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ABSTRACT

Three aspects of barium ion cloud dynamics are discussed. First,

the effect of the ratio of ion cloud conductivity to background ionospheric

conductivity on the motion of barium ion clouds is investigated and com-
" ' *'• '. ' -."

pared with observations of barium ion clouds. This study has led to the

suggestion that the conjugate ionosphere participates in the dynamics of

barium ion clouds. Second, analytic work on the deformation of ion clouds

is presented and found to be qualitatively different from that found recently

by Simon and Sleeper. Third, the linearized stability theory of Linson and

Workman has been extended to include the effect of the finite extent of an

ion cloud as well as the effect of the ratio of ion cloud to ionospheric con-

ductivities.

The stability properties of a plasma with contra-streaming ion

beams parallel to a magnetic field are investigated. The results are in-

terpreted in terms of parameters appropriate for collisionless shock waves.

It is found that this particular instability can be operative only if the up-

stream Alfven Mach number exceeds 5. 5.
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I. INTRODUCTION

During the past year significant progress has been achieved in both

areas of study under the present contract. The principal results obtained

are reviewed in the following two section. The work reported in Section II

on the dynamics of barium ion clouds was performed by L. M. Linson

while the work reported in Section III on streaming instabilities was

performed by K. Golden, L. M. Linson, and A. Sivasubramanian.

Asa result of Project Secede sponsored by the Advanced Research

Projects Agency during which barium ion clouds formed from different

size payloads were released at various altitudes, it was possible to test

theoretical ideas concerning the motion of barium ion clouds. This study

has led to the suggestion that the conjugate ionosphere participates in the

dynamics of barium ion clouds as discussed in Section II. A and presented

at the Fall Meeting of the AGU in San Francisco, California, in December

1971. Analytic work on the deformation of ion clouds is discussed in

Section II. B where it is shown that a recent treatment by A. Simon of

the University of Rochester is incorrect. A note to that effect will be

submitted shortly to the J. G. R. for publication. Unique observations of

ion cloud striations made during Project Secede II by looking up the

magnetic field have led to an extension of the linear theory presented

earlier by Linson and Workman. This analysis is given in Section III. C

and was presented at the Annual Meeting of the Division of Plasma Physics

in Monterey, California, in November 1972.



In Section III we report the results of a study of the stability properties

of a plasma with contra-streaming ion beams and interpret these results in

terms of parameters appropriate for collisionless shock waves. We find

that this particular instability can be operative only if the upstream Alfven

Mach number exceeds 5. 5. A paper based on this work is being prepared

for submission to the Physics of Fluids.
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II. BARIUM CLOUD STUDIES

A. INTRODUCTION

We have previously described some of the results that can be

obtained from a simple two-dimensional model for barium ion clouds

released in the ionosphere. Recently, Zabusky, Perkins, and Doles

have given a careful derivation of the coupled nonlinear differential

equations that have been useful for describing the dynamics of barium ion

clouds. These equations can also be obtained by starting with simplified

equations of motion for electrons and ions in the limit of zero electron

collision frequency. The resulting two-dimensional equations express the

conservation of electron flow and zero divergence of the total current.

In a purely two-dimensional model everything is uniform parallel to the

magnetic field and there is no flow of either species in the vertical direction.

However, the same two-dimensional equations also represent the limit of

vanishingly small parallel resistivity in which the electrons are allowed

to flow freely up and down the magnetic field lines but ions are restrained

to flow perpendicular to the magnetic field in response to the transverse

electric fields.

Figure II. 1 shows a schematic of the cross section of the ion cloud

in the plane perpendicular to the magnetic field. The ion cloud is moving

to the right with respect to the neutrals. In the two-dimensional model,

the ratio of height-integrated conductivities; £ /2 , can be represented

as the ratio of the cloud center density, N , to the ambient ionospheric
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density, N . Due to the slow rate of development of the ion cloud and the

small plasma pressure relative to the magnetic field pressure (low (3), the

ambient electric fields are electrostatic as expressed by the condition

V x E = 0. Since the electrons do not experience any collisions they flow
O

at the local IT x B/B velocity. The flow of the ionization is thus incom-

pressible due to the assumption of electrostatic fields. The fact that the

flow transverse to the magnetic field is incompressible is extremely

important in theoretically determining the behavior of barium ion clouds.

This assumption precludes the possibility of an electron density increase.

The ion motion closely follows the electron motion but the ions do have a

component of velocity in the direction of the electric field as a result of

collisions with the neutrals. At high altitudes the ion velocity with respect

to the neutrals is given approximately by

where /c. = m./eBT and T is the ion- neutral collision frequency.

The simple set of coupled nonlinear differential equations that

describe the motion of barium ion clouds transverse to the magnetic field

are:

+ £ - V N = 0 ;

oc V • NlT = 0; (II. 3)

V x IT = 0. (II. 4)
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Equation (II. 2) is the continuity equation for the incompressible flow of the

electrons at the local !Tx B^B velocity. Equation (II. 3) describes the

conservation of the current flow perpendicular to the magnetic field in

the ionosphere and Eq. (II. 4) is the quasistatic assumption of the low-p

approximation. The Pedersen current, J , is proportional to the product
P

of the conductivity, N (proportional to the ion density), and the electric field,

FT, all measured in the frame of the ambient neutrals.

These equations have been used to investigate the stability of the

34 5backside of barium ion clouds ' , as well as other edges , and the non-

linear development of striations . Here we shall discuss how these simple

equations have successfully been applied to describe the motion of barium

7 &
ion clouds , their deformations including the steepening of the backside ,

Q

and the predominant scale length of striations . First we describe in a

simple way the relationship of this two-dimensional model to a more realistic

layered ionosphere.

When the barium ion cloud is considered to be of finite extent

parallel to B , currents flowing in the ionosphere below the cloud are

affected by the presence of the ion cloud and give rise to currents flowing

parallel to the magnetic field. In Fig. II. 2 we indicate qualitatively the

effect that the presence of the highly conducting barium ion cloud has on

the current flow pattern in the ionosphere. Figure II. 2a is a schematic

diagram in the plane perpendicular to the magnetic field showing the

distortion of the current flow due to the presence of the more conducting

ion cloud. In a completely two-dimensional model this same current flow

pattern would exist at every altitude parallel to the magnetic field and drift

-6-
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as a "current cell" with the !Tx B/B velocity. That situation is shown

schematically in Fig. II. 2b which represents a cut in the yz plane through

the center of the ion cloud. Note that the current density in the ion cloud

is larger than in the less dense ionosphere. From Fig. II. 2a we see that

this increase results from the concentration of the current in the ion cloud.

In Fig. II. 2c the horizontal currents are the ion Pedersen currents

whereas the parallel currents are due to electrons flowing along the magnetic

field. Figure II. 2d represents a generalization to a three-layered iono-

spheric model. The more conducting layer at the top of this figure

represents a conjugate ionosphere which may be highly conducting and

therefore can contribute a. large perpendicular current density. Again the

presence of a conducting ion cloud in the local ionosphere can effect the

current flow in the conjugate ionosphere since electron currents flow freely

along the magnetic field through the magnetosphere.

While it is recognized that the diagrams given in Fig. II. 2c and II. 2d

are qualitatively correct insofar as they indicate current flow in different

layers of the ionosphere, they are strictly correct only if (1) there is no

distinction between the barium ions and the ambient ionospheric ions;

(2) if the neutral density is the same in all three layers; and (3) if the electric

field which drives the currents is externally imposed on the complete system.

