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NOMENCLATURE

a Groove aspect ratio, b'/h

a1 Hypothetical groove aspect ratio

A Groove cross sectional area

A* Rotor induced flow coefficient

A Annulus flow coefficient
c

A Dimensionless annulus flow coefficient
J_j

A Continuum limit of A
LU Li

A Manometer cross section aream

A Groove pressure flow coefficient

A Rotor induced flow coefficientu

b Groove axial width

b" Groove normal width, b cos a

B Groove flow coefficient

c Radial seal clearance

c Mean radial clearance

D Shaft diameter

G Slip coefficient constant of proportionality

h Groove depth

H Manometer total deflection

H-. , H9 Manometer deflections

K, k Boltzmann constant

K" Seal radius ratio, 1 - 2c/d

£ Flow passage length coordinate

I' Tube length coordinate

i Groove length coordinate
O
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& Land length coordinate
Lt

i Total groove length on seal

L Seal axial length

m Sealant mass per molecule

m Sealant mass flow rate

M Sealant molecular weight

n Molecular density, N/V

nfl Number of thread lands in seal section

N Number of molecules

N, n Sealant molecular flow rate

N" Seal speed, rpm

N Knudsen number, X/c
K

N Groove Knudsen number, X/b1
Kg

N , Knudsen number based on groove depth, X/h
Kh

N Number of groove starts

N Total turns of spiral on seal

p Absolute pressure

p~ Average seal pressure, (P, + P?)/2

p Atmospheric pressure
o

P , P- Upstream seal pressure

p P Downstream seal pressure

AP Differential pressure across seal, PT - P,

Q Sealant volumetric flow rate

Q' Volume flow rate at unit pressure, V'P

Q1 Volume flow rate at unit pressure in groove
O

Q' Volume flow rate at unit pressure over land
Li
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Q° Net volume flow rate at unit pressure

Q' Rotor induced volume flow rate at unit pressure
R

r.. Inner radius of annulus (shaft)

i Outer radius of annulus (housing)

r Seal pressure ratio, P-/P, or P0/Pnp ,1 D JL 1

R Distance ratio, r/b?

RR Distance ratio, rr/b'

R Universal gas constant

t Tangent of helix angle a

At Flow measurement time increment

T Absolute temperature

u,v,w Velocity components in £, r|, z coordinates

u Average rotor induced velocity

U Surface velocity

u' Dlmensionless groove flow velocity

U Effective rotor velocity
e

v1 Groove flow velocity

v Rotor induced flow velocityR

v' Rotor induced flow velocity in hypothetical groove
R

V Volume

V Mean molecular speed

VI Volume flow rate

V Total groove volume flow rate
O

V' Volume flow rate in a single groove
O

V Continuum limit of V
gc g

V Land leakage volume flow rate
Li
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V Calibrated volume
o

V Total volume flow.rate in seal

w Land axial width

w' Land normal width, w cos a

W Manometer fluid specific weight
_1 ng(b

f + w')
a Seal helix angle, sin [ — ]

a Eigenvalue

6 Seal geometric parameter, (h + c)/c

3' Tube flow coefficient

Y Seal geometric parameter, b/(a + b)

Y* Tube flow coefficient

r, Coefficient of slip

A Mean free path

A Sealing coefficient

y Absolute viscosity

VL Pressure unit, micron of mercury
Hg

p Density

a Ratio of molecular collisions

T Elemental volume

fy Rarefied viscoseal parameter

w Solid angle

fi Angular velocity

Special Subscripts

r Refers to land

g Refers to groove

£r Refers to £ direction in region of land
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1. INTRODLCTION

An investigation of rarefied, internal gas dynamics with emphasis

on shaft sealing applications w,as initiated on May 1, 1966 at the

University of Tennessee in the Department o'f Mechanical and Aerospace

Engineering. The investigation was conducted for the National Aeronautics

and Space Administration under Research Grant 43-001-023. This report is

the final report of this investigation with major emphasis on the

rarefied-gas viscoseal.

The initial efforts were directed at a number of basic problems.

The results of these investigations have previously been documented

and only the references will be repeated here. These investigations

concerned rarefied flow through short tubes (1,2), annuli (3,4), long

square tubes (5), and other basic geometries (6-8). From these

investigations a more complete understanding of rarefied flow has

provided the basis for analysis of more complex applications.

The major effort of this study has been directed to developing

analytical models which can be used to predict the performance of

viscoseals operating with a rarefied gas as the sealant. Since no

experimental data were available which were adequate for establishing

the validity of analytical models a significant portion of this effort

has been devoted to the development of such data. This report details

the analytical models which were developed and also the experimental

procedures and results. Conclusions are presented based on the

comparison of results from analytical models with experimental results.

2. ANALYTICAL MODELS

Three different analytical models have been developed in this

investigation and will be presented in detail. The first is based on
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Hodgson's (9) work and is called the modified Hodgson Model. The next

model is based on the work of Boon and Tal (10) and is called the Slip

Modified Boon and Tal Model. The third model is based on a super-

position of the groove and annulus flow components and is called the

Annulus-Groove Model.

2.1 Modified Hodgson Model

In Hodgson's (9) investigation only seals with a single thread

start were considered. The development presented follows closely that

of Hodgson but the analysis has been generalized to include multiple

thread start seals and also a technique is presented for solving the

specific molecular flow rate equation for a sealed condition.

Hodgson chose to analyze the particu3ar configuration where a

smooth shaft rotates within a grooved housing. It will be shown later

that the analysis for the grooved shaft and smooth housing is identical

to this configuration. This being the case, Hodgson's model is not as

restricted in this respect as it might appear*

Hodgson considers the flow in the viscoseal to be composed of

three basic components: (1) the pressure induced flow along the groove,

(2) the pressure induced flow over the lands, and (3) the rotor induced

flow in the groove. This treatment of the flow is quite common and is

exactly the way King (11) chose to divide the flow for analytical

considerations. Figure 1 shows a representation of the flow components,

QT » Qt>» and Ql represent the pressure induced land flow, the rotor
L K g

induced groove flow and the pressure induced groove flow, respectively.

Hodgson also restricts his considerations to a seal with a single thread

start.
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In his development of the two pressure induced flow components,

he takes the semi-empirical approach of Knudsen (12) in describing the

flow throughout the entire regime from continuum to free-molecule flow.

In his long tube work Knudsen found that his experimental data could

be described by an equation of the form

Q- - ITT + 6'Kif] fr O)
jp

In the continuum limit Knudsen reduced Equation (1) to Q' = y'P TJM

and by equating this to the known continuum solution, he was able to

determine Y'. In a similar manner as the free-molecule limit was

approached he reduced Equation (1) to Q' = $'~Trri and by equating this

to the known free-molecule solution he determined 8' . By considering

the slip flow regime, Knudsen was able to determine the ratio V/£'

by noting that Equation (1) becomes Q' = (Y'P + g'̂ )̂ f an,j equating this

to the known continuum with slip solution. Next Knudsen determined

the difference £'-v from a consideration of nearly free molecule flow

and thus was able to determine both £' and V. He then applied experi-

mentally determined corrections to £' and V so that the experimentally

observed minimum in the Q'/AP versus P curve would be correctly predicted.

Knudsen applied the analysis above to a long circular tube. In his

analysis Hodgson applies the identical procedure to his treatment of

the pressure induced flow in the groove (a long rectangular duct) and

the pressure induced flow over the lands which he takes to be a narrow

slit.

2.11 Pressure Induced Flow in the Seal Groove. Hodgson assumes

that the pressure varies continuously along the axis of the seal groove

from a value of Y^ at t^ie high pressure end to P- at the other

end. In order to determine the pressure gradient
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gradient along the groove axis, it is necessary to relate the length

of the groove, & , to the seal length, L. A development of a viscoseal
O

is shown in Figure 2. Hodgson only considered seals with a single

thread. The development that follows is generalized to any number of

thread starts, n .
s

In Figure 2 line AB is drawn perpendicular to the grooves. The

number of turns of spiral that AB crosses is equal to the total number,

N , of complete turns on the seal which can be expressed as

.. L cos ot
Nt = w' +b' '

The length of groove per turn of spiral is TTD/cos a. The total groove

length on the seal is

£ TO L cos a = LTTD
T " cos a ' w' + bf = w' + b' '

The length of each groove is then

LTTD
g N N (w' + b1) '

s s

It follows that

"' +b'>
dH , LTTD 1 TTD dL '

g 1N (w1 + b ' ) J

Hodgson indicates that the groove pressure gradient in a single threaded

seal is

dP = w' + b' dP
di TTD dL

g

from which it follows that the flow in a groove of a multi-threaded

seal is N times the flow in the groove of a single threaded seal of
S

the same groove width, land width and diameter. Since there are N of
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2
these grooves, the total groove flow in the multi-threaded seal is N

s

time the flow in a comparable single threaded seal. The total groove

flow is then

where the bracketed term is the single threaded groove flow developed

by Hodgson. The constants B, C, C.,, and C« depend on the geometry of

the seal and the properties of the sealant and are given in Appendix A.

Appendix A also contains a discussion of the flow models used by

Hodgson to obtain these constants.

2.12 Pressure Induced Flow Over the Lands. Based on the assumption

that the pressure varies continuously along the helical groove, Hodgson

shows that the effective pressure gradient for the land flow is

dP w' + b' dP
To~ " - i - c08 "IT" •dx w dL

Ju

This pressure gradient applies equally well to both the single and multi-

threaded seal. The land leakage flow for a seal of any number of threads

is then

1 + CP

where the constants D' , E, C- and C, also depend on the seal geometry

and the properties of the sealant and are given in Appendix A along

with a discussion of their origin.

2.13 Rotor Induced Flow. Hodgson takes a simplified approach to

the prediction of the rotor induced flow. In Figure 3 a groove cross

section is shown with the rotor moving over the top of the groove.

Hodgson develops the rotor induced flow on a molecular basis , but as he
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polnts out a continuum approach yields the same result. It is assumed

that the rotor induced flow is the same as the flow obtained in a long

rectangular duct of width b' and height h in which the upper wall moves

with velocity U cos a (the component of the circumferential velocity of

the rotor along the axis of the groove). Rather than solve the describing

differential equation for parallel flow, Hodgson chooses to compute

the volume flow based on an area-weighted average velocity. This average

velocity is

- (U cos ot)b' + (2h + b')(0) Ub'
u = - 2(b« +h) -

 = 2(b' + h) - COS <*'

The total rotor induced flow is thus

no cos "J p = NsA'p

where Q' is generalized to a multi-threaded seal.

2.14 Total Seal Flow. The flow rates given by Equations (2, 3,

and 4) are superimposed to give the total flow in the seal which can

be expressed as

2 l + C1P dP 1+ C3P dP% - - VBP + c m^p] di - [D 'P + E TT-C^ £ - NsA>p (5>
where flow in the direction of decreasing pressure is considered positive «

2.15 Solution of the Modified-Hodgson Equation. Unlike Hodgson's

basic equation, Equation (5) is applicable to a seal with any number of

threads. There are three solutions to Equation (5) which are of

particular interest. These three cases are: (1) the flow rate through

a non-rotating seal, (2) the flow rate through a rotating seal, and

(3) the pressure difference across a rotating seal when the net flow

is zero.
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Pressure Difference at Zero Net Leakage

Since a rarefied viscoseal, in the ideal case of a true space

environment, will normally operate with P, •» 0, it would be impossible

to maintain a zero net flow. However, the condition of zero net flow

is of interest as far as experimentation and comparison to continuum

performance are concerned, and in non-space applications where P. j 0.

