothesis:

This is a modified form of hypothesis of Newton. It is not based

on any assumed law of temperature, but expresses density as a function

of altitude, in the same exponential form but the exponent being multi-

plied by a factor k less than unity. Thus

p = po e~lth/h° (22)

Although in most general form it was implied that factor k may

vary with height but in practice, the constant value

k » 0.9649 (23)
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was used. On this law were based tables of refraction published in

the Tabulae Regiomontanae, which had been widely used lNewcomb,1906j.

According to this, however, pressure of the whole atmospheric

column does not integrate to the pressure at the observer but to a

quantity **&&.

(iii) Ivory 's Hypothesis

Ivory assumed the temperature to decrease at a uniform rate with

the height, at all heights. This is in accordance with the Law of

adiabetic equilibrium. With this and assuming the rate to be proportional

to temperature at the base, we have

T - T0(l - j3h) (24)

where B is a constant factor. Then constant rate of decrease

of temperature is

dT
dh

Then equation (17) becomes

= -8 T0

dp = 8RT0 - g
pdh T0R(1 - 3h)

or
d£ _ p 0RT0 - g (26)

o p - JQ T0R(1 - 0h) <*

Again assuming g to be constant and integrating

0
 (27)

if we put _
j3RT0 8RT0

,20)]
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Then (27) gives

(29)

From (29) P = o when j3h = i

i.e. atmosphere will terminate when h = — .

4.1.4 Refraction Models

Utilizing some of the above or often better empirical

relationships based on further meteorological data available in recent

years, various investigators [Chauv«net, 1863; Newcomb, 1906; Willis,

1941; Garfinkel, 1944; Oterma, 1960; Baldini, 1963; Garfinkel,

1967; Saastamoinen, 1971] have derived their models for refraction

correction. The basis of some of the recent ones will be discussed here.

It is to be noted that for light rays at optical frequencies, charged

particles of ionosphere, etc. have little effect. So in all of these

models atmosphere is considered until its density becomes such that its

refractive index is not different from unity. Also the water vapor in

the air has very small effect on these.

4.1.4.1 Natural Celestial Bodies

(i) Willis 1941 Model

John E. Willis on the consideration that absolute temperature of

a particle in high atmosphere will be related throughout the year to the

absolute temperature of the effective radiating surface in the lower

atmosphere if the particle remains at the same mass height (i.e., if
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there is the same fraction of mass of the air below it and above it),

assumed the following model for the relative temperature as a power

series of relative pressure.

(T/T0) - 0.670 i- 0.5925 (P/P0) - 0.2625 (P/P0)
S (30)

for (P/P0) from 1.000 to 0.200 and

(T/T0) = 0.778 (31)

for (P/P0 ) from 0.200 to 0.000.

The derivation of his model is by writing equation (12) in the form

sinA p sm ZQ . , , / .
Az = n8ra ^ 1 dlog(no/n)

^ - Sin2z°;
- « *

= tan z0 P . , -3-5 - 1 i sec3 z0 + 1 I d log (ng/n)

There being difference of sign with our convention. Then making

substitution n
2
r
8

•̂ r- - l = M

i
Az = tan ZQ P(l +M sec2 ZQ) * d log(no/n) (32)

By binomial expansion

Az - tan ZQ T Tl - (^Msec2^ + (3/8)]vf sec*Zo ---- ]d log (no /n)
J

Then making use of the model expressed by (30), (31) and hydro-

static equilibrium condition and available data relating n and p ,

numerical integration is performed.

The formulae are claimed to be applicable upto 85° zenith distance.
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Final form of the formula given for practical computations is

= tan ZD loge
 no F 11 (2 £0/r0 + k *0

3/r0
a )-logen«,} sec

2z0j

Where apart from known quantities for the place of observations

F[ . . . ] is a function which takes care of departures of lower

atmosphere from the standard one, on the basis of observed temperature

t0 at the observer. To evaluate this function, first (40/r0)

for 0 C is computed from latitude <P0 and height Ho (km) for the place

of observations, as below:

Value on meridian = (0.00125515+0.00000635 cos 2<P o)(1-0.000157 Ho)

Value on prime vertical = (0.00125093+0.00000211 cos 2<P0)(1-0.000157H0)

Then value of 40/r0 at 0° C for direction in azimuth A is

= (meridian value)cos3A + (prime vertical value) sinA

With this, quantity (2 Ji0/r0 + kJi0
3/r0

3 ) = (a +bt) for temperature
* '

fc C is computed from a, b given in Table 4.1.

Table 4.1

(2̂ 0/r0 + k.eo
3/r0

3) = (a + bt) for Willis 1941 model

for 0° c

0.00124

0.00125

0.00126

0.00127

a

t513.11

+517.26

+521.41

+525.56

b

+1.8889

+1.9042

+1.9195

+1.9348

Next, a table for the function F of equation (32a),

is computed by Willis and is reproduced in Table 4.2. With these



the correction A z can be computed using an ordinary calculating

machine.

Table 4.2

For Function F of Willis 1941 Model

Argument = [(240 / r0 + kA0
3/r0

3 ) - log« ik,] (Ol'OOl sec3z0)

25

Argu-
men,t

11

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

F

1.00000
0.99759
0.99522
0.99287
0.99055
0.98827
0.98601
0.98378
0.98157
0.97939
0.97724
0.97511
0.97301
0.97093
0.96887
0.96683
0.96482
0.96282
0.96085

Argu-
ment

11

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

F

0.96085
0.95890
0.95697
0.95506
0.95316
0.95129
0.94943
0.94759
0.94577
0.94397
0.94218
0.94041
0.93865
0.93692
0.93519
0.93348
0.93179
0.93011
0.92845

Argu-
ment

11

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F

0.92845
0.92680
0.92516
0.92354
0.92193
0.92034
0.91876
0.91718
0.91563
0.91408
0.91255
0.91103
0.90952
0.90802
0.90654
0.90506
0.90360
0.90215
0.90070

Argu-
ment

ii

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

F

0.90070
0.89927
0.89785
0.89644
0.89504
0.89366
0.89228
0.89091
0.88955
0.88820
0.88686
0.88553
0.88422
0.88291
0.88161
0.88033
0.87905
0.87778
0.87652

To compute no from Po, to, equations were derived by him from the

data received from experiments of Barrel and Sears. Perhaps final

equations publised in [Barrel and Sears, 1939] had not been available

to Willis during his derivations. He used equations in the form:

(TT- 1)106 = [0.378167 Xs/(X3 - 0.005761)] at P - 760 nun, f= 0°C

P0(n0 - 1) = (iT- 1) 1 + 0.003673 t0
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(ii) Garfinkel 1944 Model

Utilizing the equation (12) in the form

a -,
Az - P j ( - cosec ZQ i - 1 ! d log n

j L\nor0 / j

A series of substitutions are made adopting new variables

connecting the quantities involved.

The essential feature is the polytroptic model of the atmosphere

similar to that propounded by Ivory. Here he assumes a piecewise poly-

tropic 'distribution, composed of spherical shells such that temperature

gradient is constant for a particular shell. Two such shells are adopted

by him for his model of the atmosphere. A new variable y is introduced

that: y =_ Dynamical height
height of the homogeneous atmosphere for an ideal gas

For a perfect gas in a state of hydrostatic equilibrium in the

Earth's gravitational field, the equations (14) and (16) become in terms

of relative temperature and pressure as

JL = A. .1.
po Po T0 (34)

— (— , = - -£ (35)
<ty >P0/ Po

Eliminating P from (34)and (35), the following formula is obtained:

The model adopted for two shells is:

d
dy < o) - Ci , y Yi (3?)

d where y = yj_ defines
— (T/T0) = c2 = 0, y s yi the Tropopause.
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This causes complications due to discontinuity of — (T/T0)

at the Tropopause . The situation is circumvented by the

author by modifying his model as:

^ (T/To) <= C . Y * y, (38)

= 0, y = yi

This model thus eliminates Stratosphere and becomes essentially

the same as that proposed by Ivory. But the error in adopting model

(38) instead of (37) being small is later removed by the author by a

differential correction.

Further if G = - , m being a new constant, the first equation
m+1

of (38) with (36) becomes:

^ (p/po)/(P/Po) = m ̂ (T/T0)/(T/T0) (39)

with boundary conditions

y = 0 (o/po) - 1 (T/T0) - 1

Solution of (39) and first equation of (38) is

(p/Po) = (T/Trj)
B, (T/To) - 1 - ̂- (4Q)

The first equation of (40) thus represents a polytropic distribu-

tion with its index m given by the second as

The second equation of (40) shows that the atmosphere extends to

a finite height given by

y\ = m t- 1

or dynamical height ht = (m ^ 1) ho (41a)
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In his derivations, relation between n and P used is of the

form
(n3 - l)/(n3 + 2) - p x constant

The final form of the formula for refraction correction is

Az = To W (Bo + B\W + BgW^ BaW3* B\W4 + ..... ) (42)

where W is called the 'weather factor" and is given by

W = P0/T0
3 (42a)

For coefficients B^ (i = 1,2,3,... ), some intermediate quantities

are defined from a set of standard constants to be adapted. The standard

constants are:

n - refractive index for a standard temperature

T and pressure P

R - radius of earth

g - standard value of gravity at sea level

R - gas constant for air ,

m - the poly tropic index.