The actual interaction of several different layers in the ionosphere with a

barium ion cloud is only now beginning to be considered and is a very

complex problem. It is clear that the plasma density will be increased

where the electrons flow into the lower ionosphere and decreased where

electrons leave to neutralize the charge accumulation in the cloud. Thus

-8-



the ionosphere subtended by the cloud will be locally perturbed and this

perturbation will move with the cloud.

We can see qualitatively that the effect of an ion cloud on the current

flow pattern depends sensitively on the cloud conductivity compared to the

conductivity of the ionosphere. The appropriate parameter that character-

izes the cloud-ionosphere interaction is the ratio of the height-integrated

Pedersen conductivity of the barium ion cloud to the height-integrated

Pedersen conductivity of the ambient ionosphere.

B. MOTION OF BARIUM ION CLOUDS

Equation (II. 3) indicates that at any instant in time the electric field

depends on the distribution of ionization in the ion cloud. In particular the

polarization electric field due to the presence of the ion cloud reduces the

total field at the center of the cloud as indicated at the top of Fig. II. 3.

Asa result, the center of the ion cloud moves with a slower velocity with

respect to the neutrals than does a background ion that is flowing with the

velocity U . The value of the electric field at the center of the ion cloud

depends on the ratio of the height -integrated Pedersen conductivity of the

ion cloud, S , to the height-integrated Pedersen conductivity of the back-
j»

ground ionosphere, S , as well as on the distribution of ionization in the

ion cloud. For a uniform ionosphere and a constant neutral density,

C / 3.
S /S can also be expressed as the ratio of height-integrated cloud density to

ambient density, N /N . The electric field at the center of the ion cloud,

and thus its motion, can be expressed in terms of a coupling parameter, t,,

defined as the ratio of the electric field at the center of the ion cloud (in the

frame of the ambient neutrals) to the external electric field,

-9-
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sr = E~ + E~ = t, IT, (ii. 5)c o pc * o' v '

where the subscript c represents the value at the center of the ion cloud.

Since the difference in velocity between the ion cloud and the neutral wind

is frame independent and equal to if x B/B , Eq. (IL 5) implies

(II. 6)

This equation also defines the frame invariant velocity of the ion cloud,

If . It follows that £, ranges between one and zero for very small and

very large ion clouds respectively;

V. - -£-!-, (Nc «N o ) ;

- 0, V. - Vn, (Nc » NQ). (II. 7)

Very small clouds or low density perturbations provide a direct measure

of the ambient electric field, IT = - \f. x B , while very large clouds are
cL 1

completely tied to the neutral •wind.

Theoretical models have been explored that give analytic expressions

for the dependence of t, on N /N . An example will be given in the next

section. A well-known example corresponds to a cloud of constant density

N with an ellipsoidal cross section as illustrated in Fig. II. 3. Two

interesting limits, a circular cloud with a = b and an elongated cloud with

b « a are also shown. The former is the shape used byHaerendel, Lust,
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9
and Reiger in deriving their now classic equation for determining the

ambient electric field from the motion of barium ion clouds. In the high

altitude limit (K. » 1), their equation can be brought into the form of

Eq. (IL 6) if the identification t, = 2/(l + X*) is made where X* = (N + N )/N .

The elongated shape is most tied to the neutral wind and its motion corresponds

to that of a field-aligned sheet of ionization. The degree of coupling also

depends on the density profile of the ionization for large density clouds. A

2 -V3
cylindrically symmetric cloud with a density profile N <x (1 + r ) is

less coupled to the neutral wind for the same value of peak column con-

centration as indicated on the right-hand side of Fig. II. 3 and discussed in

the next section.

Figure II. 4 is a plot of the coupling parameter as a function of the

ratio of cloud conductivity to ionospheric conductivity for several barium

releases sponsored by ARPA in Project Secede. The estimated uncertainties

in the values for t, are indicated by the vertical error bars, the horizontal

error bars indicate a factor of two uncertainty in the estimates for the ratio

of integrated conductivities. The two curves illustrate the two extremes

in coupling that depend on the configuration of the ionization. The sheet-

like shape is strongly coupled to the neutral wind, whereas the least coupled

is the cylindrically symmetric cloud with a monotonic, radial density profile.

A first glance at the data would suggest that the simple theory is inadequate

to describe the degree of coupling of ion clouds to the neutral wind. We see

that only the daytime and summer morning releases come near to agreeing

with the theory. Note the large disagreement for the winter evening releases

since the scale on the bottom is logarithimic and covers several decades.

-12-
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Redwood, Plum, Spruce, and Nutmeg clouds respectively.
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Thus the ion clouds are observed to separate from the corresponding neutral

clouds much faster than the simple theory would allow. They behave as

though the background ionosphere were far more conducting than the

measurements of the ambient ionosphere indicate.

The observation that the winter evening releases are those that are

in most serious disagreement with the theory led to the suggestion that the

conjugate ionosphere in the southern hemisphere was contributing to the

background ionospheric conductivity. This suggestion seemed plausible

because the ionosphere conjugate to Eglin (at 54 S, 103 W) is further

west and was experiencing summer and hence was sunlit. On the other

hand, the ionosphere conjugate to the summer morning releases (at 49 S,

66 W) was experiencing winter and thus was still in darkness. More

quantitatively, when the sun was 9 below the horizon after sunset at Eglin

in the last half of January, 1971, and 9 below the horizon before sunrise

at Puerto Rico in the first half of May, 1969, the sun was 26 above the

horizon and 23 below the horizon, respectively, at the corresponding

conjugate ionospheres. Hence it is reasonable to assume that the height-

integrated Pedersen conductivity of the conjugate ionosphere for the winter

evening releases had a typical daytime value of 5. 0 mho. By adding these

conductivities to the local values, we obtain new estimates for the ratio of

cloud to ionospheric conductivity.

Figure IL 5 is a replotting of the data assuming that the conjugate

ionosphere does contribute to the background ionospheric conductivity. By

making this assumption we see that there is no longer any disagreement

between the simple theory and the data. It is clear that these clouds do

-14-
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not move as though they were shaped like sheets. However, the data do not

clearly distinguish between the two other cylindrical models whose theoretical

curves are shown. Zabusky, Perkins, and Doles have solved Eqs. (II. 2)

through (II. 4) by finite difference techniques for a cloud with a cylindrically

symmetric initial density distribution, N = N [ 1 + 4 (1 - r /4) ] for r < 2.

The velocity of the peak density in the If x Enframe is 0. 63 V" . The

corresponding value for the coupling parameter, t, , is 0. 37. This value

for N /N .= 4 is shown as a solid square in Fig. II. 5. We note that this

point is in excellent agreement with the analytical models, lying closer to

the curve with a density profile (which should provide an upper limit) than

to the curve for a cylinder with constant density.

We note that the agreement with the theoretical model includes data

in which the ratio of conductivities ranges over two and one-half orders of

magnitude. This agreement is highly suggestive that the conjugate ionosphere

must participate in the dynamics of the motion of barium ion clouds. We

estimate that an Alfven wave (the propagation velocity of an electromagnetic

disturbance) can travel from the northern to the southern hemisphere

and back in half a minute, so there is sufficient time to communicate the

polarization electric fields between the two hemispheres. The most

sensitive test of the theory would be to make a 12 kg size release at dawn

and dusk. The degree of coupling with the neutral wind should change from

about 65% (t, = 0. 35) to about 30% (£ = 0. 7) for the assumed change of a

factor of five in the ratio of conductivities.