The maximum pressure difference under which a seal can maintain

a zero net flow is found by solving the modified-Hodgson model equation

subject to the condition that Q' = 0. Integrating Equation (5) subject

to this condition one obtains

f2P + A P , N C + E 2 + C2(2P + AP) sC2 2 + C
— ^ __ _

2 + C2(2P - AP) 2 + C4(2P - AP)

= exp [N A'L - (N2B +D')AP], (9)
s s

In general Equation (9) cannot be solved explicitly for AP. For the

special case of continuum flow 2P > > AP.the continuum AP can be

obtained from Equation (9) as

N A'L
AP = -—• - o (10)

n B + D
s

At the other extreme, free-molecule flow, Equation (5) can be reduced

to its free-molecule limit,

9 HP
QN = - (NsC + E)f -NsA'P- <10a>

Since in the free-molecule limit P is very small, the last term in

Equation (lOa) could presumably be very small; but since efficient seal

performance requires that the rotor induced flow be of the same order

of magnitude as the pressure induced flow, this term is retained,,
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Solving Equation (lOa) subject to the condition that QM - 0, the free-•N

molecule pressure ratio becomes

r => exp[N A'L/(N2C + E)]. (11)
p s s

The AP across the seal can be expressed as

_ r - 1
AP = 2P r

P
 + . (12)

Combining Equations (11) and (12), the AP in the free-molecule regime

is

_ exp [N A'L/(N2C + E)] - 1
AP = 2P * 5 . (13)

exp [N A1 L/Ore + E)] + 1s s

Since no explicit solution to Equation (9) can in general be

obtained, some approximate solution technique must be employed. Since

Newton's method of approximating roots is generally a rapidly converging

iterative method, it is employed in solving Equation (9). Newton's

method requires that the given relationship be differentiable.

Equation (9) can certainly be differentiated* Another very important

requirement is the ability to make a close initial approximation to the

solution. This requirement is particularly important with a complicated

relationship such as Equation (9).

In order to make a close approximation to the roots of Equation (9),

one needs to know as much as possible before hand about the character

of the solution. At this point two characteristics are known: (1) the

continuum limit, Equation (10), and (2) the free-molecule limit,

Equation (13). The solution of Equation (9) will simply define the

behavior over the entire range of average pressures and approach the

continuum and free-molecule limits at the two extremes. In order to
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make a close approximation to the value of AP which satisfies Equation

(9) for a given P, a high average pressure, P.. , is chosen initially such

that the continuum solution from Equation (10) is a good approximation

to the root of Equation (9). Using this initial approximation for AP,

Newton's method is employed to solve Equation (9) for the AP at PI.

An incremental decrease, AP, in the average pressure is then taken

and the AP obtained from the previous iteration at P.. is used as the

initial estimate of the solution for AP at ?„ and the iteration process

is repeated to obtain APn The entire process is repeated to obtain

AP at 1? , "P , etc.

Essentially the above process could be continued until the entire

spectrum of pressures had been traversed, but the process encounters

difficulties near the intersection of the continuum and free-molecule

asymptotes. In the near continuum region, the AP versus P solution

of Equation (9) is fairly flat, thus making the solution at P - a

good approximation to the root at P . In the intersection region,

however, the rate of change is so large that the method used above

for the initial estimation of the solution is not sufficiently accurate.

Two simple modifications to the above method can help to ensure a

close approximation of the root at P . An obvious modification would

be to reduce the step size, AP. Since all previous points P.. through

P _ - have been determined, these points can be used to extrapolate

to an initial approximation at P . Essentially an extrapolation of

order n - 2 could be made, but experience has shown that a linear

extrapolation combined with successive reductions in AP is sufficient

to ensure convergence at P .
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After passing through the critical region in the vicinity of the

intersection of the asymptotes, the curve essentially assumes the

'straight line predicted by Equation (13). The solution is thus complete.

The Fortran programs for the solution of Equation (5) for the

three cases outlined above are presented in Reference 13. The flow rate

in a static seal is simply a special case (Q* = 0) of the rotating
K

solution. Consequently only one program is needed for the flow rate

solutions.

The modified-Hodgson model provides a convenient means of predicting

the performance of a given viscoseal. The limiting conditions of

Equations (10) and (13) can conveniently be used to predict optimum

seal geometries in the purely continuum and purely free-molecule

regimes, respectively. In the transition regime, however, Equation (9)

would be very difficult to use in an optimization study because of the

time consuming solution method.

2.2 Slip Modified Boon and Tal Model

In 1959 Boon and Tal published (10) a significant analysis of the

viscoseal in the laminar continuum regime for a constant density fluid.

The viscoseal geometry was approximated by two flat plates, one of which

was grooved,moving parallel to each other* The flow field was developed

from a superposition of Couette flows along and across the grooves.

The resulting velocity distributions were integrated to obtain the

volumetric flow rate, and the pressure generation for zero net leakage

conditions was developed. Subsequent investigations by Stair (14)

using liquids as the sealant showed very good agreement with the analysis

of Boon and Tal. The data of Hodgson and Milligan (15) using air as the
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sealant also substantiated this analysis for laminar continuum operation

with gases.

The Slip Modified Boon and Tal Model has been developed by formulating

"rarefied" corrections to the laminar continuum equations developed by

Boon and Tal. This approach is similar to that used in previous

investigations (3, 4, 16, 17) of internal rarefied flow that have

indicated that a single model for gas flow through tubes and annul!,

applicable to the flow regime extending from continuum to free molecular

flow can be derived by the inclusion of rarefied effects on the continuum

model.

Consider a screw formed on a shaft located concentrically within a

cylindrical housing with a radial clearance c. The annular space is

filled with a gas and the shaft is moving relative to the housing with

an angular velocity, ̂ . Figure 4 shows a developed view of the

viscoseal geometry. The (x, y) axes are along and normal to the

direction of relative motion and the (£, l) axes are parallel and

normal to the grooves. The (x, y) and (£, n) coordinates systems are

related by:

£, » x cos a + y sin a

H = y cos a - x sin a.

Previous investigators (10, 18) have reduced the describing partial

differential momentum equations to the Reynolds lubrication equations.

These analyses were based on the flat plate model of Figure 2 and

assumed steady, isothermal, two-dimensional, laminar flow. Further,

these analyses assumed inertia forces to be negligible in comparison to

viscous forces and neglected body forces and end effects. The

describing mathematical model is taken as:
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d2u 1 3P
-2'̂

d2v' i a?
7T • p 3n
dz

Integration of (14) and (15) gives:

u = iil If *2 + Clz + C2

The integration constants are determined by the boundary conditions. To

account for the non-continuum effects, slip boundary conditions are

introduced as derived by Kennard (19). For a monatomic gas, flowing within

two parallel boundaries, the slip boundary condition can be written

in the following general form:

ugJ«-0-uvaU + G*<£>lz-0

where u is the velocity in the tangential x direction, z is the direction

normal to the motion, and G is a proportionality constant. If the

temperatures of the surfaces are assumed constant and equal to the gas

temperature then the slip boundary condition reduces in general form to

u = u ,. + G\ (|̂) = 0. (19)
gas wall 9z z

For the particular geometry under study, the slip boundary conditions

are:

Along the lands:
du

u i „ = U cos a + G\ —r-i _= u,
r|z=0 dz|z=0 1
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du
u | , = - GX -7-S- I , E u_
r ' z = h d z ' z = h 2

r r

Along the groove:

du
u I rt = U cos a + GX -7—* I - u-
g ' z = 0 d z ' z = o 3

du
u , = - GX -T- . = u. .
g z = h dz z= h 4

g g

Across the lands:

dv
v | = - U sin a + GX -~| = Vlr'z=0 d z ' z = 0 1

dv
v . -T- , 0.r ' z = h d z ' z = h 2r r

Across the groove :
dv

v = - U sin a + GX -j-* = v.
g z = 0 d z ' z = 0 3

dv
v | , = - GX -r-*- I , = v. .
g z = h d z ' z = h 4

g g

Using the above boundary conditions the following velocity components

are determined:

Along the lands:

1 3P 7 u? ~ ul
Ur - k f (Z hrZ) + (^V ^ + Ul<

Along the grooves:

1 3P 9 UA ~ u^

Across the lands:

1 3P 9 V9 ~ vl
V r - I y f <« - V> + ('J-^1)l + V

Across the grooves:

1 SP 9 vz> ~ VT
V

0 = ̂  II <« - h»0 + (-V-2)^ + vv (23)
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Th e slip velocities at the walls can now be determined, and the following

velocity distribution equations obtained:

1 3P , 2 , N , ,-U cos a N z
ur * 2y 7C (Z " hrz) + (1 + 2GX/hr

) lT

1 + GX/h , 3p o ri

+ u c o s < * < > - h (24)

1 9P / 2 , N . ,-U cos a . z
ug " 2y ̂ T (z - hgz) + (i + 2GX/h > —

o o

1 + GA/h a . ,
u cos a< > -zu l|hgf (25)

g g
1 9p t 2 v, ^ j. /U ain a v z

Vr = 2P ̂  (Z " hrz) + (1 + 2GX/hr
} \T

1 + GX/h a ,

' h " (26)
r

sin q z/ u N ^.
Vg = 2y ̂T (Z " hgz) + 1 + 2GX/H T

1 + GX/h a ,
- h . (27)

Noting that the axial velocity components are:

u - u sin q (28)

v = v cos q (29)

the axial flow rate components Q.. , Q.. , 0 and Q may be determined.

The width of the flow path for the £ land flow component is (1 - Y^D

and the path width for the £ groove flow is Y7rD" The ratio of the groove

width to the groove plus land width is defined as y- The axial

component of the E. coordinate land flow is :

h h
Q, = (1 - Y)TTD /r U dz - (1 - Y)TTD /r U sin a dz. (30)

^ 0 y 0

Substituting Equation (24) into Equation (30) and integrating gives
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Cr - (1 - Y)TTD sin at^j (||)r h3(- ̂  - -|) + U cos a^ ] .
r

(31)

In a similar manner:
o

D sin a[ij (̂ )g hj <- - A) + u cos a -*] (32)
O

Qnr - (1 - Y)TTD cos a[( ) r h ( - - - ) - u sin c] (33)

Qng - YITD cos 01^ (|̂ )g h3(- ^ - 1) - U sin a /] . (34)
O

The pressure gradients in Equations (31) through (34) may be replaced

by the more convenient axial gradients by noting that

•g| - -g| sin a , (35)

and

(1 — Y) (~z—) + (•*—) = T— cos ex . (36)oirr " T i g 3y

From the continuity of mass, the flow across the groove in the n

direction must equal the flow across the land in this direction. Thus

it can be shown that

1 <"\ T» *•» f^~\ 1 **

* O

The total flow is given by

Q = V + ̂ g + ̂ r + V (38)

Using Equations (31) through (38), the expression for the axial flow

is:
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63

UCTTD t(l - Y ) ( g - l)P

— —2 i + t2 MI +

where
h + c

_ _

w + b

1+ 6GX

- (i - y)B3( - -) + Y

t = tan a

The Knudsen number for the viscoseal is defined as

VA, (40)

where seal radial clearance, c, has been selected as the characteristic

system dimension because of the manner of its appearance in Equation

(39) in relation to the mean free path X.

Equation (40) can be rewritten in terms of molecular flow rate

rather than volumetric flow rate as

3 6GX

o td-TXt -i) 6 (1
* 2 1 + t2 ,/,(!+ )

Further consideration now needs to be given to the alip coefficient

constant of proportionality "G". Various investigators have developed

expressions for this proportionality constant ranging from 2/3 (20)

to (2 - f)/f (19) where f is the fraction of their tangential momentum

which molecules give up upon striking a solid boundary. Published

values of f by Kennard (19) range from 0.79 for air flowing over fresh
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shellac to 1.00 for air or C02 over machined brass. A value of f

equal to one is taken to be realistic for the flow of gases over

machined surfaces. Thus the value of the slip coefficient G was

taken to be unity.

Knudsen number as defined in Equation (40) indicates the degree

of rarefication since it becomes large as the mean free path, X,

becomes large. When the Knudsen value becomes small and approaches zero,

corresponding to continuum conditions, then Equation (30) reduces to

the continuum, no slip, solution shown by Stair (18).

For isothermal flow the mean free path, X, is a function of the

pressure and gas properties. The Chapman relationship (19) can be

used to express this dependence.

kT 1/2

-
This relationship will be used to express the right hand side of

Equation (41) in terms of pressure.

