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ABSTRACT

Closed-form analytic expressions for the time variations of
instantaneous orbital parameters and of the topocentric range and range rate
of a spacecraft moving in the gravitational field of an oblate large body are
derived using a first-order Variation of Parameters technique, In addition,
the closed-form analytic expressions for the partial derivatives of the topo-
centric range and range rate are obtaihed, with respect to the coefficient of
the second harmonic of the potential of the central body (JZ). The results
are applied to the motion of a point-mass spacecraft moving in the orbit

around the equatorially elliptic, oblate Sun, with JZ 2 2,7 X 10_5.
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I, INTRODUCTION.

The results of the theory of motion of a particle moving in a close
orbit around a large oblate body are well known in the literature. Although
the equation of the trajectory cannot be obtained in the closed form, a multi-
tude of solutions to this problem have been found in many different forms,
with different orders of accuracy, by means of power series of the coeffi-

cient of the second harmonic JZ.

The ultimate purpose of this study is twofold: first to determine the
effects of the additional disturbing force generated by the oblateness of the
central body on the observables — topocentric distance (range) and radial
velocity (range rate) of a point-mass spacecraft; and secondly, to furnish
the analytic expressions for partial derivatives of the two obsérvables

needed for the trajectory improvement analysis.

For close-to-Sun missions, assuming an oblate Sun having an oblateness

coefficient J_ = 2,7 X 10-5, due to the fact that the coefficient is very small,

2
a first-order perturbation theory would yield sufficiently accurate results,

II. POTENTIAL FUNCTION OF THE CENTRAL BODY AND
THE EQUATION OF MOTION OF THE SPACECRAFT

The potential of the attraction force exerted upon a particle' by a large

" oblate body of mass M is given by (Refs. 1, 2)
© R \"
_ GM o
V= -= I-Z‘In(r) P,
. ot A

where r is the magnitude of the position vector of the particle relative to.

the center of mass of the large body, Jn are coefficients of zonal harmonics,
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R0 is the equatorial radius of the large central body, and GM is its

gravitational constant; Pn( ¢) are Legendre polynomials of argument

{ = sin¢

where ¢ is the 1a‘;itude of the particle measured from the equatorial plane

of the central body.

'Considering only the equatorial ellipticity of the central body, we can

write the potential in the form

where Pz( t) is the Legendre polynomial of the second order

! 2
P,(¢) = 5 (3t - 1)

The acceleration of the attraction force, having a potential given by Eq. (1),
is

- _dv _ _

a =3 = -grad V = -VV

Hence, the acceleration can be written in the form

dv . GM— , —
= =—T

Tt 37 tap (2)
T
where ZP is the additional, disturbing acceleration, caused by the equatorial

ellipticity of the large body,

= 2 P2y
ap = -GMILRJV|—5 (3)

r

and T is the heliocentric-position vector of the particle.
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Let us introduce now an inertial frame of reference xyz, ‘with the
origin at the center of mass of the central body and the xy -plane coinciding

with the equatorial plane of the central body Then,
sin ¢ = g:%, T = xi+yj+zk

Performing the gradient operation indicated in Eq. (3), we find, for

- 2(_,1?]

As it is customary in the theory of orbital pérturbations, we shall

the disturbing part of the acceleration,

"R

RZ
- _ 3 0 2
an = EGMJ ——r4 [(5§ - 1)

assume the solution of Eq. (2) in the qua.si‘-elli'ptic form

P ___ | | L

r 1 +ecoséb : . (4-)
where the semi-latus rectum p and the eccentricity e are func-ti‘ons of time,
Such an ellipse, different in shape and dimensions at each point, is known
and referred to in the literature as the osculating ellipse, since the true

trajectory of the particle and this ellipse have a common point and the same

velocity at each instant during the motion of the particle (Refs. 3, 4). Using -

mathematical language, we can say that the true trajectory of the particle

- and the ellipse given by Eq. (4) have the tangency (or osculation) of the
second order at every.point during the motion. We ’must add here that the -
polar angle 8, also called the true anomaly of the particle, differs from the
true anomaly of the unperturbed elliptic motion due to the action of the dis~

turbing force.

