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ABSTRACT

Long, Sheila Ann Thibeault. Triangulation Error Analysis for the Barium

Ion Cloud Experiment. (Under the direction of Dr. Edward R. Manring.)

The triangulation method developed at the NASA, Langley Research
Center specifically for the Barium Ion Cloud Project is discussed.
Expressions for the four displacement errors, thebthree sldpe errors,
and the curvature error in the triangulation solution due to a probable
error in the lines-of-sight from the observation stations to points on
the cloud are derived. The triangulation method is then used to deter-
mine the effect of the following on these different errors in the
solution: the number and location of the stations, the observation
duration, east-west cloud drift, the number of input data points, and
the addition of extra cemeras to one of the stations. The pointing
'displacement errors aré compared, and the pointing slope errors are
compared. The displacement errors in the solution due to a probable
error in the position of a moving station plus the weighting factors

for the data from the moving station are also determined.
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INTRODUCTION

Charged particles radiated from the sun fldw toward and enshroud
the earth's insulating atmosphere, enclosing the earth's magnetic
field within, thus forming the earth's magnetosphefe, Up to the
present, much data has beeﬂ collected on the earth's magnetic field
within the magnetosphere from satellite-borne magnefometers. However,
data on the earth's electric field within the magnetosphere is lacking.
In order to understand such dynamic phenomenes as geomagnetic storms
(which greaily interfer with communications), aurorae, etc., this void
must be filled. For this purpose the National Aeronautics and Space
Administration (NASA) and the Max Planck Institute, Institute for
Physics and Astrophysics, Institute for Extraterrestrial Physics (MPE)
jointly formulated the "NASA/MPE Barium Jon Cloud (BIC) Project." .

| A payload of 1.6 kilograms of neutral barium is released from a
four-stage Scout rocket at an altitude of about 31,633 kilometers, or
approximately five earth radii. Figure 1 is a photograph of a neutral
(spherical) barium cloud. The neutral cloud reachés its peak bright-
ness, which is somewhat brighter than a third megnitude star, in sabout
.fifteen to twenty seconds after the release. |

The neutral barium rapidly becomes ionized by the incoming solar
radiation. The charged particles attach themselves to a magnetic
field line and spiral along it, forming an elongated cloud along the '
direction of the magnetic field. Figure 2 is a photograph of an

ionized (elongated) barium cloud. After about four minutes the



Figure 1.- Neutral barium cloud as seen from Mt. Hopkins Bsker Nunn Site, Arizona,
on September 21, 1971, at 03 05 13.



Figure 2.- Ionized barium cloud as seen from Mt. Hopkins Baker Nunn
Site, Arizona, on September 21, 1971, at 03 11 1k,



elongated cloud subténds an angle of about one half degree, which is
approximately the angle subtended by the diametef of the moon. After
about thirty minutes the elongated cloud extends to a length of
10,000 kilometers or greater. The observation time is sbout one hour
and fifteen minutes duration.

Initially, the relatively dense cloud of charged particles
introdﬁced in£o the magnetosphere perturbs the weak magnetic field.
Also, the initial velocity of the ioms, the same aé that of the Scout
fourth-stage, is greater than that of the ambient plasma.

After an extended time the cloud adopts the vélocity of the
drifting ambient plasma. The drift velocity ; fof all charged
particles is |

x g

>, for |E] <c 181, (1)

(] 4

<+
"

where E is the electric field vector, § is the magnetic
induction vector, and c¢ 1is the speed of light.:
Upon vector multiplication of each side of equation 1 by §, it is

seen that
E=- (vx8) | (2)

Using equation 2 the electric field vector can be computed once the

drift velocity and the magnetic induction vector are known.



Since the barium is fluorescent against a dark-sky background, it
can be photographed from ground-based observation sites. The cameras
at the different sites are all synchronized in time. The photographs
of the barium‘cloud are projected onto appropriate star charts,
matching the respective star configurations, thus‘obtaining the
coordinates of particular points along the length of the cloud in
whatever coordinates were used in constructing the star charts, eg.
azimuth and elevation. v

By t:iangulating on the two-dimensional data thus obtained from
the various observation sites, the position of the cloud in three-
dimensional space as a function of time and, hence, its velocity is
determined. From the elongation of the cloud, the geometry of the
magnetic field line is deduced. The magnetic field line thus deter-
mined can be compared to the magnetlc fleld line resulting from the
earth's internal megnetic sources, and any perturbation suffered by
the magnetic field line as delineated by the cloud can be deduced.
And, from the drift of the cloud, since the magnetic inducti&n is
measured by the magnetometer aboard the Scout,bthe strength and
direction of the electric field is computed using equation 2.

It is necessary to know how accurately the poéition of the cloud
in space is determined in order to evaluate the'finél results of the
magnetic field and electric field determinations. It is therefore
impdrfant to know what errors are introduced into the data through the
acquisition and reductlon of the data and how these errors are mani-

fested by the triangulation’ in the solution of locatlng the barium



cloud in space. This thesis deals with the problem of triangulation

and the errors which result from the triangulation for the BIC

Experiment.



OBJECTIVES

I. To define vwhat triangulation errors are meaningful to the BIC

Experiment.
II. To exercise the triangulation method developed for the BIC

Project to obtain data for use in designing thé remainder

of the experihent.



REVIEW OF LITERATURE

An extensive literature search using the NASA Library facilities
yielded no information on triangulation errors which was meaningful

to and useful in designing the BIC Experiment.



TRIANGULATION
FOR THE

BIC PROJECT

\O -
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The Single-Point Two-Station Triangulation. Problem

To begin a paper on triangulation errors, it might be illustrative
to first consider the simplified triangulation problem of a single
point in space cbserved by two observation stations. Most of what
will be stated here concerning this simplified problem is teken from
reference 1.

For this two-station triangulation problem, it is convenient to
use a relative station coordinate system as shown in Figure 3. The
two stations are denoted by A and B. The 1, 2 , 3 Cartesian
coordinate axes are the geocentric coordinate axes defined by: the
origin is at the center of the earth; 1 is directed toward the
intersection of the Greenwich Meridian with the'equator; 2 is
directed toward 90° east longitude, 0° latitude; 3  1is directed to-
ward the geographic north pole. The radial distance of station A

from the earth's center is denoted by ; and its 1 , 2, 3

TA

components, by r, , Tr ,'r , respectively. The radial distance of
Al A2 A3 _

station B from the earth's center is denoted by rgs and its 1 ,

2 , 3 components, by rgp 5, I'p s Iy » respectively. The base line
B B2 B3
AB, projected onto the 1 , 2 , 3 axes, has the projections AB

l’
ABz, AB3, respectively, given by
AB. =1, - | (3)
1 B1 Al _
AB.=r_ -7 ' (L)
2 B2 A2 :
AB3 =rg =T, o (5)
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Figure 3.- The relative station coordinate system.
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The length dAB of the line AB 1is then

1/2 :
2 4 ABg) (6) .

_ 2
= (ABl + A32

The radial line from the center of the earth which is perpendicular to
the base line AB is denoted by Tye This perpendicular intersects
AB at the point M. The angle m is the angle between Ty and AB

end cen be found, using the law of cosines, to be

r2 + d - r2
o -1|a B
m = cos =7 4 (1)
AB

gl\)

k=3

The point M on AB is located a distance dM from station A given

by
dM =r,cosm , (8)
And, the length of the radial line Ty is given by

ry = Ta sin m (9)
The relative station coordinate system with axes denoted by T, 8,
and 9 is defined by: the origin is at the point M; 7 is directed
radially outward along the line Ty 8 is directed toward station B
along the base line AB; 9 is such as to form an orthogonal system.

The direction cosines for transforming from the relative station
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coordinates to the geocentric coordinates are

AB
A * S'M&'_l'
_ AB
AB
Tp, dI; 2
Y, = 2 AR (11)
T2 Ty
AB
Tt d}; .
Y13 Ty (12)
AB
= 31
Ygy © dyp (13)
AB _
- 2
AB
-
Yg3 45 (15)
Yoo T Yg1 Y73 = Y71 Y83 (17)
Yo3 = Y71 Y82 " Va1 Yo (18)

The direction cosines for transforming from the relative station
coordinate system to the topocentric coordinate system with axes

denoted by 4, 5, and 6 can also be found. The topocentric



1k

coordinate syétem is defined by: the origin is located at a particular
locetion on the surface of the earth, eg. an observation station; U is
directed along fhe radial line from the center of the earth to the
station, ie vertical from the station; 5 is directed east frém the
station at 0° elevation perpendicular to L; 6 is directed north from
the station at 0° elevation perpendicular to L4 and 5. The direction
cosines for transforming from the relative station coordinates to the

topocentric coordinates are then
3
Yio = L Yy Yipo (19)
ij k=1 Jk'ik

where i =7T,8,9 and 3 =1L4,5, 6. The are the direction

ij
cosines for transforming from the topocentric coordinates to the geo-
centric coordlnates and are given in reference 1.

Now, the line-of-sight deflned by the azimuth and elevation of
the point in space from station A may not intersect precisely with
the line-of-sight defined by the azimuth and elevation of the point in
space from station B. Such could be the result of human error and/or
equipment error while acquiring and/or reducing the photographic
data.

The lines-of-sight from the two observation stations when pro-
jected onto the plane formed by the T and 9 axes of the relative
station coordinate sysfem form two lines extending from the relative
station coordinate system origin M and two angles GA and GB
measured from the T axis. To circumvent this problem caused by the

pon-intersecting lines-of-sight, it is convenient to speak of an

angle, say 0, between the two angles eA and ,eB. The solution to
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tﬁe.problem of locating the point in space will.ﬁheﬁ lie on the plane
which passes through>the 8 axis making an angle 6 with the T axis.
The shortest distance between the two lines-of-sight and pefpendicular
to.both is denoted by dr; The distance from station A to the inter-
section 6f dr and the line-of-sight from station A is denoted by dA;‘
the distance from station B to the intersection of dr and the line-
of=-sight from station B, by dB' The angles ¢A and ¢B are measured
between the base line AB and the lines-of-sight from station A and
station B, respectively. The quantities GA, GB, 8, dr’ dA’ dB’ ¢A,
and ¢B are all shown in Figure k.

The 4, 5, and 6 components of the unit lines—df-sight from stations
A and B - denoted by iAh’ iAS’ iA6’ iBh’ iBS’ and iB6’ respectivgly -

are given by

i,, = sinely ) (20)
iAS = cos el, sin az, o ' (21)
i,6 = cos el, cos az, (22)
ig), = sinlelB | (23)
iB5 = cos ely sin azg (24)

igg = cos elp cos azp » (25)
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Figure L.- The line &, between the two
non-intersecting lines-of-sight.
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where 8Z )5 elA, 8Zps and elB are the azimuths and elevations of the
point in space from stations A and B, respectively, determined from
the photographic data.

The angles ¢A and ¢B are found from

cos &y = Yguatay * Yesalas * Yeealae (26)
cos ¢5 = Ygupipy * Ysssims * Yaen'mé’ - (2n)

where YBMA’ YBSA"YBGA’ YShB’ Y85B’ and Y86B are the direction

cosines for transforming from the relative station coordinate system
to the topocentric cocrdinate systems centered at stations A and B,.
respectiveiy, and are found from equation 19.
The angles BA and GB are found from
Youalay * Yosalas * Yoeatas

ten 6, = - - - (28)
A Youaiay * Yrsalas T Yr6ata6 :

Yoroioy * Yocrine ¥ Yogring
tan eB - ghBiBh - 95131}35 - 96BiB6 ’ (29)
Yrustpy * Yrse'es * Y76B7B6

where the direction cosines Y9hA’ Y95A’ Y96A’ YTMA’ YTSA’ Y76A’ Y9hB’
Y95B’ Y96B’ YThB’ Y75B’ and Y76B are also found from equation 19.

The distance dr squared is given by



where

and dp by first differentiating it with respect to

46 = 6

a2 =
r

+ (dA sin ¢, cos dd - 4y sin ¢g

. 2
+ (4, sin ¢, sin ae)- ,

A'eB'

Minimizing this expression with

then equeting each of these derivatives to zero leads

solutions for dA and dB

dy = dyp

dB = dAB

[cos N - (cos ¢, cos ¢p -

sin ¢A sin ¢B cos

18

2
(dAB - dA cos ¢A - dB cos ¢B)

)2

(30)

respect to dA
dA agd dB and

to the following

d8)cos ¢B]

1 - (cos ¢A cos ¢B -

sin ¢A sin ¢B

[cos ¢B - (cos ¢, cos ¢B - sin ¢A sin ¢p cos

cos de)2
(31)

d6)cos ¢A]

1 - (cos ¢A cos ¢y - sin ¢, sin ¢y

cos de)2

(32)

The location P of the point in space is ‘assumed to lie on the

line d.. If it is assumed that the angular errors from the two

observation sites are equal, then it is reasonable to assume that the

locastion P of the point in space on dr is at a distance lA from

the line-of-sight from station A and at a distance lB from the

line~of-sight from station B such that
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LA 2 I (33)
dy .

Now, the residual angle & is defined to be the angular deviation
between the actual and measured lines-of-sight from an observation
station. The location P of the point in space, the distances 1A
and lB’ and the residual angle 6 are shown in Figure 5.