Then intermediate quantities are

A - (n3 - l)/2n

C = A (1 + A)

Ho= RT/g

D =~ho/R

Then:

Where

A/D(nrfl)
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The coefficients Bi are functions of an angle "o given by:

Then with a function Fg defined as

F = i^> n ^-i tanaj + 16 /2 (42b)
s L-> i _ 0 s + i °

some of the Bi are

Bo = F5

BI = 9 F9 - 4 F4

B2 = 91 F13-72 F8 + 6 F3 etc.

Garfinkel adopted the standard values as below:

~p = 1.013 x 106 dynes/cm2

f = 273° C

R" = 6378.4 km

£ = 0.0002942

R = 2.87 x 10^ ergs/gram degree

g = 981 cm/sec2

m =5

and computed:

ho = 7.987 km

D = 0.0012522

C = 60".700

0 = 0.03916

£ = 4952"

A table has been constructed in [Garfinkel, 1944] for values of

with argument 90 from 0° to 90° (see Table 4.3) to facilitate

computations.
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For z >90 , the expression given is of the form:

Az - To* Y (Co + C\Y + C"3 Y
3 + CaY3 + ) (42c)

where

Ct = 2 Bt cos
3 60 /2 cot

31 +1 90/2

Y - (P0/T0
3)tan3&/2

A table for the coefficients Ct has also been given with argument 6o

varying from 90° to 116° (see Table 4.4).

With the help of these tables calculation of Az becomes a simple

process.

Table 4.4

Coefficients for Refraction Correction z >90°
(Garfinkel 1944 model)

°0
90°
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

59,
2012.2
2029.1
2047.4
2067.2
2088.6
2111.7
2136.8
2163.9
2193.2
2224.8
2258.9
2295.8
2335.7
2378.7
2425.3
2475.6
2530.0
2588.9
2652.7
2721.8
2796.7
2878.1
2966.5
3062.6
3167.2
3281.3
3405 . 7

Cl
168 V 1
173.5
179.3
185.5
192.1
199.2
206.9
215.4
224.4
234.2
244.8
256.3
268.9
282.7
297.8
314.3
332.4
352.4
374.5
398.9
426.0
456.2
489.9
527.6
569.9
617.6
671.4

C2
21'.'8
22.8
24.0
25.3
26.7
28.2
29.9
31.8
33.8
36.1
38.6
41.4
44.5
48.0
51.9
56.3
61.3
66.9
73.3
80.7
89.1
98.7
109.9
122.9
138.0
155.6
176.5

c3
3.2
3.4
3.6
3.9
4.2
4.5
4.8
5.2 '
5.7
6.3
6.8
7.5
8.3
9.1
10.1
11.3
12.6
14.2
16.0
18.2
20.7
23.8
27.5
31.8
37.1
43.6
51.6

°4
0.5
0.5
0.6
0.6
0.7
0.8
0.8
0.9
1.0
1.2
1.3
1.4
1.6
1.8
2.1
2.4
2.8
3.2
3.7
4.4
5.2
6.1
7.3
8.8
10.6
13.0
16.1
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(iii) Oterma 1960

Oterma made use of expansion into power series like that of

Willis. His model is based on the assumption that temperature decreases

uniformly with the distance in passing from the earth's surface to the

limit of Stratosphere and then remains constant.

His work was mainly intended for a new method of astronomical

triangulation suggested by Y. Vaisala. He derives expressions for
i

objects inside the effective atmosphere as well as for those outside it.

Expansion into power series is basically the same as equation (32)

written in the form:

Az - tanz0 [U0- ̂l^sec^o + f U3 sec
4z0 - ̂  U3sec

sz0

, 25
z0 - ..... ]

where

To evaluate the coefficients Uo , Ui , Us ...... } numerical

integration is performed making use of the relation between n and p as

(n - 1) = p x constant

and the temperature model stated above. The values for the coefficients

for the astronomical refraction correction computed by Oterma are

U0 = 60'.' 170520

SUX = 6'.'6968 x 10"

I U3 = 2V0971 x 10"*
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= 1'.'0704 x 10~6

= 0'.'7655 x 10~8

The formula is valid for zenith distances upto 85°.

(iv) Baldlni 1963 Model

The formulae derived by Baldini are for bodies both inside and

outside the atmosphere. Utilizing the differential equation (11) and a

model for the diminution of density similar to that of Bessel (equation

22), he derived his expressions.

From the available observations and taking into account the fact

that the power of reflecting light ceases at about 60 km, he adopted

that density p decreases exponentially with altitude according to

the equation:

p = pb e'
h/ho (44)

The constant ho was computed by him by weighting the observations

proportionately to the power of reflected light at the height of

observations. The value computed by him was

h0 = 9. 240 km (45)

and - = 0.1082 km"1
ho

Introducing this value in equation (44) his model for the density

becomes
p = p0 e--

l 8 2 h l C B (46)

Then he utilized the relation of Gladstone and Dale as:

(n - 1) = px constant (47)

The value of constant used by Baldini is 0.226.
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The expression derived for the refraction correction is:

Az - A0 (n0 - l)tan z0 + Ax (no-l)tan3 z0 + A2 (n0 - I)tanez

where A0 = +0.99827

A! = -0.00130

A2 = +0.000006

To compute n0 for the place of observations the author has given

the equation of [Barrel and Sears, 1939] as:

<49>
<n- 1)10' =2876. 04+

where X the wavelength of light is in microns.

Then

-
where t0 is the temperature in degrees centigrade at the place

of observations. P0 , e0 being in mm of mercury and a = 0.00367.

(v) Garfinkel 1967

In March, 1967, the improvement to his model of 1944 was published.

The main reason given for the improvement is the advent of electronic

computers, which did not exist in 1944. Garfinkel 's contention is that

even at that time the poly tropic model of the atmosphere propounded by

him in the year 1944, appeared to be the best compromise between

accuracy and simplicity.

The author lists the following improvements made by him:

1. The refraction tables were replaced by a Fortran routine.

2. With quick calculation facility provided by electronic computers

there was no need to neglect certain higher order terms of small

quantities as had been done in the 1944 version.
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3. The algorithm based on a double power series, which converged rapidly

for all values of the polytropic index m > 1, was provided.

Proceeding from equation (33), using basically the same model of

the atmosphere as discussed in Section 4.1.4.1 (ii), with a set of

substitutions and mathematical derivations the expression derived is of

the following form:

(50)

1=0 J =0

Various quantities forming the above expression are defined

starting from T0, Po ,
 ro , go from the place of observations; also

P, T", etc., for the standard conditions and polytropic index m .

To and P0 are measured in terms of P, T as units.

The quantities are:

A = n0 - 1

C = [r0g0

B = 2 A C2

Bx= B - A

B2= (1 - B

G= [4Ba(l-Ba)]~*

D = (1-

K = 2 A G m D m

Then

b,, = Bl D- X

and weather factors are given as:
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F = [T0 - BT 0
n uiR/ r 0 ] / (1 - B)

w2 = (1- 2Ba) / ( l - 2BsF)
i i

(w2) F^

Also MIJ Fs(6) is a function of 6 given by

cot 0 = G cot z
CO

0

Then F s(8)=-;) II f^f tan2 j + x 6/2
O L — ' J =2 o S ' 1

and
fm(i + 1) -111 (m (i + 1) + 21 - 1) 1

= i!(m(i + l) -1-1)1 j!(m(i + 1) + 2j -i -1) !

(50a)

A Fortran routine has been designed [Garfinkel, 1967]. In this,

the data required to be input are zenith distance zo } pressure Po>

dT
temperature T0, height Ho, temperature gradient •, ; and five

geophysical constants for the standard conditions, i.e., standard

refractive index n at P and T, radius of earth R , gravity at sea level

|, gas constant for air R and poly tropic index m. Consequently, great

flexibility is provided to the user to choose his own geophysical

constants. This model of Garfinkel is, therefore, one of the strongest

ones for astronomical refraction.

(vi) Saastamoinen 1971

During the last few years, J. Saastamoinen of National Research

Council of Canada, has published a series of papers [Saastamoinen, 1969,

1970a, 1970b, 1971]. A consolidated report of his work appears in a

report "Contributions to the Theory of Atmospheric Refraction"

prepared in July, 1971.
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- His derivation's are also based on radially symmetric distribution

of - n11 for'a spherical earth. 'He assumes a constant temperature

Mrh'roughbut'Vtiraiosphere and equal to that at the bounding surface the

-* * ~ TV" ** ic<T-ropopaus>e?'1~TKu>si if P , T etc. i denote the conditions of pressure,

temperature etc. assumed known, then from condition of hydrostatic

equilibrium of air as a perfect gas, eliminating p from equations (14)'
in ' i

and (16) is derived '• \ ,
b-i.''̂ . • !

P - P'exp ["-(g/RT) (r - r')] (51)
i

disregarding the variation of gravity with altitude.

In the Troposphere the temperature is assumed to be decreasing at

dT
a constant rate —j-~ = p giving

T - T0 + fi(r- TQ) (52)

i

which leads to pressure at a point !

P = P0 <T/Tofg/R^ (53)

or P/T = ( P o / T o X T / T o f " (54)

= (P0/T0)(T/T0)
m

where m1 is a constant.

After a number of mathematical manipulations the author derives

a standard formula for the astonomical refraction correction in the

following form:
A " T o /'Po-O.iSSeoVI
Az = 16.271 tan zo |_ 1+0.0000394 tan2 zo (̂  TO )\

( PQ"°'156 *° -OV749 [tan3z0 + tanza] -Jj- ) (55)
x To 1UUU s

where PO^ eo are ^n millibars and To in degrees Kelvin.

