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ELECTRON AVALANCHE STRUCTURE DETERMINED BY RANDOM WALK THEORY

by Gerald W. Englert

Lewis Research Center

SUMMARY

The early stages of a large number of avalanche formations in helium were deter-
mined by means of computer simulation of the microscopic details. The exact trajectory
of each electron was followed as it experienced various types of collisions with the back-
ground atoms and as it was acted upon by the electric field in the time between collisions.
Results of such a lengthy procedure show that the electron transport coefficients of av-
alanches in helium relax to local equilibrium values in approximately one-hundredth of
the formation time of a fully developed avalanche. This enables the use of a random walk
concept for avalanche study in which the step sizes and probabilities are based on elec-
tron transport coefficients; these coefficients depending only on the background density
and the local electric field strengths within the avalanche. This repetitious procedure
permits a self-consistent avalanche solution which accounts for collective long range
Coulomb interactions as well as short range elastic and inelastic collisions with a rea-
sonable expenditure of computer time.

The electric field patterns initially formed inside the avalanches were close to those
obtained from theory based on constant transport coefficients. A region of maximum and
one of minimum induced electrostatic potential <p were located on the axis, and within
the volume covered by the electron swarm. As formation time continues, the region of
minimum y> moves to slightly higher radii. The electric field in the axial distance be-
tween the two extrema builds up and diminishes in a somewhat erratic manner.

In the intermediate time periods the avalanche growth is slightly retarded by the high
concentration of ions in the tail which oppose the external electric field. Eventually, at a
value of the time-pressure parameter tp slightly greater than 3.9xlO~ sec-N/m
(2.9 /isec torr) the formation of ions and electrons in the regions of high field strength
more than offset this effect, causing a very abrupt'increase in avalanche growth. It is
assumed that the internal electric field is axisymmetric. The random walk calculations
were not carried much beyond the onset of. the rapid growth period since assuming axi-
symmetry is not justified there.



INTRODUCTION

The subject of this report is the formation of an electron avalanche, in an electric
field, independent of wall effects (secondary ionization). This process is initially quite
orderly, starting with one electron and continuing with an exponential growth of free elec-
trons as a result of ionizing collisions between these electrons and the background gas.
Such avalanches are descriptive of those which, for example, form at discrete locations
throughout the volume of a gas, the gas undergoing initial ionization to form a plasma.
If the formation of any single avalanche is continued under suitable conditions until suffi-
ciently strong internal electric fields are built up, a local needle-like ionization pattern
(streamer) is abruptly formed (ref. 1). This can ultimately result in a turbulent spark-
ing process. This latter process is beyond the range of application of the techniques em-
ployed in the present investigation. A fully developed avalanche will be defined herein as
one which has grown to the streamer formation stage.

Changes occur in avalanche formations in such short time periods that even the ex-
ternal characteristics are difficult to measure. Theoretical solution is difficult since the
descriptive differential equations are very nonlinear due to the extreme spatial and time-
wise changes of the internal electric fields. A means of investigating various theoretical
models of internal structure which allows incorporation of considerable physical detail
could be quite useful.

Random walk theory was employed in the computer simulation of the microscopic de-
tails of electron motion in references 2 and 3. This theory includes both elastic and in-
elastic short range collisions between the electrons and background neutrals, and permits

o
an exact calculation of the electron trajectory between such events. Since more than 10
ionizations usually occur in the development of an avalanche up to the streamer formation
stage, computer time expenditure becomes a serious problem when each electron is
walked in detail.

Where a large number of microscopic events occurs within small macroscopic volume
elements and time increments, the step sizes and probabilities used in the random walk
(RW) can be based on local averages. This in turn greatly facilitates the calculation pro-
cedure. It was demonstrated in references 4 and 5 that such a technique can be used to
simulate a pertinent class of parabolic nonlinear differential equations. This type of RW
was suggested in reference 6 as a means of solution of the electron transport equation.
The step sizes and probabilities are determined in terms of the coefficients of the trans-
port equation which, in turn, are dependent only on the local electric field and back-
ground density.

In avalanche formations, the density of charged particles can reach values such that
long range Coulomb interactions (thus internal, i.e., induced, electric fields) must be
considered as well as the short range interactions between the free electrons and



background gas particles. Application of the RW technique of references 4 and 5 to the
electron avalanche in a manner which preserves microscopic influence, yields a self-
consistent internal electric field, and yet enables a solution with a reasonable amount of
computer time was undertaken. Numerical results were obtained for avalanche forma-
tions in helium at a ratio of external electric field to background pressure of 22. 5 V-m/N
(30 V/cm-torr).

ANALYSIS

Microscopic Random Walk

In principle, the electron motion in an avalanche can be precisely simulated by ran-
dom walks. The trajectory of each electron is followed as it undergoes various types of
collisions and as it is acted upon by the electric field in the time between collisions. The
details of each collision are based on random selection of values from sets of numbers
distributed in accordance with cross section data. This is essentially the procedure of
references 2 and 3. In these references, a constant number (representative sample) of
electrons were followed to study a process having a uniform density of electrons. In the
present study, however, an additional electron (therefore, walk) originates at each ion-
izing collision, and spatial effects are of prime concern.

Such a RW procedure provides an excellent means for computer simulation of micro-
scopic details of avalanche formation. It requires a large amount of computer time, how-
ever, due to the exponential buildup of electrons. This method is feasible in the early
stages of avalanche formation (N ̂  10 electrons). With this number of electrons and/or
ions the internal electric field is negligible and only interactions of the electrons with the
background atoms need be considered.