1l 1l

Since the quantities 3 and EE are the tangents of the angular
A B

deviations between the actual and measured lines-of-sight from

stations A and B, respectively, then § is determined from
tan § = ——— : (34)

The location P of the point in space is at a distance dA
from station A and at a distance dé from station B; the distances
dA and dé are the actual lines-of-sight from stations A and B,
respectively, to the locafion ‘P Aof the point in space. From Figure

5 it is seen that

d
v . A
dp = Cos & (35)
d
. - _B
dp = Tos 6 _ (36)

The components of dA along the T and 9 axes - denoted by dA7

and dA9’ réspectively - are
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Figure 5.- The residual angle

6.
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d
at, =a, +( —d)(-L—) (37)
AT AT dB? AT\ 4y + dB
a4y
' = -

o = g * (dgg ~ dyg) (dA + dB> ’ (38)
where dA7 .and dA9 are the 7 and 9 components of dA and are given
by

dyr = 4y sin ¢, cos 0, (39)
dA9 = dA sin ¢A sin GA s (40)

and where dBT and dB9 are the 7 and 9 components of dB and are

given by

dB sin ¢B cos 6B 3 (k1)

dp7

dg sin ¢B sin BB (42)

dpg

The component of dA along the 8 axis, denoted by dAB’ is

given by
= ' ' ‘ .
dAB dA cos ¢A ? (L3)

where ¢A is the angle between the actual line-of-sight dA from

station A to the location P and the base line AB and, as seen in
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Figure 5, is determined from

' sin o
sin ¢p = EE—EX;—— R (4k)

where p 1is the angle between the actusl line-of-sight from station A
to the location P and the actuel line-of-sight from station B to the
location P and, applying the law of cosines to the geometry of

Figure 5, is found to be

(45)

The angle ©, lying between the angles OA and GB, which is

the angle that the plane through the 8 axis and containing the location

P of the point in space makes with the 7 axis is then given by

d'
0 = tant (A2), , (46)
AT '
where d{ and 4! are given by equations 37 and 38, respectively.

AT A9
The geocentric components Pl’ P2, P3 of the location P of the

point in space are given by

P = Ta * Yo1ada7 * Ye1adas * Yo1aao (A7)
Py = Ta, * Yoopdar * Yeondas * Yoondao (48)
Pa=Tp * Yoopdar * Ya3adag * Yomadag o (k9)

3
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where r, , rA , and 1T are the geocentric components of station A

A A

- 3
and where Yq1ps Yoope Yr3a» Yera® Ye2a® Y83a® Yoia’ Yozar 2° Yoza

are the direction cosines for transforming from the relative station
coordinate system from station A to the geocentfic cobrdinate system.

Finally, the geocentric latitude, the longitude, and the radial
distance of tpe location P of the point in spacé observed from the

two stations - denoted by ¢§, 6P, and Tps respectively - are given

by
P .
. =1 3
bp = sin [ 2 . 2 . P 1/2] (50)
(Pl + P+ P3)
P
- -1(_2
bp = ten (P > (51)
1
1/2
2 2 2.+
rp = (P1 + P2 + P3) (52)

Line end Multistation Triangulation Considerations

Now, in this above simplified problem of locating a single point
in space using the photographic data from only two observation sites,
the solution is not unique unless the lines-of-sight from the two
stations to the point in space intersect precisely. In most instances,
due to humen error esnd/or equipment error while acquiring and/or
reducing the data, the lines-of—sight will not intersect precisely and,
hence, the solution of locating the point in space will not be unique.
All that can be done is to work in terms of a most probable angle 0

lying betwéen the angles 'GA and GB, which are the angles measured
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from the 7 axis that are made by the prcjections of the lines-of-sight
from stations A and B, respectively, onto the plane formed by the T and
9 axes of the relative station coordinate system, as was Just done in
the above.

In the problem of locating a line, as opposed to 8 singl¢ point,
in space using the photographic data from only two observation sites,
the surface formed by the lines-of-sight from station A to various
points on the line in space will in general intersect with the surface
formed by the lines-of-sight from station B to various points on the
line in space. If not, then extrapolations of these two surfaces will
intersect. Hence, the two surfaces, or their extrapolations, will
always intersect in the form of =& line; and, therefore, a unique
solution to the problem of locating a line in space from two observation
stations can always be found.

In the BIC Experiment the barium cloud forms & line, as opposed
to a point, in space as the neutral barium becomes ionized and
elongates along the magnetic field line. A study of the exist-
ing triangulation methods revealed that the existiﬁg method most
eppliceble to the BIC Experiment was the one developéd by Fred L.
Whipple and Luigi G. Jacchia of the Smithsonian Institution Astrophysi-
cal Observatory (reference 2). This method, herein referfed to as
the SAO method, was originally developed for triangulating on photo-
graphic meteor trails. It was later used by John E. Hogge of the

Langley Research Center for reentry experiments (reference 3). The
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SAO method is only for two observation stations and approximates each
photographic trail image by a straight line, which as was pointed out
above, renders a unique solution always.

However, this author in a separate paper on an analytical study
to minimize the triangulation error for an idealized observation site
arrangement (reference 4) has shown, for the particular case of 2 or
more observation sites syﬁmetrically located on the circumference of a
circle with the cloud reléased on the perpendicular whose foot lies at
the center of the circle, that the triangulation error is inversely
proportional to the square root of the number of observation sites em-
ployed. On the basis of these findinés, it was not desired to use only

two observation stations for the BIC Project.

Also with regard to the BIC Experiment, the mégnetic field lines
are not straight, but are curved; hence, the barium cloud images are
also curved. It was, hence, not desired to use a straight—iine
approximation to the curved barium cloud images.

Therefore, it was felt that, although the SAO method has been
used for some time with great success for the triahgulation of
photographic meteor dats and of reentry experiment data, it was perhaps
not necessarily the best trianguletion method for the BIC Project.

It was decided to develop an entirely new trianguiaﬁion method for the
BIC Project that would incorporate any number of observation stations

and that would accommodate the curved images. The results of the new

method could eslways be compared to the results of the already

successful SAO method as a check.



26

The new triangulation method developed for the BIC Project at the-
Langley Research Center will be herein referred to as the LaRC method.
This author in a separate paper has explained in complete detail for
use in computer programs both the SAO and LeRC triangulation methods
and has compared the two for their applicability to the BIC Experiment
(reference S5). That paper concluded that the LéRC method was the
best method for the BIC Experiment; and, hence, it was the method
adopted for the project.

It was decided to develop the LaRC method to use the azimuth -
elevation coordinates. The azimuth-elevation curve of the‘cloud image
from each observation station can be obtained from the photographic
data. This curve from each station defines a conical-like surface in
space. For two observation stations, as was pointed out earlier, the
intersection of the two cones is unique. For more than two observation
stations, however, the intersection of the cones is not unique. Hence,
an averaging procedure had to be developed in the LaRC method in order

to incorporate the data from more than two observation stations.

The LaRC Triangulation Method
For the reader's convenience a summary of the LaRC method is
first given here before it is explained in detail. First, the total
arc length of the azimuth - elevation curve from each station is
found; and;then new szimuth and elevation data points equally spaced
along the azimuth - elevation curves are calculatéd. An initial trial

solution in terms of the latitude, longitude, and altitude coordinates -
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which are transformed to the azimuth, elevation, and range
coordinates - is estimated. The arc lengths between the trial
solution and each of the new points on the azimuth - elevation curve
from each station are calculated and compared to find the point on each
azimuth - elevation curve closest to the initial trial solution.
Using the closest point as the origin of a local coordinate system,
three residuals, one being the perpendicular distance from the
trial solution to the azimuth - elevation curve and the other two
being the respective distances from the trial solution to the points
lying on either side of the closest point, are found for each station.
A residual is the distance from the trial solution to the endpoint of
a ray on the surface defined by the azimuth - elevation curve from that
station. The minimum residual for each station is found; and the
residual sum for all the stations combined, calculated. The initial
trial solution is then varied in altitude and in longitude, the incre-
menting of the longitude being nested within the incrementing of the
altitude and each time calculating the residual sum for all the
stations combined, until the minimum residual sum from varying both
the longitude and altitude is found. Then, the trial latitude is
incremented, the altitude and longitude increments decreased by half,
and the entire procesé jterated. Finally, after two iterations the
unique solution to the problem of locating the barium cloud in space
which minimizes the triangulation error is found.

The LaRC method is discussed in more detail invthe following.

(The reader interested in using the method might also see reference 6,
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a computer program.)

From thevphotographic date the azimuth and elevation for each point
on the image from each observation station is obtained. For N points
and L stations, the original azimuths and elevétipns from the photo-
graphic datae are denoted by azi’n and el;,n,‘where n=1,2,...,N

and % =1,2,...,L. The arc length ds in degrees between points

£,n

n and n-1 1is

ell + el” 1/2
- noo__qn 2 " - " 2 2 2 411 L Ln“l
dsl,n [Kell,n ell,n-l) * <a22,n 8'zfl,,n-l> cos ( 2 j] ’

(53)

= " = " =
where dsz,l o, elz,o azz’o 0.
The total arc length sarcl in degrees of the azimuth-elevation curve
th . . '
from the #&— station is
N

sarc, = E ds
n=1

bon (5%)
Since it is desirable to have the points on the azimuth-elevation curves
equally spaéed, BN is defined as the spacing desired in degrees be-
tween consecutive pointé on the azimuth-elevation curves. For the
present, BN is set equal to 0.28 degrees. The total number of points

NBQ along the azimuth-elevation curve from the EEE- station is then

sarc
NB, = 5y (55)
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New azimuth and elevation data points spaced BN = 0.28° apart along
the azimuth-elevation curves are then calculated using FTLUP, a
Lengley Research Center systems computer subroutine which calculates

y = F(x) from a table of values using second-order interpolation. A
second-degree least squares curve is then fitted through these new
azimuth and elevation data points from each observation station, based
on thfee pbints and centered symmetrically abouf thé point n where

n = 1,2,...,NB2, obtaining the coefficients bcm,l,n wherg m=1,2,3.

This is accomplished using the following equations and procedure.

el + el
c. . =c¢ (az - az, ) cos( 2,0V %.n )-
i,J i,J-1"""4,nv L,n 2 i
(56)
ie= 1,2,3; § = 2,3; nv = nm-2+i; nm = 2, if n< 2, and nm = NBQ -1,
i > - b4 - - -
if n NBQ 1; cl’1 02,1 c3,l 1
3
ai,m = El Ck,i Ck,m (57)
3
;T 2 %Ki (elg mm-2vk = g0 (58)
The pfoblem is to solve the matrix equation a; mpcm = bi’ where
b
& m is a square coefficient matrix end bi is & metrix of constant
9

vectors. The solution is found using SIMEQ, a Langley Research Center
systems computer subroutine which solves a set of simultaneous equa-
tions and obtains the determinant. The bcm' values found are the

coefficients be , which are stored for later use.
‘ m,L,n
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An initial trial solution in terms of latitude, longitude, and
altitude coordinates—denoted by plat, plon, and pr, respectively—is
estimated. These coordinates are then fransformed to the azimuth,
elevation, and range coordinates—denoted by paz, pel, and prﬁ,
respectively—according to the transformation in the appendix. Then
the arc lengths d.s}njz"n in degrees between the trial solution (paz,
pel, pra) and each of the n equally-spaced points on ﬁhe azimuth-

elevation curve (azl 0’ ell n) from each station are calculated.
9 9 . .

2 > ofPet*telyn 12
o= (pel - ell,n) + (paz - azz’n) cos 5 -

(59)

dsnz

For a given station these arc lengths to the n points are compared
to find the one which is the<shortést or, in other words, to find

the point on each azimuth—elevatioﬁ curve which is the closest to

the initial trial solution. The value of n for this closest point
is denoted by t, as indicated in Figure 6. Suppressing the subscript
t 1in the following, as it is for a particular point, the horizontal
and vertical components—denoted b# Xy and Yo respectively—of

dsnz are

x.
[}

pel +‘el£ _ : '
. (paz - azz) cos \——5 (60)

<
©
f

pel - el, - (61)



p(paz,pel)

Elevation

Azimuth x cos (elevation)

Flgure 6.~ The point t on the azimuth-elevation curve
closest to the trial solution (paz, pel).

31
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The coordinate system of Figure T is a local coordinate system
with the point t as the origin. The coordinates of the point p in
this system are x, and y, as given by equations 60 and 61,
respectively. The coordinates of the point r in this system are
xlz and yll, where XIZ and yl2 are given by

xl, = x

. (62)

2
+ +
yly =bey o+ be, oxl, + bey xly (63)
using the be coefficients found from the least squares curve fit
that correspond to n = t.
The slope of the tangent to the curve at the poeint t is given

by the change in ylg with respect to xlz.

a(y1,)
d_'le— = bc2’£ + 2 bc3’£xlg (64) ‘
The angle 62 as seen in Figure T is just
9, = tan T —d(yll)
L d x1
L
_ -1
= tan (bcz’z *+20beg g x1,) , (65)

using equation 6k.



+y

+X

Figure T7.- The local coordinate system centered at the point % plus the
three residuals dl!L’ d22, and d32.
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The three residuals dlz, d22, and d32 as shown in Figure T

are computed according to the following. From Figure 7 it is seen that

2 0. 1/2
a1, = [(y2 - yl) + (xl - x1,)°]

5 1/2
[(yl - ylz) ] , using equation 62

=¥, - ¥l (66)

From Figure 7 it is also seen that the triangle pdr is similar to

the triangle tsr; hence, the angle rpgq is equal to 62. The
distance _qr is then
q? = (yz - yll) sin 8, - (67)
The distance dxz is then
dx2 = qr cos 62
= (yl - ylz) sin 6, cos 62‘, (68)

using equation 67 for qr.
The coordinates of the point q, which is very near to or the same as

the closest point t, are x2£ and y22 and are given by

-
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x21 = Xll + dxg (69)
- 2
y22 bcl,l + bc2’£x22 + bc3,£x2£ (70)
And,
: 1/2
a2, = [(y, - y2,)° + (x, - x2 )2] / (71)
L L 2 2 L

The coordinates of the point u are x32 and y31~ and are given’by

X3, = x2) + dxy (72)
¥3p = bey g *bc, o X3, 4 bc3 3 x3i (73)
And,
2 0. 1/2
a3, = [(yy - ¥3)° + (x; - x3,)°] (T4)

The origin of the coordinate system is then shifted from the point t
to the point q to make the calculation of the miﬁimum residual dl
from the QEE- station simpler. This shift does ﬁot affect the final
expression for dz. |
The minimum residual dy can be written in the following
general form
d, =C_+C, dx, + C, dx° (75)
'3 o 17 - .