There are two other possible explanations for the lack of agreement

between data and theory shown in Fig. II. 4; either the data are plotted

-16-



incorrectly, or the theoretical treatment is wrong. The largest uncertainty

in the velocities listed is the ambient ionospheric velocity, FT x S/B , which
SL

has been assumed to be less than 20 m/s where better estimates were not

available. The remaining possibility is that the theory does not correctly

describe the coupling of the barium cloud to the rest of the ionosphere. It

is true that the complications of this interaction are hidden by ascribing

to the ionosphere a height-integrated conductivity, a procedure that would

be strictly valid only if the value of K. outside the cloud were constant and

the same as for barium. There is no assessment yet as to the effect to be

expected from a more rigorous treatment of the dynamics of the rest of the

ionosphere. On the other hand, the assumption that the reconciliation

between data and theory is achieved by including the effect of the conjugate

ionosphere is a simple and plausible one.

There are several important implications that follow from assuming

that the conjugate ionosphere plays a role in the ion cloud dynamics. First

is that the cloud-produced polarization electric fields must project into the

southern hemisphere which suggests that the assumption that the earth's

magnetic field lines are equipotentials for a large distance is reasonable.

A second conclusion is that there must be magnetic-field-aligned currents

in the magnetosphere, and a third conclusion is that the presence of the ion

cloud and its resulting motion in the northern hemisphere must cause a

disturbance in the ion density in the conjugate ionosphere in the southern

hemisphere. An independent verification of any of these effects would be

very valuable.

Let us adopt a simplified model of an ion cloud in the ionospheric-

magnetospheric system as shown in Fig. II. 6 in order to make a quantitative

-17-
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estimate of some of these effects. We find that the magnetic field lines are

highly conducting so that the electric fields do not suffer any appreciable

resistive losses in being projected into the conjugate ionosphere. The

most important effect is the disturbance in electron density that the current

flow in the background ionosphere is likely to make. The parallel currents

must be closed by Pedersen currents which are due to the flow of the

background ions. This ion flow -will lead to significant changes in the local

ionospheric density. These changes should be observable by ionosondes.

In particular, for the winter evening releases, the motion of the ion clouds

should have produced large changes in electron density in the conjugate

ionosphere in the southern hemisphere. These changes should have been

detectable had ionosondes been deployed there.

C. DEFORMATIONS OF ION CLOUDS

The electric field varies over the distribution of density in the ion

cloud as discussed above and as shown schematically in Fig. II. 3. Since
„ ^ 2

the ionization moves with the local E x B/B velocity, different parts of the

ion cloud move with different velocities. Thus, as the ion cloud moves, its

shape distorts. Here we shall present the results of an analytic investigation

of the changes in shape of equal density contours obtained by expanding the

solution of the nonlinear equations for the equipotentials (streamlines) as a

power series in time. We shall see that there are qualitative differences

between the contours obtained here and thos recently presented by Simon

17and Sleeper. We shall point out that they obtained incorrect deformations

because they did not carry through their expansion procedure correctly.

We write the electric field as the sum of the externally imposed

uniform field, E , plus the polarization field, E , due to the presence of the

-19-



ion cloud;

Equation (II, 3) is conveniently rewritten

- V<i )• VL, (II. 9)

where

L = j£n N/N =' o x o

AN is the additional density due to the presence of the ion cloud.

Equation (II. 9) determines the spatial variation of the polarization field

as a function of the ion cloud density distribution. Once <h is known,
P

Eq. (II. 2) can be used to obtain the changes in density that result. The

new density distribution including these changes then produces a new

polarization field distribution. It is this last step that was omitted by

Simon and Sleeper resulting in their erroneous deformation contours.

We have found a useful self-consistent solution of Eq. (II. 9):

, _ .^ b r cos 0
p o ~ ^ o , 2 2^ b + r

L (z) - X" i * . N i- x" o
V - ' zT + (2 + p)z + (1 - p)

V 8p +p

where z = (r/b) . According to this solution, the polarization electric field
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at the center of the cloud is

Hence, the parameter p represents the amount of reduction of the back-

ground field at the center of the cloud due to the cloud's presence and is

equal to 1 - £ -where £, was defined in the previous section. This decrease

in the electric field at the cloud's center makes it easy to see that the region

of maximum density does not keep up with the background ionization and

thus falls back toward the neutral cloud causing the backside to steepen.

From Eq. (II. 11) , we can determine the cloud center density as a

function of the parameter p by setting z = 0:

= in

\8p + p
(11.13)

By expanding this equation in the limits p « 1 and p — *• 1, we obtain the

relation between p and the cloud-center density for low- and high-density

clouds;

P ~

N /2N ; N « N
C O C O

(IL 14)

i _A / -___ N » N1 V-^ :rT4 ; c o
(N /N ) '
* c' o

The half-width, a, at half-max of the cloud is determined by the equation
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(a) = jfci II + - J. (11.15)

In the limit of small p (low cloud density), Eq. (II. 11) can be

expanded to yield

,
( b 2

+ r 2 )

No>

for which the half-width, a., is given as

a = (^T - l)1//2b = 0. 644b. (11.17)

In the opposite limit of large cloud density, we may obtain

MN • ; (N » N ) (II. 18)N 14/3
0 (1 -p + 3O

for which the half-width, a, is determined as

,1/2
a ~ I (2 "^ ̂  - U y b ~ -̂̂ 1̂  7— b (II \ 9}a ~ I {*• 1) 1 | U ~ -3/Q "• U-L. A7J

N \ -VB

The normalized cloud density profiles AN(r ) /N , as determined by Eq. (II. 11)
c

for the two limiting values of the parameter N /N and normalized by their

half-width, a, are shown in Fig. IL 7. A normalized gaussian profile is also

shown for comparison. It is seen that the shape of the cloud is fairly

reasonable, falling off at large distances as r and r ' for the two

cases shown.
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Fig. II. 7 Normalized Density Profiles in the Limits of Very Low
Density and Very High Density Clouds Compared to a
Gaussian Profile
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In the frame moving with the velocity of the background ionosphere,

^ ^

U = E x B/B , the equation that describes the deformations of the density

contours can be written

... V <f> x §*

at B
VN (11.20)

From this equation it is easy to see that the equipotentials determined by

d> = constant are streamlines of the flow. An example of the streamlines

derived from Eq. (II. 10) are shown in Fig. II. 8. From Eq. (II. 20) we may

calculate the form that the initial displacements within the cloud take. Since

the cloud is initially cylindrically symmetric, we need only consider the

radial components of the displacements of the contours. We thus have

for a small, initial time step

Ar = v At = - ~~ At = g ( r ) Sin d At

where g is a function of radius alone. Hence each equal density contour,

originally a set of concentric circles as shown in Fig. II. 8, is displaced

initially to the left. There is no change in shape of each density contour.

