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EFFECT OF SPECIMEN THICKNESS ON FATIGUE-CRACK-GROWTH

BEHAVIOR AND FRACTURE TOUGHNESS OF 7075-T6

AND 7178-T6 ALUMINUM ALLOYS

By C. Michael Hudson and J. C. Newman, Jr.
Langley Research Center

SUMMARY

A study was made to determine the effects of specimen thickness on fatigue-crack
growth and fracture behavior of 7075-T6 and 7178-T6 aluminum-alloy sheet and plate.
Specimen thicknesses ranged from 5.1 to 12.7 mm (0.20 to 0.50 in.) for 7075-T6 and
from 1.3 to 6.4 mm (0.05 to 0.25 in.) for 7178-T6. The stress ratios R used in the
crack-growth experiments were 0.02 and 0.50. For 7075-T6, specimen thickness had
relatively little effect on fatigue-crack growth. However, the fracture toughness of the
thickest gage of 7075-T6 was about two-thirds of the fracture toughness of the thinner
gages of 7075-T6. For 7178-T6, fatigue cracks generally grew somewhat faster in the
thicker gages than in the thinnest gage. The fracture toughness of the thickest gage of
7178-T6 was about two-thirds of the fracture toughness of the thinner gages of 7178-T6.

Stress-intensity methods were used to analyze the experimental results. For a
given thickness and value of R, the rate of fatigue-crack growth was essentially a single-
valued function of the stress-intensity range for 7075-T6 and 7178-T6. An empirical
equation developed by Forman, Kearney, and Engle (in Trans. ASME, Ser. D: J. Basic
Eng., vol. 89, no. 3, Sept. 1967) fit the 7075-T6 and 7178-T6 crack-growth data reasonably
well.

INTRODUCTION

Fatigue cracks of various sizes have been discovered during the service life of
many aircraft structures. As a result, the predictions of fatigue-crack-growth rates
and fracture toughness of parts containing fatigue cracks have become of considerable
interest to aircraft designers and operators. In order to make such predictions, the
effects of a wide range of parameters must be understood. Many of these parameters,
such as component configuration, stress ratio, loading sequence, and environment, have
already been investigated at NASA Langley Research Center and are reported in refer-
ences 1 to 7. However, relatively little research has been conducted on the effects of



material thickness on fatigue behavior. Consequently, a series of axial-load fatigue-
crack-growth and fracture-toughness experiments were conducted on 7075-T6 and
7178-T6 aluminum-alloy specimens ranging in thickness from 5.1 to 12.7 mm (0.20 to
0.50 in.) and from 1.3 to 6.4 mm (0.05 to 0.25 in.), respectively. These materials were
selected because of their frequent use in aircraft construction.

Stress-intensity methods were used to analyze the data because these methods have
shown great promise for predicting fatigue-crack propagation and fracture in complex
structures. For example, Poe (ref. 8) showed that fatigue-crack growth in stiffened
panels can be predicted from stress-intensity parameters and the data from tests of
simple sheet specimens.

An empirical equation developed by Forman, Kearney, and Engle (ref. 9) was fitted
by least-squares techniques to the fatigue-crack-propagation data. This equation fit the
fatigue-crack-growth data generated in a previous study of stress-ratio effects reason-
ably well (ref. 3).

SYMBOLS

The units used for the physical quantities defined in this paper are given in both the
International System of Units (SI) and the U.S. Customary Units. The measurements and
calculations were made in the U.S. Customary Units. Factors relating the two systems
are given in reference 10 and those used in the present investigation are presented in
appendix A.

a half-length of a central symmetrical crack, mm (in.)

a: half-length of crack at start of a fracture-toughness test, mm (in.)