The above formula is applicable for zenith distances upto 75 degrees. , •
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4.1.4.2 Artificial Celestial Bodies

Our discussion of refraction models so far has been for the

natural celestial bodies which are outside the effective atmosphere,

so that integration limits for the refraction integral were from n0

to 1. With the advent of artificial satellites and their applications

to geodetic purposes, measurements of directions to them had to be made.

These being at various finite distances (a few hundred km) cannot be

regarded as outside the effective atmosphere.

Fig. 4. Atmospheric Refraction

Figure 4 shows a satellite S at a distance r from the center of

the earth. Thus the refraction angle Az for the satellite S could be

determined by performing integration of (12) up to the point S. Since we
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do not know the conditions at S, the refraction angle is usually

derived in terms of correction Az°° i.e. the refraction correction if

the light through S had come from infinity. If £ denoted the

difference between the two (Fig. 4), then

Az = Az°° - £

We have already mentioned above that derivations of Oterma 1960,

Baldini 1963 include refraction correction for the bodies inside the

earth's atmosphere. Several solutions for the differential refraction

angle, £ , have been published In the past, as listed in [Mueller, 1963,

p. 304] are [Brown, 1957; Schmid, 1959; Veis, 1960; Holland, 1961; Jones',

1961; and Schmid, 1963].

A formula by Schraid for example is:

£ = ^^ (56)- Pi r tan zn i
r' ~ 12,500,OOOJ " "°

where

HQ - height of the observer

R - mean radius of the earth

s -RT/R

R- appropriate gas constant

f * 273°.16 K

If R = 6,370,000 meters then s = 0.001255

in Part II of the report [Saastamoinen, 1971] also derives formulae

for this refraction correction which he has called Photogrammetric

Refraction because mostly it comes into play in the photography of the

earth's surface taken from an orbiting satellite, or with photography of
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an orbiting .satellite taken from the surface of the earth against the

stellaY-'background v • . • •

11 • In all^'of 'these the refraction angle 2 is obtained in terms of

A'z<P!'>.-, vsopts"idirectly dependent on the theoretical and practical con-

siderations' according<-to which Az°° i is calculated. The distance of the

satellite generally involved in the expression is calculated from geometry

of Figuret-(4) with some approximations or the other, or can be calculated

from'o'rtJital''elements as it is not required very accurately for this
\

purpose.

Due to the limitations of this method for desirable geodetic

accuracies we are not going into it further.
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4.'>2.q.Effect--DueT to-Variation in Velocity of Propagation

The development of electronic and electromagnetic techniques

have played a very significant role in the geodetic measurements, during
Tjnere n^ is th"1 •'. r*'' • ~ , i", c^ T^c

the last two decades. The advent of artificial satellites being a boon
notpJ tl^atn, 1'̂ -s no oa/..̂ ' ~ • of ' \̂ V;
to the advancement of geodesy in various respects, increasing interest has
TL :. i JL -. c -"* '?<;•-' ?'. '"'• " ",-•'•-'
centered around distance measurements to them by radio and optical (laser)

methods. ' , ̂

The promise of accuracy in the development of these techniques is

!again I'imTted' by the 'earth's atmosphere, refractivity of which causes a

change in the velocity of propagation of these signals and hence the

significant errors in measured quantities.

Since the atmospheric effect on measured range and other quantities

(range rate, differential range, velocity, etc.) connected with it .are

dependent on the velocity of propagation of light or microwaves as the

case may be, we shall first discuss their relationship to the refractive

index. The refractive index depends on wavelength in a rather irregular

way. In the neighborhood of strong absorption lines the variation (or

dispersion) is considerable, but elsewhere it is small and could be

'neglected. As we shall see in the following discussion that for light

waves the dispersion is required to be allowed for, but for microwave

instruments the wavelength can be so chosen that the dispersion is

negligible.

4.2.1. Refractive Properties of Light and Radio Waves

4.2.1.1. Refraction of Light Waves

For convenience the quantity

(n - 1)106 is denoted by N

where N is called refractivity of the medium.
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The refractivity of light waves for dry air under standard

conditions (i.e. 0° C, 760 mm of Hg with 0.03 percent of carbon dioxide)

is given by Barrel and Sears equation (compare (49)).

(57)
B_ C_
X2 X4

where X is the wavelength of light wave.

Refractive index in other atmospheric conditions being given by

(same as (50))

(n - 1) P 0.000000055 e
(n - 1) - ^ ̂ • ̂Q - (̂rr (58)

where

T - absolute temperature in °K

P - total air pressure in millimeters of mercury

e - partial pressure of water vapor in millimeters of mercury

a - coefficient of expansion of air, 0.003661 or 1/273.16

If P and e are expressed in millibars, (58) becomes:

(n - 1) P 0.000000042 e , v(n - 1) = i '. - (59)

This shows there is very small effect of moisture on the refractive

index. The formula (1) gives the velocity of a single pure wave. If

two or more waves of slightly different wavelengths are involved, the

resulting modulated wave form will travel with a different velocity,

called the GROUP VELOCITY, VB given by

vg = v - X ~ (60)
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Then comparing with (1) is defined

J2_
Ve ~ ng (61)

where ng is the GROUP REFRACTIVE INDEX. It is, however, to be

noted that ng has no particular connection with refraction of light.

It is just defined as above. Thus (60) and (61) with (1) give:

N dn

ns - n - X 5\ (62)
The charged particles of ionosphere, etc. cause no refraction for

them. They are affected in Troposphere and Stratosphere only.

4.2.1.2. Refraction of Radiowaves

The behavior of radiowaves (frequencies up to

15000 MHz ) in a few tens of kilometers (Troposphere and Stratosphere)

is about the same as that of light waves, except that their refractivity

is given by [Smith and Weintraub, 1953, p. 1035] formula:

(n - 1)106 = N = 77.6̂  + 3.73 x 105 |g (63)

Where P and e are in millibar units. Comparison of (63) with

(59) shows much greater effect of water vapor on the refractivity in this

case.

The velocity of microwaves is almost independent of wavelength, and

consequently there is generally no question of a group velocity differing

from the phase velocity.

In the higher atmosphere i.e, in Ionosphere, the radio waves are

affected by the electrons detached from some of the atoms as a result of

solar radiation. The refraction of radio waves in this region

is dependent on various factors, like the electron

density, electron charge, electron gyro frequency, earth's magnetic field,
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etc., most of which change with place and time. Thus the refractive

tndex for the ionosphere at a point at r and time t is given by the

Appleton-Hartree formula fWeiffenbach, 1965, p. 347];

n,r t. - 1-j _ ̂ (r.t) . _J_ !* (64)
n(r>t) " L1 f2 a+i.j

where

fN(r,t) - electron plasma resonance frequency at point r, t

_ rN(r.t) e8 , \
L rr m J

N(r, t) - electron density at position r and time t

e - electron charge

m - electron mass

(65)

T ± r +
2(1 - f̂ /f3) L4(l - fff/f3) f2 J

fL - fe (r) cos 8

fT - fe(r) sin 9

- electron gyro frequency = Be/cm

- Earth's magnetic field at r

- angle between propagation vector and magnetic

field direction at r
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As a' first approximation (64) can be written as, not writing

(r,t) with the furictions

. ' ,
n = 1 -

Ne8

If m = 9 x 10133 gram

e = 4. 8 x 10~10 e.s.u.

Then (66) gives

- n = 1 - 41 \£j (67)

where N is the number of electrons per cubic meter.

Then phase velocity, i.e., the velocity of a single pure wave:

(68)-

From (67), since (n-1) is negative, the ray curves towards the

areas of high electron density. Also phase velocity v exceeds the

velocity of light in vacuum, a remarkable situation, but see group

velocity below. The electron density varies greatly with time and is

most unpredictable. It is dependent on solar activity, being maximum

during the day and minimum at night.
\

Because refractive index varies vith the frequency, the group velocity

of microwaves in the ionosphere is not the same as phase velocity. The

group velocity is given by
v* = v-xir

since X — -^- , substituting this in (68), differentiating it with

respect to X and simplifying, we get:

dv _ 82N
^ IX C £*•*
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Thus:
Vg ~ c \^ j?I~ j (69)

So the group velocity is less than c , as is proper.

4. 2. 2 Refraction Corrections

With the developments of the techniques of electromagnetic measure-

ments a host of refraction formulae by various authors have appeared and

continue to appear. Some of these especially the ones being used will

be reviewed as below.

4.2.2.1 Measurements by Radio Waves

As we have already discussed, the radio waves are refracted both in

the Troposphere and Ionosphere, the correction for each quantity

measured with their help will be in two parts, each one pertaining to

each of these regions.

(A) Artificial Celestial Bodies

Measurements in this category are to artificial earth satellites

for geodetic purposes. We shall discuss them according to the basic

quantity measured:

(i) Ran̂ e

Range from a ground station to an artificial satellite is measured,

e.g., by transmitting a phase modulated electromagnetic wave (carrier).

This is received by a satellite borne transponder which retransmits the

signal as a phase modulation on an offset carrier frequency to avoid

conflict with the incoming signal. This is received back at the ground

station and the phase shift of the modulation is measured by an elec-

tronic servo phase meter. The phase shift is proportional to the total

distance traveled.