This procedure was applied to the formation of a large number of electron av-
alanches in helium. The location of the electrons and ions, at various times from the
start of the buildup, is shown in the computer plots of figure 1. All charged particle lo-
cations are shown here as if looking through a side view of the avalanche. That is, the
charged particle locations are projected along lines perpendicular to the paper, which
represents a plane through the x and z axes of the coordinate system. The origin of
the coordinate system is the starting point (t = 0) of the trajectory of the first electron.
The external electric field is in the negative z direction.

The electrons essentially move in a spherical swarm. The ion pattern is that ex-
pected from cloud chamber photographs (ref. 7).

These avalanches were started with a number of electrons N considerably greater
than one to get a higher density of points and a better definition of shape during the low
formation times shown. The plots can also be considered to represent a superposition
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(a) Avalanche for-
mation time tp =
1.3xlO~5sec-N/m2;
number of super-
imposed avalanches
N0= 300; number of
ionizations N = 301.

(b) Avalanche formation times
tp = 4.5xlO"5sec-N/m2;
number of superimposed
avalanches NQ= 145; num-
ber of ionizations .N= Dll.

(c) Avalanche formation time tp = 9.1x10"'
sec-N/m2; number of superimposed ava-
lanches N0= lli number of ionizations
N = 1739.

Figure 1. - Particle locations obtained by use of microscopic RW procedure at three avalanche forma-
tion times. Electric field parameter E/p •= 22.5 V-m/N; initial energy of first electron of N0 ava-
lanches is uniformly distributed from Oto 12 eV.

of N avalanches, each starting with one electron, thus giving a representative average
of formation patterns when the number of charged particles per avalanche is low.

The electron transport coefficients were also determined in these computations, and
are given in figures 2 and 3. Relaxation to terminal steady-state conditions were found
to occur in short generalized time periods, tp, close to those found in reference 2, which
is about one-hundredth of the formation time of a fully developed avalanche. Data scatter
is due to the sample size. The number N of superimposed avalanches was selected so

3 •that there was a total of about 10 electrons when formation time reached relaxation time.
Approximately 10 minutes Of computer time is required to determine formations hav-

3 4 2ing the order of 10 electrons. Avalanche structure on the order of 10" sec-N/m range
is of main interest. Then the number of electrons may reach the order of 10 electrons.
Use of the detailed RW would thus require far excessive amounts of computer time during
such long time periods. This, however, is where the use of equilibrium values of trans-
port coefficients is justified. The electron motion can then be described by the electron
transport equation (appendix B). This equation describes the electron motion by diffusion

4
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and drift expressions while accounting for ionization events by a source term.
The amount of avalanche buildup by the time that relaxation time is reached consti-

tutes a very small fraction of the electron population in the later main time range of in-
terest. The electron transport equation can thus be assumed to apply to avalanche forma-
tions from the start with negligible consequence.

Macroscopic Random Walk

Random walk theory. - The nonlinear parabolic form of the electron transport equa-
tion is similar to that of equations solved by the RW-on-a-grid concept in references 4
and 5. In this RW procedure the required step sizes and probabilities are expressed in
terms of the coefficients of the partial differential equation to be solved.

The general equation describing a RW on a grid is (ref. 4)

(1)

The symbols are defined in appendix A. This equation, based on the law of compound
probability, is essentially a law of conservation of particles as they move to and from
neighboring points on a three-dimensional lattice (fig. 4). The components of the step
sizes AX. are the grid spaces. The terms Pt and P." are the probabilities of taking
steps in the positive and negative directions along the jth coordinate. It is assumed that
each of the three components of the steps contribute to the particle movement during each
time increment At. Then

Pt + P.- = l j = l ,2,3 (2)

which corresponds to steps across diagonals of the lattice.
Let X. where j = 1,2,3 be Cartesian coordinates. Then W, which is the prob-

ability density of particles being at a certain grid location at time t, can simply be set
equal to the density of electrons n

The components of step size AX, -are identifiable with second moments (root mean
squared averages) of the components of the microscopic distance Ax. between collisions.
Letting a bar denote average,

AX- = t /Ax< ' J = l ,2,3 (3)



Figure 4. - Random walk on three-dimensional rectangular grid. Division
of space into larger cylindrical zones for tallying purposes (appendix C)
is shown by dashed lines. Radial distance r is measured from axis of
avalanche. Axial distance z is measured from initial location of first
electron.

Then using the definition of diffusion coefficient,

D =
2r

it follows that

AXj = |/2DjT 3 = 1,2,3 (4)

The mean free time between collisions r is equivalent to At. For helium, r can be ap-
proximated by (ref. 2)

r =
(nQav)

(5)



This is because the product of electron velocity v with Qa is very nearly constant over
the range of interest herein. Here Q is the total absorption cross section for electrons
colliding with neutral background (helium) atoms of density n. Setting v equal to
y2e/m, where e is the mean electron energy of reference 2 for the macroscopic RW,
gives the very small variation of T with E/p shown in figure 5.

Mean free time xlO8,
pr,

10

10

10

10-4

6 8 10° 2 3 4 6 8 101 2 3 4 6 8 102

Appropriate field parameter, E:/p"or E/p, V-m/N

Figure 5. - Characteristic quantities of use in
macroscopic RW. (Data points were calculated
from transport coefficients of ref. 2; lines
denote empirical curve fits used in the com-
puter program.)