C constant in fatigue-crack-growth equation

da/dN rate of fatigue-crack growth, nm/cycle (in./cycle)

E Young's modulus of elasticity, GN/m2 (psi)

e elongation in 51-mm (2-in.) gage length, percent

Kcn critical stress-intensity factor, MN/m ' (psi-in '7

/ 3/2 ( l/2\Kmax maximum stress-intensity factor, MN/m ' \ psi -in ' J



Kmin minimum stress-intensity factor, MN/m ' (psi-in ' J

/ 3/2 ( l/2\AK stress-intensity-factor range, MN/m ' Ipsi-in ' /

N number of load cycles

n exponent in fatigue-crack-growth equation

Pa amplitude of load applied in a cycle, N (Ibf)

Pj maximum load applied to specimen during fracture-toughness test, N (Ibf)

Pm mean load applied in a cycle, N (Ibf)

pmax maximum load applied in a cycle, Pm + Pa, N (Ibf)

Pmin minimum load applied in a cycle, Pm - Pa, N (Ibf)

R ratio of minimum stress to maximum stress

Sa alternating gross stress, Pa/wt, MN/m2 (psi or ksi)

Sf maximum gross stress applied to specimen during fracture-toughness test,
Pf/wt, MN/m2 (psi)

Sm mean gross stress, P / w t , MN/m^ (psi or ksi)

maximum gross stress, Pmax/wt> MN/m2 (psi)

minimum gross stress, Pmin/wt, MN/m2 (psi)

t Specimen thickness, mm (in.)

w specimen width, mm (in.)

OL secant correction factor for stress intensity in a finite width panel, I/sec -|^

au ultimate tensile strength, MN/m^, (ksi)

ff yield strength (0.2-percent offset), MN/m^ (ksi)



SPECIMENS, TESTS, AND PROCEDURES

Specimens

Through-crack test specimens were made from three thicknesses each of 7075-T6
and 7178-T6 aluminum alloys. The thicknesses and tensile properties of these alloys are
listed in table I. The tensile specimens used to obtain these properties met ASTM Stan-
dards (ref. 11). The nominal chemical compositions of the two alloys are shown in
table H.

The specimen configuration used in both the crack-propagation and fracture-
toughness tests is shown in figure 1. These specimens were 292 mm (11.5 in.) wide and
889 mm (35.0 in.) long. The longitudinal axes of all specimens were parallel to the roll-
ing direction of the material. A notch 2.54 mm (0.10 in.) long by 0.25 mm (0.01 in.) wide
was cut into the center of each specimen by use of an electrical discharge machining pro-
cess. The heat-affected zone resulting from this process is less than 0.25 mm (0.01 in.)
wide. Consequently, after crack initiation, all of the material through which the fatigue
crack propagates is unaltered by the cutting process.

A reference grid (ref. 12) was photographically printed on the surface of the spec-
imen for crack-propagation monitoring. The spacing between grid lines was 1.3 mm
(0.050 in.). Metallographic examination and tensile tests conducted on 7075-T6 speci-
mens bearing the grid indicated no detrimental effect on the material.

Testing Machines

Three axial-load fatigue-testing machines were employed in this investigation. The
capabilities of these machines are listed in the following table:

Machine type

Subresonant

Hydraulic

Combination:
As subresonant unit
As hydraulic unit

Maximum load
capacity

kN

89

1334

467
587

Ibf

20 000

300 000

105 000
132 000

Operating
frequency used

Hz

30

1 to 5

14
0.7 to 1.0

cpm

1800

60 to 300

840
40 to 60

Machine
described in —

Ref. 13

App. B

Ref. 14

The 1334-kN (300 000-lbf) tester described in the preceding table was also used for
fracture-toughness tests requiring loads in excess of 534 kN (120 000 Ibf). A hydraulic



axial-load universal testing machine was used for fracture-toughness tests requiring
lower loads. This universal machine had a load capacity of 534 kN (120 000-lbf).

Test Procedure

Axial-load fatigue-crack-propagation experiments were conducted at stress ratios
R of 0.02 and 0.50. The maximum gross stresses in these experiments ranged from 69
to 276 MN/m2 (10 to 40 ksi) for 7075-T6 and from 52 to 155 MN/m2 (7.5 to 22.5 ksi) for
7178-T6. The alternating and mean loads were kept constant throughout each test. The
fatigue-crack-growth data were obtained by observing crack growth through 10 power
microscopes. The number of cycles required to propagate the crack to each grid line
was recorded so that crack-propagation rates could be determined.

Fracture-toughness data were obtained two ways. Most of these data came from
standard toughness tests in which fatigue-cracked specimens were monotonically loaded
to failure at a load rate of 2.2 kN/sec (30 000 Ibf/min). The remainder of these data
came from fatigue-crack-propagation tests which were continued up to specimen failure.
In these tests, the maximum load in the fatigue-crack-propagation test was assumed to be
the load at failure.