For a given frequency f, the range S to a satellite can be

represented as: s - £(AX + NX) (70)
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wher'e AX- is the phase displacement of the wave

N - number of: full periods of the wave

-J in" its total distance travelled

Apart from determination of other factors, if the wave had travelled

in vacuum, then simply

> = 7

c - being the adopted speed of light.

But due to atmospheric refraction it is not so. Hence corrections

are required to the measured range calculated, using c instead of the

actual velocity of propagation.

The American tracking system which utilizes this principle is SECOR

(Sequential Collation of Range).

Basic differential equation for the refraction correction is

equation (6). From the situation of the troposphere and ionosphere

already discussed actual integration of this equation is rather

difficult. Often empirical formulae are used. For SECOR reductions

for example the following formulae are used [Culley and Sherman, 1967].

Tropospheric Correction

Two formulae are used. The first is the one suggested by Cubic

corporation as:

k2 cos E0 + sin E0
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where AS ~ is the correction to the observed range

kt - is the zenith refractive correction (=2.7 meters)

k3 - is the horizontal scaling correction (=0.0236)

k3 - a constant (scale height = 7000 meters)

E0 - is the elevation angle

H - is the height of the satellite in meters

The other, more sophisticated one which takes into account the

changes in temperature, humidity, pressure and geographic location is

[Culley and Sherman, 1967]:

AS = -12l]k * (72)
C sin E0

where N - is the surface refractivity = - '• — P + 4 810 — °
To \ ° ' TO/

C - is a parameter varying with location and seasonal factors

\£ - -is a correction factor used when Eo is less than 10°

but is taken as unity when Eo greater than 10°

P0 - is the total pressure in millibars

e0- is the partial pressure of water vapor in millibars

TQ- is the absolute temperature

Other Models

There are other models, investigations for the refraction correc-

tions to measured range, for example:

[Saastamoinen, 1971, p. 46-63] with a similar treatment as discussed

earlier (4.1.4.1 (vi)) from equation (6) derives expression for the

Tropospheric correction for the measured range of the form:

AS = 0.002277 sec zj PO+ ~- + 0.05) ea- B tan2zj + $R (7 3)
' - \ lo / J
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where (± S - is range correction in meters , ,: ,
, -1 ^ ii -"• * • c t

z0 " apparent (radio) zenith distance of satellite

Po - is total pressure in millibars

- eQ - is partial pressure of water vapor in millibars

T - is absolute temperature in °K

B and 6R are correction quantities for which tables are given.

These depend on station height and apparent zenith distance, respec-

tively. These values as tabulated by Saastamoinen are given in

Tables 4.5 and 4.6.

H.S. Hopfield has brought out a series of papers on tropospheric

range correction [Hopfield, 1970, 1971, 1972]. Her investigations

include fitting of theoretically derived expressions to observed data

and thus giving expressions for tropospheric correction with improved

parameters. Theoretical consideration basically is the integration of

equation (6), and

Table 4.5

Standard Values of Correction B for Tropospheric
Range Correction

Station
Above

0
0.
1
1.
2

Height Station Height
Sea Level B

5

5

km
km
km
km
km

1
1
1
0
0

, mb

.156

.079

.006

.938

.874

Above

2
2.
3
4
5

Sea Level

km
5 km

km
km
km

B,

0.
0.
0.
0.
0.

mb

874
813
757
654
563
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Table 4.6

Correction Term 6L in Meters, for Tropospheric
Range Correction

Apparent
Zenith
Distance

60°
66
70
73
75

76
77
78
78
79

79
79
80

00'
00
00
00
00

00
00
00
30
00

30
45
00

0

+0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.

km

003
006
012
020
031

039
050
065
075
087

102
111
121

Station

0.5 km 1 km

+0.003
0.006
0.011
0.018
0.028

0.035
0.045
0.059
0.068
0.079

0.093
0.101
0.110

+0.002
0.005
0.010
0.017
0.025

0.032
0.041
0.054
0.062
0.072

0.085
0.092
0.100

Height

1.5 km

+0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.

002
005
009
015
023

029
037
049
056
065

077
083
091

Above Sea Level

2 km 3 km 4 km

+0.002
0.004
0.008
0.013
0.021

0.026
0.033
0.044
0.051
0.059

0.070
0.076
0.083

+0.002
0.003
0.006
0.011
0.017

0.021
0.027
0.036
0.042
0.049

0.058
0.063
0.068

+0.001
0.003
0.005
0.009
0.014

0.017
0.022
0.030
0.034
0.040

0.047
0.052
0.056

5 km

+0.001
0.002
0.004
0.007
0.011

0.014
0.018
0.024
0.028
0.033

0.039
0.043
0.047
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making use of equation (63) for the radio refractivity. The refractivity

N is expressed as

N = Nd + Nw (74)

77.6 P
where dry component Nd = — pertains to dry air

3.73 x 10s e
wet component Nw = ^ pertains to atmospheric

water vapor

In her derivation the atmospheric mathematical model is by assuming

air as a perfect gas in hydrostatic equilibrium and a constant lapse
jm

rate a = - --=- • With these neglecting variation of gravity for
dh

Tropospheric heights, is derived by her [Hopfield, 1969] that the N

profile is a polynomial function of height (not exponential) of the form

N = Nĉ p;
M h * hd. (75)

where
hd = Ts/a

li = g/Rct- 1

R - being gas constant per gram of dry air and subscript

'o1 used for surface values.

The smaller is Ot , higher is the degree of the polynomial,

approaching an exponential asa-*0.

The tropospheric contribution to a vertical range measurement is

shown to be

^trocT10" /Nddh = kP« (76)

Where k is a constant for a given location. Its values for various

places^ investigated from one year set of data, are tabulated. The rms
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value of predicting the height integral from this value of k is

estimated between 1 and 2 mm for each one year data set. These values

are reproduced in Table 4.7.

There is no such expression of comparable accuracy for the wet

part yet, and for that, investigations are still being done by her.

Table 4.7

Prediction of from Surface Pressure
ddh = k PO)

Station Year Lati-
tude

Prediction
Error in

Longi- Height k jNd dh,
tude (meters) (tneters/mb) a (meters)

Weather Ship E 1963
Weather Ship E 1965
Weather Ship E 1967
Ascension
Island 1967

Caribou, Maine 1967

35°N
35 N
35 N

48°W
48 W
48 W

Washington,D.C. 1967
(Dulles Airport)
St.Cloud, Minn. 1967
Columbia, Mo. 1967
Albuquerque,
New Mexico 1967
El Paso, Texas 1967
Vandenberg AFB,

7 55'S 14 24'W
46 52 N 68 01 W
38 59 N 77 28 W

45 35 N 94 11 W
38 58 N 92 22 W

35 03 N 106 37 W
31 48 N 106 24 W

California
Pago Pago,
Samoa
Wake Island
Wake Island
Wake Island
Majuro Island
Point Barrow,
Alaska
Byrd Station,
Antarctica

1967 34 44 N 120 34 W

.1967
1963
1965
1967
1967

1967

1967

14 20 S 170 43 W
19 17 N 166 39 E
19 17 N 166 39 E
19 17 N 166 39 E
7 05 N 171 23 E

71 18 N 156 47 W

80 01 S 119 32 W

10 0.002281504 0.0017736
10 0.002281285 0.0016183
10 0.002281130 0.0016839

79 0.002290524 0.0011532
191 0.002277725 0.0019329
85 0.002280275 0.0020481

318 0.002278233 0.0015620
239 0.002280504 0.0019135

1620- 0.002280765 0.0014815
1193 0.002282555 0.0016598

100 0.002280797 0.0015237

5
5
5
5
3

1543

0.002287643
0.002286083
0.002286238
0.002286287
0.002289389

0.0017371
0.0015023
0.0015791
0.0017215
0.0015692

0.002273335 0.0014273

0.002272051 0.0011065
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Ipnospheric Correction

SECOR employs fi = 420.9 MHZ radio waves emitted by ground

station, and transponded back by satellite on both of f£ = 449 MHz

and £3 = 224.5 MHz frequencies.

From the assumption that the retardation, to a first approximation

varies inversely as the square of frequency, the range correction due

to ionosphere is :

AS = k(D! - 1C) (77)

= _0.7125

D^ - is the range component on the highest modulating

frequency on the 449 MHz carrier.

1C - is the range component of the highest modulating

frequency on the 224.5 MHz carrier.

Sometimes interference on the low-frequency carrier makes it

impossible to get a range measurement on that frequency. Using samples

of ionospheric refraction data measured during operations in the

Pacific Ocean area, following analytical model was developed [Culley

and Sherman, 1967]:

— r , 'H „ ~H_ \ /H > -i

E -; (79)
L " (l + Hm/R)

3J

where H - is a parameter from ionospheric model and is

called scale height

Hg- height of satellite

Hm- height of maximum electron density

R - mean radius of the earth
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E - elevation angle of satellite

S(4?) - function of the earth's magnetic field

<J> - effective magnetic latitude

f - frequency in megacycles per second

f(x,R')- sun zenith angle function

x - the effective sun zenith angle

R1 - function of satellite height

All factors except S(3?) can be found and put into program.

S ( 4> ) is a function of 3 unknown coefficients.

S( <& ) = C^ + C2& +C3<^ these parameters are found by

fitting this linear function to the measured data and to the rest of

the model.