(03}
[exN

where the coefficients Co’cl’ and C2 need to be determined. Taking

the first derivative of dl with respect to dx2 R

=C, + 2C2 dx2 (76)

The condition for & minimum dz with respect to dxl is then

0 =.C +2C, ax, (77)
Hence,
C
= _ 1
dx, -3¢ (78)
min 2

The three residuals dlz, d2£, and d32 can be written in the

following forms, respectively, using this new coordinate system

- 2
a1y = C - C) dx, + C, dxj (79)
d22 = co (80)
_ 2
d32 = Co + cl dxl + 02 dxR (81)

Solving these three equations simultaneously, the coefficients Co’

Cl, and 02 can be found. The coefficient Co is Just equal to
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_ d22 because of the origin of the new coordinate system. Subtracting

equation 79 from equation 81,

d3£ - dll =2 Cl dxl (82)
Hence,
a3, - d1
_ L L
€L F o - (83)
L
Adding equations 79 and 81,
43, +dl, =2 C_+2C, dx°
L L o} 2 ')
=2 d22 + 2 Czdxi , using equation 80
(8k)
Hence,
d3, + 41, - 2 a2
2 2 L
. 2 dxl
Then, equation T8 for dxz becomes, using equations 83 and 85 for

min
Cl and Cz, respectively,
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_Cl
. T2cC, (78)
min 2
_ - (a3, - a1,)/2 ax,
2
2(d3£ +d1, - 2 d2£)/2 dxp
= 2;dgd3f ;1dlf)2dzg ) (86)
L L 2

Substituting equations 80, 83, 85, and 86 for Co’ Cl’ C2, and dxz,
respectively, into equation 75 for dl’ it becomes
2

C, + Cj dx) + C, dxp | (75)

fel]
L}

o (d32 - dlz) [ - (d3£ - dll) ax, ]
L 2 ax, 2(d32 + dl2 -2 d22)

2

. (d32 + dlz -2 d22) [ - (d32 —-dlz) dxl ]

2 dxi 2(a3, +d1) - 2 a2)

2 ' 2
(d32 - dlx) (d32 - dll)

L

a, - +
L h(’d32 ra -2 dZZ) 8(d3£ +dl, -2 d22)

2
R e | (87)
L 8(d32 +d1, - 2 d22)

d2
L

Therefore, the minimum residual dz' between the trial solution

and the azimuth-elevation curve from statiqn 2 is

(a3, - a1,)? |

a, = d2, -
) L 8(d32 +41,
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Then the square root of the sum of the squares of the residuals,

called the residual sum and denoted by E, is calculated.

L 5 1/2 |
E= [ z (dg) ] (88)
2=1

This first value of E is denoted by Ela‘
The initial trial longitude plon is incremented by da+. From
Figure 8 it is seen that
dr

da, = pr cos (plat) °’ (89)

where pr and plat are the trial altitude and latitude, respectively.

Initially, dr is set equal to 80 km. The incremented longitude is

plon; = plon + da, (90)

Using this new value plonl for the longitude, E is again calculated.

This value of E 1is denoted by E2a. The residual sums Ela and
E2a are compared.
v s s ' " o_ '
Al. If E2 <El, plon, is incremented by da, (plon+ plon;
+ da+), E is calculated, and this value of E is denoted

by E3a’

Bl. If E2a > Ela’ the values of Ela' and E2a are interchanged

the sign of da+ is changed and this new increment is

denoted by da_, plon is incremented by da_ (plon: =

H



ko

e %

da

v
+

plon
plon

+

Figure 8.~ The increment ds .
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plon + da_), E 1is calculated, and this value of E is
denoted by E3a'
‘The residual sums E2a and E3a are compared.

A2, 1If E2a < E3a’ the comparing terminates.

B2, If E2a > E3a’ the o0ld value of E2a is given to Ela’ the
old value of E3  is given to E2_, plonx is incremented
by da, (plonr' = plon: + da+) or plon' is incremented by
da_ (plonz = plon' + da_) depending on whether route Al or
route Bl was used, E is calculated, this value of E is

denoted by E3a’ E3a is again compared to E2a, and this

is continued until an E3a is found such that E2a < E?a.

This procedure is carried out until an EZa is found such that
E2a < Ela and E2a < E3a’ vhere Ela’ E2a, and -E3a are three
consecutive residual sums. Then, using these three residual sums
the approximate value 6f the longitude plona which gives the minimum
residual sum Ea from varying the longitude, as shéwn in Figure 9,
is celculated. For the purpose of simplifying this calculation of
plona, the origin is shifted to the point plon2, shown in Figure 9;
this shift does not affect the final expression for plona. The
points plonl, plonz, and plon3 are ﬁhe longitudes which correspond
to the three residual sums Ela’ E2a’ and E3a, respectively.

The shift in origin requires a change in the longitudinal

variable to dlon, where

dlon = plon - plon, , (91)



L2

E1l
a

E3
a
E2,

—s Jongitude

Figure 9.- The longitude pZLon&_=L which gives the minimum
residual sum Ea’



43

where plon is the longitude of the trial solution and plon2 is the
longitude which gives the residual sum E2a' The residual sum E can
be written in the following general form

2

E = A, + A dlon + A, dlon®, (92)

2

where the coefficients AO, Al’ and A2 need to be determined. The

first derivative of E with respect to dlon is

adE _
Talon = Al + 2 A2 dlon (93)

The condition for a minimum E with respect to dleon is

0=A +2A. dlon ‘ (94)

1 2
Hence,
- Al
dlonmin = 5772; (95)

The three residual sums Ela’ E2a, and E3a cean be written in the

following respective forms using this new coordinate system.



Ela = Ao - Al da + A2 da (96)
E2, = A : (97)
B3y = A+ A da + A de” (98)

Solving these three equations simultaneously gives the coefficients
Ao, Al, and A2. From equation 97 it is seen that Ao = E2a already
because of the choice of origin of the new coordinate system.

Subtracting equation 96 from equation 98 gives

E3, - E1, =2 Al da , (99)
Therefore,
E3, - E1,
il (100)

Adding equations 96 and 98 gives

oA +2A aa°
o) 2

E3a + Ela

2 E2_ + 2 A, da®, using equation 97
(101)

Therefore,



A, = , » (102)

Hence, equation 95 for dlonmin becomes, using equations 100 and 102

for Al and A2, respectively,

min 2 A

- (_E3a - Ela)/2 da

2
2(E3a +El, -2 E2a)/2 da

- (E3 - E1 ) da
a a

= 2(E3. + EL_ - 2 E2_) (103)
a a a
From equation 91 it is seen that
dlon . = plon - plon, , ' (10k4)

where plona is the longitude that gives the minimum residual sum Ea'

Hence,

(10L4)

dlon . + plon

plona min 2

- (E3a - Ela) da

= 2(E3_+ EL_ - 2 E2) @ Plomp (105)

using equation 103 for dlonmi-n.
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Therefore,

(E3 - E1 ) da
_ a & :
2 2(E3_ +E1 -2E ) °
a a a

plon, = plon (105)
where da is da+ or da_ depending on whether routes Al or Bl
were taken. The longitude plona is used to again galculate E.

This value of E. is denoted by Ea and is the minimum residual sum
from varying the longitude.

This value of Ea is denoted by El .. Thep the initial trial
altitude pr is incremented by dr = 80 km, and the entire procedure
of incrementing the longitude by da and finding d second value for
Ea using this new value of the altitude is carried out. This new
value of Ea is denoted by E2r. The procedure for incrementing the
altitude by dr and finding Er’ the minimum residual sum from vary-
ing the altitude, is identical to the procedure for incrementing the
longitude by da and finding Ea’ the minimum residual sum from vary-
ing the longitude. The incrementing of the longitude, after finding
the first value of Ea’ is nested within the incrementing of the alti-
tude. The overall procedure of incrementing the altitude is carried
out until an E2r is found such that E2r < Elr  and E2r < E3r s
where Elr’ E2r, and E3r are three consecutive residual sums.

Using these.three residual sums the approximate value of the altitude
pr which gives the minimum residuel sum Er from varying the
altitude is calculated, using an equation completely analogous to

equation 105 for plona. The altitude pr, is then used to calculate
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Er’ The value of Er is‘denoted by Em, since itbis actually the
minimum residual sum from vafying both the longitude and altitude.
Then using the values of plona and pr.. .which gave the
minimum residual sum Em and incrementing the initial trial latitude
plat by dna = 1° ‘and decreasing the value of dr by half (dr =
40 km), the entire procedure of varying the longitude and altitude
to find the minimum residual sum Em is repeated. Then using the
new values of plona and pr. found from the first iteration and

incrementing the trial latitude again by dna = 1°

and decreasing

the value of dr again by half (dr = 20 km), the entire procedure of
varying the longitude and altitude to find the minimum residual sum
Em is again repesated. With dr = 20 km this procedure is repeated
over the range of latitude, in increments of dna = lo, desired. The
final values of the longitude and altitude, corresponding tc the given
values of latitude, which give the final minimum residﬁal sums provide
the unique solution to the problem of locating & barium cloud in

space which minimizes the error. For the LaRC triangulation output
this geodetic coordinate solutioﬁ is finally transformed to geocentric
coordinates, according to equations derived by this author in a
separate paper on the transformation from geocentric to geodetic
coordinates anq vice versa in powers of the earth's flattening

(reference T).
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Observation Stations for the BIC Project

For the BIC Project, use had to be made, as much as possible, of
existing observation sfations. Table 1 is a list of the observation
stations chosen for the BIC Project and their respective coordinates.
These stations were chosen on the basis of theéir availability,
facilities, relative location, and weather conditions during the launch-
window periods for the experiment. The two prime sites, ones that have
to be clear for the "go" launch condition, are Mt. Hopkins and Cerro
Morado. The Wallops station is actuelly the NASA CV-990 High Altitude
Research Aircraft (NASA-T1l), which is equipped as an airborne optical
observatory and which flies between Bermuda and_Wallops Station at
an altitude of 35,006 feet or higher for the experiment. It was
decided to have a north-eastern station to improve the triangulation
accuracy;'and since the east coast is frequentlyAplagued by cloud
cover, it was decided to use an aircraft to fly above the clouds. The
Baker-Nunn sites are extra sites included to impfoye the triangulation
accuracy.

The observatories at Byrd Station, Antarctica, and Great Whale,
Canada, were included to obtain data on the geoﬁhysical condition at
the time of the release and to monitor any induced changes that might

occur, but not to obtain data for triangulation purposes.

Pointing Displacement Errors
The two-dimensional input data to the triangulation program

could have, and probably will have, errors which occurred during the



Table 1: The BIC observation stations and their respective coordinates.

Geodetic East .

Station Laz(t;et;;le Lon dl;;;le Alécll{tmu;ie
Byrd Station, Antarctica -80.0167 -119.5167 0
Cerro Morado, Chile -30.1657 -70.7673 2.1346
Edwards Air Force Base Baker-Nunn, California 34.9641 -117.9146 0.0781
Great Whale, Canada 55.2700 -T77.7800 0
Mt. Hopkins, Arizona 31.6853 -110.8774 2.3640
Mt. Hopkins Baker-Nunn, Arizona 31.6853 -110.8774 2.3640
Natal Baker-Nunn, Brazil -5.9306 -35.1617 0.0421
Wallops Station, Virginia 37.9324 -75.4717 0.0106
White Sands, New Mexico 32.4238 -106.5528 1.6500

0§
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data acquisition and daté rgduction phases of the experiment. It is
important to know how such erro;s are manifested:by the triangulation
in the three-dimenéional solution of locating the barium cloud in
space. A reasonable error to assume for the tota; error occurring
. during the acquisition and reduction of the data is a probable error
ed of 0.01 degrees in the lines-of-sight from the observation stations
to the points on the cloud.

The probable error ed = 0.01 degrees is introduced into the
lines-of-sight from cne observation station at a time. The perturbed

azimuth and elevation coordinates, azi and el! , corresponding to

,n A,n

the probable error ed = 0.01° in the n lines-of-sight from station

A are
' - - ed del
8x,n  **A,n T cos elk dae (106)
1]
el! =el + eq 422 | (107)
A,n A,n dae 2
where a8z, is the unperturbed azimuth and elx n is the unperturbed
9 ?

elevation of the nEE- point on the cloud from station A and where

(elk,n+l M elk,n )

5 (108)

daz = (az -‘azk n) cos

A,n+l

del = el _ (109)

elK,n+l I W

1/2
[(daz)2 + (del)2] (110)

dae
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First, the solution of locating the barium cloud in space is
found, using points along the magnetic field line which passes through
the chosen BIC nominal release point for the input data; the solution

in latitude, longitude, and range coordinates is dencted by ¢N’ BN,

and Ty The solution is then found, using the same input data but

introducing the probable error ed = O.Ol0 into the lines-of-sight from

one station, say station A; this perturbed solution is denoted by

¢i,N’ eA,N’ and ri,N . The two solutions are then compared by finding
the displaecement between the two respective curves in space accordiné
to the following.

Initially, for the unperturbed solution a least squares poly-
nominal fit of fourth degree is found for eN = BN(¢N) and also for

Ty = rN(¢N) using LSQPOL, a Langley Research Center systems computer

subroutine which determines the M coefficients of the polynomial of
degree M-l which gives the best fit in the least squares sense.