When a centrally cracked sheet specimen is loaded in axial tension, transverse
compressive stresses are generated near the crack surface (ref. 15). These compres-
sive stresses can buckle thin specimens out of the plane of the sheet near the crack. The
increase in stress-intensity factor due to this buckling is difficult to calculate; conse-
quently the thinner gage specimens (t = 5.1 mm (0.20 in.) for 7075-T6 and t = 1.3 and
4.1 mm (0.05 and 0.16 in.) for 7178-T6) were clamped between oiled guide plates
(ref. 16) to restrain buckling. The thicker specimens did not buckle; therefore guide
plates were not used.

RESULTS AND DISCUSSION

Fatigue-Crack-Growth Experiments

The results of the fatigue-crack-growth experiments on the 7075-T6 and 7178-T6
specimens are presented in table III. This table gives the average number of cycles
required for a through-crack to propagate from a half-length of 2.54 mm (0.10 in.) to
the listed half-lengths. Fatigue-crack-growth rates were determined graphically from
crack-growth curves which were faired through the data of table ffl.

The fatigue-crack-growth curves for the 7075-T6 specimens of different thicknesses
are presented in figure 2. At eight of nine stress levels, fatigue cracks propagated fastest
in the 5.1-mm-thick (0.20-in.) 7075-T6 specimens. However, for a given stress level,



the ratio of the maximum to the minimum number of cycles required to reach a given
crack length never exceeded 1.7, thereby indicating a relatively small thickness effect.

The fatigue-crack-growth curves for the 7178-T6 specimens are presented in fig-
ure 3. At six of seven stress levels, fatigue cracks propagated slowest in the 1.3-mm-
thick (0.05-in.) 7178-T6 specimens. For a given stress level, the ratio of the maximum
to the minimum number of cycles required to reach a given crack length never exceeded
2.7, thereby indicating a moderate thickness effect.

Fatigue-crack-growth curves for 7075-T6 and 7178-T6 specimens of about the same
thickness (5.1 and 4.1 mm (0.20 and 0.16 in.), respectively) and tested at the same values
of Smax and R are shown in figure 4. For a given stress level, the ratio of the max-
imum to the minimum number of cycles required to reach a given crack length never
exceeded 1.7. In two instances fatigue cracks grew fastest in 7075-T6, and in the two
other instances, fastest in 7178-T6. Thus, in the thickness range of 4 to 5 mm (0.16 to
0.20 in.), the two alloys appear about equally resistant to fatigue-crack propagation.

Inspection of the fracture surfaces of the specimens (fig. 5, for example) indicated
that intermittent bursts of crack growth (referred to hereinafter as "pop-in" (ref. 17))
occurred in the interior of specimens having thicknesses as small as 4.1 mm (0.16 in.).
The dark areas in figure 5 indicate pop-in. The light areas indicate normal, microscopic
fatigue-crack growth. The reason for this pop-in is not understood at this time.

The fatigue-crack-growth data in table III were analyzed by using stress-intensity
methods (see appendix C). For a given thickness and value of R, the rate of fatigue-
crack growth was a single-valued function of the stress-intensity range for 7075-T6 and
7178-T6 (fig. 6).

An empirical fatigue-crack-growth equation developed by Forman, Kearney, and
Engle (ref. 9) was fitted to the test data. This equation has the form

da C(AK)n
 m

dN (1 _ R)Kcn - AK

(The symbol K^ is denoted by Kc in ref. 9.)

The empirical constants C and n were determined by using least-squares tech-
niques to fit the equation to the data. When these constants were determined in SI Units,
AK and Kcn were given in MN/m«v2 ancj da/dN was given in nm/cycle. When C
and n were computed in U.S. Customary Units, AK and Kcn were given in psi-inl/2
and da/dN was given in in./cycle. The values of C and n determined for the differ-
ent thicknesses are listed in the following table:



Aluminum
alloy

7075-T6

7178-T6

t

mm

5.1
9.7

12.7

1.3
4.1
6.4

in.