Ionospheric correction in case of resonance

Since in the use of dual frequency, e.g., in SECOR, imperfection

of equipment performance and radio interference sometimes cause poor

or useless ionospheric correction data, study of the behavior and

modeling of complicated ionosphere has always been felt essential for

the recovery of such data. [Rhode , 1969] did a feasibility study of the

ionospheric model particularly for SECOR range measurements. As a

result he concluded:

Ionospheric correction curves are usually smooth
curves superimposed by noise of 3 to 5 meters. The
curves can be frequently approximated by straight lines.
If the curves show an erratic behavior, equipment
malfunction or radio interference may be suspected.
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From the conclusions drawn by Rhode, it is evident that

to detect the erratic ionospheric refraction correction given

by equation (77), a curve of the computed correction versus

range for various determinations at a tracking station should

be plotted. This should give a smooth curve approximating to a

straight line. Any particular values abruptly departing from

this curve are found to be erratic ones caused by equipment

malfunction and should be rejected.

(ii) Doppler Shift

It was an austrian physicist, Christian Doppler (1803-1853),

who first explained successfully the relationship between the change

in received frequency and the relative motion between the frequency

source and a receptor. This variation in received frequency is now

called Doppler shift. Shortly after Sputnik I was launched (October,

1957), the staff at John Hopkins University APL noted a pronounced

Doppler Shift in the received frequency of Sputnik I transmissions.

Research was then conducted by various people and the results

published. [Guier and Weiffenbach, 1958] showed that from observations

at one station, satellite period, time and distance of its closest

approach and its relative velocity could be determined. From 3

stations, orbital parameters also could be determined.
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The principle of the method is that the satellite sends unmodulated

wave at a fixed frequency fo (say) which is received at tracking

station as a varying frequency f and is a function of transmitted

frequency fo, phase velocity of propagation v and rate of change

ds
of slant range —— . Then

dt

f = fo (1 - (1/v) (ds/dt)] (80)

Although elementary considerations give f = fo Fl - ds/dt -f(v - ds/dt)]

as for sound waves in air; but for electromagnetic waves, relativity

principles change this expression into equation (80) above.

[Bomford, 1971, p. 405.]

Therefore Doppler Shift, Af is given by

Af = f-fo = -(fo/v) (ds/dt) (81)

so if v is known s = ds/dt is immediately available. But due to

the presence of the atmosphere, the phase velocity v varies during

propagation through the atmosphere. It is, therefore, necessary to

rewrite the equation (81) in the form

Af = -fo — P — (82)
dt Js v

with (1), equation (82) becomes

Af - fo d P A-1 ~ ~ TT nds fao\c dt J (83)

Thus corrections are needed to correct observed Doppler shift to

that of vacuum value. For this correction also, dual frequence can

be used to remove bulk of the ionospheric correction, but at the radio

frequencies refractivity of air being independent of frequency,

tropospheric effects are to be considered carefully.
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The U.S. Navy Doppler Tracking Network (TRANET) utilizes this

method. Here the signals from the satellite are transmitted on

two frequencies which are coherent and related by simple ratio.

Trooosaheric Correction

This is as given in [Hopfield, 1963]:

Aftro= - ( A

Aftro- tropospheric refraction correction, which is

applied to the observed Doppler shift for each

data po int .

fo - satellite transmitter frequency

c - speed of light in vacuum

AStro " ranSe error in received signal due to tropospheric

refraction.

Then, assuming the atmosphere to be horizontally stratified and

not changing during the time of a pass and using a two-parameter

quadratic expression as an approximation to the refractivity profile,

she derives an expression for the contribution of the Tropospheric

refraction to the Doppler Shift of a satellite signal. The quadratic

expression used is of the form:

N ^lO^n-l) = arr - (R + H)]
3 (85)

where r - is the radial distance from center of earth

R - is the radius of the earth

ff - is the height at which tropospheric refraction
becomes negligible.
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When a value of H is postulated, the coefficient 'a1 is evaluated

from the boundary condition, N = No when r = R + Ho, the subscript o

referring to the observing station.

In [Hopfield, 1965] the author on the basis of observed values

of N at a variety of geographic locations, altitudes and seasons,

concludes that the ratio between the tropospheric error due to her

earlier quadratic model and that due to observed refractivity profile,

is not, in general unity but is a linear function of the surface

refractivity. A few typical values of the ratio of jN computed

from her quadratic theory of equation (87) and its value from

observed N values computed by her are shown in Table 4.8.

The above led the author to investigate further. As a result of

further investigation, superseding her earlier two models,' is given

in [Hopfield, 1969] a new model. A fourth degree function of height,

separately for dry and wet components of refractivity, in the

form:

Ho)

(85a)

(fiw'H)4
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Table 4.8

Ratio of Computed N Profile and Observed One
(Signal Arriving Vertically)

[Hopfield, 1965]

Ratio of '
Latitude Longitude Height /N-dh

Place (meters) Date No (computed

Anchorage,
Alaska 61 10 N 144 59 W 40 Jan.1964 304.5 1.038

May 1964 308.7 1.017

Weather
Ship D 44 N 41 W 0 Jan.1964 317.3 1.049

Mar.1964 315.8 1.046

Brownsville,
Texas 25 54 N 97 26 W 6 Jan.1964 329.2 1.049

Mar.1964 342.7 1.091

Canton Island 2 46 S 171 43 W 3 Jan.1964 386.6 1.140
Mar.1964 378.2 1.161

Petoria,
South Africa 25 45 S 28 14 E 1368 Feb.1964 289.2 1.008

Christ Church,
New Zealand 43 29 S 172 32 E 34 Jan.1964 313.7 1.019

May 1964 321.0 1.042

Cape Hallett,
Antarctica 72 18 S 170 18 E 5 Feb.1964 301.5 1.021

The parameters Hd, ̂ are empirically selected by fitting the

observed zenith integrals of refractivity to the computed values.

The value of Hd and HU estimated by the author are of the order of

40 km and 12 km, respectively.

This model is stated to be capable of closely matching any local

average N profile observed in a worldwide sample of locations

throughout the height range of meteorological balloon data (upto 24 km)
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The corrections based on it are stated to be usable at all angles

of elevation. Tropospheric refraction correction computed from

this is recommended to be used in equation [84).

For her further work on jNa
dh also see Section 4.2.2.1(A) (i).

Ionospheric Correction

Since to a first approximation, the ionospheric refraction varies

inversely as the square of the frequency, by measuring apparent

Doppler Shift at each of the two frequencies, the effect of first

order refraction is eliminated as below [Gross, 1968],

The refraction error Af ( is given by:

Af (86)

where £-, - lower frequency of the coherent pair

f.2 " higher frequency of the coherent pair

Af!, Afz - measured Doppler Shifts in the respective

frequencies.

The Doppler Shift corrected for first order ionospheric refraction

correction Af0 is:

Af lLzJi\ - Af 'li Af <87>**tf~bj ~ ̂ ~ Vfa;
Mi

For frequency pair of 162 MHz/324 MHz:

Residual Ionospheric Correction

Even after removal of first order ionospheric correction, there is

residual ionospheric refraction correction which needs further consid-

eration. The full effect of ionosphere is derived by [Guider, 1963] by
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substituting equation (64) in (83) from a rigorous treatment of

Maxwell's equation as:

«-73T' + ? + -f + **- <88>

where
i

Af - is the observed Doppler shift

a-, - is the first order term, proportional to the

time derivative of N(r t) integrated along

geometric slant range.

3-2 " second order (Faraday rotation) term which

depends on polarization, and on time derivative

ofN(r,t)

33 - third order term which depends on various powers

of N/r t\ and its spatial gradients.

First term in (88) on the right is. vacuum Doppler shift. It

contains geometrical range rate -=2. needed for geodetic analysis and
dt

is directly proportional to the transmitter frequency f while all

other terms are inversely proportional to f.

In principle, therefore, one must choose high enough frequency to

reduce the undesirable terms to a negligible value. But practical

considerations dictate that one must use lower frequencies to get

optimum efficiency from the equipment.

A lot of data are available for a^, &2 from ionospheric studies,

however, knowledge of 33 is poor. Data indicate that only terms of

equation (88) that cause significant geodetic errors are aj^/f and
o

a3/f , the former being the dominant one.
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(iii) Range and Range Rate

Sometimes both range and range rate are simultaneously observed.

Considerations for the refraction correction are similar as before.

A system operated on this is by NA.SA in the Goddard Range and Range

Rate System (GRARR) . In this system, range is measured from ground

transmitted sidetones and satellite transmitter returned sidetones.

Phase shift being proportional to distance traveled. Range rate is

determined from two-way Doppler shift of uplink carrier frequency

(station to satellite). The Doppler shift of signal being due to

satellite motion relative to tracking station.

The refraction model used for the above is given below. It was

formulated by J.J. Freeman Associates, Inc. [Gross, 1968].

-i- r n^r,, cot t r>™ „ <
AS = i Ndh - -g Ndh (39)

sin E LJ0 R (10 ->

where:

^3 - refraction correction to be subtracted from

the observed range.

E - elevation angle of satellite

R - radius of earth

N - refractivity

Thus corrections applied to range data are:

a. Tropospheric Refraction Correction

AS 1 rNo _ cot3 E /No^'i (90\
sin E k R (i?/]

wiiere:

No - refractivity at the observing station

k - a tabulated function of Nn
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b. Ionospheric Refraction Correction

*s - sh rfl*>« - ir (^ y? * &}] (91>
where:

H= 1.66 [30+0.2 (hm - 200)] km

h,,," 1393.1 exp (-0.5014M)

M = jj - ^ (Both values are obtained for a given
*o

month and position from the CRPL Ionospheric

Prediction Map).