The bias Pt - P." can be used to describe the influence of a preferred direction of
(drift) velocity, which involves a first moment of Ax,

P7 - p: = _ vd,JT

/2D.T
j = 1,2,3 (6)

Diffusion in the presence of an electric field has a nearly isotropic coefficient over
the range of E/p of most concern in this investigation (see table I of ref. 2). It will be

8



assumed, therefore, that mean free time is constant and that step size is isotropic and
only weakly dependent on space, although it can be strongly time dependent. Using equa-
tions (4) and (6) in (1) and identifying W with ng then yields

= - V nevd + D Vne (7)

Consider ionizing events to occur during the RW with a probability per collision
Pion' Tlle rate of ionizmS events per unit volume is then pion

n
e/T. This is equivalent

to aTvdne where is the Townsend first ionization coefficient. Thus

Pion = °TvdT

Equation (7), extended to include this source term, becomes

at
. = - V (8)

This is equivalent to the electron transport equation (see appendix B) within the spatial
restriction on step size (and thus on D for constant r) which will be appraised further
in the section entitled Results of Macroscopic RW. The transport equation- can be written
in terms independent of background density. To follow convention, however, pressure p
referenced to 0° C will be used as

a(xjP)
+ Dp

p
Vdn< (9)

Step size and probabilities are also plotted in figure 5. These values are based on
the transport coefficients of reference 2.

Execution of the random walks. - In the execution of each step of the RW-on-a-grid
procedure four numbers are drawn at random from a set of numbers uniformly distrib-
uted over the interval 0 to 1. Such sets of random numbers are available in most com-
puter libraries. Three of these numbers are used to determine step direction. For ex-
ample, if the jth random number is less than the corresponding P?", the component of

J



' •- E <

gpl.i-
.— O O i—i (O

« § § e 2
.«^ ni .... *~ O

d
t
d

^1
O o CO

Ills
g >,iHi
is S *
£-s-3 1*
oi C = c
^ = *" _ oi
s ,_ •s ° .
o -2 . f eg~

:°I1T£
J. » Z ~ o-

"S c -^ '? — .
in ra < — X

in
de

x 
N

SU
B 

= 
0,

, 
io

ni
za

tio
n

 in
de

x
er

 o
f e

le
ct

ro
ns

0

et
 s

ub
av

al
an

ch
e

al
k 

in
de

x 
LI

 •
 C

L 
-0

, 
an

d 
nu

m
b

lll
ie

d
 

NT
AL

LE
 • • s

V.

m

~

,|

oT
•o
c
cu

X

cu

o:

o

y

V

f
-S
c

s

c
o

d.

CD

> *

a
"° !_'

ca ""S-i

1 1 V

S-TL^?
^_ Q_

E = S t~= .C ^ D_

s s g +c>r
si f io i: 5 ro:i!i^
'= C -p Q-

1 S -TM+X"

1
et -o

ib
er

s 
R

N
l,

in
g 

R
N

l, 
R

N
2,

 a
n

di
re

ct
io

n 
(f

o
r a

e 
A

pp
. 

D 
of

 r
e

f.
 6

)

ou
r 

ra
nd

om
 n

un
ne

 s
te

p 
of

 R
W

 u
s

3 
de

te
rm

in
e 

st
ep

d 
R

W
 e

xa
m

pl
e 

se

— o — .£

III!

OJ

ji/K^liTXi/A

10



I

E
•s

11



the step along the jth coordinate is considered positive. Here, for convenience, Pt
can be written as

(10)

by combining equations (2) and (6). The fourth random number is compared with Pion;
and, if it is less than Pion, an ionization event is assumed to occur.

Only the electrons have appreciable diffusive motion or cause ionization, and are,
therefore, random walked. It is sufficient to include merely the drift motion of the ions
in the calculations.

At various times, t, , along a macroscopic time scale, the locations of the electrons
and ions are recorded for plotting (as in fig. 1) and also tallied (similar to that in ref. 6)
to determine their distributions in space. From the tallies, the internal electric field
can be determined (see appendix C) and then the probabilities and step sizes from infor-
mation as on figure 5. These quantities are determined over the physical space of im-
mediate interest and stored in matrix form for convenient access during the walks per-
formed in the next period tk , - tk. The appropriate (jtn) component of the total (exter-
nal plus induced internal) electric field vector is used in the determination of the vector
components P- and AX., whereas the magnitude of the total electric field vector is used
in the selection of the scalar P,nn.ion g

In the early formation period of the avalanche (N < 10 ) the internal electric field is
negligible and the electron transport coefficients, thus probabilities and step sizes, are
constants. As the formation proceeds, the permissable lengths of the time periods At^
become less in order to obtain a self-consistent description of collective interaction of
charged particles with the field. As the magnitude of the internal electric field reaches
and goes beyond that of the external field, the At, must be kept very small (of the order
of 10 r).

The RW can be further facilitated by scaling step size, probabilities, and r such
that equation (9) is generated with a smaller number of (larger) steps as shown in appen-

o
dix D. Computing time can now be reduced to about 10 of that needed for the detailed
microscopic RW; nevertheless it still becomes excessive for avalanche formation con-

n
taining more than 10 electrons. With such a large number of electrons in the swarm,
however, it is not necessary to walk each one. At the higher t, samplings of about

33x10 "test" electrons were found sufficient to represent avalanche growth. Each of
such test electrons used to continue the calculations from t. generates a subavalanche
over the period t i - t, . The resulting distributions are weighted for the actual num-
ber of ions and electrons being represented. In this manner the RW process can be

12



continued through the final formation periods with total computer time expenditure of the
2

order of 10 minutes.
Several possibilities exist for selecting the location of the test electron at the start

of each subavalanche. For example, the walks of a fixed number of electrons could be
walked from each tally zone at t = t and the resulting tallies at t. , weighted accord-
ing to the spacial distribution at t^. As an alternative, a certain fixed fraction of the
electrons at tk could be continued from their respective locations (tally zones). In the
present investigation the starting locations were randomly selected from their spatial
distributions at t, . In these later two cases the weighting factor is a constant for any
t . - t, time interval. The procedure for random selection of values from an arbitrary
distribution when a uniformly distributed set of random numbers is provided by the com-
puter is discussed, for example, in reference 8.