0.20
.38
.50

0.05
.16
.25

C

SI Units

25.9
23.1
58.2

18.5
23.8
63.2

U.S. Customary Units

1.05 x 10"11

1.19 x 10-11
2.77 x ID'9

3.63 x 10-H
2.96 x 10-H
1.80 x 10~8

n

2.69
2.63
1.99

2.45
2.52
1.72

Equation (1) fit the test data reasonably well.

Fracture-Toughness Experiments

The results of the fracture-toughness experiments on the 7075-T6 and 7178-T6
specimens are listed in table IV. This table gives the half-length of the crack at the
start of the fracture-toughness test a^, the maximum gross stress applied to the test
specimen during the fracture-toughness test Sf, and the critical stress-intensity factor
Kcn. This factor was calculated by using the equation

(2)

where a is given in appendix C.

The values of Kcn for the various thicknesses are plotted against a^ in figure 7.
Analysis of the data in figure 7 indicates that the fracture toughness of the 12.7-mm-thick
(0.50-in.) 7075-T6 was, on the average, about two-thirds of the fracture toughness of the
thinner gages of 7075-T6. The average fracture toughness of the 6.4-mm-thick (0.25-in.)
7178-T6 was about two-thirds of the fracture toughness of the thinner gages of 7178-T6.
Figure 7 also indicates that Kcn increased with increasing crack length. A similar
variation of Kcn with crack length occurred in tests on through-cracked 2014-T6 and
2219-T87 aluminum alloys (ref. 18).

Values of Kcn for 7075-T6 and 7178-T6 specimens of about the same thickness
(5.1 and 4.1 mm (0.20 and 0.16 in.)) are plotted against a^ in figure 8. The fracture
toughness of 7075-T6 was about 20 percent higher than the fracture toughness of 7178-T6.

CONCLUSIONS

A study was made to determine the effects of specimen thickness on fatigue-crack
growth and fracture behavior of 7075-T6 and 7178-T6 aluminum-alloy sheet and plate.



The 7075-T6' specimens had thicknesses of 5.1, 9.7, and 12.7 mm (0.20, 0.38, and
0.50 in.); the 7178-T6 specimens had thicknesses of 1.3, 4.1, and 6.4 mm (0.05, 0.16, and
0.25 in.). The stress ratios R (ratio of the minimum stress to the maximum stress)
used in these experiments were 0.02 and 0.50. The experimental results were analyzed
by using stress-intensity methods, and an empirical equation was fitted to the data. The
following conclusions can be drawn from this study:

1. For 7075-T6, material thickness had relatively little effect on fatigue-crack
growth. The fracture toughness of the 12.7-mm-thick (0.50-in.) 7075-T6 was about two-
thirds of the fracture toughness of the thinner gages of 7075-T6.

2. For 7178-T6, fatigue cracks generally grew somewhat faster in the thicker gages
than in the thinnest gage. The fracture toughness of the 6.4-mm-thick (0.25-in.) 7178-T6
was about two-thirds of the fracture toughness of the thinner gages of 7178-T6.

3. For a nominal thickness of 5.1 mm (0.20 in.), fatigue cracks in 7075-T6 and
7178-T6 propagated to a given crack length in approximately the same number of cycles.
For the same nominal thickness, the fracture toughness of 7075-T6 was about 20 percent
higher than the fracture toughness of 7178-T6.

4. During the fatigue-crack-growth tests, intermittent bursts of crack growth (pop-
in) occurred in the interior of the 7075-T6 and 7178-T6 specimens having thicknesses
§4.1 mm (0.16 in.). The reason for this pop-in is not understood at present.

5. An empirical equation developed by Forman, Kearney, and Engle (in Trans.
ASME, Ser. D: J. Basic Eng., vol. 89, no. 3, Sept. 1967) fit both the 7075-T6 and 7178-T6
crack-growth data reasonably well.

6. For a given thickness and value of R, the rate of fatigue-crack growth was
essentially a single-valued function of the stress-intensity range for 7075-T6 and 7178-T6.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., February 20, 1973.