2.21 Variable Mean Free Path Solution. In order to solve

Equation (41) for the flow rate in terms of the seal length and the AP

across the seal a numerical scheme must be employed. Before integrating

the equation is rearranged. Let P be the pressure at which

X = C/6G. Then

. 6GXP = ££
o ~ C = C 2

Now Equation (41) may be written in terms of pressure

p2p'c3TTD dP' 2

12ykT(l + t2) dy P

. UcP P'TTDt(l - Y) (3 - 1) 63(1 + ~)
[ F- - 1] (43)2 l l

2kT (1 + t ) iKl + -^
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where

P' + P/P

and

3(i - -5

Non-dimensionalizing the length coordinate, y, by using the seal

length, L, i.e., y' => y/L and dy = Ldy' we can write

n - f (P ' ) ^-4- g(P') (44)

where

P2c3iTD
f ( P ' ) - - — - =• [t2(l - Y ) (P ' + 1)

12ykT (1 4- t )L

+ ( P ' + ) B

cUP TTDt(l - Y ) ( B - 1) , (P1 + 1/6)
g(P ' ) = - - - 5 - [eJ - - P']

2kT (1 + t ) \l>(l + 1/P1)

Simplifying Equation (44) by defining a new flow rate parameter n we

obtain

~Z — HP ' 'n - f w r +

where

6yUL

T = T(P' 9 6,Y, t ) = -- i - [t2(l - Y)(P ' + 1) + (P1 +
(1 + t2)

63(Yt2 +i)]

- g(P' .B.Y.t) • (

a t L *" \ I X ^ • ^ \

+ t ) <K1 + pT)
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Separating variables in Equation (45) and integrating over the

seal length gives

_

n - Af g(P')
(46)

For a given physical condition, i.e., Pi, P',3,Y»t, A^, the problem

reduces to solving Equation (46) for n. Newton's method was used by

letting

P1 ~fYp M
r 2 - dpt = °
* , ft - Ag(P')

1

Newton's method predicts successive approximations to the solution of

Equation (45) through the following relationship:

where

F, . dF m i* __ - <fft

dl P^ (n - Afg(P'))
Z

Since the most useful situation for the viscoseal as a sealing device

would be to have the net flow rate equal to zero a similar technique

was used to solve Equation (41) for the AP which results for n •> 0.

A widely used parameter in sealing work is defined for no net flow

in the form of sealing coefficient, A.

A E (48)

APc

Results for the variable mean free path will be presented for both net

leakage and for no net leakage (sealing coefficient) values.
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2.22 Mean-Value Solution. If the mean value of seal pressure is

used in Equation (A2) to calculate a mean value of mean free path,

then Equation (39) can be approximated by replacing the local mean

free path by an average value. This permits the simple integration of

Equation (39) to give

....
(49)

where

fi( =

and

1
•2V

r=

AP c3TTO UcTTD
QL (1 + t2)

 fl(V ' 2(1 + t2}

2 6GNK 3
K p

33(1 + 6GNK)
t(l - Y) (0 - D[ 6 - 1],

iKl + 6GNV)K.

_ f /M \
f2 (V-

:n2 + i> ,

For no net flow the sealing coefficient can be written as

fium f i (V. _ DUUL 1 K. . /c r>\
A = 2 = f (N ) ' (50)

APc 2 U K ;

Results will be presented using this mean-value type solution.

2.23 Particle Slip Correction. In the previous section where the

slip-modified Reynolds solution was derived, slip boundary conditions

were applied to account for the decreased intermolecular momentum

transport at the walls. The analysis attributed a slip velocity relative

to the walls for all the molecules adjacent to these surfaces. For

the case of stationary walls, this implies that every molecule, on the

average, will possess additional flow velocity due to the slip flow

contribution. The preponderance of evidence presented by Weber (16) ,

Kennard (19), Present (20), and Fryer (21) indicate that molecules

whose last collision was at the wall can have no slip velocity since such
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molecules are diffusely reflected from the walls. Thus only those

molecules coming from collisions with other molecules can possess a

slip velocity. A correction will now be developed to account for those

molecules which do not experience slip boundary conditions due to their

collisions with the walls. The correction will be established by

determining the ratio of the molecule-to-molecule collisions to the

total number of collisions, or the sum of the molecule-to-jwall plus the

molecule-to-molecule collisions. This ratio, a, represents the

fraction of molecules present which experience the slip boundary condition.

The number of molecules striking the wall per unit time and unit

area is (20) -7— where V is the mean molecular speed. If one considers

the unwrapped viscoseal geometry of Figure 4, the seal surface area is

approximated by

2TTDL + 2h — (—T-r)cos a w + b

where the right hand term is the surface area contributed by the groove

side walls. Thus the number of molecule-to-wall collisions in unit

time is

f

The total number of molecule-to-molecule collisions per unit time

nV
and unit volume is (20) -r- • The volume of the viscoseal is the

volume of the annular space plus the volume of the grooves. Thus the

total number of molecule-to-molecule collisions per unit time is

n\[ r7rL/ 2 _ 2. + TTDL'h-b ,

Since

2 _ 2. + Hr - r )
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and, -,due^ to the^mall.,clearance, of\ thej,normal, viscoseal: geometry,

then 'the expression-simplifies''to '"'[L! '* '' ̂ ••i'-

= . v> >;:.d'' '--:;:!'r ,,"•-:• V-w ciif. in "••'. i V,> .'!> "ETif c, •,-)•.'•.'-
Hence, the proportion of the molecules which experience slip is

"l/N'j'll + Y(3" - T)] '"
u.;...,^;^ . -.' -u...-^^-f - -'- -" f ^"' (51)

Jv [1 + Y(3 - 1)]+ -y[l + " . . . 1K L J 2 cos ot(w + b) J

(VA) ,/r.,!:J'ti" "• < "--? =»''wT «-t '~ l J ' - ' J i i > ^ ' j S J - f * ' . ' - ' I" ' \ '-"'
l

Wi t"h * r- t. - r * ** 3 " Ti'W JL U-L1 , Jt . JL >j '-.• i ' ̂  .

6 Eh + c X = b

c cr _'lf w + b 4 _r7T"2-
-• /', , , \H) ?. , - • —- : c , f - i ;: '

NK= and = (6 - 1).

r- . i , > J f !' r ' l' .; "
In the solution of the slip-modified Reynolds equation, it will be

recalled that boundary conditions were not permitted on the groove side

i - ' ) •> { "N, ' . ( /'> 1
walls. Thus it is more in keeping with"the" manner of 'this analysis to

jT

omit the molecule-to-wall collisions, which occur oĥ these'.surf aces

and contribute the h/cos a(a + b) term in the denominator of Equation

(51). With this restriction, the equatic-n becomes" </j_ _J_L-_. ,

° .,!•+ NK/2[.1,+ CB, - l)Y]-° ' •; - ---'" --I"" ' (52>

j- , v ' •" ' - : ' - ' ' ' 1 ' ' ' ' ' "
'•In'the'-analysis of slip~f low 'through 'long tubes by Weber (16),

Fryer (21), and Mi-lligan '(17)';'" the resulting"'flow equation could be

manipulated into two separate terms. One of these'terms is _the_continuum
( :"

Poiseuille flow term while the second term is the" slip flow contribution

which results from application of the slip boundary conditions.
i

Equivalent type terms were obtained by Milligan, Cowling, and
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Wilkerson (4) in the analysis of rarefied flow in a long concentric

annulus. For both of these geometries % the correction for the particles

which do not experience slip was made by multiplying .the slip flow

contribution by 0, since it is this uncorrected term which implies that

all the molecules possess the additional slip velocity. Thus when CJ is

applied in this manner the resulting slip contribution term has been

corrected for the particles which experience wall collisions and thus

possess no slip velocity. When this correction is made to Equation (49)

the following equation is obtained:

1 AP c TTD . . UciTD ,. , . ,_,.
Q = ~ T?H" "T - 7 f3(V + - ? W' (53)

12y L (1 + t2} 3 K 2 4 K

where

W 5 afi(V + S(1 " a)>

and

£4(NK) ̂ f2(NK) + C6(l - O),

c = - - 2

5 33(1 - y) + Y

c E
Yt(l - Y)(B3 -

6 g3(l - Y) + Y

In a similar manner to that of Equation (50 ) , the sealing

coefficient for the mean-value slip-modified Reynolds solution with

corrections for particles which do not experience slip is

A . . m
. 2 f CN ) *• '
APC 4*- K;
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Often it is more desirable to express results in terms of molecular

flow rates rather than volumetric flow rates. Equation (49) for the

Mean-Value Slip Modified Boon and Tal solution with no correction due

to particles which do not experience slip is

n , TT .1/2 , c TO . .. ,„ .

t )L

f 0 ( N v ) , (55)
p " 4KT (1 + t')

where the relationship that

_ r - 1
Ap . 2P ( P + ) , (56)

rp

has been written in terms of the pressure ratio, r , across the seal in

the right hand term. Similarly, the specific leakage flow rate with

the correction for the particles that do not experience slip is

n _ IT 1/2 . c TTD
A P~~ 2mKT NK(l+t

2)L 3 K

r + 1 __
+ (_E -) UcTO f (N ). (57)

rp ~ 4KT(1 + t )

It should be noted that for a fixed seal geometry and a given gas

at a specified temperature, the specific molecular flow rates of

Equations (55) and (57) are functions only of Knudsen number, the speed

U, and the viscoseal pressure ratio, r . As the pressure ratio becomes

high, then (r + l)/(r - 1) approaches unity and the specific flow

rate is a function of the speed and the Knudsen number only.

This same technique can be used to evaluate the particle slip

correction for the variable mean-free path solution by correcting

Equation (43) before using a numerical scheme to solve the equation.
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2.24 Self-Diffusion. The term diffusion, as used here, refers to

the molecular transfer which occurs due to a concentration gradient.

If the gas is a pure unmixed gas, then the diffusion is one of self-

diffusion. In their work concerning low density flow of gases in a

capillary, Pollard and Present (22) suggested that at low pressures the

total transport can be described by the superposition of the diffusive

transport and a drift component„ In his study of flow through long

tubes, Weber (16) applied the idea of the superposition of a diffusive

component, a slip contribution, and the viscous component. Weber

demonstrated that his solution has the correct limiting values for

continuum and free molecule flows and adequately describes Knudsen's

data for long tubes (23). Milligan experimentally verified, with

excellent agreement, the analysis technique of Weber for rarefied flow

in long tubes (17) . Lund and Berman (24) developed empirical relations

for the flow and self-diffusion of gases in both long and short

capillaries by the superposition of the diffusive and drift components.

They developed an algebraic expression which permits the direct

computation of the Weber diffusion coefficient at any pressure and thus

avoided the numerical integration inherent in the Pollard and Present

treatment of self-diffusion. Lund and Berman demonstrated the adequacy

of their model for describing self-diffusion and flow in capillaries

in addition to the flow between flat plates. Milligan, Cowling, and

Wilkerson (14) extended the superposition analysis technique of Weber

to long annuli with continuing success.

In this section, the self diffusion flow in both the grooves and

annular space of the viscoseal will be discussed and evaluated using

the Pollard and Present treatment as applied by Weber,
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Annular Space Self-Piffusion

The self-diffusion flow in the clearance space of the rarefied-

gas viscoseal was obtained by considering this flow to be that of a

concentric annulus. The molecular transfer was determined by evaluating

the net number of molecules crossing a plane normal to the annulus.

The evaluation was done by considering separately the molecules which

come from the outer and the inner walls with the grooved inner wall

taken as being smooth and of diameter D as shown in Figure 1. The

details of this derivation are presented in Reference (3) and the

procedure used was essentially that given by Weber (16) . The following

equations were numerically integrated to obtain the diffusion

contribution in the annular space:

Nnet outer wall ' ' 2VX d? (r2 ' rl> / / / <R> '
R1 0 0

sin 0 cos2 6(1 - e~R^V dR1 d0 d9 (58)

H , R, U TT/2

Nnet inner wall ' ~ 2VX d| (r2 ' rl> /R /0 /Q
 (R?)'

sin e' cos2 9'(1 - e~R/NK) dR' d0 dG1. (59)

The total self-diffusion flow in the annular space is the sum of

Equations (58 and 59) and may be arranged into specific molecular

flow rate form using

dy = "dy ̂KT^ = KT dy % KT T

and

iTm
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to obtain

, f-f _ y ^
M 9 1 / 7 9 1

[SUM (0>W') + SUM (I'W->3' (60)

where SUM (O.W.) and SUM (I.W.) designates the numerical integration

of the integrals of Equations (58 and 59), respectively.

Groove Self -Diffusion

The self-diffusion flow in the grooves of the shaft was obtained

in a similar manner to that of the diffusive flow in the annular space.

The flow in the groove was determined by considering this transport to

be that of a long groove of rectangular cross section. This neglects

any curvature effects of the helical groove and becomes increasingly

in error as the groove dimensions become of the order of magnitude of

the seal diameter. The development work of the numerical scheme is

presented in complete detail in Reference (25).