To facilitate calculations and to reduce computer storage requirements, it was as-
sumed that the internal electric field of the avalanche is axisymmetric, thus cylindrical
coordinates (r, 0,z) were used for storage (appendix C). In the tallies for the distribu-
tions of electrons and ions each element of a matrix represents the number of electrons
or ions within an annular zone covering distances ±Ar/2 and ±Az/2 about a point (r, z).

A flow diagram which gives a word description of the main features of the computing
procedure is given in figure 6.

RESULTS OF THE MACROSCOPIC RANDOM WALK

Only one avalanche will be presented for the RW-on-a-grid type calculation where
long formation times, extended to the streamer stage is of interest. This avalanche,
based on transport coefficients, has an initial growth equal to that obtained by an aver-3
aging of 10 formations calculated by means of the microscopic RW method. During the
remaining formation time, where many electrons are in the statistical sample, the mac-
roscopic RW continues to generate the structure close to that of an average avalanche.

A plot of the ion locations in such a fully developed avalanche, at an external E/p
of 22. 5 V-m/N is presented in the first part of figure 7. Here the avalanche profile is
obtained by plotting z against radial distance r, instead of x as in figure 1. This
gives a better definition of the avalanche profile as it makes more points visible in the
outer boundary region due to the scale factor r in the following equation:

/

•

„
n(r ,0 ,z ) rd0 (11)

13



(a) Fully developed
ion formation at
time parameter
tp=3.91xlO~4

sec-N/m2.

rp = 4V(Dp)(zp)/v(J

J Axial distance ±4V(Dp)(tp)
from v,jtp (denoted by arrow)

-zp=vdtp:
-zp- vdtp

20 40 0 20
Radial distance, rp, N/m

(b) Electron swarm (c) Electron swarm (d) Electron swarm
at time parameter at time parameter at time parameter

i = 3.4xlO~4sac- tp= 3.68xlO"4 sec- tp = 3.57xlO"4 sec-
N/m'; number of
subavalanches
plotted Nsub =
2788.

N/m'; number of
subavalanches
plotted Nsub =
7827.

'; number of
subavalanches
plotted Nsub =
4513.

Figure 7. - Particle locations obtained by macroscopic RW procedure. Shown
first is a fully developed ion formation; next are shown electron swarms at
three values of time parameter. External electric field parameter E/p •
22.5 V-m/N.

Twice the diffusion radius, 2rD s 4 i/Dz/v,, shown by the dashed line fairly well defines
the avalanche boundary. It defines the boundary within which 1 - 1/e (or 98 percent) of
the electrons are located. This can be easily obtained by use of equation (B4) of appen-
dix B.

The corresponding electron swarm is shown at three time periods. It is nearly
spherical at the first time period since the internal electric field is then quite small. It
has a radius close to 2r~ and its center is close to the axial location z = v ,t. By the
end of the second time interval the internal field reaches values close to half that of the
external field and now definitely influences the electron pattern. Local minimum and
maximum values of internal E occur at zp values of approximately 77 and 100 N-m,
respectively. The concentration of electrons is strongly correlated to such field points
since aT, and thus the formation of new electrons and ions, is exponentially dependent
on field strength.

4 2As the avalanche buildup continues to tp slightly greater than 3. 6x10" sec-N/m ,
the electric field strength near the axis and in the vicinity of zp = vdtp increases to mag-
nitudes beyond the external field strength. The last plot on figure 7 shows that there is a
corresponding large concentration of electrons (and, therefore, ions) at this location. In

14



Ratio of electron
density to back-
ground density,

ne/n

10,-8.5

-10.5

,-11.5

,-12.5

,-13.5

8 16 16 24 32 402 4 3 2 4 0 0 8
Radial distance, rp, N/m

(b) Results of constant coefficient theory.

Figure 8. - Contour plots of ion and electron densities divided by
background density of helium at formation time tp = 3.25x10"''
sec-N/m2. 15



fact, the density is so high at tp = 3. 9xlO~4 sec-N/m2 that only a small sample of elec-

trons can be plotted without a glare in this zone occurring on the plotting screen and ob-
scuring details.

Contour plots of the ion and electron densities are shown in figure 8 at a formation
time of 3. 25x10" sec-N/m2. The RW results (fig. 8(a)) compare quite well with con-
stant coefficient theory (fig. 8(b)) at this tp where the induced electric field is much

less than the external field. The diffusion radius profile (2rD) is also shown on the RW

ion plot. The exponential falloff of ion, as well as electric, density from the peak re-
gions near z = vdt and r = 0 is apparent.

Marginal distributions, in which integration is over all of the dimensions except the
one being studied, are used to present the effects of the internal electric field on density
distribution. These often allow a space saving in plotting while preserving the essential
features of main interest. Such plots are shown in figures 9 and 10 for both charge spe-

cies at various formation times. The marginal density distributions (n. and n. ) for
3> r J> z

. 12 r—

o RW results for electrons
o RW results for ions

— — Constant coefficient
theory for electrons

Constant coefficient
theory for ions

(a) Time parameter tp = 2.13xKf 4 sec-N/m2;
effective Townsend ionization coefficient

Oy/p = 0.238 m/N.

. Wi-

th) Time parameter tp = 3.25xlO~4 sec-N/m2;
effective Town send ionization coefficient
(<yp)eff • Of/p = 0.236 m/N.

2rDp

8 12 15 18 2121 24 0 4
Radial distance, rp, N/m

(c) Time parameter tp = 3. 68xlO"4 sec-N/m2; (d) Time parameter tp = 3. 89xl(T4 sec-N/m2;
effective Townsend ionization coefficient effective Townsend ionization coefficient
(Of/plgff = oj/p = 0. 234 m/N. (or'P'eff = °r'P = °- 229 m/N-

Figure 9. - Marginal density distribution in radial direction at various values of time parameter.