The coefficients of the polynomial for GN = SN(¢N) are dencted by

sz,N’ wvhere M = 1,2,3,4,5; the coefficients of the polynomial for

ry = rN(¢N), by brM,N'

The polynomial for GN = GN(¢N) using the bL coefficients is

4

+ bl 5 10y

6. = bl + bl

3
N 1,8 2,00 + by oy * B2

2
3,8% (112)

The polynomial for r, = rN(¢N) using the br coefficients is,

N

similarly,
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_ 2 3 L
Ty =Ty g T BT, yOy * b by by o+ brg by (112)
The first derivative BN of GN with respect to ¢N is
. - 2 3
Oy blz’N + 2 b£3’N¢N + 3 blh,N¢N + L bQS’N¢N (113)

The first derivative ry of Ty with respect to ¢N is, similarly,

o 2
r. = br +2 br3,N¢N + 3 brh,N¢N + L br (11k)

¢3

N 2,N 5,N'N
-

From Figure 10 it is seen that the vector B, which is tangent to

the unperturbed solution curve at the point C, is given by

(=13
1

o * 2
=Bi +Bi, +B i
rr

"¢ 676

= rcé¢ci¢ + r, cos ¢c906¢cie + rcé¢c;r

+ r  cos ¢ceci +r i )¢

A
(r i 6 c¢'r c

c¢

, (115)

where 6¢c is the difference in latitude between the point C and the

~ ~ ~

nearby point C' on the same curve and i¢, ie, and ir are unit
vectors in the directions of increasing latitude, longitude, and
range, respectively, and ec, T.s ec, and r, are given by equations

111, 112, 113, and 114, respectively, for the point N = C. The

point A in Figure 10 is the point on the perturbed solution curve,
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-y

-
B.

Figure 10.- The vector
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due to a probable error ed = 0.01° in the lines-of-sight from
station A, having the same latitude ¢c as the point C on the
unperturbed solution curve.

As is shown in Figure 11 the vector from the point A to the
point C 1is K. The vector from the point A which is perpendicular
to E is 6. It is assumed that the vector distance from the point
A to the unperturbed solution curve is E. From Figure 11 it is seen

that
¢ =% + FB, (116)

where F needs to be determined. Dotting both sides of equation 116

->
with B gives
> > > -+ -> >
B+*C=B+*A+FB+B (117)

> - > . >
But, B * C =0, as C 1is perpendicular to B; so

0=B+«A+FB -+ B (118)
Therefore,
i3
F:—_} > (119)
B +B

Substituting equation 119 for F into equation 116, the expression



lgur
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.
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-
for C Dbecomes

¢=1+7FB (116)
. R.3a
=A-T—38B
B+*B
F R + 8 P )8
St r 1¢ r, cos ¢c ig+r i ¢c
2 2 2 ~2 2 2
+
(rc r_ cos ¢cec )8¢
c . C o2
X (rcl¢ r cos ¢ 6 ig + rclr)6¢c
e (e, + g i, +r i)
) K i} r 1¢ r, cos ¢ ig rclr
(r2 + r cos® ¢ 6% + ri)
X (rcl¢ + r, cos ¢cec16 + rclr) (120)

>
Now, as cen be seen from Figures 10 and 11, the vector A is given by

->

A= rA’A(Bé - eA’A) cos ¢Cie + (rc - rA’A)ir s (121)

where eA,A and r

the point A, which is on the perturbed solution curve due to a

A.A 8Te the longitude and range, respectively, of
. ,
probable error ed = 0.01° in the lines-of-sight from station A.
' >
Substituting equation 121 for A into equation 120, the expression

->
for C becomes
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x . o A
C = A (ec - eA,A) cos ¢c16 + (rc - rA,A)lr
[rA,A(Bc-GA.A)cos ¢cie+(rc—rA,A)ir]'[rci¢+ r cos ¢cecie+ rclr]
- 2 2 2, 2, 2
(rc + r_ cos ¢cec + rc)
X (rci¢ +r cos ¢ 6 ig* rcir)
= r)\’A(Gc A Jeos ¢ i+ (r - rA,A)ir
_[rX,A rc(ec A A)cos ¢c6 (r A.A) ]
(ri + r° cos ¢c62 + ri)
x (r i, +r,  cos ¢, 6 ig + ir)
3 .2 . . Py
- [rA,A A A)cos ¢ Ty A c(e GA A)cos ¢c6c-—rc(rc-rx’A)coschBcrc]i6
2 2 ‘2 '
(rc + T gos ¢cec + rc)
[-rA A ri (6 A A) cos ¢ 6 -r, (r -r A) rc] ?Q
+ 2

2 2 '2
(rc + r cos ¢cec + rc)

2 . . . 2 ’:
- - - r 1 :
s [rery n) = T ,a%e (88 A)°°f bedee (rory ) 7ol iy (122)

2 2 2 2 2
(rc + 1 cos ¢c6c + rc)

Therefore, the east-west, north-south, and verticel components —denoted

by le,A’ dQX,A’ and d3A,A’ respectively-of the total pointing dis-
placement error in the solution point A due to a probable error

ed = 0.01° in the lines-of-sight from station A are, respectively,
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.. 5 o o
dlk A= cos¢c EzA:A(eC_GAJA) r (r rx A)G rA’Arc(GC—SA,A)cos ¢C9C]
] 0y
(rz + r2cos ) 6 +r2)
c ce ¢ (123)
2 . .
i . [rl Ao (6 -6 A)cos ¢cec + (rc_rk,A) rc]
AoA ¢ (r2 + r2cose¢ 6° + r2) (124)
c c c ¢ c
2 . . '2
a3 = [(r "IN, A) rX,Arc(ec_eA,A)cos d>cec rc—(rc—rA,A)rc]
ALA 5 2 2. 2 2
(rc + r _cos ¢cec + rc) (125)

It is recalled that in the above expressions for dlA,A’ dzA,A’ and
d3A,A the subscript C 1is for the point on the unperturbed solution
curve which has the same latitude as the point A on the perturbed
solution curve.

Thefefore, the east-west, north-south, and vertical components —
denoted by dSlNA, dSENA, and dS3NA, respectively ~of the total point-
ing displacement error in the NAEE-éolution point due to a probable
error ed = 0.01° in the lines~of-sight from the observation stations

to the points on the cloud are, respectively,

- L o] 1/2

dsly, = Ail (dl)‘,NA) (126)
- L 2‘1 1/2
| A=1 J
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L
_ y2]re
535 —[:XEl (43) ya) ] , 1 <DNA < NT, (128)

where NT is the total number of points on the solution curve and the
‘summation over A means that the error in the lines-of-sight is only
put into the data from one station, station A, at a time. |

The total pointing displacement error dSTNA in the NAEE

solution point due to a probeble error ed = 0.01° in the lines-of-sight

from the observation stations to the points on the cloud is then

1/2
)2 + (as2 21

asT, . = [(dSlN (129)

>
NA A p) o (as3y,)

N

The dimensions of dSlNA’ dS2NA’ dS3NA’ and dSTNA are kilometers.

Pointing Displacement Errors as a Function of the
Number end Location of the Observation Stations

It was decided to exercise the LaRC triangulation method to its
fullest in order to extract meaningful information to aid in designing
the remainder of the experiment. To begin with, the errors in the tri-
angulation solution as & function of the number and the location of
the observation stations were desired. These were important to know‘for
the formulation of the "go"-"no go" launch criteria for the experiment
in the event of unfavorable weather or equipment malfunction at one or
more of the stations. Eight cases - which were cdmposed of all the
possible combinations of from two to five stations, always keeping the

two prime sites Mt. Hopkins and Cerro Morado - plus a ninth case - which
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was composed of just Mt. Hopkins and Cerro Morado, but with two
cameras at Mt. Hopkins — were investigated. These nine cases of
different station combinations are listed in Table 2. Figures 12, 13,
14, and 15 are plots of the pointing displacement errors—east-west,
north-south, vertical, and total, respectively—as functions of the
latitude for the nine cases of different station combinations. It is .
seen from the figures that case 9, with just the two prime stations,
is the worst and that case 1, with all five stations, is the best.

The cases composed of three and four observation stations give
intermediate results. Case 8, which denotes the case of one camera
at Cerro Morado and two cameras at Mt., Hopkins, is considerably
better than case 9, vhich denotes the case of just one camera at each

of these same two stations.

Pointing Slope Errors

In addition to determining what pointing displacement errors to
expect in the triangulation solution of the cloud position, it was
decided to determine what pointing errors in slope and curvature to
also expect. First, it is necessary to find the latitude, longitude,
and range coordinates of the line between two points in geocenﬁric
coordinates. In Figure 16 the points PN-l and PN denote the two
points in question.

If the point Py is the point P in Figure 11, where the vector C.

drawvn from the point A on the perturbed solution curve perpendicular-~

‘ >
ly intersects the vector B which is tangent to the point C on the



Table 2:

The nine

cases of different station combinstions.

Case

Cerro Morado
Mt. Hopkins
Natal Baker Nunn

.Wallops

White Sands

Case 2:

Cerro Morado

Mt. Hopkins
Natal Baker Nunn
White Sands

Case 3:

Cerro Morado

Mt. Hopkins
Natal Baker Nunn
Wallops

Case

Eal

Cerro Morado
Mt. Hopkins
Wallops
White Sands

Case 5:

Cerro Morado
Mt. Hopkins
White Sands

Case 6:

Cerro Morado
Mt. Hopkins
Wallops

Case

Cerro Morado
Mt. Hopkins
Natal Baker Nunn

Case 8:

Cerro Morado
Mt. Hopkins
Mt. Hopkins Baker Nunn

Case

O

Cerro Morado
Mt. Hopkins

62
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unperturbed solution curve, then the latitude, longitude, and range of

the point P, —denoted by ¢, , 6, , and r_ , respectively—are
N PN PN PN :

- given by

¢P = ¢c +F . (130)
N

b, = 6, + F ec (131)
N

rp, =r +F ; . (132)
N

where ¢c is the latitude of the point C, which is the same as the

latitude of the point A. The quantities Gc, r.s Gc, and r, are
the longitude, range, change in longitude with respect to latitude,
and change in range with respect to latitude, respegtively, of the
point C and are given by equations 111-11L4, respectively, for

N =C.

' Analogous expressions also exist for the latitude, longitude, and

range of the point PN_lf—vhich are denoted by ¢P ’ GP ., and
: ' “N-1 N-1
rp s respectively. '
N-1
From Figure 16 it is seen that the x,y,z components of PN and

P _ ~—~denoted by s ¥ s Z and s ¥ s 2 R
N-1 Py Ty Ry Py’ TPy’ Py
respectively—are
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xPN = rPN cos ¢PN cos GPN { ' - (133)
yPN = rPN cos ¢PN sin GPN o (134)
zPN = rPN sin ¢PN _ _ (135)
xPN_1 = rPn-l cos ¢PN-1 cos ePN—l | (136)
yPN_l = rPN_l cos ¢PN_1 sin GPN_l (137)
ZPN-l = rPn-l sin ¢PN_1 (138)

The differences between the respective rectangular components of P

and PN_l——denoted by de, dyN, and dzN"—are

dx = - X . (139)
LB MR
Ay =¥ -V (1ko)
N PN PN-l
dz,, = %, - 2 - (1k1)
N PN PN_l -
Thereforey the line between PN__l and PN in lafitude, longitude,

and range coordinates-—denoted by d¢N, dGN, and drN, respectively—is

given.by
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dz

-1 N '
d¢,. = sin (1k2)
N 2 2 2.1/2
(de *dy t dzN)
dy
= -1 [N
a6y = ten de) v (143)
1/2
_ 2 2 2
drN = (de + dyN + dzN) (1Lk)

As is seen in Figure 17 there is a line solution through the
points PN_l and PN and also a line solution through the points
1] ] > o +
PN—l and PX,N’ where PA,N is the perturbed solgtlon point due to‘
the probable error ed = 0.01° in the lines-of-sight from station A.

Just as the latitude, longitude, and range of the line between

PN-l and PN were found, the latitude, longitudé, and range of the

line between PN_l and Pi N can similarly be found. The rectangular
3
\J 1 1 1
components of PA’N——denoted by XX,N’ yA,N’ and zA’Nf—are
1 = p! ' 1
XN r}\’N cos ¢A,N cos ek,N (1k4s5)

' R 1 3 ' ‘
Yion = Ta,y ©°8 ¢X,N sin BX,N | (146)
1 = p! s '
S ) W s W S (147)
where ¢i N? Bi D and ri N &re the latitude, longitude, and range,
9 9 b}

respectively, of the perturbed solution point P, .. The differences
P AN

between the respective rectangular components of Pi N and PN_l——
2
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Figure 17.- A line solution through PN—l and PN

s 1
solution through PN—l and PX,N'

and a line

T1
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1 1 |
denoted by dxA,N’ dyA,N’ and dzA,N——are

=x! -x (1L8)

. (1L9)
W, n T IA,N yPN_l
dz! =z! -z (150)
WOV s >
Therefore, the line between PN—l and Pi N in latitude, longitude,
?
and range coordinates—denoted by d4¢, de; and dr!
g _ y ¢A ,N’ >\,N’ A,N,

respectively—is given by

. dz!
a¢} = sin”t — Ll — (151)
[(axg )% + (ayy )%+ (az) O ar2
o ' ay!
de;\’N = tan t a;f*’N— (152)
AN
1/2 |
' - ' 2 ' 2 ' V2
dry n deA,N) *layy ) (dzx,N)] (153)

Since the magnetic field lines of the earth lie approximately in
planes of constant lengitude, the longitude deN of the line between

PN_l and PN is very nearly equal to GP , the longitude of the

N-1
point PN—l' Since the slope error is small, the longitude 46,

AN
of the line between PN_l and Pi N is also very nearly equal to
9

0. .
Py-1



73

It is convenient to construct a new coordinate system x', y', z'—

with its origin at P _1° x' axis in the plane of constant longitude

N
GP , 2' axis the same as the z axis in Figure 17, and y' axis to
N-1
form a right-handed orthogonal set—as shown in Figure 18. The vector
. > . _
from PN—l to PN is denoted by dP; and the vector from PN—l to

> -+
Pi N by dP'. The latitude, longitude, range components of 4P are
9

ddys deN, dr,, as given by equations 142-1LkL, respectively; and the

N
latitude, longitude, range components of é%' are §¢X,N’ dei;N, dri’N
as given by equations 151~153, respectively. The total output peinting
slope error aSTA,N, is the angle between the ¥ectors é% and é}'.