The groove diffusion flow involves the numerical solution of the

following type of equation:

Vk, , h b1 h °° ,

^-- / / Iff
0 0 0 0 r

+ 2^- (1 - e~RR/NKg)} £2 dz' (dndzdQ, (61)
rr

where

"Kg •**

is the Knudsen number of the groove flow with the groove width, b',

being taken as the characteristic dimension. Again

and

V - TTm
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dn d_ ,£v 1_ dP ^1 AP
dC " d^KT' " KT dC ̂ KT "T

where £ is now the groove length. The relation between the length of

one groove and the axial seal length is

. o l_ TTD _ L m _ L _
= N cos a (w + b) sin a '

O

where Nc is the number of grooves. For a multiple grooved shaft the
O

total groove diffusion flow is N times the flow of a single groove.

Thus the total specific molecular flow due to the diffusion is

' N sin a ,
IP - ~ "Hi - <flJST-> tSUM Walls)]. (62)

where SUM (Walls) designates the numerical integration of the integral

terms of Equation (61) to include the total walls of the grooves.

2.25 Composite Solution. The total specific molecular flow for

the composite solution is obtained by adding the continuum solution

plus the slip flow contribution after correction for the molecules

which do not experience slip plus the self-diffusion flows in the

annular space and the grooves . Thus for the mean-value solution

f

^composite = E«' (57) + ̂  <60> + **' <62> <63>

It should be noted in summating the flows that the contributions of each

equation must be evaluated at the same physical gaseous state. In

the development of the groove self-diffusion the Knudsen number, N ,

was based on the groove width, b1 , rather than the seal radial clearance,

c. Thus the corresponding value of groove Knudsen number for a given

clearance Knudsen number is

(64)
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This same technique can be used to formulate the composite

solution for the variable mean free path analysis and other models

such as the annulus-groove model.

2.3 Annulus-Groove Model. In this section a simpler model than

the Modified-Hodgson Model will be developed which will lend itself to

a less arduous solution in the transition regime and will also

correctly predict the continuum performance. The model also predicts

the rotor Induced flow in a more rigorous manner.

The basic model will be essentially the same as the one used by

Hodgson and which is basically the same as the simplified screw extruder

theory presented by Carley, et al. (26). The assumptions inherent in

these models are:

(1) the total flow in the seal can be treated as the super-

position of the leakage flow in the grooves, the leakage

flow over the lands and the rotor induced flow in the

grooves,

(2) the pressure varies continuously along the groove and

is constant over the cross section of a particular groove,

(3) the groove depth is small compared to the diameter of

the seal, thus allowing curvature effects to be neglected

in the groove flow development,

and

(4) the flow in a seal with a grooved housing is identical to

the flow in a seal with a grooved shaft (13).

Assumption 1 obviously neglects the convective coupling of the flow

components. The solution without this assumption is extremely compli-

cated for even purely continuum flow (27)„ Its exclusion would
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certainly lead to an even more complex analysis when non-continuum

boundary conditions are applied. Since the objective is the development

of a simplified theory, the inclusion of assumption 1 is a necessity.

One important assumption that is usually made which is not made here is

that the groove sidewall effects are negligible. This assumption is

one of the prime distinctions between this analysis and the Slip-

Modified Boon and Tal Model in which this assumption is made.

The assumptions governing the development of the component

flows are:

(1) the flow is steady, constant viscosity, fully developed,

isothermal and Newtonian with negligible body forces,

(2) the Navier-Stokes equations with non-continuum boundary

conditions are applicable,

and

(3) the non-continuum boundary conditions can be expressed as (19)

vl ,, ^ X -K—I .'wall 3n'wall

In the development of the flow components, flow models which have been

experimentally verified will be used and reference made to their

verification.

2.31 Flow in the Groove

Although most previous investigators have initially treated the

groove flow in two parts, this analysis will initially treat the groove

flow as a single flow from which the two previously mentioned groove

flows are eventually obtained.

Based on the assumptions stated above, the Navier-Stokes equations

reduce to the single z-momentum equation
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' S+7^£-ox oy

The applicable slip boundary conditions shown in Figure 5 are:

v(b'/2,y~) = - GX -^ (b'/2,y) (66b)
3x

v(x, 0) = GX $2- (x, 0) (66c)
3y

and
r\

v(x, h) = - U cos a - GX-^(x, h) (66d)
3y

where advantage has been taken of the symmetry about the y-axis. The

slip coefficient, G, is usually taken as unity as will be done here.

It is convenient at this point to non-dimensionalize the velocity

and the coordinates and introduce an index of rarefication. The non-

dimensionalized variables are taken as

x=x/(b'/2) y = y/h and u " u cos a'

A common index of rarefication, the Knudsen number is taken as

NKh = X/h.

Introducing these new variable into Equations (65) and (66) one

obtains

92u a 2 92u = (b')2 dP = R'
„ 2 4; „ 2 4yU cos a dz U <-b/;

3x 3y

where

R.- (b')2 dP
4ycos a dz

and the boundary conditions are

-fe (0, y) = 0 (68a)
2N_ a

u(l, y) = -- *2- - (1, y) (68b)
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u(x, 0) = NRh |̂  (x, 0) (68c)

and

u(x, 1) = - 1 - NRh |̂  (x, 1). (68d)

Many techniques have been used to solve non-homogeneous problems

of the type presented above. The least arduous is a modified form of

the method of variation of parameters (28). This method has been

employed successfully by Ebert and Sparrow (29) to solve Equation (65)

with four homogeneous boundary conditions, In the case considered

here Equation (68d) presents a non-homogeneous boundary condition8 but

the method used by Ebert and Sparrow still leads to a solution.

The method of variation of parameters is a generalization of the

method of separation of variables, and as such, experience gained from

employing the latter is helpful when applying the former method. In

the method of separation of variables, the sign of the separation

constant is taken so that the trigonometric solution is obtained for

the homogeneous direction. In the method of variation of parameters

the same reasoning is used in the assumption that the solution has the

form

oo

u(x, y) = L 0 (y)(cos a x + n sin a x) (69)
, n n / n

n = 1

where the x-direction is the homogeneous direction determined by an

inspection of Equations (68). The function 0 (y) is a yet unknown

function of y. One now proceeds to determine 0 , a , and C .

Substituting Equation (69) into the boundary condition of Equation

(68a) one obtains
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c
7
a
n
 cos (°) ~ an

 sin (0)] = 0
n = 1

which implies that C-, = 0 and that

u(x, y) = Z 0n(y) cos ô x. (70)
n = 1

I
Substituting Equation (70) into Equation (68b) gives

h
Z 0 (y) [ cos an -- n sin a ] = 0

from which it follows that for a non-trivial solution

2NKhan
cos a -- sin a =0

n a n

or

a tan " = '

The eigenvalues , ot , of the eigenfunctions , cos Ot x, are the roots of

the transcendental relationship of Equation (71).

The problem now reduces to determining 0 (y) . Substituting

Equation (70) into Equation (67) yields

00 00

2 a 2Z a 0 (y) cos a x + (T) Z 0"(y) cos a x
nnn n 2. n n

n = 1 n = 1

OO

' - f Z ^ cos anx (72)
n = 1

where £2 satisfies the Fourier series
n

00

1 = Z ft cos a x. (73)
n = 1

The Fourier cosine series coefficient, fi , must be

2 sin a sin a
^ _ _ n _ _ / r _ n _ .. (-ii,\

n a + sin a cos a a l. , 2K. sin2 a J ^ 'n n n n l + n n
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where the last step comes from Equation (71).

In order for 0 (y) to satisfy Equation (72), it must be that

2a _ 4R'fi
0"<y) - C-̂ ) 0n(y) -- f •

 <75)

Ua

The determination of 0 thus reduces to the solution of a non-

homogeneous second-order ordinary differential equation. The boundary

conditions on 0n(y) are obtained from Equations (68c) and (68d).

From Equation (68c) , one boundary condition is

0 (0) = N_ 0'(0). (76a)
t\ ISJTY n

Substituting Equation (73) for the unity term in Equation (68d)

leads to the second boundary condition,

The solution of Equation (75) subject to the boundary conditions

in Equations (76) is

-By -9 y R'ft
0 (y) = (C1 + C. )e n + (C0 + C0 )e

 n ^ (77)nw Inp Inu 2np 2nu 2
n

where
20,

n a

_ R-^ (1 - N̂ e-6* - (1 + N^)
LT — o I
lnp Ua2 (1 - NVU9 )

2e~6n - (1 + Nwu9 )n Kh n Kh n

NKhQn)

e
n
]
 R'"

9
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n^1 " NKhen"
°2nu " " "

w - VV n - <1 + "KhV'"

By substituting Equation (77) back into Equation (70) the

dimensionless velocity distribution becomes, after considerable

simplification,

,. 2 °° s in ot
U ( X* y) = 2UU cos a dl Z .[ 2N " . 2 ft

 ]'n = 1 1 + Kji sin a

2oc y a a

cosh - tanh — sinh n
cos ot x a a

[ S ]] _ g- § 1]

01 1 + Khn tanh —
n aa

00 sin a cos a x

n = 1 1 + \h sin a °n— — • n
a

2a y 2N_ a 2a y
. , n^ Kh n , nj

sinh + cosh
r 5 a a 1 . .

/ 2N r L a ^ 2a 4N7r1 a 2a J" v '
r - , , ( K h n N 2 n , , n . Khn , n[1 + v ) ] sinh 1 cosh

a J a a a

The volume flow rate in the groove is obtained by integrating the

velocity distribution over the area of the groove. The volume flow

rate thus obtained is

,, , .3, Jn °° sin a tanh a /a a
v« = (b ) h dP_ y a , n n . n n,

g 2y dz i r*5 2N^u o 2N^ua a aj
6 n = 1 a Kh ,2 , . Kh n ^ , n

n 1 + sin a 1 + tanh —
a n a a

00 sin a tanh a /a
= Ub 'h cosa Z -Sr- [ -2 ][ —2 j. (79)

, -.J /N_ . ZN^

a n a a

The first summation term represents the pressure induced flow in the

groove whereas the second term represents the rotor induced flow.
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N

The linearity of Equation (65) has been demonstrated in the

analysis above since the solution of Equation (79) can be shown to be

the sum of two solutions. The first term is in agreement with the

expression obtained by Ebert and Sparrow (29) for slip flow in a

rectangular-duct with -stationary walls.-- Mil-ligan and Patterson (5)

have experimentally verified the solution of Ebert and Sparrow. The

2
last term is the solution of V v - 0 with the boundary conditions given

in Equation (66). It is thus demonstrated that it is permissible to

obtain the two solutions mentioned above independently and then to

add them together to arrive at the same result as Equation (79),

At this point it is interesting to determine V1 when the Knudsen
4 O

number approaches zero, the continuum flow regime- The solution for

the eigenvalues becomes

cos a = 0
n

or

an = £j n = 1, 3, 5, 7 ...

With these eigenvalues and with N , ->• 0, V becomes

• v, . 16(b')3h dP " a n i r . n i r
gC TT5y dz n - 1 n5 2a 2a

SUb'h cos a ^ a *. u nTr /on\~ i. —r tanh — (80)
IT n = 1 n 2a

n = 1, 3, 5, 7 ...

2.32. Correction to Rotor Induced Flow. In the analysis above

it was assumed that the rotor velocity, U cos a, acted at the

top of the groove (y = h). No attempt was made to account for

the fact that the rotor is not located at y = h but rather at

y = h + c. Since an exact analysis of the region above the



groove, h ^ y < h + c , has been shown to be very complex even for

continuum flow (27), some sort of approximation must be made to obtain

a simple solution. The following assumptions are made: (1) the flow

induced by the rotor in the region h £ y <_ h + c does not contribute

to the seal discharge and (2) an effective inducing velocity less than

U cos a acts at y = h as a result of the clearance region h <_y <_h + c.

This effective inducing velocity, U , will be determined by calculating

the average velocity in the plane y = h of a hypothetical groove of

depth h + c and width b with the upper boundary moving at U cos ot and

with slip boundary conditions on all surfaces. The hypothetical

groove and associated boundary conditions are shown in Figure 6. The

brackets in Figure 6 indicate the portion of the boundary over which

each boundary condition is applied.