24
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Figure 10. - Concluded.

the jth charge species in the r and z directions, respectively, are normalized by
dividing by exp(aTvdt) yielding

/
n.(r,0,z)r dedz (12)

and

/*°° rZir
v^) / / n.(r, 0,z) dr (13)

Keeping the scale factor r with the integration over 9 in equation (12) makes the plots of
F. against r more manageable as it reduces the otherwise exceptionally high values
near r = 0. Theoretical values of n. r and n. z are given in equations (B7) to (BIO).

When the internal electric field is negligible, so that the transport coefficients are
constant, theory agrees well with the RW results, as expected. The ion distribution
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peaks at a very slightly lower radius than the electrons (fig. 9). A difference between
the distribution of the two charge species is more noticeable in the axial direction due to
the electron drift velocity.

At about a formation time of 3. 2x10~ sec-N/m the difference between the RW and
the approximate theory becomes noticeable; especially, for the z component of the dis-
tributions (fig. 10(b)). The theory is shown only for the r component for the next two
time periods selected for plotting; beyond which it is inapplicable. The lines on the sub-
sequent plots are merely fairings through the RW data.

4 2Near tp of 3. 6x10 sec -N/m the z distribution curve starts to neck down at a z
location somewhat less than v.t, arid bulges out on either side of this z. This is evident
in figure 10(c). Note that the computer plots of figure 7 show a tendency for the electron
swarm to separate into two zones. The corresponding radial distribution (see fig. 9(d))
now shows an increased concentration of both charge species near the axes as well as a
spreading of the outer parts of the curve to radial distances beyond the theoretical curve.
As time continues, these trends become more pronounced with a sharp peak forming near
the axis and near v^t in the radial and axial distributions, respectively. This zone is
apparent in the last computer plot of figure 7. By this time the induced electric field has
exceeded the magnitude of the external field in this region.

Contour plots of the induced electrostatic potential <p are shown in figure 11. The
lines of constant tp form sets of approximately circular contours about a region of max-
imum <p located at a z less than v ,t and a region of minimum tp at a z greater
than vdt. The g> - 0 line is located near a z equal to v,t during the early formation
period.

The internal electric field in the avalanche head is generally predicted to be directed
inward toward the center (pp. 78 and 79 of ref. 1) forcing the electrons outward; whereas
the internal field in the trailing zone, being rich in ions, is predicted to be outward tend-
ing to force the electrons inward. This general pattern is observed in the present study
only during the early formation period where the extrema of the field strength are both
located on the avalanche axis.

Comparison of figures ll(a) and (b) show again that the constant coefficient theory
(eqs. (B12) and (B13)) agrees quite well with RW results at low tp where internal fields
are much less than the external value. The contours obtained by both methods look quite
alike over much of the field; however, it is the local extrema regions which are decisive
in the latter avalanche behavior. A plot of the values of <p extrema against time is
shown in figure 12.

As formation time continues beyond 3. 6x10" sec-N/m , the region of minimum <p
moves to slightly higher radii at times (fig. ll(c) and (d)). Comparison with figure 6
shows that the two extrema regions and the distance between them is essentially the space
covered by the electron swarm.
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Figure 12. - Buildup of maximum and minimum induced
potentials with time.

The contour lines about and in the near vicinity of the regions of extrema often have
two or more inflection points oriented such that they indicate enhanced gradients of <p in
the radial direction. During the latter stages of avalanche formation, the radial electric
field component is found to grow more rapidly than the axial component. A plot of E /p
against axial distance in the regions of extrema is shown in figure 13 at two radial loca-
tions near the axis and at various formation times.

At low tp the radial electric field has approximately a sinusoidal variation as zp
increases over the span of the electron swarm. The variation of Er with z at the inner
radial location of figure 13 is more erratic, and indicates a tendency of local charge
buildup and relaxation at z values between the two initial extrema (see also fig. ll(e)).
This may be an indication of instability caused by the exponential dependence of o^/p on
E/p. This causes a greatly increased rate of electron and ion formation at high E/p lo-
cations. The restoring, or stabilizing influence is primarily the drift of electrons in re-

21



3p r-

,F if i 1 i 1 i 1 i 1 Fi 1 i 1 i 1 i 1 i 1

(a) Formation time tp= 3.

6F '^
^ / \
0 " -i / Is-

-3 - X^'
_6

 : , 1 i 1 i , 1 i 1

(b) Formation time tp = 3.<

'F -
-3E- 1 S
-6r I /

"9 ~~ \\
-p " 1 1 "1 1 1 1 1 1 1 1

(c) Formation time tp - 3. 6

12p ^

6 r ' V-N

-!LX\ A /
-12- \j l'
-18 : i 1 i 1 i 1 i 1 i 1

12xlO"4 sec-N/m2

N ' /• —
: , r'l i i i 1 1 ,i
9xlO"4 sec-N/m2.

r \ /
:, 1 , 1 i 1 i 1 i 1
IxlO"4 sec-N/m2.

py"
- 1 1 1 1 1 1 1 1 1 1

(d) Formation time tp - 3 T?*m~^ <pr-N/m2

12F
6 E- T\

°:'\ ^ \>'

-12 E- ^ \
-18 E-
-24 ^- \
.,n - i 1 i 1 V 1 i 1 i 1

E- ^^

-i 1 , l , l < l , 1

Radial distance,
rp,

N/m

3 33

from vJp (approximate
axial distance covered by
electron swarm)

E IZC-

•& -li!-

(e) Formation time tp = S.SOxlO"'1 sec-N/m2.

36
24
12
0

-12
-24
-36
-48
-60

— A

^- /
— /— /

~~ V

r

^-i_
ri 1 i 1

7/\
/ V

/
i

i
V-'

1 1 1 I 1 1

/ "v

i i i , i
(f) Formation ti.ne tp = 3.88xHT4 sec-N/m2.