The total output pointing slope error can be resolved into two compon-
ents—one in the pléne of constant longitude and the‘other perpendicular
to this plane. The parallel component is called the latitude output
pointing slope error and is denoted by aSlA,N; the perpendiculaf
component is called theilongitude output pointing slope error and is
denoted by aS2A,N'

The rectangular coordinates of the unit vector. 4P in the primed -

~

coordinate system of Figure 18—denoted by dde, ddyN, and ddzN—ﬂare

a = cos d¢, cos (a6 - 8 (154)
dxy N ( N PN_l)

ddy, = cos d¢, sin (dON - 6P1§-1> (155)
ddzN = sin d¢N , (156)



Th

Figure 18.- The vectors dP and 4aP' and the total
' output pointing slope error a.STA N
?
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where 6 is the longitude of the point P
Py_q N-1

are given by eqﬁations 142 and 143. Similerly, the rectangular coordi-

and d¢N and deN

nates of the unit vector dP' in the primed coordinate system of Figure

- ' 1 N N ' -
18 - denoted by ddxl,N’ dqu,N’ and dd?),N are

ddx} y = cos 49} . cos (dei’N - ePN_l) (157)

ddyi,N = cos d¢i’N sin (dei’N - ePN_1.> (158)

ddzi’N = gin d¢i,N . | (159)
where d¢i,N and dGi’N ere given by equations 151 and 152.

Hence, the latitude and longitude components of the total output
pointing slope error, denoted by a.SlA N and a.S2>\ N and the total
] 1]

output pointing slope error aSTA N in the Nﬁg-solution poiht due to a
k]

o .
probable error ed = 0.01" in the lines-of-sight from station A are,

respectively, ,
: ddz! ddz
-1 AN -1 N '
asS1 = tan -———-*—) - tan ( ) (160)
AN <ddxi’N- ddx
= 1 - .
aszk’N ddyx’N ddy , (161)
| 2 0 /2
aSTA’N = [(aSlA,N) + (aszl’N) ] (162)

The latitude and longitude components of the total output pointing

slope error, denoted by aSlNA and aS2NA, and the total output
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pointing slope error aSTNA in the NA&E- solution point due to a

probable error ed = 0.01° in the lines-of-sight from the observation

stations to the points on the cloud are, respectively,

A L -
_ 2| 1/2
aSly, —[}\il (aSl)\’NA) : (163)
L 7
_ 2] 1/2
as2y -Lzl (asex,NA) (16L4)

2 o |1/2
STy, = [(a’81NA) + (a52y,) , 1 <NASNT,  (165)

where NT is the total number of points on the sqlution curve and the
summation overA A means that the error in the lines-of-sight is only
put into the data from one station, station A, at & time.

The total pointing slope error AST 1is defined as the ratio of
the total output pointing slope error aST to the total input
pointing slope error sa. In Figure 19, the points Po3 and pn are
consecutive points spaced BN degrees apart on the unperturbed
azimuth-elevation curve. It is recalled that BN = 0.28°. The point
pa, s line from which perpendicularly intersects the unperturbed
‘curve at the point P> is on the perturbed azimuth-elevation curve
due to a probable error ed = 0._01o in the line-of-sight from the
station to the point P, - The total input pointing slope error sa

is given by

tan sg = — (166)



Elevation

Azimuth x cos (elevation)

Figure 19.- The total input pointing slope error

s4a.

T7
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Since ed = 0.01° and BN = 0.28°, tan sa is small and, hence, is

approximately equal to sa. Hence,
sa = == (167)

Therefore, the total pointing slope error AST A in the NAEE solution

N.

point due to a probable error ed = 0.01° in the lines-of-sight from

the observation stations to the points on the cloud is
AST = = —=— , (168)

where aSTNA is given by equation 165 and sa is given by equation
167.

Now,

aST
= — DA ,
ASTyp = Toa : _ (168)

5 7 1/2
(aS1y,)" + (aS2y,

R T , using equation 165

° 4 1/2

(169)

n
&
Bl
NS

+
N
o z%

F=

~——

Therefore, from equation 169 it is seen that the latitude pointing

slope error ASl the component of the total pointing slope error

NA®

in the plane of constant longitude, and the longitude pointing slope

error AS2NA, the component of the total pointing slope error



9

perpendicular to the plane of constant longitude, in the NAE}-l
solution point due to a probable error ed = O.Olo in the lines-of-
sight from the observation stations to the points on the cloud are,

respectively,

aSl
_ NA
ASlNA = (170)
asS2
- NA ,
ASQNA = s (171)

where aSlNA,.aS2NA, and sa are given by equations 163, 164, and 167,
respectively.

The three slope errors ASl As2 ., and ASTNA are all

NA® NA

dimensionless.
Pointing Slope Errors as a Function of the
Number and Location of the Observation Stations
Figures 20, 21, and 22 are plots of the latitude pointing slope
error, the longitude pointing slope error, and.the total pointing slope
error, respectively, as functions of the latitude for the nine
different station combinations. As for the pointing displacement
errors, the greatest accuracy is for the five-station case, case 1,
and the least accuracy is for the two-station case, case 9, the
combinations of four and three stations giving intermediate accuracies.
Agein, case 8, with two cameras at Mt. Hopkins and one at Cerro
Moradb, is considerably more accurate than case 9, with Jjust one

camere at each of these same two stations.
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Pointing Curvature Error

The pointing curvature error is defined as the ratio of the output
pointing curvature error to the input pointing curvature error. For
defining the input pointing curvature error, consider Figure 23, in
which R is the radius of curvature of the perturbed azimuth-elevation
curve through the three consecutive points pé_z,'pﬁ_l, and pé due to
a probeble error ed = 0.01° in the line-of-sight from the station to
the point P, ©n the unperturbed azimuth-elevation curve through

the three consecutive points pn-l’ and P spaced BN = 0.28°

pn_z 9’
apart. The angle o is small, as BN is small. From Figure 23 it is

seen that
cos o = R—;@- (172)
Rcos aa=R -~ ed
a2
R(1 - 5—-:_...) = R - ed, expanding cos a
a2
R-R 5—-= R-ed, as o 1is small
2
a -
R 5 ed
Hence,
2 ed
R=—2 _ (173)



8l

Elevation

Azimuth x cos (elevation)

Figure 23,- The radius of curvature R.
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Also from Figure 23 it is seen that

(17h)

sin o =

wlbd
=

Hence,

a=—,as o is small (175)

Substituting equation 175 for o into equation 173 for R, it becomes

R = (173)

—2-29—5 , using equation 175
(BN/R)

2 ed R°

B

Hence,

BN
R=%ed ‘ (176)
Therefore, the input pointing curvature error s defined as the

reciprocal of the radius of curvature of the perturbed azimuth-elevation

curve , is given by



'86

¢, =%

i R
2 ed '

= 5 s (1717)
BN
using equation 176 for R.
Anslogously, the output pointing curvature error °, in the
AN

Nzh'solution point due to a probable error ed = 0.01° in the lines-of-

sight from station X is

1/2
2[(a1, )2 + (a2, )% + (a3, )]
o = AN AN ALN (178)

2 ]
OA,N ary

where dlA,N’ dQA,N’ and d3A,N are given by equations 123, 124, and
125 for the point N, respectively, and drN is given by equation 1hk.
The pointing curvature error CSA N in the NEE- solution point
3

due to a probable error ed = 0.01o in the lines-~of-sight from station

A, defined as the ratio of ¢ to c¢,, is then
o i
ALN
c
B |
= ————
T e (179)
1/2
2 2 2 2
) 2f(ar, )° + (a2, )" + (a3, P71 /ary
2 ed/BN2
. 1/2
[(a1, )2+ (a2, )% + (a3, )°] BN
_ AN AN AN
= 5 , (180)
ed drN

using equetions 177 and 178 for ci and <, , respectively.
TALN
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‘Therefore, the pointing curvature error CSNA in the NAE-}l
solution point due to a probable error ed = 0.01° in the lines-of-

sight from the observation stations to the points on the cloud is

CSyy = [)\ZL (cs)\’NA)e] /2 , 1 < NA <NT, (181)
=]
where NT 1is the total number of points on the solution curve and the
summstion over )\ means that the error in the lines-of-sight is only
put into the data from one station, station A, at a time. The
dimensions of the pointing curvature error are degrees/kilometers.
Pointing Curvature Error as a Function of the
Number and Location of the Observation Stations

Figure 2hvis a plot of the pointing curvature error as a function
of the latitude for the nine different station combinations. As for
the pointing displacement errors and the pointing slope errors, the
gréatest aécuracy is for the five-station case and the least accuracy
is for the two-station case. The cases of four and three stations
give intermediate accuracies in the following decreasing order -
2, 4, 3,7, 8, 6, and 5. Also, as for the pointing displacement
errérs and the pointing élope errors, case’8, with two cameras at Mt.
Hopkins and one at Cerro Morado, is considerably more accurate than
case 9, with just one camera at each of these same two statibns.

Therefore, ffom Figures 12, 13, 14, 15, 20, 21, 22, and 24, the
different error components - east-west displacement, north-south

displacement, vertical displacement, total displacement, latitude slope,
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longitude slope, total slope, and curvature, respectively - in the
triangulation solution due to & probable error ed = 0.01° in pointing
cen be seen as functions of the number and location of the_observation
stations. In the event of unfavorable weather or equipment malfunction
at one or more of the stations, these plots can be ¢onsulted.to see

if the respective errors can be tolerated or not before deciding whether

or not to launch.

Comparison of Pointing Displacement Errors

It was decided of interest to compare the three pointing displace-
ment error components to eﬁch other to determine which component is the
greatest. Figure 25 is a plot of the east-west pointing displacement
error, the north-south pointing displacement error, the vertical poiﬂt—
ing displacement error, and the total pointing displacement error as
functions of the latitude for case 1. Case 1, which is the case composed
of five stations, was chosen for this comparison because it is the case
which gives the smallest values for all three displacement error
components. As can be seen from Figure 25, the vertical component is
the largest component throughout the latitudinal region of -9o to 156,
whereas the north-south component is the largest cOmponént throughout

the latitudinal region of 16° to 28°.

Comparison of Pointing Slope Errors
Also of interest is a comparison of the two pointing slope
error components. Figure 26 is a plot of the latitude pointing

slope error, the longitude pointing slope error, and the total
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pointing slope errer ag functions of the latitude for case 1, which
gives the smallest velues for both slope erfor components. As can be
geen from Figure 26,Ithe latitude component is much larger than the
longitude component and the total pointing slope error very closely
epproximates the latitude component.
Pointing Errors as a Function of
Observation Duration _ .

The barium cloud elongates aloné the leﬁgth of the magnetic fielﬁ
line. Since the magnetic field lineslare approximately conseant in
longitude, the barium cloud is essentially elongating in latitude.
Looking back to Figures 25, 26, and 24, the four pointing displacement
errors, the three pointing slope errors, and the pointing curvature
error, respectively, as functions of the latitude for the five;-station
case can be seen. Since the position in latitude of the elonéatiné
cloud is a function of the time after the barium is releesed, these
pointing errors are also functions of the time>after release. From
Figures 25, 26, and 24, then, the pointing errors as functions of the
observation time after release can be obtained.

The rate of elongation of the cloud was predicted to bevabout
1.2 km/sec in each direction.- Observation durations of 10,000 sec,
6,000 sec, and 1,000 sec would then correspond to total cloud lengths
of 24,000 km, 14,400 km and 2,400 km, respectively. The angle of
latitude ¢t that the cloud length subtends at the time t after

release is approximately
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. .
ey, (182)

9, = tan © {7

where Lt is the length of the cloud at the time t after release'and
g = 31,633.008 km is the altitude of the nominal release point. Using
equation 182 the angles of létitude subtended for the cloud lengths of
2&,000 km, 14,400 km, and 2,hob kmr—which cérrespond to tﬁe observation
durations of 10,000 sec, 6,000 sec, and 1,000 sec, respectively—are
37.188°, 2&;#760,-and 4.339°, respectively. Centering these three
angles of latitude about the nominél releese point latitude, which is
9.2290, gives the regions of latitude covered by the elongating cloud
during these respective observation durations. The regions of

latitude corresponding to the observation durations of 10,000 sec,

6,000 sec, and 1,000 sec are (-9.365° to 27.823°), (-3.009° to 21.467°),
and (7.060° to 11.398°), respectively. By examining these three

regions ofjlatitﬁde in Figures 25, 26, and 24, the pointing displacement
errors, the pointing slope errors; and the pointing curvature error

can be seen, respectively, as functions of these three observation
durations.

From Figure 25 it'is séen that the east-west pointing displecement
errér practically remains constant th:oughout the three observation
durations, théx the north-south pointing displacement error increases
toward the lower-latitude end and decreases toward the higher-latitude
end over the 1,000-sec observati§n duration and first increases and

then decreases toward the lowerzlatitude end and decreases toward the
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higher-latitude end over the 6,000-sec and 10,000-sec observation
durations, and that the vertical and total pointing>displacement
errors increase toward the lower-latitude end and decrease toward the
higher-latitude end over all three of the observation durations. From
Figure 26 it is seen that the longitude pointing slope error practically‘
remains constant throughout the three observation durations and that
the latitude and total pointing slope errors increase toward the lower-
latitude end and decrease toward the higher-lstitude end over ali
three of the observation duratiqns. From Figure 24 it is seen that
the pointing curvature error also increases toward the lower-latitude
end and decreases toward the higher-latitude end over all three of
the observation durations.
Pointing Errors as a Function of
East-West Cloud Drift

The barium cloud is expected to drift eastward or westward. It
was decided to investigate how the triangulation results are affected
if the cloud drifts in such a fashion into other areas of the sky.
An east-west drift corresponds to a longitudinal drift; hence, it is
convenient for this investigation to lobk at, actually, the effect of
using different release points—release points having the same
latitude and sltitude, but different longitudes.