From Equation (78) the velocity distribution induced by the rotor is

VR

00

r- 2= U COS I* ^ "

n = 1 n

, , 2 V , 2NKff nsinh 1a a
2N a

r i i ( ^"n. ̂ -i.

sin ot cos a x
r n n i
"• 2N '̂
1 l Kh ,ln2 ax i ....... sin i*

a n
i
2a y

a
2 a 4N,,.a

, n . Kh n ,

1

?,a]n
(81)

If Equation (81) is applied to a groove of depth h + c, the resulting

distribution is

00 „ sin a cos a x
v' = U cos a Z " -R n = 1 "n . ̂  2\h' . 2 „1 + — f— sin aa n

2a y1 2N,,1Ja 2a y1

, , nj , KH n , nj

sinh - : -- 1 -- ; — cosh - ; —
_ a/ _ a/ _ aj _ .

2N^u i a o 2a 4Nvu ' a 2a J '
r , , , K h n . 2 n , , n , K n n , n[1 + ( - ; - ) ] sinh — r + - -T - cosh —7—

a a. a. cl
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where

h + c 1 + c/h

. * _ "«.
Kh' h + c 1 + c/h

y' = ~h~Tc '

The eigenvalues of Equation (71) are still the same because

a a'
2\h 2NKh' '

The average velocity at the plane y = h or y' = • - is

1
U = / v'(x,h/(h + c))dx.
6 0 R

Carrying through the integration, U becomes

00 sin2 a
Ue = 2U cos a E —-[ r̂-5 ]

n = 1 (T . . Kh . 2 „
n 1 + sin aa n

2a 2N a 2a
. , n . Kh n , n

sinh + cosh
a a a

2N ,a _ 2a 4N_a 2a
r n, , Kh n. 2, n , Kh n , n[1 + ) ] sinh —r H cosh —-

or

Ue = [U cos a] Z^ (83)

where the £ is equal to twice the summation in Equation (82). The

corrected groove flow is now obtained by replacing U cos Ot in Equation

(79) with [U cos a]E . The total groove flow now becomes

2

Vg = - (kL2lT- f 1
P -

 U b'h C09 atEc
Eu] (84)

where
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a
sin2a tanh — a

a [ n ] { ^_ |j (85fl)

and

P 5 L 2N JL 2Nv,Oi o a
n ' 1 an 1 + —— sin2 a 1 + Kh n tanh —

a n a a

00 sin2a tanh ji

"U = n - 1 ~? [ ^ —1 [ jjj-S —] (85b)
n - 1 a

n 1 + _JKh 2 2N
Kh

a
n
 a

n
a n 1 + tanh —a a

oo 2 a
v v 2 r sin n ..

c ,71 L 2N~ ]°
n - 1 «n 1+ _JSL Sin2 a

a n

2a 2N a 2a
sinh — + cosh

a a a , r f t S r ^
2N..,a 2a 4N_a 2a J< (>OJC;

, . Kh n. 2, . , n Kh n , n_
a a1 a a1

In terms of the viscoseal geometry

dP dP N s ( b ' + w ) d P , dP—- = sin a —- , (86)
dz d* TTD dL dL

g

and since the pressure gradient in the viscoseal is assumed to be

constant,

rlP Ap•££• = - sin a -— . (87)
QZ lj

^
The total groove flow is obtained by multiplying Equation (84) by N .

Noting that N_ = (iTD) sin a/(b' + w) the total groove flow becomess

„ .. ... _ TrD(b')3hAP sin2 a T UrrDb'h cosa sina - - /OON
V — IN V — n .-, /-L i . \ ^ ~ ... . . - u u • looJg s g 2yL (b1 + w) p (b + w) u cg ~ s g 2 y L (b ' + w) p (b ! + w)

2.3 Land Leakage Flow

The land leakage flow is taken as flow through a long annulus.

Milligan et al. (4) have developed an expression for slip flow in an

annulus and have obtained excellent experimental confirmation of the

expression. The expression derived by Milligan is
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where
„ T,,2N2 2N (1 - K'2)

A = m - K'^ + v ' i + rA. - HJ. - N } T . yi 1 T I — .
L in K1 In K1 - N (1 - Kf/)

[2K'(K|2 - 1) - 2K'(ln K')(K'
2 - K1 + 1) - (1~*'\

+ 2(1 - K ' 2 ) ( l - K ' ) 2 N K ] , (90)

and -jjT is the effective land pressure gradient. For a single-threaded
d\

seal, Hodgson (9) showed based on assumption (2) at the beinning of

this chapter that

dP w' + b' dP ,-.,.
dTT

 =~ C°S "dL * (91)

Li

As was shown in Reference (13), Equation (91) remains valid for a

multi-threaded seal.

Combining Equations (89) and (91) the land leakage flow becomes

V - TTD4(w' + b') cos a dP _ TTD4(w'+ b') cos a A , .
VL ~ 128y w' AL dL ~ 128y w'L \ AP (92)

2.3 Total Seal Flow and Sealing Coefficient

The total seal flow is obtained by combining Equations (88) and

(92). The result is

T T - [ A Z Z ] (93)T y L p p c L 2 L u c u

where

= frD(b')3h sin2 ot
P 2(w' + b')
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_ TTD4(b' + w') cos a

and

Ac 128 w'

TTDb'hc2 cos a sin a
u " 6(w' + b1)

The specific molecular flow rate is

i- - X-l>Ap AP ^kT

or

where Equation (12) is used to eliminate AP0

A common dimensionless viscoseal performance index is called the

sealing coefficient and is defined by

A _ 6UUL

c2Ap (95)

where AP is the pressure difference at zero flow. By equating VT to

zero in Equation (93), the sealing coefficient is obtained as

A Z + A ATA p p c L

u c u

A digital computer was used to compute the specific molecular

flow rate from Equation (94) and the sealing coefficient from Equation

(96). In order to evaluate the summations, Z , Z , and Z , it is
p c u

necessary to determine the eigenvalues which satisfy Equation (71).

Newton's method of approximating roots was employed to solve Equation

(71) for these eigenvalues at each Knudsen number.



-43-

3. EXPERIMENTAL INVESTIGATION

Since no reliable performance data were available for viscoseals

having a rarefied gas as the sealant it was necessary to conduct an

experimental investigation. The object was to obtain performance data

which could be used-to-evaluate the theoretical models. These - ~ ~

investigations were conducted on multiple groove two-inch diameter

viscoseals operating over a wide range of shaft speeds and gas densities.

Data were obtained with no leakage through the seal which permitted the

evaluation of sealing coefficients. In addition data were obtained for

a wide range of net leakage conditions. All rarefied data were obtained

using argon as the sealant. Continuum sealing coefficient data were

obtained using air as the sealant.

3.1 Viscoseal Test Section

The experimental apparatus was designed to investigate viscoseal

performance in the gas flow regime between continuum and free molecule flow.

The viscoseal test section, Figure 7, consists of an outer housing

with its associated vacuum pumping system surrounding a rotating grooved

shaft. The shaft is a hollow eight-inch cantilever extension of a high

speed spindle shaft which is belt-driven through an intermediate spindle

by a direct current motor. The drive system is capable of seal shaft

speeds from zero to 35,000 rpm. The speed control for the motor is

self-regulating and maintains a selected speed within +0.1 percent.

Since the entire test section operates under vacuum, a rubbing contact

graphite ring seal is provided where the rotating shaft penetrates the

housing. The ring seal is a series B-103032, Type E, manufactured by

the Cleveland Graphite Bronze Division of the Clevite Corporation.

Cooling water and air are supplied at the ring seal end of the spindle
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to minimize thermal growth due to the rubbing seal friction under

dynamic conditions. A Conflat vacuum flange is provided between the

housing and its support for purposes of sealing and two provide minor

adjustment capabilities for housing-shaft alignment. Other vacuum

seals are obtained by the use of "0" rings in addition to vacuum

sealants for threaded connections. The maintenance of a high quality

vacuum system with essentially no atmospheric leakage, except at the

shaft seal, was assured by the frequent use of a helium leak detector

throughout the experimental program.

Experimental data were obtained for two different viscoseal

geometries consisting of a grooved shaft inside a smooth housing.

Pertinent specifications of the rarefied viscoseals are contained in

Table I.

Table I. Dimensional Specifications of Viscoseals (All Dimensions are in
Inches)

Parameter Seal No. 1 Seal No. 2

Housing diameter (+ 0.0003) 2,0088 2.0088

Shaft diameter (+_ 0.0001) 2.0005 2.0005

"Cold" radial clearance
(+ 0.0002) 0.00418 0.00418

Axial length (+ 0.005) 4.530 4.530

Groove axial width 0.03111 + 0.0003 0.1691 + 0.012

Land axial width 0.03235 + 0.0003 0.2016 + 0.012

Groove depth 0.03065 + 0.0003 0,0144 + 0.0005

Groove helix angle 9.30° 19.474"

Aspect ratio, (b cos a)/h 1.002 11,071

'.o
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A schematic diagram of the overall experimental test apparatus

is shown in Figure 8.

J.2 Vacuum Pumping System

It was necessary to develop a vacuum pumping system capable of

providing the desired low pressures and gas flow rates. This task was

accomplished by connecting two independent vacuum pumping systems in

parallel to a common reservoir, Figure 8. One of these pumping systems

consisted of a single stage rotary oil-sealed mechanical pump mated with

a three-stage high vacuum oil diffusion pump. This part of the pumping

system was connected to the reservoir with a laige diameter open-or-close

vacuum valve. The second pumping system was composed of another single

stage rotary oil-sealed mechanical pump mated with a positive displacement

roots blower type vacuum pump- This portion of the pumping system was

connected to the reservoir througha throttlable high vacuum valve.

Through manipulation of the two connecting valves it was possible to

regulate the pumping speed over a suitable range of downstream test section

pressures. The complete vacuum pumping system was capable of attaining

pressures to 10 millimeters of mercury with a blanked-off system,,

3.3 jjis t r ument at i on

The radial alignment of the shaft within the housing was determined

by the use of five proximity detectors manufactured by the Bentley-

Nevada Corporation. These probes were located near either end of

!>e viscoseal section. When viewed from the shaft drive end of the

test section, the probes of the first set were located at 12, 3,

and 6 o'clock positions, and the probes of the second set were

located at 12 and 3 o'clock positions„ The arrangement of the

probes permitted the shaft to be aligned within the housing to a

value of eccentricity ratio (shaft centerline deviation/mean radial
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clearance) on the order of 0.05. The probes were also used to determine

the thermal growth of the shaft caused by the graphite ring seal

friction when the shaft was rotating. In addition, the probes
!

permitted the measurement of all vibrational movements of the shaft.

The output gains of the detector amplifiers were individually adjusted

and calibrated to ensure a linear output voltage of the probes as a

function of the clearance gap.

Pressure measurements upstream and downstream of the viscoseal

were obtained using both McLeod gauges and absolute aneroid type

gauges. The McLeod gauge is normally considered to be a primary standard

(30), but after previous attempts (31) to use thermocouple gauges,

ionization gauges and cold cathode gauges, it was apparent that McLeod

gauges were the only instruments capable of giving the desired accuracy

and reproducibility. The McLeod gauges utilized were the GM-100A

gauge manufactured by the Consolidated Vacuum Corporation and are

described in detail in Reference (31).

Temperature measurements of the argon entering the high pressure

end of the viscoseal test section were made early in the experimental

program using a thermocouple. A comparison of the measured gas

temperature with the ambient (room) temperature revealed that the error

involved in using room temperature instead of the actual gas temperature

was less than one percent. Therefore the gas temperature was taken to

be 297°K in all data calculations.

Speed measurements of the viscoseal shaft were made using a

magnetic pickup located near the attachment nut for the drive belt

pulley on the high speed spindle. The pulses from the pickup were

registered using an electronic counter to obtain shaft rpm0 The speed
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measurements were independently verified using a calibrated hand held

tachometer in the low rpm range and a calibrated strobotac over the

entire speed range of 0 to 35,000 rpm.

The molecular flow rate through the viscoseal test section was

determined using a variation of a constant pressure method developed

by J. R. Downing (30) for the measurement of pumping speeds of vacuum

pumps. The technique consists of applying the perfect gas equation

of state to known gas volumes at two different time periods. In brief,

the flow measurement is obtained by adjusting the indexed valve of

Figure 8 to a desired setting and waiting for steady state to be

achieved in the test section as indication by pressure and proximity

probe measurements. The shut-off valve leading from the constant

pressure gas reservoir is then closed and the rate of rise of manometer

fluid in the right hand side of the manometer is observed. With

knowledge of the manometer cross sectional area, the rate of fluid

rise, the value of the calibrated volume, the initial and final pressures

in the calibrated volume, and the gas temperature, the molecular flow

rate is calculated in the following manner.