240
120

-120

-240

-360

-480

-600

-720
-840

—
E-

— /

±_

^>
E-
~—
'_
~
—:i 1 i 1

^- \
| V

1
1

n i l l
56 72 88 104 120 D6

I i I i I i I
88 104 120 136

22

56 72
Axial distance, zp, N/m

(g) Formation time tp'• 3.90xlO"4 sec-N/m2.

Figure 13. - Buildup of radial components of internal electric field extrema.



sponse to the local electric field. At a formation time of 3. 91x10 sec-N/m the field
at the inner radius increases so abruptly that the assumption of axial symmetry can no
longer be justified and the calculations were terminated. This abrupt change occurs at a

23 ?nformation of about e ions which somewhat surpasses the estimate of e for break-
down in reference 1 (p. 131).

Another indicator of the influence of the induced internal electric field is the effective
Townsend ionization coefficient, defined here as

Q!T\ / ,_\-l i /N ^
— I =(v

d
tP) Inf —

,p /eff \ o/

A retardation of avalanche growth below that calculated with a constant Or,/p equal to
(aT/p)t=0 is predicted in references 9 and 10. Such an effect is observed in the present
results, as shown in figure 14(a), over about the latter one-third of the formation time.
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Figure 14. - Influence of induced internal electric field on effective Town send ionization-
coefficient.
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This is due primarily to the ions lagging behind the electrons and causing an internal
4

electric field which opposes the external field. At a tp slightly beyond 3. 87x10 sec-
O

N/m however, the high field strengths discussed previously cause local increases in
aT/p which more than offset the retardation process and (cv/P^ff sharply increases.
A plot of (oirp/p) .. against N is given in figure 14(b). The general trends are quite
consistent with the experimentally obtained results of reference 11 for Ng.

Use of the (o^/p)eff of figure 14 in place of (<*r/p)t=Q in equations (B8) and (BIO)
gave little change in the theoretical ion marginal distributions of figures 9 and 10. Use
of (^r/PLff in the electrostatic potential calculation of equations (Bll) and (B12), how-
ever , noticeably improved agreement between approximate theory and the RW results in
the intermediate time periods.

The assumption that step size has only a weak spatial dependence, used in the der-
ivation of equation (7) can now be further appraised. The ratio of step size AX. to the
step size at z = 0 is plotted in figure 15 against zp at a low value of rp and a high
value of tp where the internal field, and thus transport coefficients, undergo extreme
variations. This is compared to the dependence of other quantities entering the macro-
scopic RW calculations: the z component of bias. P* - P" and the probability of ion-

Z Z
ization P*on. Step size is shown to be quite insensitive to distance, especially compared
to the large changes experienced in the other two RW quantities.
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Figure 15. - Spatial variation of step size AX:, z component
of bias P* - Pp and probability of ionization Pjon. Radial
distance from avalanche axis rp = 1.1 N/m; formation time
tp • 3.8 sec-N/m2; external electric field strength E/p =
22.5V-m/N.
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CONCLUSIONS

The present random walk (RW) study of avalanche formation in helium leads to the
following conclusions:

1. The results of random walks utilizing simulation of the electron trajectories in an
avalanche in minute detail show that the electron transport coefficients very quickly relax
to local equilibrium values. This enables the use of an alternate RW-on-a-grid concept
in which the step sizes and probabilities are based on equilibrium transport coefficients.
Thus they are functions only of the local electric field and background density of neutrals.
The concomitant reduction in computer time expenditure makes calculations of large av -
alanche formations feasible. By only a simple repetitious procedure a self-consistent in-
ternal electric field solution is obtained. Collective long range Coulomb interactions as
well as short range elastic and inelastic collisions are accounted for.

2. Results obtained by this method at an E/p of 22. 5 V-m/N show that the internal
electrostatic potential (p pattern in its early stage of formation has minumum and max-
imum values of potential on the avalanche axis. The axial distance over which large q>
gradients appear is essentially that spanned by the electron swarm. As avalanche growth
continues, the minimum <p region moves to slightly higher radii. Within the separation
distance between the two extrema, several other large ^-gradient zones form and die
out in a manner which appears to be random in time. At a generalized formation time tp
slightly greater than 3. 87x10" sec-N/m, the internal electric field abruptly increases
far beyond the magnitude of the external field.

3. The tail region behind the electron swarm, has a positive charge which opposes
the external field. This tends to reduce the effective ionization coefficient, which is an
indicator of the avalanche growth. At the time of the abrupt increase of the magnitudes
of the internal field strength, the electron and ion formation rate in the region of the (p
extrema increases to the extent that it offsets the growth retardation influence in the tail
region. The effective ionization coefficient then sharply increases.

4. Theory, based on constant transport coefficients, gives good results only in the
early formation periods of the avalanche where internal electric fields are much less than
the external fields. Here, electron and ion density distributions, as well as the general
contours of the internal electrostatic potential are quite satisfactory. Some noticeable
improvement in the theoretical <p contours is obtained by replacing Townsend's first
ionization coefficient based on the external field by the effective ionization coefficient for
the formation time of interest.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 4, 1973,
503-10.
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APPENDIX A

SYMBOLS

A scale factor

a combination of variables defined by eq. (C7)

b combination of variables defined by eq. (C8)