Denoting by

RZ -
- | )
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we can write the expression for the disturbing acceleration in the form .

| 4 - ‘
ZP = e<_1r1>' [(5 sin2¢ -_1) % - 2k sin ¢] (6)

5

For'the Sun, J, = 2.7 X107 (Ref. 5). Using the values (Ref. 6)

GM = 1.327 x 10" km3/s2

R 6.980 x 105 km

0

we find, with p given in astronomical units,

€ =-——Q'520 ><1o'141<m/s,2 : (7)

4 .
p :

Since € <<l, we can use the first-order Variation of Pé.rameters method -
within the accuracy of Of 62). The parameters of the orbit (constants of

integration of the Keplerian motion) which we shall use in this study are

a = semimajor axis of the-osculating ellipse
e = its eqcentri"city
Q = longitude of the ascending node, i.e., the angular distance

between the positive dir'éction of the x-axis and the line of nodes,

. in the equatorial plane of the central body

i = angle of inclination of the orbital plane to the equatorial plane of

the central body

€ -
n

' anguiar distance between the direction of the ascending node and
the pefiapsis, in the orbital plane. This angle is called the argu-

ment of periapsis.

The first two elements, a and e, define the dimension and shape of
the osculating ellipse. The three angles, Q, i, and w, are the three Euler

angles which describe the position in space of the orbital plane and the
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orientation of the osculating ellipse in that plane. These angles also

determine the motion of the plane under the action of the disturbing force.

The equation of the Keplerian, undisturbed motion is a second- order
vectorial differential equation, which, when integrated, contains six con-’
stants of integration. The choice of the sixth constant of integration, which
is needed to introduce the time at which the particle is located at a certain
position, is a matter of preference. In this study, we shall choose this
sixth orbital parameter in the following manner. In Kepler's third law,

n?'a3 = GM =R o _. (8)

the quantity n represents the so-called mean motion, i.e., the constant
angular velocity of a particle which, moving in a circle, has the same

orbital period as the particle moving in an ellipse. The quantity

- M(t) = n(t - TO)'

where TO is the time of the périapsis passage, is called the meaﬁnAar’lomaly of
the particle at time t, located at point P(t) (Fig. 1). Let us assume that, at

a certain initial epoch t,, we have an osculating ‘ellipse, which we shall take

as a reference orbit. A(z:cording to the definition of the osculating orbit, if
at time t = ’co the perturbations stopped acting on the particlle, it would con-
tinue to move in the initial reference ellipse and, at time t would be located
at P*(t) (Fig. 1). The mean anomaly of the particle in that position is M%*(t).

We choose the sixth element T to be the difference (Ref. 3)
T = M(t) - M¥(t) - (9)

The orbital geometry and Euler's angles £, ‘i, and w are shown in

Fig, 2. From the spherical triangle shown in Fig., 3, we find
{ = sin ¢ = sin i sin (6 + w) (10)

Since our ultimate goal is to find the effect of the disturbing force on

the topocentric range and range rate of the spacecraft, we have to find the
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coordinates of the spacecraft in an Earth equatorial system XYZ, where
"the XY -plane is the equatorial plane of the Earth. The geometry is shown
in Fig. 4. If a and § are the right ascension and declination of the north
p‘ole of the Sun, then, from Fig. 4, |

—

YN = a - 270 deg

iN = 90 deg -5

. ‘Taking the x-axis in the direction of the node N, we see that, in order
to bring the coordinate system XYZ into the position of the system xyz, we

have to perform the following two rotations:

(1) A positive rotation about the Z-axis by the anglé ﬁ\l; this rota-

tion brings the X-axis into the position of the x-axis;

(2) - A positive rotation about the x-axis by the angle iN' This rota-

tion briﬁgs‘ the Z-axis into the position of the z-axis.

. Therefore, we can write the transformation equations

X X

Tr.
= [VT\I] I-[IN] y (11)
Z X
Z z
and vice-versa,
x
y | = [iN], [\7\] (12)
X Z
Z Z
where
1 0 0
[iN] =| 0 sin & cos § (13)
X

0 -cos 6 sin 6
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and

-sin a cos a 0
~ .
[ YN ] = ~-COS a -sin a 0 (14)
2 .
0 0 1

With respect to the mean equinox and Earth equator of 1950.0, the

spherical coordinates of the north pole of the Sun are (Ref., 7)

28620193

Q.
i

(15)
6307718

4]
1l

" The three Euler angles i, 2, and w of the orbital plane of the spacecraft, with
respect to the equatorial plane of the central body (Sun), can be calculated
from the corresponding angles i', ', and w', given with respéct to the equa-
torial plane of the Earth, in the following manner. From the spherical

triangle NNlN' (Fig. 4), we find

cos i = sinb6cos i' - cos & sin i'sin (a -R')
sin i cos (W' =w) = sin § sin i' + cos 6 cos i' sin (a - Q')
sin i sin (W' - w) = -cos 6 cos {a - Q') > (16)

-cos § cos i' - sin &6 sin i' sin (a - Q")

I

sin i cos

1]

sini sin Q -gin i’ cos (a - ') )