If the streamlines shown in Fig. II. 8 were constant in time, then

the changes in shape of the equal density contour could be easily determined

by following the streamlines shown. The deformations that would result

are shown in Fig. IL 9a. In actuality, the streamlines are not constant in time

but are governed by the time -dependent Eqs. (II. 9) and (IL 20). The changes in

density resulting from the displacements given by Eq. (II. 21) produces a
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Fig. II. 8 Equipotentials Resulting From the Solution Given in
Equation (II. 10)
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Fig. II. 9 Deformations of Contours Resulting from Power Series
Expansion of the Streamlines in Time; a) Zeroth Order
Term; b) Zeroth Order Plus First Order Term
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new contribution to $ that changes the streamlines. We shall calculate

these changes to next order in time in the form

0 p ( r . 0 , t ) = 0 (r, 9 ) [l + pt f1 (r, 6 )] (11.22)

L(r. 0, t) = L Q ( r ) + pt Lj (r, 6, p) (11.23)

where. $ and L are given by Eqs. (II. 11) and (II. 10), respectively. L

is determined by Eq. (II. 20) and the functions <j> and L . L can then be

used in Eq. (II. 9) to determine f . It is not possible to solve the resulting

equation for f exactly for arbitrary p. The resulting equation is expanded

in a power series in p and the first terms of that series have been determined.

The resulting expressions are:

b3 ^o^'P'
L, (r. 0, p) = - ° ? 2— s i n 0 ; (11.24)

1 b^ + r d r

, n 3 + z 4 o ,

where z = (r/b) . It is found that the term in f1 which depends on p makes

negligible difference in the resulting deformations of density contours even

for the value p = 1. Hence, the neglect of this term altogether is probably

reasonable except for the very highest density clouds.

We now have a solution for the time dependent stream functions. The

resulting deformations in the density contours when they are allowed to follow

these time dependent stream functions are shown in Fig. II. 9b. Note that

the higher order term, f , makes a qualitative difference from the changes
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in shape shown in Fig. II. 9a. Note that the contours are convex outward

on the righthand or front side of the barium ion cloud when the more

accurate expression is used. We also note that the backside has become

steeper during the same time interval.

The deformations in Fig. IL 9b show several interesting features

for which we now have an analytic handle. The first is the steepening

of the backside which results from the polarization electric field, IT ,

due to the density gradients (or, alternatively, to the increased drag at

the center of the ion cloud which pulls the center in the direction of the

neutral cloud). The second is the increase in width in the direction .

transverse to its motion as shown by the high-density contours near the

center of the cloud. Since the flow described by Eq. (II. 20) is incompressible,

the area within each equal density contour is constant. This increase in

width observationally would appear as though the cloud were diffusing and

thus this model which assumes no diffusion provides an explanation

for the anomalously large "diffusion coefficient" which has been reported

for diffusion of ion clouds perpendicular to B. We can also see that there

is an elongation of the lower density contours in the direction of cloud

motion. In particular, at times longer than that for which Eq. (II. 22) is

valid, a long thin neck forms where the center of the cloud had been.

Lastly, the deformations shown provide an explanation of the fact that the

trailing edge of ion clouds develop a large density gradient when seen from

a variety of views.

We shall not discuss the solution for the diffusion and motion of

12
barium ion clouds derived earlier by Simon. Both results differ from

the model presented here and are valid only for the case N « N . We
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restrict our attention to the high altitude situation (%.. » 1) where these

qualitative differences are quantitatively small. We note that in this limit

of negligible diffusion Simon and Sleeper's Eqs. (8) and (16) are

equivalent to our Eqs. (II. 2) and (II. 3) for the dynamics of barium ion

clouds. However, they have neglected the contributions to the deformations

resulting from the changes in density. Thus their deformed contours (see

their Fig. 1) correspond to the incorrect one shown in Fig. IL 9a. The

reason for their error is probably related to the fact that they attempted to

present a solution correct to first order in p. The term that gives rise to

the differences is the second term of Eq. (II. 22) which is of second order

in p for any finite time. However, for times that are appreciable fractions

of Ba/pE , this term gives rise to the qualitative differences shown.

The deformations given by Fig. IL 9b agree qualitatively with

observations of barium ion clouds while those represented by Fig. II. 9a

and given by Simon and Sleeper do not. The most striking feature is the

steepening of the backside (the bunching of the density contours on the left

hand side). The broadening of the highest density contours transverse to

the direction of motion is also evident as well as the tendency for the lower

density contours to elongate in the direction of motion. Zabusky, Perkins,

and Doles have numerically integrated Eqs. (II. 2) and (II. 3) for the case

of an initially cylindrically symmetric ion cloud with N /N = 4. Their

results agree qualitatively with that shown in Fig. II. 9b.

D. SCALE SIZE OF STRIATIONS

The major criticism of Linson and Workman's early work is that

it represents the stability of an infinite half-plane with infinite density far
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to the right and zero density far to the left. That analysis has recently been

extended in several ways, primarily by taking into account the finite extent

of the back edge of an ion cloud as well as the finite ratio of ion cloud

conductivity to the background conductivity.

The basic equations used in the stability analysis are Eqs. (II. 2) and

(IL 3) with two modifications. The first is that if we include electron

collisions, we obtain a term V- Dj_V N on the right-hand side of Eq. (II. 2).

2 ?
Here D, = K(T + T.)m v /e B is the ambipolar electron-collision-controlled

J- e i e e' r

diffusion coefficient. The electron collision frequency, ve, is taken to be

a constant even though for high density clouds collisions with ions dominate

collisions with neutrals. The second modification is related to the fact that

we \vill be analyzing a one-dimensional slab model as an approximation to a

local analysis on the back edge of an ion cloud. Hence the unperturbed

electric field that should appear in Eq. (II. 2) is the electric field E = £, FT

that exists at the edge of the ion cloud due to its polarization. Alternatively,

the unperturbed velocity E* x B/B should be the velocity of the back edge of

the ion cloud, TT , with respect to the neutrals given by Eq. (II. 6). For large

clouds, this velocity is considerably different from the ambient flow velocity

U" =TQ x B/B2 (see Fig. II. 5).

The zeroth order density profile whose stability is analyzed is

N x < 0
o

N = N eX/d 0< x< x = d S.n (I + N /N ) (IL 26)
o o c' o

N + N x < xo c o
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Note that the logarithmic density gradient length d = x /£ n (1 + a ) is given

by the extent of the back edge , x , and the ratio of cloud to ionospheric

conductivities, a = N /N . A straight-forward linearization of Eqs. (II. 2)

and (II. 3) results in the following equation for the x-variation of the perturbed

potential, ,

N 0" + 0' N' - k 2 (N - —-— 1 0=0 (II. 27)

where the growth rate Y is given by

= Y0 - k2 D^. (11.28)

The y-variation of the perturbations has been taken to be exp(i k y). The

problem is solved when the boundary conditions of vanishing potential at

x —•• + °° determine unique values of v .— ' o

Equation (II. 27) can be solved piecewise for the unperturbed density
t

distribution given by Eq. (II. 26). By applying the continuity of 0 and </> at

x = 0 and x = x , and defining

r,/ « \ , 11/2
K = k2( 1 - -M + -~ , (11.29]

the equation that determines Y implicitly can be put in the form

tank KXQ = ,—, . (II. 30)/ U \

I —T - 1 lk
\v d I
\Yo /
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Some useful limiting solutions of this equation are:

V =

kU tanh £- -k2D. ;
c &•> —••

U
1 -

a kUc

2 + a kd

k U

7T2/q2

4(kd)

-k2^;

2 2 1/2

(1 + 4k d) -kd

kd « 1

kd » 1

(II. 31)

a « 1 (d fixed)

a » 1

From these forms we see that long wavelengths are stabilized by the finite

size of the cloud while short wavelengths are stabilized by diffusion. There

is a wavelength for maximum growth that can easily be derived from the

approximate expression

U
1 -

1

4(kd/
- k2D, (ii. 32;

yielding

A . - 2?rdpeak i (II. 33)

A typical linear-wave spectrum is sho-wn in Fig. II. 10. There is a

•wavelength for maximum growth, but it should be pointed out that the

wavenumber scale is logarithmic and there is a significant growth rate for

a wide range of different scale sizes. It is reasonable to expect a variety

of wavelengths attempting to grow initially. It should be emphasized that
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Fig. II. 10 Linear Wave Spectrum
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the value of the wavelength for maximum growth depends sensitively on the

parameter d = I V £n N which so far can only be estimated for large density

barium ion clouds that have steepened.