Consider the flow measurement diagram of Figure 9- Let

V = calibrated volume including tank and manometer down to

the zero deflection line, "0"

P = atmospheric pressure

Hj = initial manometer deflection

H? = final manometer deflection

A = cross section area of manometer tubem

W = specific weight ofmanometer fluid
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From Quid statics:

P,- = P + 2WHn1 o 1

P = P - 2WH...
2 o 2

The corresponding gas volumes are:

V = V + HnA1 o 1m

V - V - H_A .2 o 2m

Applying the perfect gas equation of state,

PV = NKT, (97)

on a molecular basis to determine the number of molecules within the

system at time (1) and time (2), then,

P V P V
11 22AN = NI - N2 = -±j± - ~~ . (98)

Assuming isothermal conditions and substituting for the pressures and

volumes, Equation (98) simplifies to,

M - \T 2 {Am[Po + 2W(H1 * H2>] + 2WVo > ' (99)

The flow measurement system was operated experimentally such that

Letting

H = Hl + H2

and At be the time period for the total deflection H, then the molecular

flow rate is

The basic premise for the measurement system rests in the fact

that while the pressure in the calibrated volume does change slightly,

less than + 1%, it still remains very close to atmospheric pressure.
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Th us , the change in flow rate through the valve is negligibly affected

by the slight decrease in the pressure within the calibrated volume

during the course of a measurement.

3.4 Experimental Procedure

Experimental data of two different types were obtained for the

operation of the viscoseals in the rarefied regime. These may be

described as net flow leakage data and sealing coefficient data. The

operational procedure utilized in gathering the data differed only in

respect to shutting off the argon gas supply when obtaining sealing

coefficient data.

All data were acquired by the coordinated adjustment of the gas

supply rate, the vacuum pumping speed, and the seal shaft drive speed

followed by a time period sufficient to obtain a steady-state condition.

Following achievement of steady state, final readings of the gas flow

rate, pressures upstream and downstream of the viscoseal, and the

proximity probes were made. The proximity probes were used to record

the seal clearance which decreases slightly with increasing shaft

speed due to the friction of the graphite ring vacuum seal-

3.5 Data Treatment

The viscoseal performance data for both the net flow leakage tests

and the sealing coefficient tests were correlated versus an index of the

flow rarefi cation, Knudsen number. The mean radial clearance, c, was

selected as the viscoseal characteristic dimension. Thus using the

CV paan relationship for the mean free path, the experimental values

for Knudsen number were determined using the following equation.

- T)1/2
- (101)

2P
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Th e mean free path was based on the average seal section pressure

PT + P.
P = 0 . (102)

The molecular flow rates for the net flow leakage data were

calculated using Equation (100). These data were revised to specific

molecular flow rates by dividing by the pressure drop, AP, across the

viscoseal, or

' H[A P + 2WV ]
N . . _ m o o nn,v
AP (P - Pb)AtKT ' ^ '

The sealing coefficient data were calculated from the zero net

leakage tests using

A = - - ^. (104)
AP/ (PT - Pb)c

I
3.6 Experimental Uncertainty. A detailed analysis was performed

to estimate the propagated uncertainty in the final performance parameters

based on the individual uncertainties of all measured variables. The

analysis was performed using standard statistical techniques after

postulating a normal distribution in the uncertainty of each variable.

This method of analysis assumes all errors are random in nature.

Considerable effort was expended during the experimental investigation

to minimize any error of a systematic nature.

The propagated uncertainties, in general, are not constant and vary

with the degree of rarefication. The uncertainty in the specific

*

molecular flow rate, N/AP, of Equation (103) is j^ 5.1 percent at an

Inverse Knudsen Number of 27 where the calibrated volume, V ,

contribution is 84 percent of the total. The uncertainty in the

specific molecular flow rate increases to + 8,9 percent at an Inverse
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Knudsen Number of 0.50 where the uncertainty in the differential

pressure, AP, contributes 72 percent of the total. The ability to

determine the Inverse Knudsen Number of Equation (101) is estimated

at + 4.8 percent for 1/N equal to 27 and increases to + 5.7 percent for
K. "~"

l/N equal to 0.50. The propagated uncertainty estimate in the sealing
K.

coefficient, A, of Equation (104) is insensitive to the degree of

rarefication and remains at essentially + 9.6 percent. The uncertainty

in the radial clerance, c, contributes approximately 99 percent of

the propagated uncertainty estimate for A0 It should be noted that

the clearance uncertainty is controlled by the ability to establish

the diameters of the seal shaft and housing and not by any limitations

of the proximity probe system.

All uncertainties are stated to a confidence level of 95 percent.

3.7 Investigations Conducted

Sealing coefficient performance data and net leakage performance

data were obtained for each of the two geometries. Sealing coefficient

data were obtained over a wide range of sealant gas rarefication for

shaft speeds of zero, 5000 e 10,000, and 30,000 rpm. Net leakage data

were also obtained over comparable ranges of rarefication and shaft

speeds. These data are presented and discussed in Section 4 and the

reduced data are tabulated in Appendix B.

4. RESULTS

* Two types of results will be presented for each of the three

analytical models. Net leakage and sealing coefficients will be given

as a function of the degree of rarefication. The inverse Knudsen

number is used as the parameter indicating the degree of rarefication.
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4.1 Net Leakage

The net leakage flow occurs from the high pressure end to the

low pressure end of the viscoseal when the viscous pumping

action is insufficient to overcome the pressure induced flow in the

grooves and through the annular clearance space. The net leakage data

are shown in Figures 10 through 15. These data are presented in the

form of specific leakage rate (units of molecules per sec-yHg) versus

Inverse Knudsen Number. The experimental data for viscoseal Seal No. 1

are shown in Figures 10, 11, and 12„ The theoretical specific leakage

values as predicted by the Modified Hodgson Model are shown in

Figure 10. These theoretical values were obtained by using Equation (6)

for the zero rpm case and Equation (8) for the 5000; 10,000; and 30,000

rpm cases. The Slip Modified Boon and Tal Model was used to determine

the theoretical values shown on Figure 11. Two solutions for this model

are presented. The mean-value values were calcualted using Equation

(55). The variable-mean-free-path values were obtained by solving

Equation (46). In Figure 12 theoretical values for the Annulus-Groove

Model are presented. Equation (94) was used to determine the theoretical

values shown in Figure 12.

The experimental data for Viscoseal No. 2 are presented in Figures

13, 14, and 15. These figures contain data for one additional speed,

2500 rpm. The theoretical specific leakage values shown on these

figures were determined in the same manner as described above for
t

Viscoseal No. 1-

In Section 2 ,,25 a composite type solution was discussed for the

Slip Modified Boon and Tal Model. This type of composite solution is
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obtained by the superposition of the corrected continuum-slip flow

contribution with the self-diffusion flows in the annular apace and

the grooves. The corrected continuum-slip flow is determined by

taking into account the fact that all the molecules cannot experience

j:.he slip boundary condition. This procedure is explained in detail

in Section 2.23. A detailed procedure for calculating the self-diffusion

flows is given in Section 2.24. Tables II through VII present composite

solution results and the uncorrected continuum-slip results. In each

table the first column on the left is Inverse Knudsen Number. Moving

to the right in the tables the second column is the uncorrected

continuum-slip solution. The third column is the particle-slip

corrected solution. The fourth column is the self-diffusion through the

annular clearance space, the fifth column is the self-diffusion through

the grooves, and the last column is the composite solution.

Table II shows specific leakage results from the Slip-Modified

Boon and Tal Model for Seal No. 1 at zero rpm. Table III is the same

except that these results are for 5000 rpm. Tables IV and V contain

specific leakage as predicted by the Boon and Tal Model for Seal No. 2

at zero and 2500 rpm, respectively. Tables VI and VII contain results

for the Annulus-Groove Model. Table VI is for Seal No. 2 at zero rpm

and Table VII is for the same seal at 2500 rpm. These are typical

composite solution results. The particular results shown in Tables II

through VII were chosen because they were the cases which gave the.

largest deviations between the composite solution and the simpler non-

corrected continuum-slip solution.
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4.2 Sealing Coefficient

The sealing coefficient as defined in Equation (95) is a common

dimensionless viscoseal performance index. The relationship which

exists between the net leakage flow and the sealing coefficient can

best be shown by reference to Figure 16. A family of net leakage

curves as a function of the seal pressure ratio for a fixed shaft speed

are shown. The curves progress to the left for increasing values of

pressure ratio until the (r + l)/(r - 1) factor approaches unity.

When the family of net leakage flow curves are extended to the zero

net flow condition, a corresponding sealing coefficient condition may

be indicated for each of the pressure ratio curves. Operating the

rarefied viscoseal at "negative" net leakage is simply another way of

saying that the viscoseal has now become a positive flow pump,,

In Figures 17 through 22 sealing coefficient data and theoretical

values are presented. Figures 17, 18, and 19 show results for

Viscoseal No. 1 at 5000; 10,000; and 30,000 rpm. Figure 17 presents a

comparison of experimental data and theoretical values as predicted

by the Modified Hodgson Model. Figure 18 shows the same type of

comparison for the Slip Modified Boon and Tal Model. Theoretical

values are shown for both the mean-value and variable mean free path

solutions. Figure 19 is a similar comparison for the Annulus-Groove

Model.

Figures 20 through 22 show experimental and theoretical values for

Viscoseal No. 2. Again data and analytical values are shown for each

of the three models at speeds of 5000; 10,000; and 30,000 rpm.
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5. CONCLUSIONS

Examination of Figures 10, 11, and 12, for Seal No. 1, indicates

that the Annulus-Groove Model gives the best agreement with the

experimental data. The Slip Modified Boon and Tal Model gives the

poorest agreement. All three models predict the general characteristic

for this low aspect (groove width to groove depth ratio) ratio, 1.002,

seal. It is concluded that none of the theoretical models are completely

adequate for predicting the leakage through low aspect ratio viscoseals.

The Annulus-Groove Model is recommended for low aspect ratio viscoseals

and Inverse Knudsen Numbers greater than 5.

For Seal No. 2, the results shown in Figures 13, 14, and 15

indicate that the Slip Modified Boon and Tal Model gives a better

correlation with experimental data than either of the other two models.

The only exception is for static (zero rpm) conditions having Knudsen

Numbers greater than 0.5 where the Modified Hodgson Model shows better

agreement. The aspect ratio of this geometry was 11.071 as compared to

1.002 for Seal No. 1. As anticipated the Slip Modified Boon and Tal

Model is much better for the higher aspect geometry than for low aspect

ratio geometries. The variable mean free path solution is only slightly

better than the mean-value solution to the Slip Modified Boon and Tal

Model. In view of the added complexity of the variable mean free path

solution, it is recommended that the mean-value Slip Modified Boon

and Tal Model be used to predict viscoseal leakage for high

aspect ratio geometries provided the Inverse Knudsen Numbers are

greater than 5. It is of interest to note that the 2500 rpm data for

Viscoseal No. 2 seem to approach a constant specific leakage value with

increasing Knudsen number.
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In Tables II through VII a comparison between the continuum-slip

and composite type solutions are shown for the Slip Modified Boon and

Tal Model and the Annulua-Groove Model. These particular cases were

chosen for presentation since they are the ones which gave maximum

deviation between the two solution techniques- Examination of Table II

shows that the diffusion flow contributions in both the annular space

and the sixteen grooves are only one percent of the total composite

flow at an Inverse Knudsen Number of 7.0 and decrease rapidly with

decreased rarefication„ At an Inverse Knudsen Number of 0.01 it can be

observed that the diffusion contributes 92 percent of the total composite

solution and thus the transport is essentially free molecular. This

same trend is evident for the other two static cases as shown in

Tables IV and VI- In Tables III, V, and VII the negative values of

specific leakage simply indicate that the viscoseal is acting as a

pump, i.e., the viscous pumping flow due to the grooves is greater than

leakage flow.

For the Slip Modified Boon and Tal Model the maximum deviation

between the composite solution and the continuum solution is less than

three percent for Inverse Knudsen Numbers greater than 5.0. The deviation

increases with rarefication and has a maximum value of approximately

twenty-five percent. This maximum occurs at 1/N = 0.01 and zero rpm
K.

for Seal No. 2.