It is reassonsble to assume that in order to observe the barium
cloud at an altitude of 32,000 kilometers from a particular observation

station the elevation angle from that station to the cloud should not
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be less than 20 degrees. From the equations derived in the appendix,
the elevations were calculated for all integer values of the longitude
between 0° and 180° and between 0° and - 180° for the five observation
stations—Mt. Hopkins, Cerro Morado, Wallops, Arequipa, and White Sands.
It was found for the range of longitudes between —h9° and - 119o that
the elevation anglés were approximately greater than or equal to 20
degrees for all five stations simultaneously. ©Six different release
points—each haVing latitude equal to 9.229 degrees and altitude equal
to 31,633.008 kilometers, with longitudes equal to - 49°, - 63°, - 77°,
- 910, - 1050, and —'1190, respectively—were chosen for the investiga-
tion. Points along the respective magnetic field lines through these
particular release points were used for the input data to the LaRC
method.

Figures 27, 28, 29, 30, 31, 32, 33, and 34, respectively, are
plots of the pointing errors—east-west displacement, north-south
displacement, vertical displacement, total displacement, latitude
slope, longitude slope, total slope, and curvature—as functions of
the latitude for the five-station case for different release points
varying in- longitude. .Now,'the coordinates of the nominel release
" point chosen for the BIC Experiment are latitude = 9.229°, longitude =
- 75.0000,'and altitude = 31,633.008 km. Hence, these plots can be
examined to see if the triangulation errors increase or decrease as
the cloud drifts eastward or westward from this chosen nominal
release point. From Figures 27-34 it is seen that gll of the pointing

errors incresse as the cloud drifts eastward into the longitudinal
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‘regions of - 63° and - 49° and that all of the pointing errors decrease
as the cloud drifts westward into the longitudinal region of - 910. As
the cloud drifts farther westward into the longitudinal regions of - 105o
and - ll9°, the pointing errors increase or decrease depending on the
cloud's_position in latitude. |

Pointing Errors as a Function of the
Number of Input Date Points

Since the LaRC triangulation method requires for input data a
number of points from the original azimuth-elevation curves from the
observation stations, it was decided to determine Jjust how many such

raw data points are required to be read. It is recalled from the

discussion of the LaRC method that the number of points NBQ along the

azimuth~elevation curve of arc length sarc in degrees from station

£ 1is given by equation 55

88.1'02
WB, =~ » (55)

where BN 1is the spacing in degrees between consecutive points along
the curve. A convenient parameter for this determination is the
spacing BN required between points instead of tﬁe actual number of
points required to be read, as the arc lengths of the azimuth-
elevation curves vary.

The LaRC method was tested for the following six different values
of the spacing in degrees—3BN = 0.28, 0.56, 1.12, 2.24, 4.48, and 8.96.
Figures 35, 36, 37, 38, 39, 40, L1, and 42 are plots of the pointing

errors—east-west displacement, north-south displacement, vertical
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displacement, total displacement, latitude slope, longitude slope,
total slope, and curvature, respectively—as functions of the latitude
for the five-station case for these six different velues of BN. As
can be seen from thé figures, the curves are nice and smooth for the
shorter spacings of BN = 0.28, 0.56, and 1.12 degreés, whereas they
are highly erratic for the longer spacings of BN = L.48 aend 8.96
degrees. The intermediate spacing of BN = 2,24 degrees produces only
slightly erratic behavior. It is, therefore, recommended that the
maximum specing allowed between the input date points along the
azimuth-elevsation curves be BN = 1.12 degrees. For example, &
reasonable arc length for a long barium cloud aziﬁuth—elevation
curve would be 37 degrees; using this maximum spacing of 1.12 degrees
between points would require that at least 34 input data points be
read from the curve.
Effects of Additional Cemeras at a Particular
Observation Station

From Figures 12, 13, 14, 15, 20, 21, 22, and 2l for the pointing
errors, it was seen that case 8, which is composed of one camera at
Cerro Morddo and two cameras af Mt. Hopkins, gave.significantly iess
efrors then case 9, which is composed of just one camera at each of
these same two stations. Therefore, adding a second camera to
Mt. Hopkins in the two-station case improves the triangulation results.

It was decided to see if adding a second camera to Mt. Hopkins in
the five~station case would also increase the accuracy. Table 3 gives the

values of the pointing displacement errors as functions of the latitude
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Table 3: Case 1 pointing displacement errors.
Latitude E-W N-S Vertical Total
(deg) Error Error Error Error
(km) (km) (km) (km)

-9 3.84 3.48 36.77 37.1k
-8 3.87 L.7h 36.52 37.02
=T 3.91 5.99 36.31 37.01
-6 3.9k 7.20 35.99 36.91
-5 3.97 8.36 35.5k4 36.73
-h 3.97 9.38 3k.70 36.17
-3 L.o0 10.42 34.08 35.86
-2 4.02 11.37 33.33 35.45
-1 L.ok 12.25 32.51 34,98
0 L.ok 12.96 31.k41 34,22
1 4.05 13.66 30.45 33.62
2 L. ok 14,23 29.35 32.86
3 L. ok 14.73 28.26 32.12
b 4.03 15.13 27.10 31.29
5 4,02 15.4Y4 25.94 30.L46
6 L.00 15.63 24,70 29.50
7 3.97 15.71 23.k1 28.46
8 3.93 15.73 22.17 27.47
9 3.89 15.65 20.91 26.41
10 3.86 15.55 19.7k 25.43
11 3.83 15.39 18.60 24, 4h
12 3.79 15.18 17.48 23.L46
13 3.74 14.85 16.32 22.38
1k 3.70 1L.54 15.28 21.42
15 3.65 1h.1Y4 1k.22 20.38
16 3.59 13.71 13.22 19.38
17 3.55 13.31 12.31 18.48
18 3.50 12.85 11.hk1 17.54
19 3..45 12.38 10.56 16.64
20 3.h1 11.92 9.78 15.80
21 3.37 11.45 9.0k 14,98
22 3.32 10.98 8.35 14.19
23 3.28 10.52 7.71 13.L45
2k 3.25 10.05 7.10 12.73
25 3.21 9.59 6.5k4 12.04
26 3.17 9.13 6.00 . 11.37
27 3.13 8.65 5.50 10.72
28 3.1k 8.40 5.16 10.3k
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for case 1, the five-station case. Then a second cemera was added to
Mt. Hopkins, and this new case wés denoted by case 1'. Table 4 gives the
values of the pointing displacement errors as functions of the latitude
for case 1'. The east-west component has remained the same or has de-
creased very slightly; but the north-south, verticai, and total pointing
displacement errorslhave increased slightly. Then a third camera was
added to Mt. Hopkins, and this case was denoted by case 1". Table 5 gives
the values of the pointing displacement errors as functions of the lati-
tude for this case. Once again the east-west component has remained the
same or has decreased very slightly, while the north-south, vertical, and
total pointing displacement errors have increased slightly. This process
of adding an extrs 6amera to Mt. Hopkins was continued up to the final
case of twelve cemeras at Mt. Hopkins; and each time the east-west
component remasined the same or decreased very slightly, while the
north-south, vertical, and totel pointing displacement errors increased
slightly.

At first these increased errors might be a little alarming in view
of the results found earlier for the two-station case, ig which adding
8 second camers to Mt. Hopkins improved the accuracy. However, for the
two-station case the intersection of the two conical-like surfaces in
space defined by the respective azimuth-elevation curves from the two
stations is unique; whereas, with three or more observation stations,
especially with errors in pointing, the intersection of these surfaces
is no longer unique. What happens when more and more cameras aré

added to one station in a case of three or more stations is that, in
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Vertical

Latitude E-W N=-S Total
(deg) Error Error Error Error
(km) (km) (km) (km)

-9 3.83 3.76 39.72 40.08
-8 " 3.86 5.11 39.37 39.89
-7 3.90 6.4s 39.07 39.79
-6 3.93 T.73 38.64 39.60
-5 3.97 8.96 38.08 39.32
-4 3.97 10.0L 37.14 38.68
-3 L.00 11.13 36.40 38.27
-2 L.o2 12.13 35,54 37.77
-1 k.oh 13.04 34.60 37.20
0 4.03 13.77 33.38 36.3h
1 L. ok 1h4.49 32.31 35.64
2 L. ok 15.07 31.08 b 7T
3 4, 0h 15.57 29.87 33.93
4 4.03 15.97 28.60 33.01
5 L.o02 16.27 27.33 32.06
6 L.00 16.45 25.98 31.01
T 3.96 16.50 24,58 29.87
8 3.93 16.49 23.25 28.77
9 3.89 16.38 21.89 27.61
10 3.86 16.25 20.63 26.54
11 3.83 16.06 19.40 25.47
12 3.79 15.81 18.20 24 . ko
13 3.74 15.43 16.97 23.2k4
1k 3.70 15.09 15.85 22.20
15 3.64 1h.64 14,73 21.08
16 3.59 1,17 13.66 20.01
17 3.55 13.7h 12.70 19.04
18 3.50 13.24 11.75 18.04
19 3.45 12.73 10.86 17.09
20" 3.41 12.24 10.04 16.19
21 3.36 11.73 9.26 15.32
22 3.32 11.23 8.54 14.50
23 3.28 10.7k 7.87 13.71
24 3.25 10.25 7.24 12.96
25 3.21 9.76 6.65 . 12.24
26 3.17 9.27 6.10 11.5h
27 3.12 8.77 5.57 10.85
28 3.1L4 8.50 5.22 10.46

Ta
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Latitude E-W N-S Vertical Total
(deg) - Error Error Error Error
(km) (¥m) (km) (km)

~9 3.83 3.90 41.13 bi.k49
-8 3.85 5.29 Lo.7h 41,26
-7 3.89 6.67 40.39 h1.12
-6 3.93 7.99 39.91 40.89
-5 3.96 9.25 39.30 L4o.57
- 3.97 10.36 38.30 39.88
-3 3.99 11.47 37.50 39.k42
-2 4,02 12.49 36.60 38.88
-1 L.ok 13.41 35.60 38.26
0 L.o3 14.16 34,33 37.35
1 4.o4 14.89 33.19 36.60
2 L. ok 15.47 31.90 35.69
3 L. ok 15.98 30.64 34,79
b 4.03 16.37 29.32 33.82
5 L.o2 16.67 28.00 32.83
6 L.00 16.83 26.59 31.73
7 3.96 16.87 25.15 30.54
8 3:93 16.86 23.76 29.39
9 3.89 16.73 22,35 28.19
10 3.86 16.58 21.05 27.07
11 3.83 16.38 19.78 25.97
12 " 3.79 16.11 18.55 24, 85
13 3.7k 15.71 17.27 23.65
14 3.70 15.35 16.13 22.57
15 3.64 14.88 1k.97 21.42
16 3.59 1k.40 13.88 20.31
17 3.55 13.94 12.89 19.31
18 3.50 13.42 11.92 18.29
19 3.45 12.90 11.01 17.30
20 3.4 12.39 10.16 16.38
21 3.36 11.87 9.37 15.49
22 3.32 . 11.35 8.63 14.64
23 3.28 10.84 7.94 13.8%4
24 3.24 10.3%4 7.30 13.07
25 3.21 9.84 6.71 12.33
26 3.17 9.33 6.1L4 11.61
27 3.12 8.83 5.61 10.92
28 3.1k 8.55 5.25 10.51
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effect, the data from this one station is receiving more and more
weighting and the solution is becoming more and more.constrained to
lie on the surface originating from this one station. EHence, the
triengulation errors should be expected to increase, as was éeen in
Tables 3-5.
Station Displacement Errors for the
Aircraft Station

As was mentioned earlier the Wellops station is really en air-
craft. The position of the moving aircraft containé some error, &s
the aircraft is tracked by radar and because of its particular flight
path for the experiment there are times when it is outside of the range
of the existing radar stations. This error in the Wallops station
position produces errors in the triangulation results; called station
errors, Just as an error in the lines-of-sight fiom the different
stations produces errors in the trianguletion results, called pointing
errors. A reasonsble probable‘error to assume in the aircraft
position is a three-kilometer sphere of uncertainty.(a sphere of.:
‘radius equalling three kilometers) about its position. This total
~uncertainty is denoted by Oy » It is then reasonable to assume that
this sphere of uncertainty is due to equel uncertainty in the three
rectengular components—east-west, north-south, and vértical—ﬂof the
aircraft. These three uncertainties are denoted by Ocirs ONS’ and

EW
)1/2

, respectively, and are each equal to 113 km,, as

Oy
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1/2
g, = (0> + oﬁs + 03) (183)
2 2 2,1/2
o, = [ /D2 + (£ /)2 + (+ /3]
= (3+3+ 32
= (9)}/2
=3 (184)

If T denotes the range of the aircraft, slat denotes its laﬁitude,

and , and 0. denote the uncertainties in its latitude,

Gﬂat’oﬂpn r

longitude, and range, respectively, then

O = I cos (slat) % 1on | (185)
Ons = T %%1at (186)
Oy = 0p (187)
For computing the numericel values for Ociat and %1on® the latitude

end range used were those for the aircraft over Wallops. The latitude
of Wallops is 37.9324 degrees. The aircraft flies at an altitude of