D coefficient of diffusion

E electric field strength

S elliptic integral of second kind

e electrostatic unit of charge

F. normalized marginal density distribution in radial direction
J >r

F. normalized marginal density distribution in axial direction
J j ^

&~ elliptic integral of first kind

X complete elliptic integral of first kind

N number

n particle density (with no subscripts this refers to neutral background particles)

n. marginal density distribution of jtn species in radial direction
J > r

n. z marginal density distribution of jth species in axial direction
Pion probability that encounter between electron and neutral atom causes ionization

pt probability that fib component of step will be in positive direction

P." probability that jth component of step will be in negative direction
J

p pressure

Q- total absorption cross section of electrons colliding with background neutral atoms

R radial distance in spherical coordinates

r radial distance, in cylindrical coordinates, from axis of avalanche

rD diffusion radius

S source density

t time

v velocity
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v mean velocity obtained by integrating over distribution of total velocity

W probability density

X. distance in jth direction used in macroscopic descriptions

x. distance in jth direction used in microscopic descriptions

x, y,z Cartesian avalanche coordinates; x and y are in a plane perpendicular to z;
z is axial distance along avalanche axis

a-, Townsend first ionization coefficient

r combination of variables defined by eq. (C9)

•y combination of variables defined by eq. (C13)

6 small finite increment

e capacitivity of vacuum

F mean electron energy obtained by integrating over distribution of random energies

77 dimensionless distance in avalanche space

0 angle between field and source vectors in cylindrical coordinates

8 angle

£ radius ratio

p charge density

r mean free time

(p induced electrostatic potential

i// supplement of angle 6

Subscripts:

a absorption

D diffusion

d drift

e electron

1 ion

ion ionization eventii
o initial

r radial

z axial
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APPENDIX B

DERIVATION OF MACROSCOPIC DESCRIPTIVE EQUATIONS

For the range of electric field strength of interest here, a diffusion coefficient for an
isotropic medium can be used (see table I of ref. 2). The flux of electrons about a mean
(drift) velocity v\ due to diffusion is then given by Pick's law as (ref. 12)

ne(v"- vd) = -D Vne

Substituting this into the continuity equation,

3ne__1 + v • n v - S(r)
at e

where S(r) = QW-v^n accounts for sources, gives the electron transport equation

= - V ' nevd + V ' <D Vne)

ot

Here a—, is the Townsend first ionization coefficient and QWiV,n is the increase of the
number of electrons per unit time per unit volume due to ionization events. Only singly
charged ions are considered.

The ions are cold and have a negligible random velocity. Their transport equation
is simply

3n. _
1T = - V ' Vd,i+aTvdne

Equations (Bl) and (B2) are coupled through Poisson's equation,

s

2 -e(n. - n )
V> = - 1 - 1

eo

(B3)

and the dependence of the transport coefficients on the electric field vector which is equal
to - V<p plus the external electric field.
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Density Distributions

For constant coefficients equations (Bl) and (B2) can be solved immediately. The
electron density is

exp
(4;rDt)3/2

r2
 + (z - vdt)

2'
1 a 4Dt

(B4)

in cylindrical coordinates with azimuthal symmetry. Here the avalanche is assumed to
start from one electron. The ion density can then be obtained from

ni = nedt' (B5)

if it assumed that the ion drift is negligible. Using equation (B4) in equation (B5) gives

n i= QTVd / ~
Jn (477DT

exp
(477Dt')3/2

r _ r**(.-,df)*l
1 a 4Dt'

dt' (B6)

Equations (B4) and (B6) are used in the avalanche studies of references 9 and 13.
Marginal distributions are often used to reduce the number of variables required for

plotting results. Integrating densities. n0 and n. over r and Q gives the marginal
" 1

distributions, n _ and n. in z as follows. By definitione, z i, z

ne,z=/ n r de dr

Substituting equation (B4) for n yields
"

n 27T
e,z

(47rDt)
exp

(z - vHt)2l f I V2 \
- ^ 1/_ I r exp - I- dr

4Dt J \ 4Dt/

exp
4Dt

(B7)
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Using this result in equation (B5) yields the following expression for ions:

n . = ^ /*_L_

lT / t/4Dt'
* 0 T

4Dt'
dt' (B8)

In like manner

where

Finally

ne,r = j£ /"V^2

(4irDt)3/2
exp

ne r —e'r 4Dt
r
—
4Dt

erf

For formation times of interest erf(vdt/y4Dt) « 1, and

ne re'r 2Dt ~4Dt,

Using this result in equation (B5) gives

2
,-TJ dr?

(B9)

ni,r exp
^2 \

t' - -I— dt'a 4DtV
(BIO)

Equations (B7) to (BIO) can be normalized by dividing by exp(arv(jt).
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Potential Distributions

Use of the assumption of constant transport coefficients in the preceding derivations
results in expressions which show that the electrons then diffuse as a spherically sym-
metric swarm, the center of which is at z = v.t on the avalanche axis of symmetry.
This simplification in turn permits determination of the electrostatic potential y due
to the electron distribution in space.

The electrostatic potential for electrons can be obtained from "~^

- , f«.<*.»
< p ( r , t ) = ^— I — <

4?r€o J lr - r'l

where integration is over the whole field of the electrons. In like manner the potential
for ions is

| p -p ' |

Using equation (B5) and singly charged particles

/**
p.(r,t) = -o-v, / p (r,t')df

U^/Q

so that

C*<p.(r,t) = -o^v, / <p (r,t')dtT (Bll)i i ajQ e

The total potential <p is then the sum of <p and <p..
Let R denote radial distance in the spherical (avalanche space) system. The well-

known potential equation for such a charge distribution is

pe(R,t)=J_ / R'2pe(R',t)dR' + J- / R'pe(R',t)dR*
6oR JQ

 €o JR
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Using equation (B4) gives

R

R/RD

2 '
Rr

R/RD

where £ = R/RD and RD = y4Dt. Finally

(R,t) = erf -^
\R^,

where the method of integration by parts was used in evaluation of the first integral.
Changing back to cylindrical coordinates in laboratory space gives