We -will now compare the results of the above analysis with observa-

tions of barium ion clouds made at Eglin AFB in January 1971. The unique

aspect of these releases is that three clouds, Nutmeg, Spruce, and Redwood,

released at altitudes of 150 km, 185 km, and 255 km respectively, passed

through the magnetic zenith at a time when they were striated. Figs. II. 11

and II. 12 are photographs of Redwood and Spruce, respectively. We note

that there is a good deal of structure evident as the striations are highly

nonlinear. However, there is an overall sheet-like structure evident in

both photographs. The width of the sheets are compared to the results of

the linear theory in Table II. 1.

TABLE II. 1 Dominant Scale Size of Striations

OBSERVED

d = 500m
THEORY d oc a

REDWOOD
255km

300-500 m

170 m

340 m

SPRUCE
185km

400 m

400 m

400 m

NUTMEG
150km

250 m

500 m

300 m

The appropriate values for U and D. were used for each ion cloud. We see

that the uniform assumption that d = 500 m does not give good agreement

with the observed dominant wavelength. However, if d = 500 m is assumed

appropriate for Spruce and d is scaled to the initial transverse width, a, of
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Fig. II. 11 Redwood Striations Viewed Driectly Up the Magnetic Field
Line (Technology International Corporation)
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Fig. II. 12 Spruce Striations Viewed Directly Up the Magnetic Field
Line (Technology International Corporation)
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each of the other two clouds, then the wavelength for peak growth gives

excellent agreement with the observed dominant widths.
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III. ION STREAMING INSTABILITIES WITH APPLICATION
TO COLLISIONLESS SHOCK WAVE STRUCTURE

A. INTRODUCTION

The instabilities that result from the presence of two interpenetrating

ion streams immersed in an electron background may provide the mechanism

for collisionless momentum coupling between the two streams. The presence

of a -weak magnetic field can have a significant effect on the physical process.

First, the magnetic field can inhibit the electrons from shorting out ion

plasma oscillations for wavelengths long compared to the electron gyro-

radius for propagation perpendicular to the magnetic field; second, gradients

in the magnetic field give rise to electron currents that can drive ion acoustic

waves unstable and increase the effective electron collision frequency; and

third, whistler mode -- ion beam interactions are likely to be important,

and the existence of whistler modes depends on the presence of a magnetic

field.

The existence of collisionless plasma shock waves has provided the

impetus for investigating mechanisms that can provide the anomalous

dissipation that is required. Many experiments have shown that plasma

turbulence is associated with these shock wave structures. Numerous

linear plasma instabilities have been proposed as the mechanism that

generates the observed turbulence. An overall review of the status of

theoretical and experimental work in collisionless shock waves has been

given by Friecfman, et al. We shall briefly review here the status of

1/2
perpendicular, (Tr/2) - (m /m.) ' < 6 < ~n/2, (0 being the angle between
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the flow direction and magnetic field) and oblique, 0 < 6 < (7T/2) - (m /m.)

shock wave structures together with the different streaming instabilities and

their possible roles in the formation of these structures. We shall then

present an analysis of a new configuration leading to instability with possible

application to parallel, intermediate Alfven Mach number shocks.

For low (3, perpendicular shocks, when T > 5 - 1 0 T., a relative
C ^ 1

drift between the ions and electrons in excess of the ion acoustic speed can

2 3
excite unstable ion acoustic •waves. ' The ensuing turbulent fluctuation

spectrum <| E | > stochastically heats the electrons and the shock
** Jx

structure is controlled entirely by the electron resistivity associated with

< I En I >. This kind of shock structure can be oscillatory or monotonic1 ~ k '

(depending on the amount of turbulent dissipation) and it exists as long as the

downstream plasma flow velocity, V,,, is greater than or equal to the down-

stream ion acoustic speed, Cq?. When V_ < C-., (corresponding to an
y;

upstream Alfven Mach number M. , > M - 2. 76), a narrow gasdynamic

4
subshock is embedded in the magnetic shock layer. At these higher

upstream flow velocities, it is the presence of ion viscous dissipation

dominating (only) the subshock structure that provides the requisite

degradation of the additional directed energy into thermal energy.

Recent studies by Papadopoulos et al suggest that two ion beams

counterstreaming in a background rest frame of cool magnetized electrons

can also effectively couple momentum from one stream to the other at

characteristic frequencies and growth rates comparable with the lower

hybrid frequency. This instability is operative only if the Alfven Mach

number, Mj, for the relative drift between the ion streams satisfies the

inequality
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Md < 2(1 + P e ) / . (III-l)

and if the streaming direction is nearly perpendicular to the magnetic field.

We shall introduce the concept that the relative drift is the difference between

the upstream and downstream velocities, V and V2, respectively, i. e. V, =

V - V_. If we define the Alfven Mach number in terms of the local value

1/2of the Alfven velocity which varies as B/n ' , we can express the limitation

implied by Eq. (III-l) in terms of the upstream Mach number, M. . = V./C. ,.

For instance, in the case of a low (3, perpendicular shock structure with

the interaction region taken to be the center of the shock layer so that

(3(x) ~ 1, n(x) ~ (1/2 )(n + n_) , it can be shown that

2 (2)1/2 > Md (x) = MA1 ^ _I_ (III-2)

where 7- = n?/n is the density compression ratio. By assuming v - 5/3,

T may be related to the shock Alfven Mach number M. , through the relation

= I V25
f

valid only when the unshocked plasma is cold. Thus, from Eqs. (III-2) and

(III-3) this magnetized ion-ion instability can operate only for M. . < 6.

The "modified" two stream instability ' has also been proposed for

nearly perpendicular shocks. This instability is driven by relative streaming

of ions and electrons across a magnetic field. It is so named because its

dispersion relation, in the fluid limit, is similar to that for the Buneman
Q

two-stream instability . Unlike the ion acoustic instability which selectively
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heats electrons, the "modified" two-stream instability produces large

and comparable ion and electron heating. Like the magnetic ion-ion

interaction discussed in the previous paragraph, the characteristic frequency

and growth rate for the modified instability is comparable to the lower

hybrid frequency and it is operative only if the Alfven Ma'ch number for the

relative drift between the ions and electrons satisfies the inequality,

Md < (1 + p^1/2.

Significant among recent advances in the area of magnetic streaming

instabilities and their applications to oblique shock structures in collisionless

plasmas are the beam-whistler (BW) and beam-cyclotron (BC) '

instabilities. These are characterized by strong interactions between one

of the two counterstreaming ion acoustic beam modes and the whistler or

electron cyclotron mode (see Fig. III.l). While the BC instability does

result in electron heating, it nevertheless is inadequate as a mechanism for

ion-ion momentum coupling. Here the electron cyclotron modes are heavily

damped and do not interact with the beam modes. On the other hand, BW

instabilities, operative in the range 0 < 0 < (ir/2) and M , < (m./m ) ' X
Q. . ** 1 6

cos 0 , do result in turbulence which can suitably couple the two ion beams.