35,000 feet or higher. If 35,000 feet, which equals 10.6680 kilometers
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is assumed for the altitude of the aircraft, then the range of the -
aircraft is this altitude plus the earth's radius of 6371.2 kilometers;

in equation 185,

hence, T = 6381.9 kilometers. Solving for O
_ slon

g

EW
91on - T cos (slat) (188)
. = + (312 kn
slon (6381.9 km) cos (37.93240)
= 10.0003&3 radians (189)
Solving for Ogiat in equation 186,
g
= NS
Os1at = T (190)
e 12
slat  (6381.9 km)
= +0,000271 redians (191)

And since the uncertainty in range is Jjust equal to the uncertainty in

the vertical component, as given by equation 187,

o=+ (3)% km

+ 1.732051 km o (192)

The triangulation results were again computed using the magnetic
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. field line dgta through the BIC nominal release point for the input data -
only tﬁis time instead of introducing the probable error ed = 0.01° in-

to the lines-of-sight from each station, one at a time, the uncertainties
oslat’ oslon’ and cf were introduced into the aircraft coordinates over

Wallops, one at a time. The four station displacement errors due to the

uncertainties ©

- &l ions 191, 189, and
's1at® Yslon’ and O ~ given by equations 191, 169,

192, respectively - were calculated, using an analogous procedure to
that used earlier for calculating the four pointing displacement errors
due to the probable error ed. Figures 43, Lh, 45, and 46 are plots of
the station displacement errors - east—west,’north-south, vertical, and
total, respectively - as functions of the latitude due to the uncertain-

ties © , and cr in the coordinates of the aircraft over Wallops.

slat® %slon
Only the cases 1, 3, 4, and 6, which are defined in Table 2, were con-
sidered, as these are the only cases which include the Wallops station.
It is seen from Figures ﬁh, 45, and 46 for the north-south,
verticel, and total station displacement errors, respectively, that
the errors for case 3, cémposed of four stations, are less-than the
errors for case 1, composed of five stations, and also that the
errors for case 6, composed of three stations, are less than the
errors for case 4, composed of four stations. At first this might
be a little alarming in view of the fact that reference 4, even
though it is for an idealized situstion, indicates that the tri-

angulation error decreases as the number of observation stations

increases. However, it is noticed when looking back to Table 2 that
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case 1 is equal to case 3 with White Sands added and that also case L
is equal to case 6 with White Sands added. From Table 1 it'is noticed
that the coordinates of White Sands are almost the same as the coordi-
nates of Mt. Hopkins. Hence, case 1 is approximately the same as case
'3 with a second camera added to Mt. Hopkins and also case 4 is approxi-
mately the same as case 6 with a second camera added to Mt. Hopkins.
It is recalled from the previous discussion on the effects of additional
cameras at a particular observation station that adding a second camera
to Mt. Hopkins in case 1 causes the north-south, vertical, and total
pointing displacement errors to increase slightly. As was explained
just previously, for three or more observation stations, especially with
errors present, the intersection of the conical-like surfaces in space
defined by the respective azimuth-elevation curves from the stations is
not unique and that when a second camera is added to one station that
station's data essentially receives a higher weighting and_the solution
is more constrained to lie on the surface from that one station. Hence,
the results of Figures Uk, 45, and 46 for the north-south, vertical,
and total station displacement.errors, respectively, are not as alarming
as they first might seem.

In!the situstion of the pointing displacement errors, however,
when White Sands was added to a given station case not originally
contéining it these results did not occur. Hence, the north-south,

vertical, and total station displacement errors are more sensitive to

this phenomenon than their corresponding pointing displacement errors.
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Resultant Displacement Errors for the
- Aircraft Station
The resultant displaéement errors, defined as the square root of
the sum of the squafes of the corresponding components of the pointing
displacement errors and the station displacement errors, were calcu-
lated. Then, the per cent differences between the resﬁltant diéplace-
ment errors and their corresponding pointing displacément errors vere
celculated.
These resultant displacement errors and these per cent differences
- between the resultant displacement errors and their corresponding
pointing disﬁlaceﬁent errors are shown in Tables 6, 7, 8, and 9 for
the cases 1, 3, 4, and 6, respectively. From these tables it is
seen that the per cent differences between the resultant dispiacement
errors and their corresponding pointing displacement errofs are

indeed significant.

Aircraft Data Weighting Factors

Since the coordindtes of the mbving aircraft contain uncertsinties -
which are manifested in the triangulation as station displacement érrors,
in addition to any pointing displacement errors, renderipg resultaﬁt
displacement errors whose per cent differences with the corresponding
pointing displacement errors are significant - it was decided that the
data from the moving aircraft should not be weighted as hedvily as the
data from the fixed, ground-based stations. ‘Some scheme of weighting

the data from the different observation stations needed to be devised.
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% differ~- % differ- % differ-] % differ-
ence with ence with ence with ence with
Latitude E-W E-W N-8 N-§ Vertical | Vertical Total Total
(deg) Error |Pointing Error. Pointing Error | Pointing Error [Pointing
(km) Error (km) Error (km) Error (km) Error
only only only only
-9 5.25 32 .74 - 11 80.95 11 81.k49 11
-8 5.28 32 10.43 1 - 79.76 11 80.60 11
-7 5.31- 32 13.00 11 78.38 11 79.63 11
-6 5.34 33 15.43 12 T6.77 12 78.48 12
-5 5.35 33 17.70 12 Th.93- 12 77.18 12
-b 5.35 33 19.75 12 T72.77 12 75.59 12
-3 5.37 33 21.65 12 70.58 12 Th.01 13
-2 5.37 34 23.35 13 68.23 13 72.32 13
-1 5.38 3k 24,85 13 65.78 13 70.52 13
0 5.36 34 26.10 13 63.10 13 68.50 13
1 5.35 35 27.19 1k 60.L47 14 66.51 1h
2 5.33 35 28.05 1k 57.73 ‘14 64.40 1k
3 5.31 35 28.72 1h 54.99 14 62.26 14
N 5.27 36 29.20 14 52.21 15 60.06 15
5 5.24 - 36 29.50 15 49.46 15 57.83 15
6 5.20 36 29.61 15 46.70 15 55.5L 15
7 5.15 36 29.54 15 43.95 15 53.20 16
8 5.09 36 29.33 16 41.29 16 50.91 16
9 5.02 37 28.98 16 38.66 16 48.58 16
10 L.o7 - 37 28.53 16 36.16 16 46.33 16
11 L.o1 37 27.97 17 33.7h 17 Li.10 17
12 4.85 38 27.32 17 31.41 17 b1.91 17
13 4.78 38 26. 5k 17 29.1k 17 39.70 17
1k h.71 38 25.73 17 27.01 18 37.60 18
15 4.63 38 24.83 18 24.95 18 35.50 18
16 b.55 39 23.89 18 23.01 18 33.47 18
17 4,48 39 22.94 19 21.19 19 31.56 19
18 4.4o 39 21.95 19 19.47 19 29.67 19
19 4.33 Lo . 20.93 19 | 17.85 -19 27.86 20
20 4.26 ko 19.9% - 20 - 16.35 20 26.1L 20
21 h.19 41 18.93 20 14.9% 20 2k, kg 21
22 h.11 41 17.93 21 13.64 21 22.90 .21
23 L. ok k2 16.97 22 12.43 22 o 21.b2 22
2l 3.98 L2 16.00. 22 1.31 22 20.00 23
25 3.91 L3 15.07 23 10.27 23 18.65 24
26 3.8L Lk 14.15 24 9.31 24 17.37 24
27 3.77 NN 13.25 2y 8.43 24 16.15 25
28 3.7h L6 12.53 26 7.70 26 15.17 27
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% differ- % differ- % differ- % differ-
ence with ence with ence with ence with
Latitude E-W E-W N-S N-§ Vertical |Vertical Total Total
(deg) Error Pointing Error Pointing Error Pointing Error Pointing
(km) ~Error (km) Error (km) Error (km) Error
only only only only
-9 4.96 27 8.75 L 91.22 N 91.79 N
-8 5.37 33 11.77 N 89.80 L 90.7h 5
-7 5.39 33 1L.66 5 88.15 5 89.52 5
-6 5.41 33 17.37 5 86.22 5 88.11 5
-5 5.43 3k 19.88 5 8k4.05 5 86.53 5.
-4 5.43 3k 22.18 5 81.57 5 8h.71 5
-3 5.43 34 2k, 27 5 79.00 5 82.82 5
-2 5.4 34 26.13 6 76.25 6 80.79 6
-1 5.4k 35 27.76 6 73.39 6 78.65 6
0 5.42 35 29.13 6 70.36 6 76.34 6
1 5.40 35 30.31 6 67.31 6 Th.02 6
2 5.38 35 31.23 6 64.19 - 6 71.59 7
3 5.36 36 31.94 7T 61.06 7 ‘69.12 T
in 5.33 36 32,42 7 57.90 7 66.49 7
5 5.30 36 32.71 7 5L, 78 7 6L.02 7
6 5.2k 36 32.81 7 51.67 7 61.L4Y4 8
T 5.19 37 32.70 8 48.60 8 58.80 8
8 5.1k 37 32,44 8 45.60 8 56.20 8
9 5.08 37 32.02 8 42.68 8 53.60 8
10 5.02 37 31.49 8 39.88 8 51.06 8
11 L.96 38 30.83 8 37.16 9 -48.53 9
12 4.90 38 30.08 9 34.56 9 L46.08 9
13 ‘4. 82 38 29.20 9 32.04 9 43.62 9
1k 4.76 38 28.27 9 29.67 9 b1.25 10
15 L.68 39 27.27 10 27.38 10 38.92 10
16 4.60 39 26.21 10 25.22 10 36.66 10
17 4.53 39 25.1k4 10 23.21 10 3L.51 11
18 L. 45 Lo 24,02 11 21.29 11 32.41 11
19 4.38 Lo 22.89 11 19.50 11 30.39 11
20 4.30 Lo 21.76 11 17.83 11 28.146 12
21 h.23 b1 0.6k 12 16.28 12 26.62 12
22 4,16 41 19.52 12 1L.84 12 24,87 13
23 4.09 42 8.Lh2 13 13.50 13 23.19 1k
2k 4. 02 43 7.35 13 12.26 1k 21.62 1k
25 3.95 43 16.29 1k 11.11 T 1k 20.11 15
26 3.88 Ly 5.28 15 10.06 15 18.69 16
27 3.81 LY 4,28 15 9.08 15 17.3k 16
28 3.78 46 13.4b 16 8.25 16 16.22 18




Table 8: Case 4 resultant displacement errors.

% differ- % differ- % differ- % differ-
ence with ence with ence with . ence with
Latitude E-W E-W N-S N-S Vertical | Vertical Total Total
(deg) Error |Pointing Error |Pointing Error |Pointing Error |Pointing
(km) Error (km) Error (km) Error (km) Error
only only only only
-9 T.62 b1 10.03 23 105.18" 23 105.93 23
-8 7.6L L1 13.51 23 103.56 23 10L4.72 23
-7 7.69 41 16.87 23 101.91 2l 103.59 - 2k
-6 7.73 L1 20.05 2k 99.95 ol 102.23 24
-5 T.77 Lo 23.03 24 97.70 2k 100.68 2k
-k 7.79 k2 25.80 24 95.18 25 98.91 25
-3 7.81 k2 28.31 25 92.41 25 96.96 25
-2 7.81 42 30.53 25 89.3k 25 9k.7h 25
-1 7.80 L3 32.53 25 86.21 26 92.48 26
0 7.80 L3 34.25 26 82.92 26 90.05 26
1 7-77 L3 35.71 26 79.51 26 87.51 26
2 7.72 b3 36.83 26 75.88 27 84.70 27
3 7.69 Ly 37.7h 27 72.32 27 81.95 27
N 7.66 Ly 38.46 27 68.84 27 . 79.23 27
5 7.60 Ly 38.88 28 65.2h 28 76.33 28
6 7.52 LL 39.01 28 61.57 28 . 73.27 28
7 7.45 Ls 38.97 28 58.04 28 70.30 28
8 7.37 L5 38.7h 28 54.57 29 67.32 29
9 7.28 45 38.26 29 51.10 29 .. 6L.25 29
10 7.18 L5 37.68 29 L7.79 29 61.28 29
1 7.09 Lé 36.96 29 k.62 29 58.37 30
12 7.00 " L6 36.09 30 41.54 30 . 55.47 30
13 6.88 46 35.07 30 38.53 30 - 52.55 30
1h 6.77 46 33.99 30 .35.70 30 49.76 30
15 6.65 L6 32.79 30 32.98 31 46.98 31
16 6.53 L . 31.5h 31 30.39 31 LY. 28. 31
17 6.4 L7 30.26 31 27.98 31 h1.71 31
18 6.28 L7 28.93 31 25.68 31 39.18 32
19 6.16 L7 27.57 32 23.52 32 36.76 32
20 6.03 48 26.23 32 21.52 32 3446 33
21 5.92 48 24.86 32 19.63 33 32.23 33
22 5.79 48 23.51 33 17.88 33 30.10 33
23 5.66 Lo 22.17 33 16.25 33 28.07 34
2k 5.54 el 20.86 34 14.75 34 26.1k4 34
25 5.41 49 19.57 34 13.35 34 . 2h.32 35
26 5.29 50 18.32 35 12.07 35 22.56 35
27 5.16 50 17.11 35 10.87 35 20.92 36
28 5.08 51 16.12 36 9.90 36 19.58 37

130
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Table 9: Case 6 resultant displacement errors.