APPENDIX A

CONVERSION OF SI UNITS TO U.S. CUSTOMARY UNITS

The International System of Units (SI) was adopted by the Eleventh General Con-
ference on Weights and Measures held in Paris in 1960 (ref. 10). Conversion factors
required for units used herein are given in the following table:

Physical quantity

Force
Length
Stress
Stress intensity
Frequency

SI Unit
(a)

newtons (N)
meters (m)
newtons per sq meter (N/m2)
newtons per meters/2 (N/m3/2j
hertz (Hz)

Conversion
factor

(b)

0.2248
.3937 x 102

.145 x 10-6

.9099 x 10'6

60

U.S. Customary
Unit

Ibf
in.
ksi = 103 lbf/in2

ksi-inl/2
cpm

aPrefixes and symbols to indicate multiples of units are as follows:

Multiple

10-9

10-3
103

106

109

Prefix

nano
milli
kilo
mega
giga

Symbol

n
m
k
M
G

^Multiply value given in SI Unit by conversion factor to obtain equivalent in U.S
Customary Unit.



APPENDIX B

DESCRIPTION OF 1334-kN (300 000-lbf) FATIGUE TESTER

The 1334-kN (300 000-lbf) machine is an analog closed-loop servohydraulic fatigue-
testing system. A schematic diagram of the loading system is shown in figure 9. To use
this system, the operator first sets in the desired mean load by adjusting the mean-load
potentiometer. Then the desired alternating load is set by adjusting the alternating-load
potentiometer (which controls the amplitude of the function generator signal).

The voltages from the mean-load potentiometer and the function generator are com-
bined to form a command signal which is fed into the servoloop summing point. The volt-
age from a transducer - either the load cell or the linearly variable displacement trans-
former (LVDT) - is also fed into this summing point. The command and transducer
voltages are summed and suitably amplified to form a signal which drives the servovalve.
This servovalve directs oil to the appropriate side of the hydraulic cylinder to obtain the
commanded load. Load repeatability for this testing system is ±0.5 percent of the applied
load.

Loads are monitored by comparing on an oscilloscope the output voltage from the
load cell (or LVDT) with an adjustable bias voltage which corresponds to the desired load
level for the test. When the sum of these voltages is zero, the desired load is on the test
specimen. (This comparison is made at both the maximum and minimum loads in the
cycle.) The accuracy of this monitoring system is better than ±0.1 percent of full scale.

10



APPENDIX C
•

FATIGUE -CRACK-GROWTH ANALYSIS

The fatigue -crack- growth data were correlated by the stress -intensity methods.
Paris (ref. 19) hypothesized that the rate of fatigue-crack growth was a function of the
stress -intensity range; that is

(Cl)

where

AK = Kmax - Kmin <C2>

For centrally cracked specimens subjected to a uniformly distributed axial load

(C3)

and

Kmin = «smin^ (C4)

The term a is a factor intended to correct for the finite width of the specimen (ref. 20)
and is given by

01 =

11
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TABLE I.- AVERAGE TENSILE PROPERTIES OF ALUMINUM ALLOYS TESTED

t
mm in.

CTu

MN/m2 ksi

CTy
MN/m2 ksi

e,
%

E

GN/m2 psi
No. of
tests

7075-T6

5.1

9.7
12.7

0.20
.38
.50

595
574
598

86.3
83.3
86.7

542

528
551

78.6
76.6
79.9

13.0
12.6
15.5

69.0
69.7
69.7

10.0 x 106

10.1
10.1

7178-T6

1.3
4.1
6.4

0.05
.16
.25

608
624

622

88.2
90.5
90.2

564

586
593

81.8
85.0
86.0

12.7
12.8
13.0

66.9
69.0
69.7

9.7 x 106

10.0
10.1

6

6
6

3
6
6

TABLE H.- NOMINAL CHEMICAL COMPOSITIONS OF

ALUMINUM ALLOYS TESTED

Aluminum
alloy

7075-T6

7178-T6

t

mm

5.1

9.7

12.7

1.3
4.1
6.4

in.

0.20
.38

.50

0.05
.16
.25

Element, percent by weight

Si

0.11
.11
.11

0.11
.08

.08

Fe

0.28
.25

.28

0.28
.28
.28

Cu

1.72
1.69
1.72

1.76
2.06
2.06

Mn

0.13
.07
.13

0.05
.07
.07

Mg

2.74
2.51
2.74

2:64
2.99
2.99

Ni

0.01
.02

.01

0.02
.02

.02

Cr

0.21
.20
.21

0.19
.20
.20

' Z n

5.63
5.70
5.63

6.97
6.86
6.86

Ti

0.05
.05

.05

0.04
.03

.03

Al

Bal.
Bal.
Bal.