Clearly, the application of BW interactions to oblique shock structure is

expecially attractive since they are operative over a substantially larger

range of shock Mach numbers than are the magnetic counterstreaming ion-

ion and modified two stream instabilities discussed earlier.

We now briefly review the oblique collisionless shock structure study
Q

of Lindeman and Drummond. Their analysis points to the existance of four

* *# *** ****
critical Mach numbers M , M , M , M . The first of these, cited

earlier for perpendicular shocks, is the value of the upstream Alfven Mach
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Fig. IIL 1 Schematic of the Dispersion Relation Showing the Interaction
Regions Leading to Beam-Cyclotron (BC) and Beam-Whistler
(BW) Instabilities.
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number M., for which the downstream flow velocity equals the ion acoustic
31*

speed. When M. < M , the shock structure is a large amplitude

whistler (in the rest frame of the shock front). The damping of the whistler

and subsequent electron heating are brought about by the anomalous resistivity.

-r

When M. . > M , a nonmagnetic subshock appears downstream of the -whistler

region. It was found, however, that this subshock is a single large amplitude

ion acoustic wave of scale length of order of the Debeye length; this refutes

the usual notion of the anomalous ion viscosity as a broadening mechanism
•Jf O'

for subshocks. When M., > M' , a fraction of the incoming ions is reflected

from the potential barrier of the ion acoustic wave. These reflected ions

then interact with the counterstreaming upstream ions through a BW

instability resulting in pickup and heating of the reflected ions by the incoming

ions. Since the relative drift velocity between the incoming and reflected
Q

particles ~ 2V, Lindeman and Drummond predict a third critical Mach

*** . 1/2 -f-f'f
number M = 0. 5 (m./2m ) ' cos 0 , such that for MA, > M , the <i e A i

above BW instability which couples the counterstreaming ions is inoperative.

**** 1/2
Finally, when M > M =0. 5(m./m ) ' cos 6 , the whistler can no longer

1 C

stand in the shock layer (in the rest frame of the shock) so that its structure

is completely dominated by the ion acoustic mode.

It is interesting to note that for parallel propagation (k || B ), the

ion acoustic modes of the counterstreaming ions uncouple from the whistler

mode so that in the assumed frequency range fi . « |u)| , I CO - kU | «
Q

S2 of Lindeman and Drummond, the BW instability no longer exists. On

the other hand, if one relaxes the frequency restriction to lower frequencies,

i. e. 0 ~ cu I » CO - kU « S2 , then even in the case of parallel propa-

gation a beam mode can, in fact, enter into unstable interaction with the
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with the whistler leading to coupling of the two ion beams. This problem

and its application to parallel shock wave structure are the topics of

central interest in this report. While our analysis is restrictive inasmuch

as we concentrate only on the k JIB , V || B case, it is nevertheless useful

to know if ion dissipation can be generated.

In Section IIL B, we analyze the linear instability of two counter-

streaming ion beams in the presence of magnetized electrons; here, the

analysis is carried out in the rest frame of the electrons. In Section III. C

we analyze the resulting dispersion relation in the rest frame of the parallel

shock at different upstream Mach numbers and at different stations in the

shock layer. The result of this analysis is a map showing the range of

Mach numbers as a function of position into the shock for which unstable

waves can stand inside the shock.

B. LINEAR THEORY

We analyze here the instability arising in a collisionless plasma

configuration consisting of two ion beams counterstreaming along the

magnetic field (V MB ) through an electron background. V represents

the streaming velocity of s n species of ions. The ion and electron

motions are modeled by fluid equations valid for wavelengths long compared

with the electron gyroradius. Restricting ourselves to the case of parallel

propagation (k || B ), the appropriate electromagnetic dispersion

relation then has the form:

,2 2
-^- - e .. (k, co ) = ± ie ,, (k, co ), (HI-4)

uT 11 ~ 12 -

where, in the electron rest frame,
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e ( k . c on. - 7 -
co - IT s = 1.2 ( c o - k - V

t* C /• \ "(ions)

and

o o
i(co Yco )(co - k . V ) n

JJD ~ ~ O

- 2 2co(co -n,: ) 8=1,2 ( c o - k - v r - 07
C (ions) ~ ~S C1 (III-5b)

fi . = Z e B /m., fi = |e| B /m deonoting the ion and electron cyclotron
ci o' i ce I I o' e 7

frequencies and ct) , CO the s ion beam (s = 1,2) and electron plasmaps pe

frequencies, respectively. We note that within the fluid approximation, the

dispersion relation Eq. (III-4) is unaffected by the presence of electron

thermal pressure since the thermal velocity does not appear in the

11, 22, and 12 components of the dielectric tensor in the fluid limit for

the case of parallel propagation.

We now make the low frequency approximations that 1) the displacement

current is negligibly small (co « kc), and 2) the electrons have zero mass

( CO I « fi » CO ). Introducing the dimensionless densities 6 = Zn_/n ,I ' ce pe ° 2 e

(1 - 6) = Zn /n (it is understood that the composite ion beams -electron
_L €

plasma system is charge neutral), the dispersion relation simplifies to

k2c2 -co ^ - 6)(co - £ ' Yl} 6(CO - k
2 n . co - k . v. + n~~ co - k • v_ + n .C O • c i w ~ - i — c i ^ ~ ~ 2 — c i

where Eq. (III-6a) refers to the upper signs, and Eq. (III-6b) refers to the

lower signs. We also apply the zero current constraint
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(1 - 6) V. + 6 V = 0. (III-7)
*̂ J, *~ L*

For the low frequency case under consideration here, it is crucial that

condition (III-7) be met for arbitrary beam strength (0 < 6 £ l)(see Ref. 12).

In the sequel, Eq. (III-6b) corresponding to the lower sign, can be dropped

from further consideration since it is identical to Eq. (III-6a) with co — -co

and k -•• - k. It is convenient to introduce here the relative drift velocity

U = V, - V so that from Eq. (III-7), V. = -6 U, V. = (1 - 6 )U,
^ * ^ * ^ * * " 1 ** J. ^* ^*^ ^*

and Eq. (III-6a) can be simplified to

k
2
 c

2 (1 - 6) 0 . 6
Cl Cl

2 " n . ~ w + 6k . u + n . ~ c o - ( i .
CO i ci w ci w ~ ~ ci

(III- 8)

Now, for 0 <^ 6 < 0. 5, it is clear that ion stream 1 has more the

role of "plasma" while 2 has more the role of "beam". When 0. 5 < 6 <_ I,

these roles are interchanged. Since, however, the corresponding interchanges

6 — * (1 - 6), k • U — -k • U

leave Eq. (III-8) unchanged, analysis of the range 0. 5 £ 6 £ 1.0 would be

redundant. It is therefore sufficient to investigate only 0 £ 6 £ 0. 5.

For given values of the parameter 6 and M., = U/C . (it is convenient

to normalize U with respect to the Alfven speed C. ), our task consists in

solving Eq. (III-8) for cJ = CU (k); here k is considered to be real and co

can be real or complex. Since Eq. (Ill- 8) is a cubic equation in co with real

coefficients for real k, complex roots necessarily occur in conjugate pairs.
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Hence, whenever a growing mode (Im o> > 0) is present, there is also a

decaying mode (Im u> < 0).