1

</>e(r,z,t) = - erf

dt)uVr 24-v j t)

Substituting equation (B12) into equation (Bll) then yields

"t

4Dt

.erf
4Dt'

1/2

1/2

(B12)

dt' (B13)

radial electric field ED is now given by

D

R
R•D J

which agrees with equation (4) of reference 9.
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APPENDIX C

DETERMINATION OF INTERNAL ELECTRIC FIRD

FROM TALLIES OF ELECTRONS AND IONS

Axial symmetry is assumed so that the induced electric field has only a radial, E
and an axial, EZ, component. The field and source points are located at r, e,z and r',
0',z' , respectively. Using Coulombs law, and MKS units, the induced electrostatic po-
tential for singly charged ions is

CCC

JJJ

n.(r',z') - n (r',z')
— ?— r ' d r ' d G d z (Cl)

•2 + r ' 2 - 2rr'

where 6 = 9 - 6' and the integration is over the whole space occupied by the avalanche.
By differentiation it follows that

Vr,z,,^_ //T h^*"'-°e(
47T€0 / / / r 2 20 J J J Ir"5 + r'z - 2rr'

n^r'jZ') - ne(r',z')|(r - r' cos

7~, ~^/2

cos O + (z -

r ' d r ' d O d z (C2)

and

/ f f [n^.z')- ne(r',z')](z - z')

JJJ [r
2

 + r.2 _ 2rr' cos O + (z - z')2l

r ' d r ' d O d z (C3)
5/2

J

The integrations over O can be expressed in terms of elliptic integrals. As long as
r' and z' do not equal r and z simultaneously, equations (Cl) to (C3) can be reduced,
for example, by using equation (5) page 154 and equation (4) page 156 of reference 14.
Indicating the contribution of the source points to y, E and E in the neighborhood of
the field points by dcp, 6Er, and 6EZ and integrating over the remaining source volume
gives
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JL ff "i " "*
W€oJJ Y^

dr 'dz ' (C4)

TI — n f~ "i
Q ff ff "i "o I V|i» o f» f

E =6E +_?_ I I _J 1 5L_^f£_ £(r) + r«jf(r) r' dr' dz' (C5)r r i i , 1 -L
J

and

Ez = 6Ez +_£- I I i ± (z - z')*(r)r' dr' dz' (C6)
*€o JJ (a - b) |/a + b

where

a = r2 + r'2 + (z - z')2 . (C7)

b s 2rr' (C8)

and

r = Jl̂ I (co)
f a +b

The identity

cos Q _ 1 a 1

(a - b cos 0) ' b ya - b cos 0 (a - b cos (

was used in simplifying equation (C2).
When r approaches r1 and z approaches z', slightly more cumbersome expres-

sion result. The distance of closest approach between charged particles is assumed to
1/3be ne~ ' . It is now convenient to replace 6 with its supplement, i// = TT - 0. Then,

using, for example, equations (4) and (3) of pages 154 and 156, respectively, of refer-
ence 14, results in
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e
2:re,

/ / [1 (̂1-', z') - ne(r',z')] Ji y\y, Ijr' dr' dz' (CIO)

5E,. =
2;re,

2(rb - ar')
(a - b)(a + b) vi sin 6i//

- b cos
>r 'd r 1 dz' (Cll)

where

a + b

2b(z - z')
(a - b)(a + b)

sin

V ya - b cos 6i//_

y = arc sin cos

a + b

(C12)

(C13)

Here the distance of closest approach in the i// direction is expressed as arc length
or

rn 1/3
(C14)

As r approaches r' and z approaches z', r approaches 1 and

y — sin cos
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Then

cos

and

Thus for small separation distance between field and source points

(C15)

n.(r',z') -n (r',z') I n t n l + l L r 'dr ' dz' (C16)

and

I + l r ' d r ' d z ' (C17)

In the computing procedure the ion and electron density distribution in r, z space is
represented in matrix form. Each element of a density matrix represents the number of
ions or electrons inside a thin or small annular source volume (zone) equal to
27rr' AT' Az' (fig. 4). The number of particles N(i, j) in each zone is obtained during the
random walks by a tally procedure at the tk time periods of interest. The cp, Er, and
E,, are assumed constant in each of such small field zones. Using this approximation in

Z

equations (C4) to (C17) yields

20 , ,
N,(j,k) -N (j,k) (CIS)

L l e J *fCr\ IZ
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E r(Z,m) = [N.(Z,m) - N(Z ,m)lr-2 In tn ("L + I\
L i e j \2 4/

(C19)

and

E , _
2
^

(C20)

where the prime marks on the summation signs indicate exclusion of j = I and k = m
combination. The r, r', z, and z' distances which enter the equation are measured to
the midpoints of the annular zone; that is, the inner radii + Ar/2 and to the lower z
boundary + Az/2. Limitation of each group of zones to 400 was found to provide suffi-
ciently accurate charge distributions and yet be within the limits of a convenient amount
of computer storage.
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APPENDIX D

SCALING THE MACROSCOPIC RW

In the early time periods when the avalanche is undergoing relatively slow changes,
the calculation procedure can be further facilitated by using a scale factor, A. Let

P'
*ion

and

T ' = A r

Then using equations (4) and (6)

J 2r'

and

From the definition of P. ,

Thus the coefficients in the electron transport equation remain unchanged but the RW
is performed with a fewer number of steps. In helium at an E/p of 22. 5 V-m/N the
scale factor must not get much greater than 40 in order to keep Pt and P!Qn less than
unity.
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At higher formation times the use of scale factor is of little value as it must be re-
:d to nearly one in order to keep T' and AX.' much less t

increments within which there are sizable avalanche changes.
duced to nearly one in order to keep T' and AX.' much less than the time and spatial
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