MUF - maximum usable frequency at 3000 km

e - 2.71828

F0 - plasma frequency at the maximum in MHz

N_ - 0.502/-J-2.\ 2 (This is maximum index of
»Feq / refraction at frequency Feq)

Feq - 1928 Me (This equivalent frequency is used due to
the difference in the uplink and downlink
carrier frequencies.)

For range rate data, total refraction correction as formulated by

Freeman, is :

where

CD - is the correction to be added to measured range rate.

E - elevation rate of satellite.

The integrals are as defined above, except that:

F = 3648 Me.req
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(B) Natural Celestial Bodies

The observations in this category are those connected with

Very Long Baseline Interferometry (VLBI).

The principle of interferometry, well known in optics, had been

employed at radio wavelengths since 1946, when McCready, e.t al.. used

an interferometer for solar observations [Cohen, 1969], Radio

interferometry rapidly developed thereafter but the maximum length of

baseline was restricted.

In a simple form, a conventional radio interferometer consists

of a pair of antenna arrays separated by a distance d and connected

by a transmission line. The antennae collect radiation (radio

frequency signals) from a radio source, which are amplified and fed to

a common point for direct multiplication and recording the amplitude

and phase of the fringes. If * is the wavelength of the radiation,

the resolution of the interferometer is X/d radians. Due to the

restriction on d sufficient accuracies for geodetic purposes were

not available from conventional interferometers.

The development of atomic frequency and time standards eliminated

inter-connection between two antenna stations of the pair as indepen-

dent atomic oscillators could be used. Thus, Very Long Baseline

Interferometry (VLBI) differs from the conventional one, in the sense

that no direct link exists between the two observing stations. The

signals received from a celestial source at each antenna simultaneously

are mixed with a local oscillator and translated to the video band.

The video signal is subjected to clipping and sampling and is then

recorded in a digital form on a magnetic tape. Simultaneously, timing
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Information is also recorded on the tape. The two tapes are later

correlated in a computer to determine the delay r (Fig. 5).

Extreme accuracy is required

in the timing information.

Also extreme stability and

accuracy are required from

the local oscillator. Usually ^
s t o " ~ s t n . 2

rubidium vapor or hydrogen
Fig. 5. Geometry of VLBI

maser clocks are used to

generate both the local oscillator signals and the timing information.

Thus the elimination of interconnection between two antenna

stations, makes it possible to have base line at intercontinental

distances. With VLBI, resolution of distant radio sources with angular

diameter of 0.0006 has been achieved. In the inverse problem, which

is more important to the geodesists is if the position of point radio

source is available, then baseline could be measured. The method,

theoretically is capable of measuring intercontinental distances to

centimeter accuracy and has other useful geodetic applications [Cohen

e£ aJL., 1968].

The delay T between arrival of signal wavefront at the two antenna

stations depends primarily on the length and direction of the baseline

and the direction of the source. Measurement of T can, therefore,

be used to determine these quantities.

But, the geometric delay, as indicated in Figure 5, differs from

the observed delay because of the effects of the atmosphere on the

propagation of signal through it. Here, too, the ultimate accuracy
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attainable is being limited by the effects of the atmosphere.

Corrections are to be applied for the atmospheric effects from the

best available knowledge of the atmospheric parameters.

Ray tracing analysis for this problem has been done by [Mathur,

1969], The basic principle of the method is depicted in Figure 6.

Each of the two rays suffers a path difference as per equation (6) of

3.3 where the integration in each case is to be taken along the actual

ray path. Here since the two stations may be at the intercontinental

distances and, consequently, the atmospheric conditions at two places

may be entirely different. Thus each of the two rays are to be

treated rigorously through the Ionosphere and Troposphere to obtain

the effect of the atmosphere on path difference of the two rays, and

hence, the effect on the delay.

In [Mathur, 1969] ray tracing by the author has been done,

solving a set of six differential equations developed by [Haselgrove,

1954] for the ray path, in three dimensional space. Even though the

effect of Ionosphere (with n < 1) and Troposphere (with n > 1) is

opposite to each other, but their magnitudes differ. As a result of

his analysis, the above-mentioned author concluded:

When interferometric baseline determinations are to be
made to accuracies better than about 50 m, the ionospheric and
tropospheric effects cannot be ignored. These media introduce
a differential phase path that is positive for the ionosphere
and negative for the troposphere. The differential phase path
increases with increasing zenigh angle z, and for zenith angles
less than 70° , the dependence is essentially sec z. The
ionospheric phase path is strongly frequency dependent; and,
for frequencies greater than 5 GEz} it is very small compared
with the tropospheric contribution. For frequencies of 1 GHz
and less, the ionospheric contribution predominates. The
effects of the magnetic field are less than 10 cm at 1 GHz and
can usually be ignored.
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Fig. 6. Refraction Effect on VLBI
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It is suggested by the author that best information for applying

ionospheric corrections be obtained from incoherent back scatter on

topside sounding experiments.

A similar investigation is presented in [Mathur, et_ al.. 1970],

[Dickenson, e_t al.. 1970] state that they have calculated from models

using a ray tracing program differential phase delays (geometric length

minus electro magnetic length) for paths through the atmosphere and

ionosphere. Typical values given by them are tabulated in Table 4.9.

Table 4.9

Typical Values of Refractive Bias

Zenith Angle

Atmospheric
0° Ionospheric

Total

Atmospheric
45° Ionospheric

Total

Atmospheric
9QQ Ionospheric

(Horizon) Total

X Band
10 GHz
m

-2.3
0.1

-2.2

-3.2
0.1

-3.1

-86.6
0.2

-86.4

C Band
5 GHz
m

-2.3
0.3

-2.0

-3.2
0.4

-2.8

-86.6
1.0

-85.6

L Band*
1.5 GIfe

m

-2.3
3.3

1.0

-3.2
4.4

1.2

-86.6
11.0

-75.6

*
Derived from the C-Band column, by taking into account

dependence of plasma effects.
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The above authors state, too, that the only reasonable approach for

gathering the needed correction factors appears to be a direct probing

performed from each terminal at the same time as the VLBI observations

and along the same radio path. For the ionosphere, the probing could

be performed by using an incoherent backscattering radar to gather the

electron density distribution along the direction of interferometric

observations.

4.2.2.2 Measurement by Light Waves (Optical Frequencies)

Measurements in this category are, the range measurements by laser.

The extension of radio frequency techniques to the optical region of

the spectrum, i.e., the invention of laser (Light Amplification by

Stimulated Emission of Radiation) has made possible many types of

measurements which were not feasible before. One such application is

the measurement of range to celestial bodies, and the effect of

refraction on this, is the subject of discussion in two sub-sections

of this section.

Lasers are electromagnetic radiation having frequency of the visible

spectrum region and have coherence properties so far available in radio

region only. They are emitted by excited atoms (excited by optical

pumping by light of high frequency) e.g., chromium atoms within ruby.

Pulses are highly monochromatic, unidirectional and intense.

Since lasers transmit at wavelengths of visible spectrum region,

their refractive properties are the same as discussed in section

4.2.1.1, for light waves. Consequently, from the refraction point of

view they have great advantage over radiowaves because ionospheric
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refraction effects are not observed and the atmospheric water vapor

has very little effect on them, as seen from equations (58)or (59)

compared to equation (63) for radiowaves. Due to these reasons total

atmospheric refraction correction for a laser range measurement is

between 2 to 6 meters and its value can be determined within about

one percent [Lehr, 1969].

(A) Artificial Celestial Bodies

The application of lasers to satellite tracking has become

practicable during the last decade since launching of satellites

(e.g. BE-B 1964, BE-C 1965, GEOS 1 1965, Dl-C 1967, Dl-D 1967, GEOS 2

1968) equipped with retroreflectors.

The quantity measured is the range from ground station to

the satellite from the time of travel of the pulse. The principle

of measurement is very simple. The laser ranging system measures

the time interval required for a laser pulse to travel from the

transmitter of the system to the satellite and back to the receiver

after being reflected by the satellite retro-reflector. Range to

the satellite is then obtained by multiplying this time interval by

one-half the velocity of light in vacuum.

Apart from other corrections to be applied is the refraction

correction since due to the refraction effect of troposphere the

pulse does not travel with vacuum velocity 'c1 but travels with a

varying velocity v . But the refraction effects in this case are

small and could be derived in the same manner as for radio waves

ignoring the effect of ionosphere and of atmospheric water vapor.
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The U.S. laser ranging system operated by the Goddard Space Flight

Center (GSFC) for example, had been using a simple refraction model as:

2 10

sin E0
meters (93)

where:
AS - atmospheric correction to be subtracted from

computed range

Eo - elevation angle of the observation

However, after January 1, 1968, a new formula has been recommended

[Lehr, 1967] which is from the work of Thayer.

_ 2.238 + 0.0414(Pn/Tn) -0.238 H0 (93a)
^ S ~ sin E0 + 10~

3 cot E0

where :
Po - atmospheric pressure, in millibars at the observing

station

T« - temperature in °K, at the observing station.

H0 - laser's elevation above mean sea level, in km

Eo - elevation of satellite

These corrections are from the integration of equation (6) throughout

the Troposphere regarding dry component [Lehr, et, al. , 1967].