For 6 = 0 , one recovers the usual whistler (W ) and ion-cyclotron

(1C ) dispersion branches given analytically by

2 2 2 2 2* cAY2nc . ± k c A ( i + k*cAV4nci ) (m-9)

For weak beams (6 « 1), the intersection points P, Q. R (see Fig. III-2)

between the ion beam mode

W = ( i -6)ku - nci (in- io)

and the "W and IC_ branches of Eq. (III-9) suggest possible strong interactions

near these points. Indeed Kovner's analysis shows that beam -IC_ inter-

action is stable while the beam- W interactions are unstable with growth

rates

• k/iu

v« = , ^—— r/7 (* = P>Q) '£ 2 2 2 \ 'k/ ir - n . )\ £ ci y

where, from Eqs. (III-9) and (111-10), kp and kQ depend on the slope (=Mj)

of the beam line. Note that the beam-cyclotron (BC) intersection shown in

Fig. III.l does not appear in Fig. III.2 due to our approximation m -» 0.
6

We have extended Kovner's weak beam study by solving Eq. (III-8)for

arbitrary values of 6 (Q<_ 6 <. 0. 5). By expanding the dispersion relation

(III-8) for small k, one readily finds

r 2 i x2
[6 (1 - 6) Md - ij ,Im co = k C6 (1 - 6) M - i , (III- 12)
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w

IC+ 1C-

D56I8

Fig. III. 2 Superposition of the Whistler (W + ) and Ion Cyclotron (IC+)
Modes for 6 = 0 with a Weak Beam Mode. The intersection
points R, P, and Q represent regions where strong interactions
can occur.
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so that these long wavelength modes are unstable only if

M [ 6 (1 - 6)]
(III-13)

This condition is thus sufficient for instability, but is not necessary as we

shall see below. We should emphasize that due to the application of the

condition (III-7), we are dealing only with zero-current instabilities and thus

the stronger, current-driven instabilities often treated are excluded. It is

easy to show that there must be complex roots of Eq. (III-8) for values of

k and U determined by setting co given by Eq. (Ill- 10) equal to co , given

by Eq. (III-9). The resulting relationship between U and k is

U =
n .

Cl

(1 - 6)k
1 1 L1 1 - 7

Q n .
Cl Cl

+k2 cA
2/4nc.

2) . (Ill-14)

By appropriate manipulation, Eq. (III-8) can be brought into the form

(co + 6kU + n .)(co - co_ )(co - co J(co -
Cl T

U + fi ) - .5
Cl Cl

(III-15)

where we have introduced a fourth, extraneous root, co = - J2 ., in order
ci

to produce the above quartic equation in co . When Eq. (111-14) is satisfied,

the third and fourth factors on the lefthand side of Eq. (Ill-15) are identical

and hence positive for real co. The righthand side is always negative while

the lefthand side is negative only for -6 k U - fl . < co < C0_ < 0. In this

range there is only one real root, co, , such that -6kU - J2 . < co, < - fi ., in
i. t- i L C11

addition to the extraneous root at - £2 .. Hence the other two roots of
ci
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Eq. (Ill-15) and thus Eq. (III-8) are complex for k and U determined by

Eq. (Ill-14).

Dispersion curves obtained from Eq. (III-8) are displayed in

Figs. III.3a - III.3d for values of 6 = 0. 1 and 0. 5 and drift Mach numbers

M, = 3 and 7. Note that kU has been taken to be negative here as opposed

to the positive value shown in Fig. III.2. We find that for 6 = 0. 1, the peak

growth rate increases only slightly from \ ~ 0. 32 fl .at M, = 3 to

•y * 0. 38 fi .at M, = 7, while for 6 = 0. 5, the peak growth rate increases

Cl
more markedly with M,, rising from -y = 0. 34 n . at M = 3 to v - 0. 72

at M, = 7. Note that for 6 = 0. 5, the dispersion curves are symmetric in k

as it is impossible to distinguish the beam from the plasma while for

6 = 0. 1 the beam-like mode can be clearly identified. Also note that in

Fig. III.3a the region near k = 0 is stable in agreement with Eq. (Ill-13)

but that there is instability for a finite range of negative k.

The regions of instability in k, U space for 6 = 0. 1 and 0. 5, obtained

by setting the discriminant of Eq. (III-8) equal to zero, are shown in

Figs. III. 4a and III.4b respectively. Also shown by dashed lines is the

generalization for arbitrary 6 of the "Kovner" lines given by Eq. (Ill-14).

These dashed lines, which correspond to the intersection points P and Q

in Fig. Ill .2, were shown above to always lie in the region of instability.

It is easy to determine that the minimum in the dashed line occurs at

k C A / f i . = (4/3)1/2 - 1.15 for which
A Cl

Md
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Fig. III. 3 The Dispersion Relation (III. 8) for: a) 6 = 0. 1, Md = 3;
b) 6 = 0. 1, Md = 7; c) 6 = 0. 5, M^ = 3; d) 6 = 0. 5, Md = 7.
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Md = U/CA Md = U/CA

Fig. III. 4 Range of Unstable Values of k as a Function of Relative Drift
Velocity for a) 6 = 0. 1 and b) 6 = 0. 5.
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This value corresponds to the relative drift such that the beam line

Fig. III.2 is tangent to the W branch, i. e. , the points P and Q coalesce.

For larger values of drift there are two peaks in the spectrum of unstable

k. Figure III.4a shows that for M, > 3. 5, there are two discrete ranges

of k which are unstable. For large drift (M, —•• °° ) there are unstable modes

for k in the range

(1 - 6) M.
2

M , ( l - 61/2)
<

kCa

"ci
< U fi^TuT(j/ivi, - 1/1d f L / £

(JII-17)

The width of this unstable spectrum is thus

Ak ~ 4 6
1/2

"
(1 - 6) U ci (III-16)

and the peak growth rate is given approximately by Imoj ~ 6 ' £2 .. These

expressions are in agreement with the numerical results shown in Figs. III. 3

and III.4.

C. RELEVANCE FOR SHOCK WAVE STRUCTURE

The purpose of this section is to determine when the unstable whistlers

analyzed in Section III-B can grow to large amplitude inside a shock front

propagating along the magnetic field. Hence, in addition to being unstable

we shall apply the requirement that the growing wave should have zero

group velocity in the shock frame. The group velocity of the wave is not

only a function of (^ and k, but also of the position in the shock front as we

shall see below. Waves •with zero group velocity can be expected to remain

in the unstable region for a sufficiently long time to reach large amplitude
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and generate turbulence. We consider only parallel shock waves for -which

the sound speed Ccr. = (v K(T + T. )/m.) ' and the Alfven speed
oU e i i

C.Q = (B / j j , n . ) in the unshocked gas are equal. Thus our study

14
excludes any consideration of "switch-on" shocks that occur for Cc ,_< CAO;

here the external magnetic field remains constant and parallel to the

direction of plasma flow across the shock layer.

In the rest frame of the shock front, the ions are modeled as a

linear combination of the upstream (u) and downstream (d) velocity

distribution functions, i. e.

f (x, v) = n^ (x) 6 (v, - vu) + nd (x) 6 (v - y.d). (Ill-18)

n (x) is taken to decrease linearly from its upstream value at the leading

edge of the shock to zero at the trailing edge while n,(x) increases linearly

from zero at the leading edge to its downstream value at the trailing edge as

indicated schematically in Fig. III. 5. The electrons, on the other hand,

are modeled as a single fluid moving with an average drift velocity, V (x)

determined by the zero current condition

y e ( x ) = (i - 6(x) ) yu + 6(x) yd (m.19)

where the fraction of the total density represented by the downstream species,

6(x), is now a function of position through the shock.