III, TWO INTEGRALS OF MOTION

The differential equation of motion (2), with the disturbing accelera-
tion —P given by Eq. (6), admits two integrals: the energy (vis-viva or
Laplace's) integral and one scalar angular momentum integral. Indeed,

writing the equation of motion in the form
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and dot-multiplying both sides of this equation by vdt = dr, we find

. dv = -dr - grad V

<

and, since dr - grad V = dV, the integration of the above equation yields

2 o2
v V0
2 "2 7 -V VO
or
2 _GM 4 _(pY

where the constant H has the value _

H=v2+2V(0)=v

2 ,GM , 4 _(p
0 0

3
282 —) P (1)
ro 3 1‘0 »2 0

Since for the elliptic osculating motion at fO = 0,
2 2 1
Yo = GM(?O '—am))

the last equation for H transforms into

- 4 P .
H = 2E,+3 ep<r—0) P,(g,) (18)
where
_ GM
Eo - T 2a(0)

is the total energy of the particle at tO = 0; a(0) is the value of the semi-

major axis at that instant. Also, r, = r(0) and Lo = £(0).
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To obtain the scalar angular momentum integral, we shall cross-

multiply the differential equation (2) by vector T from the left, Thus, we
obtain

g-il:?xa

P

where h =t x v is the angular momentum vector. Substituting the value of
EP from Eq. (6), we obtain '

— ) 4 4
B q®) (FxF) (19)

Vector r X k lies in the equatorial plane of the central body. Hence,

where hz is the component of the vector h along the z-axis. Integrating the
last equation, we have '

h = constant = h (0)
z z

From Fig. 2, we see that

h :'H-Ezhc.os‘i
Z

and the scalar angular momentum integral becomes

h cos i = h0 cos 10, iy = i(0), h0 = h(0) (20)
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IV. PERTURBATIONS OF THE OSCULATING
ORBITAL PARAMETERS

In order to obtain the time variations of the osculating orbital param-
eters due to the effect of the disturbing force, we shall first utilize the
already obtained integrals of motion given by Eqs. (17) and (20). Since, for
the osculating ellipse,

v2 = GM(E -l) (21)
r a
we obtain by subtraction
11,5 2|2t Falto)
a(0) " a 270 r3> r3
0
Further,
1 1 _ a - a(0) a - a(0) (2
—_—— .= = —L = + OlJ
a(0) a a{0)a [a(o)]z 2
and because of JZ <<1, we can write
t
Aa = -2<(, 2p3P() : (22)
a7 -3 opo) (T) 2! . -0
0

where ay = a(0), Py = p(0), and Aa =a - a(0).

Taking the true anomaly as the variable, we obtain from Eq. (4)

3 . 3e2 e2 3e2 ‘e3
(—E—) ={1+ > + 3e 1+T cos 6 ‘+.2 c0526+—4—Acos 386 (23)

Also, from

(1) = +[3sin? i sin? (640) - 1]
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we find

PZ(;) = %[(3 sin2 1 -2) -3 sin2 i cos (26 + Zw)] (24)

If we multiply Eqs; (23) and (24) and express everything in terms of multiple

angles, we obtain, instead of Eq. (22), the following expression:

2
Aa = JZK(a) [(2 -3 sin2 i){(4 + ez) cos 8 + 2e cos 29+23—cos 36]

. 2,
sin” i

> e3 cos(6-2w)+3e(4+e2) cos (B+ 2w)

+

+4(2 +3e%) cos (26+ 2u) + 3e(4 + e2) cos (36 + 2u)
.
2 3
+ 6e” cos (406+ 2w) + e cos (568+ 2w ‘] (25)
0
0

where 60 = 0(0). The quantities e, i, and o on the right-hand side of Eq. (25)

should be written as ey io, and w5 but for the sake of simplicity, we shall

drop the subscript zero in further writing. The constant K(a) is given by

2
R
p

K(a)

where the subscript zero has been dropped again.

The second integral of motion, given by Eq. (20), yields

dt - h dat -~ ,2

h

di _cotidh  coti K-EE
dt

where h = IKl Substituting in this equation dh/dt given by Eq. 19),

we find

JPL Technical M_emorandum 33-594
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For the instantaneous osculating orbit,

;249
dt

= h (27)

so that, taking the true anomaly 6 as the independeht variable, we obtain

2

. R
di  _ 0 s (P ds
d—e = - 3J2('p—'> cos 1 (—-r-) sin ( 6+ w) de (28)

We shall now substitute p/r from Eq. (4) and
%—g— = sin i cos (0t w)

which we obtain by différentiating Eq. .'(10) with respect to8. (For this

differentiation, we keep i and w constant.) After the substitution, Eq. (28)

becomes
%iﬁ = -6J2.K(i)(1 + e cos B) sin (26 + 2w) (29)
where

Rewriting Eq. (29) in the form

di

a6 - -3J2K(i) [e sin (6 + 2w) + 2 sin (26 + 2w) + e sin (36 + Zw).] (31)
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and integrating, keeping e, i, and w fixed, we obtain