% differ- % differ- % differ- % differ-

ence with ence with ence with ence with
Latitude E-W E-W N-S N-8 Vertical|Vertical Total Total

(deg) Error Pointing "Error | Pointing Error |{Pointing Error Pointing
(km) Error (km) Error (km) Error (km) Error
only only only only
-9 7.70 k1 10.57 1h 110.53" 14 111.31 14
-8 7.3 k1 14.23 1k 108.84 1k 110.03 .15
-7 T.77 L1 17.75 15 107.01 15 108.75 15
-6 7.81 L2 21.07 15 104.86 15 107.2L 15
-5 7.84 L2 2k.18 15 102.39 15 105.50 16
-l 7.86 42 27.05 16 99.66 16 103.57 16
-3 7.87 L2 29.66 16 . 96.68 16 101.43 16
-2 7.86 L3 31.96 16 93.40 16 99,02 16
-1 7.87 43 3h.01 17 90.03 17 96.56 17
0 7.85 43 35.79 17 86.52 17 93.96 17
1 7.83 Lk 37.28 17 82.91 17 91.24 18
2 T.77 Ly 38.k2 17 79.08 18 88.26 18
3 T.7Th Ly 39.35 18 75.32 18 85.3k 18
L 7.70 Ly Lo.05 18 T71.62 18 82.42 19
5 7.65 L5 Lo.46 19 67.83 19 79.35 19
6 7.57 ks 40.58 19 64.00 19 76.16 19
7 7.50 45 ko.s52 T 19 60.29 19 73.03 19
8 7.4 45 bo.21 19 56.58 19 69.81 20
9 7.33 45 39.75 20 53.00 20 66.69 20
10 7.23 L6 39.12 20 49.59 20 63.59 20
11 7.1k L6 38.35 20 46.26 20 60.53 21
12 7.0k L6 37.45 21 43.07 21 57.50 21
13 6.93 T 36.37 21 39.94 21 54,46 21
1h 6.82 L6 35.24 21 37.00 21 51.55 22
15 6.70 L7 33.99 22 3h.a7 | . 22 48.66 22
16 6.58 L7 32.69 22 31.47 22 45.85 22
17 - 6.46 bt 31.35 22 28.97 22 43.17 23
18 6.33 b 29.96 23 26.58 23 40.55 23
19 6.21 48 28.55 23 2k4.3h 23 38.02 23
20 6.09 48 27.1L 23 22.26 23 35.63 24
21 5.95 48 25.72 24 20.30 2k 33.31 24
22 5.84 48 24.31 2k 18.48 2k 31.09 25
23 5.71 el 23.16 25 16.79 25 28.98 25
24 5.58 kg 21.55 25 . 15.23 25 26.97 26
25 5.46 Lo 20.21 25 13.78 25 25.06 26
26 5.32 50 - 18.91 26 12.45 26 23.26 27
27 5.19 50 17.64 26 T 11.22 26 21.55 27
28 5.12 51 16.59 27 10.19 27 20.12 29
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The per cent difference for the izg‘case, JEE-component, and

Nl point is denoted by PD; , where i =1, 3, b, 6 and denotes

»JNA
the particular combination of observation stations employed and j =
east-west, north-south, vertical, or total and denotes the particular

displacement error of interest and NA =1, 2,..., NT, where NT is.the

total number of solution points. The average per cent difference

(pD, ,) for the izg-case and the ,j]-‘g'-l—1 component is then
1,d%zy
NT
. f___lpDi 2J ,NA |
9 AV

If the weighting factors for the data from all of the fixed, ground-
based observation sfations are chosen as unity, then it seems appropri-

ate to choose for the aircraft data the weighting factors LA 3 given by
b}

w =1 - (PD,
i

i,J )

sd (194)

>
AV

where i =1, 3, 4, 6 and j = east-west, north-south, vertical, or total

and (PDi j) is given by equation 193. Table 10 lists the aircraft
AV

data weighting factors for these displacement errors and these station
cases containing the aircraft, as calculated using equation 194.
) , the per cent difference

i’lj MED
for the solution point with latitude equal to nine degrees, is identical

The median per cent difference (PD

to the average per cent difference in nine instances and differs only
by one per cent from the average per cent difference in the remaining

seven instances (the four cases times the four components give the



Table 10: Aircraft data weighting factors
for the displacement errors for
different station cases.

Case # E - W N-§ Vertical Total
1 .63 .85 .83 .83
3 .62 91 .91 91
L .55 .71 , N .71
6 .54 .80 .80 80

EET
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sixteen instances). Hence, the median per cent difference can be used
instead of the average per cent difference, théreby omitting the calcu-
lation of the per cent differences for (NA-1) of the solution points
and the calculation of the average per cent difference. Hence, a second

equation for the aircraft data weighting factors vy 3 is then
L]

W, =1 - (PD,
i) P05 5 (195)
Also, for any given case and any given component, the weighting
factor as calculated by equation 194 is numerically equal to the
average of the ratios of the pointing displacement errors to their

corresponding resultant displacement errors. If PEi denotes the JEE

»J
component of the pointing displacement error for the iEll case and REi 3
9
denotes the jEE-component of the resultant displacement error for the
iEE-case, then a third equation for the aircraft data weighting factors

is

v, , === (196)
123/ py |

where the average is again taken over the NT solution points.

Just as‘the median per cent difference is almost identical to the
average per cent difference, the median of the ratios of the pointing
displacement errors to their corresponding resultant displacement
errors is almost identical to the average of the ratios of the pointing
displacement errors to their corresponding resultanﬁ displacement errors.

Hence, a final equation for the weighting factors for the aircraft data
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is Just
PE,
v, . =l=2L) | (197)
i,d RE,
123/veD
where PEi 3 is the jEE-component of the pointing displacement error for
’ .

the iEE case, REi is the jEE-component of the resultant displacement

»d
error for the iEE-case, i =1, 3, 4, 6 and denotes the particular com-
bination of observation stations employed, j = east-west, north-south,
vertical, or total and denotes the particular displacement error of

interest, and the subscript MED means that the ratio is for the solution

point with latitude equal to nine degrees.

Summary and Conclusions

The single-point two-station triangulation problem, line and
multistation triangulation considerations, and the LaRC triangulation
metﬁod - developed specifically for the Barium Ion Cloud (BIC) Project
at the NASA, Langley Research Center - were discussed. |

Expressions for the four pointing displacement errors, the three
pointing slope errors, and the pointing curvature error in the trian-
gulation solution due to a probable error in the lines~of-sight from
the observation stations to the points on the cloud were derived. For
a probable error of 0.0l degrees in the lines-of-sight, the pointing
displacement, slope, and curvature errors were plotted as functions of
the lastitude for the nine different combinations of the observation
stations chosen for the BIC Project to determine the effect of the

number end location of the observation stations on these pointing
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errors. It was concludéd that the pointing errors are the smallest for
the five-station case and are the largest for the two-station case, with
the combinations of four and three stations giving intermediate values.

The four pointing displacement errors were plotted for comparison
on a single plot and also the three pointing slope errors were plotted
for comparison on & single plot as functions of the latitude for the
five~station case. It was concluded that the vertical component is
the dominent component of the total pointing displacement error through-
out the latitudinal region of - 9o to 150, whereas the north-south
component is the dominent component of the total pointing displacement
error over the latitudinal region of 16° to 28°. It was concluded
that the latitude component is the dominant component of the total
pointing slope error.

The pointing errors were egamined for the observation durations
of 10,000 sec, 6,000 sec, and 1,000 sec. It was concluded that the
east-west pointing displacement error and the longitude pointing slope
error practically remain constent throughout the three observation
durations; that the north-south pointing displacement error increases
toward the lower-latitude end and decreases toward the higher-latitude
end over the 1,000-sec observation duration and first increases and
then decreases toward the lower-latitude end and decreases toward the
higher-latitude end over the 6,000-sec and 10,000-sec observation
durations; and that the vertical and total pointing displacement errors,
the latitude an.d total pointing slope errors, and the pointing curvature

error increase toward the lower-latitude end and decrease toward the
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higher-latitude end over all three of the observation durations.

The pointing errors were plotted as functions of the latitude
for different release points varying in longitude to determine the
effect of east-west cloud drift on the pointing errors. It was con-
cluded that for the chosen BIC nominal release point - latitude =
9.2290, longitude = - TS.OOOO, and altitude = 31,633.008 km - the point-
ing errors increase as the cloud drifts eastward into therlongitudinal
regions of - 63° and - 49° and decrease as the cloud drifts westward
into the longitudinel region of - 910; as the cloud drifts farther
westward into the longitudinal regions of - 105o and - 1190, the
pointing errors increase or decrease depending on the cloud's position
in latitude.

The pointing errors were plotted as functions of the latitude for
different spacings between the points along the azimuth-elevation
curves from the observation stations to determine the effect of the
number of input data points.on the bointing errors. It was céncluded
that the spacing between the input date points along the azimuth-
elevation curves from the observation stations should be no greater
than 1.12 degrees.

The pointing errors were plotted as functions of the latitude for
the two-station case.with an extra camera added to the Mt. Hopkins
station. It was concluded that for the two-station case adding an
extra camera to Mt. Hopkins decreases the poilnting errors. The
pointing displacement errors were calculated for the five-station case

with from one to eleven extra cameras added to Mt. Hopkins. It was
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concluded that for the five-station case adding extre cameras to Mt.
Hopkins increases the north-south, vertical, and total pointing dis-
placement errors.

The four station displacement errors in the triangulation solution
due to a probable error of three kilometers in the position of the
moving Wallops aircraft station were calculated, using an analogous
procedure to that used for calculating the four pointing disblacement
errors. The station displacement errors were plotted as functions of
thev latitude for the station cases containing the Wellops aircraft. It
was concluded that the north-south, vertical, and total sfation dis-
placement érrors increase when an extra fixed station whose coordinates
are close to those of Mt. Hopkins is added. The resultant displacement
errors, which are the resulting errors of the correqunding components
of the pointing and station displacement errors, and the per cent
differences between the corresponding resultant end pointing displace-
ment errors were célculated for the aircraft. It was concluded that
the station displacemént errors were significant enough to warrant
reduced weighting of the aircraft data. Expressions for the weighting
factors were derived, and the weighting factors for the Wallops air-

craft data were calculated.



1139
LIST OF REFERENCES

Justus, C. G.; Edwards, H. D.; and Fuller, R. N.: Analysis
Techniques for Determining Mass Motions in the Upper Atmosphere
from Chemical Releases. AFCRI-64-18T, 1964, pp. 1-16.

Whipple, Fred L.; and Jacchia, Luigi G.: Reduction Methods for
Photographic Meteor Trails. Smithsonian Contrib. Astrophys.,
vol. 1, no. 2, 1957, pp. 183-206.

Hogge, John E.: Three Ballistic Camera Data Reduction Methods
Appliceble to Reentry Experiments. NASA TN D-L260, 1967.

Long, Sheila Ann T.: Analytical Study to Minimize the Triangulation
Error for an Idealized Observation Site Arrangement. NASA TN in
preparation. '

Long, Sheila Ann T.: Comparison of Three Triangulation Methods
Applicable to the Barium Ion Cloud Project. NASA TN in
preparation.

Fricke, Clifford L.: Triangulation of Multistation Camera Data
to Locate an Elongated Barium Cloud. NASA, Langley Research
Center computer program, 1971.

long, Sheila Ann T.: A Transformation from Geocentric to Geodetic
Coordinates and Vice Versa in Powers of the Earth's Flattening.
NASA TN in prepaeration.



1ko

Appendix. Transformation from Letitude, Ldngitude, Altitude

to Azimuth, Elevation, Range Coordinates

If the geodetic coordinates of an observation station and of a
point in space are known, the line-of-sight from the station to the
point in space in azimuth, elevation, and range coordinates can be
computed.

The coordinate system of Figure 47 is a local coordinate system
‘centered at the station S. The x axis points east, the y axis points
north, and the z axis is verticai\(or radial). The azimuth a2z is meas-
ured in the north-east plane, the elevation el is measured out of the
north-east plane? and the range r, is the distance from the station S
to the point P 1in space. o

First, the geodetic coordinates of the station and of the point
in space are transformed to geocentric coordinates according to
equations derived in reference T.

The latitude, longitude, and range of the station are denoted
by ¢S’ OS, and Tgs respectively; the latitude, longitude, and
range of the point in space, by ¢P’ GP, and ros respectively.

From Figure 48 it is seen that the rectangular coordinates of

the station S - denoted by Xgs ys, and zg - are
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z, vertical (or radial)

é

y, north

- x,east

Figure 47 .- The azimuth, elevation, and range coordinates of the
line-of-sight from an observation station S to a point
in space P.
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~ 1N

-y

Figure U8.- The geocentric letitude, longitude, and range coordinates
of a point N o
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x =r cos ¢ cos O (198)
S S S S

yg = rg co8 ¢S sin 6S (199)
zg = rg sin ¢S (200)

And, also from Figure 48, the rectangular coordinates of the point P

in space - denoted by xP, yP, and zP - are

Xp = Tp COS ¢P cos BP (201)
Yp = Tp cos ¢p sin 6P (202)
Zp = Tp sin ¢P (203)

The differences - denoted by Xgs Ygs and z, -~ between the
respective x, y, z components of the point in space and the station

are Just

xa.= x.P - xS o (20k)
Yo = ¥p = Vg (205)
z =z -2 (206)
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The azimuth az and the elevation el of the line-of-sight from the

observation station to the point in space are given by

X
8z = tan-l<';£) (207)
Ve
z
-1 t
el = tan (208)
((x )2+ (y )2>1/2 i
t t
where
X, = - Xy sin 05 + y, cos b (209)
¥, = - X, sin ¢ cos Og - ¥, sin ¢5 sin 65 + z cos s (210)
2, = X, cOS ¢ cos b + vy, cos ¢ sin b5 + 2g sin ¢g (211)

And, the range r, of the line-of-sight from the observation station

to the point in space is given by

1/2
_ 2 2 2
Yo = (xa t Y.t 2,

a (212)

w