For the Annulus-Groove Model the maximum deviation is less than

two percent for Inverse Knudsen Numbers greater than five. The maximum

deviation was approximately sixty percent at 1/N =0.01 and 2500 rpm
K.

for Seal No. 2.
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The good agreement between the rather complex composite solutions

and the continuum-slip solutions for Inverse Knudsen Number greater than

five is apparent. It is concluded that the complex composite solutions

cannot be justified for Inverse Knudsen Numbers greater than 5.0.

Consideration of the results shown in Figures 17 through 22

reveals several important aspects of the three analytical models. Only

the Modified Hodgson Model and the variable mean free path solution to

the Slip Modified Boon and Tal Model predict the general sealing

characteristics which are evidenced by the experimental data. In

general the models predict better sealing performance (smaller sealing

coefficients) than what actually existed. It may be observed that the

experimental data indicate that the sealing coefficient parameter

becomes speed sensitive as the sealant gas becomes rarefied. This

sensitivity to shaft speed for the rarefied-gas viscoseal is unique

from the operation in the laminar continuum regime where the sealing

coefficient is independent of shaft speed (14, 15). This continuum

characteristic may be seen by noting the asymptotic behavior of the

experimental data for 5000 and 10,000 rpm as the continuum (1/N >
K

100) regime is approached. These data may be compared since the mean

radial clearance is essentially the same for both speeds.

Examination of Figures 18 and 21 reveals that the mean-value

solution to the Slip Modified Boon and Tal Model can predict a seal

pressure differential, AP, which may exceed the magnitude of the upstream

pressure. This solution would imply a negative absolute value for the

downstream pressure, a condition which cannot occur in reality. A

limiting criteria to be applied to this theoretical solution to avoid

this condition is predictable by considering the variables involved.
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As stated previously, the Knudsen number

2Pc

is based on the average pressure in the seal

PT + Pb 2PT - AP

As the downstream pressure approaches zero, then AP approaches the

upstream pressure and for this limiting condition

po, AP
r ̂  2 '

Thus, the Inverse Knudsen Number variable may be written as

_°

The Sealing Coefficient variable is defined as

A 6VULA = - - .
APc

Solving for AP in the Inverse Knudsen Number relationship and

substituting this into the above equation gives the limiting functional

relationship

6UL • • (105)* 1 / 2T)

For a given seal geometry, gas, temperature, and operating -speed, the

limiting seal coefficient function varies inversely with the Inverse

Knudsen Number, 1/N . On a logarithmic plot such as Figure 17, this
IS.

relation will plot as a straight line with a slope of minus unity.
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Points which fall above and to the right of this line are possible while

those which fall below and to the left are not possible in that a

negative absolute pressure downstream is implied. The limiting

relation of Equation (105) is speed sensitive and thus the limit

condition can be established for each selected shaft speed. Limit curves

for speeds of 5000, 10,000, and 30,000 rpm from Equation (105) are

shown on Figures 18, 19, 21, and 22. The experimental sealing

coefficient data agree well with these limit curves and all points

fall within the "possible" regions. In addition, the speed sensitivity

of the experimental data agrees with that indicated by Equation (105).

It should be noted that the limiting function of Equation (105)

results from a limit condition of the variables involved and applies

to any and all viscoseal analyses using these variables.

The limiting relationship just established is shown on Figures 18

and 21 to indicate that the mean-value solution to the Slip Modified

Boon and Tal Model when used in conjunction with Equation (105) is a

useful technique for predicting sealing coefficient performance. This

limiting relationship can also be used with the Annulus-Groove Model.

The devaiation of predicted performance from experimental results

is approximately the same for each of the three analytical models

when the limiting relationship is used on the mean-value Slip Modified

Boon and Tal Model and the Annulus-Groove Model. Theoretical values

are not presented for the composite type solutions since there is

negligible difference between the composite solutions for sealing

coefficient and the continuum-slip solutions.

Since most practical seal geometries will result in a high

aspect ratio, near 10, it is concluded that the simplicity of the mean-
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value solution to the Slip Modified Boon and Tal Model in conjunction
i

with the limiting relationship justifies its use. For low aspect ratio

geometries the Annulus-Groove Model in conjunction with the limiting

relationship is recommended. The complexity of the variable mean free

path solution (Slip Modified Boon and Tal Model) cannot be justified

in view of the small improvement in predicted value. The composite

solutions are not practical for the same reasons.

6. RECOMMENDATIONS

In general it is recommended that the mean-value solution to the

Slip Modified Boon and Tal Model, Equation (55), be used to predict

viscoseal leakage for rarefied conditions resulting in Inverse Knudsen

Numbers greater than 5. No satisfactory analytical model has been

developed in this study to predict leakage for Inverse Knudsen Numbers

less than 5.

To predict sealing performance it is recommended, in general,

that the mean-value solution to the Slip Modified Boon and Tal Model,

Equation (50), in conjunction with the limiting relationship,

Equation (105), be used.

It should be noted that the variable mean-free-path solution to

the Slip Modified Boon and Tal Model is more accurate for all conditions.

If use is made of a high speed digital computer its complexity becomes

less important and thus its use may be justified.
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u = 0

u = 0

Figure 3. Groove Cross Section
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Argon
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Open to
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II
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-^- 0 - zero deflection line
I I ,

Figure 9. Flow Measurement Schematic Diagram.
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APPENDIX A. CONSTANTS FOR HODGSON'S MODEL

The following expressions for the coefficients in Hodgson's

Model are taken from reference (9).

. NTTdb2h
A = 120(b + h) C°8 a

bh3(b
B =

8K (bh)2(b + w) ,
c = _ _ • * • _ , _ - f^1 *-i *•

3TTd(b + h)

n' TTdc3(b + w)
12yw

w)

2(b + h)2h

1/9
+ h)]

2K b
C =2 K^ (b + h) l

C3

= _ [ a l n ( a + ( 1 + a ) ^ + a 2 l n 1+ (1 + a2)1/2

1 8a2 a

+ i (1 + a3 - (1 + a2)372)]
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Values of K~

w/c 0.1 0.2 0.4 0.8 1 2 3 A 5 10

K2 0.036 0.068 0.13 0.22 0.26 0.40 0.52 0.60 0.67 0.94

When w/c > 10, KZ = -g In ̂  .

The groove flow coefficients, B, C, C,, and C« are obtained

from a consideration of flow in a long rectangular tube. The continuum

groove flow coefficient, B, is obtained from the continuum solution for

Poiseuille flow in a long rectangular tube. From a consideration of

purely molecular flow, the free-molecule flow coefficient, C, can be

derived. The basic free-molecule flow equation used by Hodgson is

given in Reference (32) and is written as

Equation (106) is attributed to Knudsen (32, p. 35), but the constant

K , which is equal to K-, is obtained by Clausing (32, p. 40). 0 and

S are the groove cross sectional area and perimeter, respectively.

The two remaining groove flow constants, C, and C~ , are obtained in

the same way Knudsen determined v and £ in Equation (1) . As was

pointed out in Section 2.1, the determination of the ratio V/£ requires

knowledge of the continuum with slip solution, Hodgson does not take

an exact approach at this point since he determines C,/C? from the

continuum with slip solution for flow between infinite parallel flat

plates rather than flow in a long rectangular tube.

Hodgson obtains the land leakage flow coefficients, D, E, C_,

and C, , from a consideration of flow in a thin slit-like tube. In this
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case the continuum coefficient, D, is obtained from the continuum

solution for Poiseuille flow between parallel flat plates. The same

basic model, Equation (106), for free-molecule flow is used to determine

the free-molecule flow coefficient, E. K^ now becomes K,, which is

also attributed to Clausing. 0 and S now represent the cross sectional

area of the land leakage passageway and its perimeter, respectively.

The constants C,. and C. are also determined using the same approach

Knudsen used to determine V and £ in Equation (1). For the continuum

with slip solution, Hodgson once again uses the continuum with slip

solution for flow between infinite parallel flat plates which in this

case is the proper solution to use.
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APPENDIX B. TABULATED EXPERIMENTAL REDUCED DATA



-96-

Net Leakage Reduced Data for Seal No. 1, Zero rpm - Argon Gas

Data Point No.

1 ' -
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

PT
yng

16,800
19,150
21,400
22,600
17,000
12,150
9,370
8,100
6,850
5,450
4,180
4,200
2,950
1,870
13,800
1,740
1,700
1,720
752
428
318
251
216

4,000
2,320
1,460
1,025
600
475

Pb
yhg

7230
7705
8155
8430
7465
565
538
522
512
500
495
490
487
482
1250
255
260
275
227
132
129
131
131
131
172
166
168
172
131

1/NK

24.68
27.57
30.32
31.87
25.09
13.05
10.15
8.84
7.54
6.10
4.79
4.80
3.52
2.41
15.40
2.10
2.01
2.05
1,00
0.57
0.46
0.39
0.36
4.23
2.55
1.66
1.22
0.77
0.62

N/AP

x 10-U

18.16
20.30
21.60
22.08
17.45
10.60
9.06
8.24
7.28
6.34
5.50
5.46
4.65
3.81
11.31
3.47
3.60
3.59
3.23
3.02
2.83
2.40
2.48
5.26
4.15
3.46
3.30
2.77
3.20
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Net Leakage Reduced Data for Seal No. 1, Dynamic Speeds - Argon Gas

Data
Point
No.

1
2
3
4
5
6
7
10

11
12
13
14
15
16
17

18
19
20

PT

10,000

9,380
6,410
13,200
16,700
28,700
32,500
8,050
31,000

5,000

16,800
11,200
7,900
6,150
3,700
1,950
1,250

30,000

44,000
49,900
39,800

Pb

rpm, c x

335
60
86
93
150
166
64
233

rpm c x

63
42
33
30
27
26
29

rpm, c x

53
64
49

I/NK

103 = 3.87 in.

8.83
6.03
12.9
15.9
27.5
30.9
7.78
30.7

103 = 3.85 in. ,

16.6
10.6
7.18
5.88
3.51
2.03
1.32

103 = 3.29 in.

36.0
40.9
31.4

N/AP

x 10-14

, 7 = 146.4
P

0.558
0.117
1.50
2.74
7.80
9.80
0.237
10.15

"r = 176.6
P

7.29
4.14
2.61
1.88
0.953
0.540
0.290

, 7 = 807
P

0.451
1.36
0.038

c

in. x 103

3.81
3.80
3.90
3.87
3.87
3.87
3.91
4.01

4.01
3.84
3.69
3.88
3.84
3.76
3.94

3.33
3.33
3.20
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Coefficient Reduced Data for Seal No
- '..-• •<-;;,,' ,,',; ''-rMsO gn

. 1 - Argon Gas

Data Point
No.

SP1
SP2
SP3
SP9
SP10
SP13
SP14
SP19

PT

10

7,160
9,860
5,200
14,200
17,200
19,200
8,700
7,350

o
JJQC

,000 rpm, c

267
1220
275
3495
6605
7755
44
44

5000 rpm, c x

SP4
SP5
SP6
SP7
SP15
SP16
SP17
SP18
SP20*
SP21*
SP22*
SP23*

*Argon

SP11
SP12

2,600
11,000
3,880
3,160
2,850
13,300
3,920
4,400
4,200
7,000
7,550
13,100

blanket

35,200
38,100

166
4730
176
407
50

8245
146
382
559
1835
1710
8145

1/NK

x 103

7.47
11.1
5.01
16.9
22.6
25.5
8.29
6.96

103-

2.69
15.6
3.94
3,47
2.72
20.6
3.69
4.65
4.47
8.44
8.94

20.7

on graphite ring

30,000 rpm,

104
68

c x 10

29,3
30.9

A " -

= 3.98 in.

40.2
31.8
68.3
28.3
29.3
27.1
36.4
43.1

3.99 in.

60.8
22.5
39.9
53.7
56.7
30,2
46,5
36.6
43,6
29.6
25,5
29,8

seal.

3 =» 3.41 in.

34.7
33.5

.. ., „
" Re"" "c

1.01
1.49
0.67
2.28
3-02
3.42
1.10
0.93

0.18
1.03
0.26
0.23
0.18
1.39
0.25
0.31
0.30
0.57
0.60
1.39

11.8
12.5

, — . —
c ?.;.:< '

q"in. x 103'0
•O"

_

4.18
4.15
3.80
3.98
3.94
3.94
3.91
3.91

4.04
4.11
4.04
4.04
3.90
3.98
3.73
4.04
3.90
3.97
4.01
4.04

3.44
3.37



-99-

Continuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air

Data
Point
No.