In this section the dispersion relation (III-8) is analyzed in the shock

frame. The primary difference from the previous section is that the real

part of the frequency is doppler shifted by the amount k • V (x) which is a

function of position in the shock. The instability properties are unchanged

and depend only on the relative drift U = V , - V (which is independent of
**» *̂ Q. **U

position in the shock) and 6(x) (which is dependent on the position in the shock).
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n u ( x )

*- x

D562I

Fig. III. 5 Sketch of the Ion Velocity Distribution Function Indicating the
Assumed Linear Variation Through the Shock.
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The group velocity, defined as 8 CL) /3 k where CD is the real part of
s s

the frequency GL) in the shock frame (equal to co + k . V (x) ), also depends

on the position within the shock.

In the previous section, dispersion curves and stability criteria

were given in terms of the relative drift velocity, U, of the two ion

streams or, more exactly, the relative drift Alfven Mach number, M, =

U/CA , where C. = B (z/n m. n ) ' is the local Alfven velocity. In this
J\ J\ O O 16

section we shall specify these properties and criteria in terms of the

upstream Alfven Mach number. M. = V /C. ^, and the fraction of ther A u' AO

distance, t, , through the shock. From Eq. (Ill- 18) we have

ne (X = (1 - ^ ) nuo + ^ "do

•where n and n, represent the unshocked, upstream density and

shocked, downstream density respectively. Thus

(III-21)
b - [6 +T (1 - 6)1

where 7- = n, /n is the compression ratio across the shock determined

by the Rankine-Hugoniot relations;

(Y + 1) MA
2 4M 2

T = ,., . nx,V , = —-T- (for Y = 5/3) (111-22)
\» *' "-A ' - M + 3

when it is remembered that we have assumed (3 ~ 1 so that the upstream

acoustic speed and Alfven speed are equal. The local Alfven velocity

decreases through the shock as the plasma density increases;
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CA ~ CAO

2 + 3

MA
2 + 3 + 3 £(MA

2 - 1)

1/2
(111-23)

For a given upstream Mach number, M., the local drift Mach number is

given by

>1) / 3UM A
2 -1 )V/ 2

M, = " " = ^5 1 + 4 (ni-24)
V - V, 3(MA - 1) / 31 (M.u d A I , . A

J- J - ^i - S I i T ^
CA 4M/ \ M/ + 3

Solutions of the dispersion relation (III-8) in the shock frame are

shown in Figs. III.6a through III.6d for the same values of 6 and M,

shown in Figs. III.3a through III.3d. Note that the wavenumber scale

in Figs. III.6 are normalized using the upstream Alfven velocity CAQ

instead of the local value. The shape of the unstable spectrum is unchanged.

The real frequencies for the case 6 = 0. 5 are no longer symmetric about

k = 0 due to the doppler shift. Note that the group velocity does not equal

zero (solid line with zero slope) for any of the values of k that are unstable

in these particular cases. The case for 6 = 0. 1 and MA = 4. 1 has the

smallest group velocity. The values of Alfven Mach number shown are

obtained by inverting Eqs. (IIL-21) and (HI-24).

Figures III. 7a and III. 7b present the range of unstable wave

numbers as a function of the upstream Alfven Mach number, M., at

two different positions within the shock front. These figures are different

from their counterparts in Figs. III. 4a and III. 4b since the value of 6

varies for different values of MA becuase f, the position within the shock

is held fixed. We see that near the front of the shock there is a wide range

of unstable •wavenumbers for M. > 3. The growth rate is of the order of
A ~
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Fig. III. 6 The Dispersion Relation III. 8 in the Shock Frame for the Four
Cases Shown in Fig. III. 3 Where u>s = CO + k • Ve .
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Fig. III. 7 Range of Unstable Wavenumbers as a Function of Upstream
Alfven Mach Number at Two Positions within the Front at
a) t, =0. 05 and b) ij, =0. 2. The dashed line corresponds to
values of k for which the group velocity of unstable waves is
zero in the shock front.
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fi .. However, most of these waves have positive group velocities and

are swept downstream with the flow before they have had a chance to grow

significantly. Only unstable waves -with nearly zero group velocity can be

expected to grow to large amplitude. In Fig. III.Ta, the values of k for

zero group velocity waves in the unstable region are shown by a dashed line.

Thus, Mach numbers in the range 6. 8 < M. < 9. 1 should be able to produce

turbulence at t, > 0. 05 according to the linearized analysis presented here.

Such waves don't exist for the parameter ranges shown in Fig. III.Tb at

t, > 0.2.

Figure III.8 shows the range of upstream Alfven Mach numbers for

which unstable whistlers will stand in the shock as a function of distance

into the shock. Two immediate conclusions can be made. The first is that

this mechanism can only be important for M. > 5. 5. The second is that

these waves are confined to the leading edge of the shock; unstable -waves

near the middle or trailing edge will be swept downstream. This result

is in agreement with laboratory experiments that measured magnetic

field fluctuations in lower Mach number shock waves.

D. SUMMARY

We have derived the electromagnetic dispersion relation for two

counterstreaming ion beams in a stationary electron background. The

dispersion relation which is unaffected by electron pressure terms in

the fluid approximation has been solved numerically to find the regions

of instability in the k - M, space. It is found that for beam-whistler modes

to be unstable, it is necessary that the relative drift Mach number be

greater than 2. 0 although this condition is not sufficient for instability.
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0.2

Fig. III. 8 Range of Alfven Mach Numbers for Which Unstable Whistlers
will Stand in the Shock as a Function of Position Within the
Shock.
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The bandwidth of k over which the unstable modes exist is shown to decrease

inversely with the relative drift velocity for large relative drift velocities.

By modeling the shock structure in a Mott-Smith formalism as

consisting of streaming up-stream and down-stream ions, the linear

analysis was applied to the study of shock wave structure propagating along

the magnetic field. Invoking the criterion that only unstable waves with

zero group velocity will have time to grow within the shock thickness, we

found the range of Mach numbers for which some unstable beam-whistler

modes could grow to large amplitudes. We suggest that this may be a

possible mechanism to generate turbulence that many experiments have

shown to be associated with the shock wave structures. The plasma

turbulence in turn can provide the explanation for anomalous dissipation.

However, in our model, the unstable beam-whistler modes can stand near

the leading edge of the shock only for upstream Mach numbers greater

than 5. 5.

The most serious limitation of the present analysis is the restriction

kj I B. For waves propagating at an angle to the magnetic field, the dispersion
•w | | ~*

relation becomes much more complicated and electron thermal effects have

a significant interaction with the magnetic modes treated here. The analysis

presented here ought to be extended to include the stability properties of

these obliquely propagating waves. The assumption of cold ions ought to be

relaxed particularly since one of the ion species in this study has been taken

to be the shocked ions. Ion thermal effects could have a significant effect

on the stability properties of counter-streaming ion beams. Asa final

comment, it should be emphasized that this instability depends on having

included the effect of the magnetic field on the ions. If fi .-» 0 in Eq. (III. 8),
C i

the instability disappears.
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