[Saastamoinen, 1971] from his treatment discussed before in this

report gives an expression of the following form for correction to laser

ranging :

AS = 0.002357 sec z (P0+ 0.06 e0- B tan
3 z) + 5L (94)
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where:
AS - is range correction in meters

z - apparent zenith distance of satellite

Po- is total pressure in hillibars

e0- is partial pressure of water vapor in millibars

B and 6L are correction quantities for which tables are given

by the author. These depend on station height and apparent zenith

distance, respectively. Their values are tabulated in Tables 4.5 and

4.6, respectively.

(B) Natural Celestial Bodies

Of the natural celestial bodies the moon is the one to which laser

ranging of geodetic accuracy has become possible. After successful

emplacement of Laser Ranging Retroreflector on the surface of the moon

by the crew of Apollo 11 and the capability of laser transmitters for

generating extremely short (5 nsec) and high power (1 GW) pulses at

optical frequencies which can be concentrated into beam widths of as

narrow as a few seconds of arc, such measurements have been put into

practice.

The basic operating principles are the same as for satellites.

With current laser and timing techniques, an uncertainty of + 1 nsec

in the absolute measurements of the round-trip travel time which is

equivalent to + 15 cm in one-way distance, is possible.

The treatment of refraction correction for this is the same as

for artificial satellites.
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5. ACCURACY PROBLEM

Refraction anomalies exist in all regions of the atmosphere. To

start with the turbulence of air in the telescope or camera may give

rise to complicated pattern of convection inside the telescope and may

affect the image. The simplest way to overcome these is to let the

instrument acclimatize before starting observations. More sophisticated

ways are to create vacuum in the telescope tube or fill in a gas of low

refractive index, e.g. helium, but this has obviously disadvantages for

cameras.

Next is the turbulence in the air layers immediately outside the

objective lens. The camera housing, the instrument itself, or the

surrounding ground and vegetation may act as heat sources or sinks and

may cause errors. Partial remedies being removal of the camera housing

from the instrument during observations and the positioning of camera

away from likely sources of temperature anomalies, as well as some

distance above the ground. Results quoted by [Meyer-Arendt and Emmanuel,

1965, p. 140] indicate that an elevation of the instrument to about 7 to

10 m above the ground level is desirable.

For room refraction and for refraction in the telescope tube [Willis,

1941] suggested the following equation:

d (refraction) = (ds)(d log, n)/ (dp) (95>

where
s - is distance along the ray

p - is distance perpendicular to the ray

n - is the index of refraction
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Then comes the atmosphere from about 100 m above the ground and

is beyond our control. For this we have seen the various models etc.

designed. In order to appreciate the accuracy problem, we shall now

review the validity of applying various laws/formulae from physical and

meteorological sciences and the practical assumptions made in computing

the refraction correction. A recent exhaustive analysis of the problem

is by [Teleki, 1972].

5.1 Validity of Various Physical Laws/formulae

First of all, the laws of refraction are examined, which are deduced

from the Fermat's Principle. G. iTeleki cites [Born and Wolf, 1964]

judgment that the strong formulation of Fermat's Principle is only valid

if two points are sufficiently close together, i.e., if there is no image

of either of them in between these points on the ray connecting them. In

the earth's atmospheric layers, this condition is not expected to hold
N

and consequently only the weak formulation of Fermat's Principle is

applicable.

Next comes the important parameter 'n1, the refractive index. For its

relationship to the density we have seen the use of Gladstone and Dale

equation:
(n - 1) - Cp

or sometimes used is the Newton-Laplace formula:

(n2- 1) = clP
These formulae are not rigorously obtained but are based on wholly

empirical data. They are now replaced by more exact formulae. For

example, the best, theoretically-grounded expression is regarded as that

of Lorenz and Lorentz, as below [Teleki, 1972]:

n2-!
+ 2 (96)
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where R is the dispersion factor.

From this is obtained the following formula for a mixture of gases

[Owens, 1967]:
n2 - 1

tiPi (97)

where RI is called the specific refraction and Pi the partial

density of the ith component of the mixture. RI being given by:

-L NA
Rl ~ 3 n lO (98)

where N^ - is Avogadro's number

M^ - the molecular weight of the ith component

ai - the polarizability of the ith component,

This formula is recommended to be used.

For calculation of refractive index, the formula used has been

that of Barell and Sears (1939), given in (49). This is partly based

on laboratory experiments at temperatures of 12°-31° C, and pressure

of 100-800 mm of mercury. But according to theoretical research

of the authors, it can also be used in larger ranges of temperature and

pressure. fTeleki, 1972] has mentioned various other formulae, based

on better and the latest considerations, but observes that even with

these, absolute accuracy will not be better than 5 x 10"° but the

change-in composition can reduce this accuracy sensibly. The main

problem for this case is not the formula but its application. To retain
o

accuracy of 10~° meteorological factors should be precisely known, i.e.,

o
pressure to 0.025 mm Hg, temperature 0.01, relative humidity to 0.01%

(at 20 C) and carbon dioxide to 0.00006 parts by volume. Such

accuracies are unreachable in practice. The author states that in
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practice we cannot expect a higher accuracy of determination than

+0.02 tan z.

Moreover, the atmosphere being a dynamical medium, formulae

derived in the laboratory are not applicable to it. One of the possible

solutions suggested is permanent determination of refractive index when

observations are going on.

5.2 Atmospheric Factors

In examining the various factors assumed in modelling the

atmosphere, the first one almost universally assumed is the spherically

symmetric layers. Although, according to modern meteorological

observations, atmosphere can be regarded as consisting of layers with

rather smudgy boundaries. [Saastamoinen, 1971] discusses that there is

a tilt of layers since the refractivity of the air at sea level

increases from the thermal equator towards the colder climate at the

poles. The systematic error as a result of general inclination of

surfaces of constant refractivity, is investigated by the author. For

average conditions at mid-latitude, change in refraction is approximately

given by the author as:

-0"20 h (dT/ds) (tan2 z0 + £) (99)

where h _ is the depth Of locally affected layer in km

dT/ds - is the lapse rate in ° C/km

z0 - observed zenith distance

According to the author, usually in the case of sea breeze, h is of

the order of 500 meters.

Next, there are formed different standard atmospheres which do not

materially differ from each other. Since it is impossible to represent
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atmosphere with one standard atmosphere, supplemental corrections

are designed for the variation in latitudes and particularly with

seasons. The question is how much the deviations from the mean state

of atmosphere influence the value of normal (pure) refraction [Teleki,

1969], on the basis of data over Belgrade, points out that the change

in value of normal (pure) refraction; at z=45 is approximately

(3.01 - 0.02 and at z s 60°becomes about 0.1.

Next is the question of hydrostatic equilibrium of the atmosphere,

which is usually taken for granted. But the atmosphere certainly is

not a quiet medium. There are circulations and it is a complex

phenomenon, the structure of which is not known with any sufficient

accuracy. Investigations of atmospheric turbulence started since

about 1950 and are still going on.

So far as ionospheric factors are concerned, we have seen in

Section 4.2.1.2 that ionospheric refractivity is a complicated function

of factors like electron density and earth's magnetic field, studies

which although fairly advanced are still short of giving exact informa-

tion for calculation of exact ionospheric refraction correction. The

alternative usually considered is to eliminate this correction for

electromagnetic measurements rather than to actually calculate and

apply it.

5.3 Accuracy Figures

In view of various factors discussed above, it is very difficult

to quote any figures for the absolute accuracy of measurements.

[Teleki, 1972] is of the opinion that hundredth parts of a second of arc

are under grave suspicion, meaning thereby that the best models at
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present are expected to give refraction correction for direction

within 6'.1.

[Saastamoinen, 1971] estimates that using his model, the maximum

error in laser range correction (tropospheric) at observed zenith

distance of 80° as 3.4 cm and concludes that standard error of range

correction would be 1 to 2 cm.

The standard error of radio ranging due to troposphere is

estimated by him to be about 10 times larger than laser ranging.

For accuracies of measurements in which variation in velocity of

propagation is affected in the troposphere [Kaula, 1970], sums up that

ultimate accuracy of single wavelength optical ranging to satellites

or the moon, using surface measurements of refractive index to estimate

these corrections is limited to about 6 cm, or 2.5% of the total

correction at zenith. The range error increases approximately by

secant of zenith angle as zenith angle increases. Radio systems are

worse by a factor of about two. For a VLBI with a baseline of about

the radius of earth, say 6 x 106 ™, when observing a radio star, this

error is about 14 cm for each antenna. This causes range difference

uncertainty in two paths about 14 -Pi ̂  20 cm resulting in angular
>*,

uncertainty about 0.007. Applying the same, i.e., 57o topospheric

uncertainty factor to radio Doppler refraction error a limit of 0.5 mm/

sec at 45° zenith angle is estimated.

For radio ranging to keep the ionospheric error below 3 cm, it- is

observed [Kaula, 1970] that the lower frequency of a pair should be

one GHz or greater.
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6. ELIMINATION OF REFRACTION EFFECTS - FUTURE TRENDS

From the discussion in Chapter 5, it becomes clear that the

complexity and variability of atmospheric (including ionospheric)

composition and the limitations of various physical laws/formulae to

model it, coupled with the practical difficulty of measuring various

meteorological and ionospheric factors beyond a certain accuracy, do

not allow us to achieve better accuracies than those summed up in

Section 5.3. These accuracies, however, fall far short of the overall

accuracies expected in the near future for various measurements as

mentioned in the penultimate paragraph of Section 1.1. Moreover,

working on the approach discussed so far, there appears to be no

prospect of a radical improvement in the accuracies of determination

of refraction effects in the coming years. This state of affairs,

naturally suggests to the ever-exploring human mind to investigate

some other methods of altogether eliminating this refraction effect.