2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18
19
20

22
23
24
25
26
27
28
29
30
31

Speed
rpm

4,905
8,080

11,500
13,200
19,600
23,400
25,400
29,600
31,800
34,600
21,600

9,700
4,800
6,400
7,900
9,700

11,600
13,150

1,272
3,219
4,644
6S399
7.869
9,582

11,562
13,269

7,392
1,278

AP
in.-H20

Test

2.45
3.74
5.15
5.74
8.49

10.38
11.45
14.27
16.50
19.58

9.45
4.45
2.40
3.19
3.69
4.40
5.12
5.74

Test

0.73
1.69
2.34
3.08
3.68
4.35
5.13
5.83
3.51
0.74

A

Date 6-25-69

23.7
25.6
26.5
27.2
27.4
26.6
26.2
24.5
22.8
20.9
27.0
25.8
23.7
24.5
25.4
26.0
26.8
27.1

Date 7-2-69

20.6
22 ,6
23.5
25.0
25.2
26.0
26.7
27.0
24.9
20.4

RP c l
c in. x 10

88.1 4.18
145.4
207.3
238.1
354.7
424.4
461,3
539.5
581.2
634.9
391.4
174.6
87.1

116.2
143.5
176 o 4
211.1
239.5

23.1 4.18
58.5

• 84.5
116.5
143.4
174.7
211.0
242.5
134.6

23.2



-100-

Contlnuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air

Data
Point
No.

32
33
34
35
36
37
38
39
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Speed
rpm

1,566
3,540
5,130
6,690
7,980
9,750
9,990

13,800
14,100
19,230
21,180
23,400

5,040
1,278
3,540
5,010
6,570
7,740
9,720

11,490
13,830
2,580

510

AP
in.-H20

Teat

0.87
1.80
2.57
3.17
3.70
4*40
4.50
6o01
6.21
8.66
9.34

10.41
2.50
Oo71
1.81
2. 46
3.12
3.60
4.35
5.04
5.99
1.34
0.28

A

Date 9-2-69

21.5
23.3
23.6
25.0
25.5
26o3
26.3
27.2
26.9
26.3
26.8
26.6
23o9
21.3
23o2
24..1
25.0
25.5
26,4
27.0
27.4
22,8
21.6

Re C 3. c in. x ICT

28.1 4.18
63.7
92.4

120.6
144.0
176.0
180.4
249.7
255.2
349.1
384 .8
425.7

90 .'8
23.0
63.7
90.2

118.4
139.6
175.5
207.6
250.2

46.4
9.2



-101-

Continuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air

Data
Point
No.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Speed
rpm

507
2,460
3,600
5,010
6,360
7,470

699
1,194
1,338
1,530
1,710
1,950
2,190

270
627
867
762

1,374
1,647
2 ,229
2,970
3,960
4,980
5,760
7,140
8,280
9,090

10,410
11,640
12,720
13,530

AP
in. H20

Test

0.28
1.29
1.84
2.46
3.04
3.39
0.39
0.66
0.74
0.85
0.94
1.05
1.17
0.15
0.35

- 0.48
0.42
0.75
0.90
1.19
1.54
2.00
2.45
2.78
3.35
3.80
4.12
4.63
5.12
5.57
5.95

A

Date 9-17-69

21.5
22.6
23.2
24.1
24.8
26.1
21.2
21.4
21.4
21.3
21.5
22.0
22.1
21.3
21.2
21.4
21.5
21.7
21.7
22.2
22.8
23.5
24.1
24.6
25.2
25.8
26.2
26.6
26.9
27.1
27.0

Re C 3
c in. x 10

9.2 4.18
44.6
65.3
90.9

115.5
135.8
12.7
21.6
24.2
27.7
31.0
35.3
40.0
4.9

11.4
15.7
13.8
24.9
29.8
40*4
53.9
71.8
90.4

104.6
129.8
150.6
165.4
189.5
212.0
231.8
246.7
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Net Leakage Reduced Data for Seal No. 2, Zero rpm,, Argon Gas

Data Point No.
u Tyhg

1 17,000

2 14,300

3 10,200

4 8,080

5 3,550

6 1,500

7 770

8 2,460

9 5,800

10 440

11 145

12 251

13 680

14 65,500

15 40,500

16 28,900

17 64

b
LliLC

425

403

385

382

375

363

360

355

355

3.0

1.8

2.2

4,0

920

420

265

1,6

1/NK

18.00

15.10

10.90

8.68

4.02

1.91

1.16

2.89

6.31

0.45

0.15

0.26

0.70

68.10

42.00

29.90

0.067

N/AP

x ID'14

17.50

15.40

11.80

9.87

6.12

4.43

4.05

5.26

8.13

3.81

3.68

3.81

3.92

6.76

3.97

2.93

3.58



-103-

Net Leakage Reduced Data for Seal No. 2, Dynamic Speeds, Argon Gas

Data
Point
No.

PT
yhg

Pb
yhg

2500 rpm, ~c x 101 =

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

21,200
15,700
11,000
9,000
6,200
4,670
3,240
1,850

29,200
42,900
73,000
1,180

222
97
59

12,450
2,840
1,410

952
505

30,000

132,500
103,700

74,000
88,500

140
101
83
77
70
68
66
65

235
395
978

2.1
0.6
0.45
0.40

53
6.0
2.4
1.7
1.0

rpm, c x 10

1050
530
150
515

1/NK

3.94 in., 7

20.70
15.20
10.40
8.62
5.95
4.68
3.27
1.89

28.50
42.40
72.40
1.11
0.20
0.093
0.055

12.10
2.67
1.33
0.92
0.48

3 = 3.51 in. ,

120.5
94.1
62.6
70.3

0

N/AP

x ID'14

= 212,5

13.90
10.00
6.88
4.81
3.10
2.35
1.55
0.888

21.10
33.90
63.70
1.14
1.02
1.017
1.014
7.63
1.77
1.15
1.09
1.01

7 = 2 4 6 . 8
p

35.7
16.1
1.73
5.19

c

in. x 103

3.95
3.91
3.83
3.87
3.87
4.03
4.03
4.03
3.95
3.99
3.99
3.83
3.71
3.90
3.79
3.95
3.83
3.83
3.95
3.83

3.68
3.68
3.44
3.22



-104-

Net Leakage Reduced Data for Seal No. 2, Dynamic Speeds, Argon Gas

Data
Point
No11 \J •

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54

PT
yhg

5000

29,800
44,500
78,800
4,100
2,850
6,660
1,670
525
760
388
355

25,100
15,800
9,500
19,100
12,000
6,330
5,200

10,

17,100
27,800
33,500
23,100
7,150
14,600
16,500
10,900
88,100
44,400
36,100
66,000

Pb
yhg

rpm, c

200
360
1000

2.
1.
8.
0.
0.
0.
0.
0.

137
81
59
106
80
69
75

000 rpm,

70
109
135
115
0.
5.

lie

2.
1000
265
180
550

1/N

x

x 103 = 3.92 in. , 7

29.40
43.50
77.30

9 3.61
5 2.59
5 6.20
75 1.45
25 0.41
30 0.65
20 0.34
20 0.31

24.70
- 15 . 70

9.26
18.10
11.40
6.30
4.97

"c x 103 = 3.85 in.,

16.3
26.8 ',
31c9
21.8

6 6.61
5 12.40
0 14.20
2 9.71

87.10
42.80
34.80
64.50

N/AP
— 1 A

10

= 891.9

15.6
28.2
59.0
0.509
0.352
1.25
0.199
0.111
0.199
0.157
0.163
11.7
5.96
2.00
8.14
3.64
0.791
0.561

7 = 1879.2
P

1.11
5.72
8.55
3.23
0.0251
0.331
0.648
0.147
52.7
16.5
10.7
33.0

c
T

in. x 10J

3.99
3.95
3.95
3.59
3.71
3.79
3.54
3.19
3.47
3,59
3.54
3.99
4.03
3.95
3.97
3.77
3.77
3.75

3.87
3.91
3.86
3.83
3.77
3.46
3.51
3.63
3.99
3.91
3.91
3.95



-105-

Rarefied Sealing Coefficient Reduced Data for Seal No. 2, Argon Gas

Data
Point
No.

PT
yhg

Pb
yhg

5000 rpm, c x 10

SP1
SP2
SP3
SPA
SP5
SP6
SP7
SP8
SP14
SP15
SP18
SP19

SP9
SP10
SP11
SP12
SP13
SP16
SP22

SP20
SP21
SP17

4,600
35,000
33,000
12,000
24,000

8,950
8,250
3,180

42,000
56,200
2,610

520

10,000

39,000
14,000
10,700
19,000
24,900
54,000

4,450

30,000

111,200
50,200
63,000

90
28,000
25,800

4,400
16,600

2,330
1,670

50
34,800
49,000

66
3.8

rpnij c x

23,000
695
51

3,380
8,160

36,200
3

rpm, c x

42,200
1.1

205

1/NK

3 - 3.92

4.41
59.80
55.77
15.70
38.90
10.80

9.24
2.95

73.80
102.80

2.36
0.45

103 = 3.

58.20
13.54
9.91

20.80
31.00
87.30

3.87

103 = 3

123.00
36.10
51.1

A

in.

35.0
22.2
21.6
20.0
20.6
23.0
24.4
53.7
21.0
20.3
70.7

364

86 in.

19.7
24.6
30.8
20.7
18.9
16.8
83.1

.23 in.

18.8
32.1
20.3

R
e

c

0.296
4.006
3.739
1.053
2.608
7.245
6.195
0.198
4.945
6.893
0.158
0.030

7.804
1.817
1.329
2.788
4.162

11.704
0.519

49.463
14.534
20.564

c

in. x 103

3.91
3.94
3.94

^ 3.98
3.98
3.98
3.87
3.79
3.99
4.06
3.66
3.58

3.90
3.83
3.83
3.86
3.90
4.02
3.61

3.33
2.99
3.36



-106-

Continuum Sealing Coefficient Tabulation Viscoseal No. 2, Gas-Air

Data
Point
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Speed
rpm

543
1,148
4,140
3,480
2,850
2,310
1,710
1,110

570
4,800
5,430
6,090
6,690
7,380
8,040
8,700
9,300

10,020
10,590
11,250
11,790
12,510
13,110
14,520
13,680

AP
in. H-0

0.48
0.99
3.50
2.98
2.48
2.00
1.50
0.99
0.52
4.01
4.49
5.00
5.46
6.01
6.51
7.02
7.47
8.01
8.48
9.01
9.46

10.05
10.54
11.74
11.07

A

13.43
13.77
14.31
14.13
13.91
13.98
13.80
13.57
13.27
14.49
14.70
14.88
15.04
15.15
15.31
15.51
15.90
16.21
16.51
16.52
16.48
16.46
16,45
15.80 '
15.78

R
ec

9.73
20.6
73.7
61.9
50.7
41.4
30.4
19.7
10.11
85.5
96.6

108,1
118.6
130.6
142.0
153.0
162.0
173.4
181.5
193.0
202,4
214.9
225,3
254.3
239.4

c
in. x 103

4.18
4.18
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.13
4.12
4.11
4.10
4.09
4.07
4.03
4.00
3.96
3.96
3.96
3.96
3.96
4.03
4.03
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Contlnuum Sealing Coefficient Tabulation Viscoseal No. 2, Gas-Air

Data
Point
No.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Speed
rpm

4,950
10,200
14,850
16,440
18,180
19,590
21,210
22,650
23,700
24,930
25,920
27,000
27,900
28,890
29,760
30,510
31,410
32,130
32,940
34,110

AP
in.-H20

Test

•4.11
8.00

11.83
13.31
15.01
16.54
18.34
20.14
21.67
23.26
24.79
26.55
28.08
29.94
31.81
33.41
35.58
37.32
39.33
42.43

A

Date 9-2-70

14.30
15.28
15.19
14.95
14.66
14.33
14.00
13.61
13,24
12.97
12.65
12.31
12.02
11.66
11.32
11.05
10.67
10.41
10.12
9.72

R
c

89.1
183.6
267.2
296.4
328.5
354.6
384,,8
411.9
431.7
455.0
474.0
494.8
512.3
531.7
549.0
563.9
582.1
596.7

, 613.2
637.3

c 3
in. x 10

4.18
4.16
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14
4.14