Bal.
Bal.
Bal.
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TABLE IV.- VALUES OF Kcn FROM FRACTURE-TOUGHNESS TESTS

(a) 7075-T6

t

mm

i

as.l

I

I

9.7

12.7

in.

0.20

0.38

0.50

ai

mm

6.6
10.2
18.5
22.1
27.2
35.6
49.5
61.5
78.0

5.1
6.4

7.9
9.1

11.4
15.0
20.3
29.7
37.8
53.6
62.2
78.0

4.8

6.9
9.1

13.5
15.0
22.4
32.5
48.5

in.

0.26
.40
.73
.87

1.07
1.40
1.95
2.42
3.07

0.20
.25
.31
.36
.45
.59

.80
1.17
1.49
2.11
2.45
3.07

0.19
.27
.36
.53
.59
.88

1.28
1.91

Sf

MN/m2

294
268
211
185
161
152
125
103
88

297

306
291
276
248
243

218
179
155
133

114
101

230
207
184
154

154
123
111

90

psi

42.7 x 103

38.9
30.6
26.9
23.3
22.0
18.0
15.0
12.7

43.1x103
44.4
42.2
40.0
35.9
35.2
31.6
26.0
22.5
19.3
16.5
14.7

33.3 x 103
30.0
26.7
22.4
22.3
17.8
16.1
13.0

Ken

MN/m3/2

42.2
47.9
51.4
49.2
47.7
52.8
52.9
51.4
53.0

37.4
43.0
46.0
46.2
47.0
53.1
55.8
56.5
55.6
59.3
56.6
61.3

28.2
30.3
31.1
32.0
33.7
32.8
36.7
37.6

psi-inV2

38.4 x 103
43.5
46.7
44.8
43.4
48.0
48.1
46.7
48.2

34.0 x 103

39.1
41.8
42.0
42.8
48.3
50.8
51.4
50.6
53.9
51.5
55.7

25.6 x 103
27.6
28.3
29.1
30.7
29.9
33.4
34.2

Guide plates used.
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TABLE IV.- VALUES OF Kcn FROM FRACTURE-TOUGHNESS TESTS - Concluded

(b) 7178-T6

t
mm

ai.3

a4.1

6.4

in.

0.05

0.16

0.25

ai

mm

23.6
24.9
33.8
44.2
47.5

17.8
21.3
25.9
40.1
56.6

7.6
13.5
13.7
15.5
23.9
35.3
46.7

in.

0.93
.98

1.33
1.74
1.87

0.70
.84

1.02
1.58
2.23

0.30
.53
.54

.61

.94
1.39
1.84

Sf

MN/m2

153

140
124

103
99

156
152
139

112

91

157

128
122
122

98
79

75

psi

22.2 x 103

20.3
18.0
14.9
14.4

22.6 x 103

22.1
20.2
16.2
13.2

22.8 x 103

18.5
17.7
17.7
14.2
11.4
10.9

Ken

MN/m3/2

42.5
39.7
41.5
40.7
40.9

37.2
39.7
40.6
41.7
42.3

24.3
26.5
25.5
27.1
27.4
27.3
30.8

psi-inV2

38.6 x 103

36.2
37.8
37.1
37.2

33. 9 x 103

36.1
36.9
37.9
38.5

22. lx 103

24.1
23.2
24.6
24.9
24.9
28.0

Guide plates used.
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Figure 1.- Specimen configuration. All dimensions in mm (in.).
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do/dN,
nm/cycle 10"

10

AK,psi-in
20 40x10

o R=0.02
c R =0.50

-Formon,Kearney , and Engle's
equa t ion

t = 5.lmm(0.20in.)

AK,psi-in"2

20 40xl03

Id2

o R =0.02
D R =0.50

t=9.7mm(0.38in.)

20

AK.MN/m3'

io5

40 0

AK,psi-in
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Figure 6.- Variation of fatigue-crack-growth rate with AK for various thicknesses.
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