Two such approaches, which are in the offing are discussed in the

following two sections.

6.1 Dispersion Methods

In Section 4.2.2.1 (A) it was seen how the measurements

employing two frequencies could be used to eliminate first order

ionospheric correction. Since the refractivity of radio waves (upto

15 GHz) is Independent of the frequency or the wavelength in the

uncharged atmosphere, no part of the tropospheric correction can be

eliminated by them in a similar manner. However, the advent of lasers

whose refractivity in the Troposphere is a function of wavelength,

showed promise of eliminating tropospheric refraction effects using
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their dispersive property. After [Bender and Owens, 1965] described

the use of two optical wavelengths for eliminating tropospheric

refraction effects (which is the only one at optical frequencies), it

has been increasingly realized that this method holds a real prospect

of eliminating refraction effects or in the process determining average

refractive index just where it is wanted most.

Assuming that electromagnetic devices can simultaneously measure

at several frequencies, the range between the same two points [Thayer,

1967] discusses at length the theory and the sources of error. The

basic principle of the theory is very simple. If several frequencies

operating simultaneously to measure range between two points were

assumed to follow the same straight line between end points (although

there will be little deviation), then the only source of error in each

of the measurements is the retardation due to refraction of the atmos-

phere.

Now, refractivity (n-1) of air for lasers can be expressed as

n - 1 = D(X) F(P,T) (100)

where

D(X) - is a dispersive constant which depends on the

frequencey or wavelength only and does not

depend on atmospheric factors.

F(P,T) - is a function of pressure (P) and temperature (T).

If measurements were made at two wavelengths ^-\ , X3 of the

optical region, then range corrections would be given by average value

of (n-1) multiplied by the path in this case assumed straight, i.e., So.
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If F(P,T) denotes the average value of F(P,T) along the path followed

by rays :

= (na-l)St - D(Xs) F(P, T)Sb (101)

Subtracting, we get differential correction:

683,1 = SaSb - n^ = F(P,T)SorD(Xs) - DOx)] (102)

This 'can be solved for F(P,T) and result substituted in

one of the two equations for true path length gives So, as

r MM <103
where

S]i - is measured value of range with wavelength Xj.

The fraction involving D( Xi ), D(X2 ) does not depend on any

atmospheric terms and may be calculated for any (say, standard)

conditions. For example, for
o

Xi = 6328A of the helium-neon laser and
o

X2 = 366QA. of the mean of three principal mercury-arc '
lines

At standard conditions (P = 1013.25 mb, T = 288°16 K, i.e.,

15° C for dry air with 0.03% C02 by volume):

= 10.6634



83

Since for the accuracies of 1 in 107 or better the effect of

atmospheric water vapor cannot be ignored, the above theory is extended

by writing group refractivity as

( n - l ) = D ( > ) F(P,T) + W(X) G(e,T)

where

W ( X ) - is the dispersive constant for the water vapor term

at wavelength X .

G(e,T) - is the atmospheric dependence of water vapor term and

is a function of partial pressure of water vapour e and

temperature T.

Thus by using a third wavelength say X o and writing similar

equations as above, it is possible to get a pair of simultaneous equations

in two unknowns. This is the principle of triple frequency technique.

Here, since water vapor dispersion term W(X ) is very small for

optical wavelengths, it will be very difficult to get good results to the

required precision. It is, therefore, recommended that two optical and

one radio frequency be used. [Thayer, 1967] analyzes the problem and

discusses the likely sources of error.

The author points out that multifrequency range measurements are

potentially capable of advancing the state-of-the-art in distance measure-

ments by one to two orders of magnitude; from the standpoint of atmos-

pheric effects.

The instruments for this are in the process of development. Since

relatively small effect is to be measured by a still smaller effect of

dispersion, we need instruments of very high sensitivity. Some such
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instruments for small terrestrial distances have been tested [Owens,

i

1967J, [Owens and Earnshaw, 1968J.

Prom the above approach it ia apparent that such instruments can

measure the average value of the functions F(P,T) and G(e,T) along the

path of its operation and such developments may lead to the determination

of average refractivity, which could be used to correct direction observa-

tions to celestial bodies provided instrument could be made to operate in

the desired direction employing radio controlled balloons mentioned in

the next paragraph. Further research in this direction is needed.

For tropospheric refractivity, in connection with VLBI observations

[Dickinson et: al.. 1970] suggest that "a balloon-borne array of retro-

reflectors could conceivably be located at high altitude (20 km) for each

one of the interferometer terminals and could provide effective echoing

cross-section to a radar system located at the terminal and operating at

two optical wavelengths and one microwave frequency." The authors

observing that though radio-controlled, powered-balloon systems suitable

for such work had been partially developed, the practicability of such a

system did not appear encouraging. If, however, it could be overcome,

then from each interferometer terminal, balloons could be made to follow

the apparent position of the chosen radio sources for the duration of the

VLBI observations. From the difference between phase delays measured at

the three probing frequencies, the columnar refractivity of the tropsphere

could be determined - the two optical frequencies giving dry term and the

radio-optical interval giving wet term.

For the ionospheric effect on VLBI, the above authors suggest dual-

frequency observations of the radio source to provide directly the

difference in columnar ionospheric refractivity for the two terminals.
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The authors state that for a pair of frequencies like 0.5 and 1.0 GHz

they have verified that residual error due to the ionosphere is well

below the overall error permissible in the observational program.

[Kaula, 1970] states that use of dispersion effects by two

optical wavelengths can reduce the uncertainty in range measurements

by a factor of 20 to 30. A further reduction by a factor of 40 or

more could probably be gained by adding one or two radio wavelengths,

depending on the wavelengths chosen, to reduce the effects of

tropospheric water vapor and of the ionosphere.

6.2 Satellite to Satellite (Range Rate) Tracking

Another approach suggested is to make measurements beyond

the effective atmosphere especially the Troposphere and the Stratosphere.

The possibility of such a system is by making one or more very high

geostationery satellites to track a low satellite. The tracking

satellites would be required to be equipped with instruments for

tracking including the facilities for data storage and later

transmitting it to ground station. [Kaula, 1970] states that this is

the only way out for direct mapping of earth's gravitation field

accurately. Of the various tracking systems used from ground stations,

the method of measuring Doppler shift to determine range rate between

the satellites is preferred. Optical systems require precise

orientation and, therefore, will not be suitable.

In such a system apart from other factors improving accuracies,

the complete elimination of tropospheric refraction effects, will be

a major step forward. Further improvement is suggested for eliminating
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ionospheric refraction effects by using two tracking frequencies at

one to two GHz or by using one single frequency above 20 GHz. Such

high frequency, which would be absorbed by the Troposphere for ground

tracking, can be usefully employed for satellite to satellite tracking

above the Troposphere. [Kaula, 1970] observed that such a system

should produce a range rate accuracy of 0.1 mm/sec and in the

forseeable future it is expected to improve to a level of 0.03 mm/sec.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The conclusions from this report are: In spite of the best

possible modelling of the atmosphere our insufficient knowledge of

characteristics and variabilities of physical, meteorological and

ionospheric factors does not allow us to make exact determinations of

the refraction correction. Moreover, lack of complete knowledge of

these factors can often substantially affect the calculation of

refraction correction and many times it is very difficult to estimate

the total amount of influence of these uncertainties.

At present, however, using latest relationships available, for

the above factors, it should be possible to determine astronomical

refraction correction within one-tenth of a second of arc and laser

range corrections within a few centimeters provided observations are

not made under turbulent atmospheric conditions.

For very high accuracies compatible with future needs the

development of instrumentation and techniques for eliminating effects

of refraction by dispersion methods of Section 6.1 and employing

satellite to satellite tracking discussed in Section 6.2, are the

answers to the problem. Just as the development of electronics and

electromagnetic techniques threw a challenge to the accurate determina-

tion of refraction effects, the need for developing instrumentation

for the systems discussed in Sections 6.1 and 6.2 seems:to throw a

challenge back to the development of electronics and electromagnetic

techniques to perfect instruments of high sensitivity to serve the

purpose. Further research and development in this direction are needed.
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7.2 Recommendat ions

The following recommendations are, therefore, made:
i

(i) For direction observations by visible light to natural

celestial bodies a model like that of Garfinkel, 1967, improved by

using the latest formulae for relative refractivity as function of the

air composition be used for accuracies better than Oil. This,

incidentally, is within the accuracies of present star catalogues with

accuracies ranging from 0/3 to 0.5.

(ii) A model like the above would suffice for camera tracking of

artificial satellites, i.e., photographing them against the star

background, for which accuracy by other factors like limitation of

cameras, star positions, etc., is limited to O'.'S to I'.'O [Kaula, 1970].

(iii) For laser ranging, models in use be improved by measuring

and using tropospheric refractivity profile. However, models like (94)

give correction better than the limitation of present-day receivers.

This is about one nsec corresponding to about 15 cm in range difference.

(iv) For observations employing radio waves, too, measurement

of tropospheric refractivity profile in the direction of observations

should be employed in addition to using two frequencies with the lower

one of the order of one GHz or greater.

(v) For extreme accuracies to ca-ter to the future needs,

instruments and techniques be developed and perfected based on the

approach discussed in Chapter 6.
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