6
Al = JZK(i) [3e cos (6+ 2w) + 3 cos (26 + 2w) + e cos (36 + Zw)] (32)

%

where
Al = i - i(0)

To find the time variation of the angular distance of the ascending node, €,

we use the relationship (Ref. 3)

a0 tan (8 + w) di

_—e————_— L

6 sin i 7]

Substituting di/d6 from Eq. (29), we obtain

e, K@
de = T "2 sini

[1 - cos (26.+ Zw)] (1 +ecos8)

After the integration, we find

AQ = -JZK(Q) [6(9+ e sin B) - 3e sin (6 + 2w)
0
-3 s5in (26+ 2w) - e sin (36 + Zw)] (33)
)
0
where
1 R0 ’ :
K(Q) = Z -p—- cos i | (34)
and

AQ = Q - Q(0)

As previously, the parameters e, i, and w have been kept constant

during this integration.

JPL Technical Memorandum 33-594
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From Ref. 3, we further find

dw dQ _ 56
a Tap cosi v -3
where 6/dt is the well known variational operator. Taking the angle 6

as the independent variable, the last equation can be written in the

form

dw daQ 56 (35)

cosi = - =%

a "ae de

'Applying the variational operator to the polar equation of the osculating

ellipse (4) and rernember_ing that 6or = 0% and that for every orbital parameter

S -4
dt dt

il

we find, taking the angle 6 as the independent variable,

- 50 _ de 2p di

e sin® a6 - ds © s 6 - —tan1 6 (36)

Also, from the definition of the semi-latus rectum,

2
p =2 =a(l-ed (37)
1)
we find, by differentiation,
de _ P da p. . di
36 - de'-——-—-tanlt—mv (38)
- 2a-e -

*The Brown-Milankovic variational operator 6/dt is defined in the two
basic equations of the Calculus of Perturbations

{6r =0
627:ZPdt
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Considering a, e, and i constant, we obtain, by integration,
_ P (B2 A
Ae = e (.Za tan i Al) (39)

Combining Eqs. (36) and (38), we find

. 60 _ pcosB da 2e+ (1l +e)cosh . di
e sin 6 —-—de —E-;;— '—6 - o tan 1———(16 (40)

From Eq. (25), we obtain, by differentiation,

% = -JZK(a) [(2 -3 sin2 i) {(4 + eZ) sin 6 + 4de sin 20 + e sin 36}

. 2. ‘ '
+25 1’{e3 sin (8- 2¢) + 3e(4 + e2) sin (6+ 2w)

+ 8(2 + 3e2) sin (26 + 2w)
20 . 2 . '
+ 9e(4 + e7) sin (36 + 2w) + 24e” sin (46 + 2w)

+ 5e> sin (56 + 2u) l] (41)

Subsituting expressions (41) and (31) into Eq. (40) and dividing the result by

e sin 6, we obtain

2.
+
g_g = _JZK(w) [(2 -3 sinz i.)(l +.i% cos 6 + cos 26}%005 36‘>
.2, 2
o 4=
+ s“; L {e cos (8- 2w) - %cos (6+2w)

28 + 11¢°
€

+ 24 cos (26 + 2w) + ~cos (30 + 2w)

+ 24 cos (46 + 2w) + 5e cos (50 + 2w) }] (42)
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with

2
R
K(w) = %(-I’_()) (43)-

An integration of Eq. (35) with the angle i considered as constant yields

0

. Y]
Aw+ AQ cos i = -/ d—e)de
2]

0

or, after the performed integration on the right-hand side of the last

equation,

- 2 4+3e2 1 e
Aw+ AQ cos i = JZK(w) (2-3sin i){0+ ——— sin 8 + = sin 26 + — sin 36

4e 2 12
2 2
sin i . 12 - 21le .
+ >4 [3e sin (6 - 2w) - —— — sin (6 + 2w)
28 + 11e?
+ 36 sin (26 + 2w) +———e— sin (30 + 2w)
0
+ 18 sin (46 + 2w) + 3e sin (56 + 2w) J]
%
(44)

Incidentally, it is interesting to note at this stage that the expressions
for Aa, Ae, Ai, AQ, and Aw, given by Eqs. (25), (39), (32), (33), and (44),
respectively, well agree with the known results, We find, namely, that Aa, .
Ae, and Ai are purely periodic, ‘while AQ and Aw contain secular terms,

Denoting by
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the average value of an orbital element £ over the period, we find that

[Aa’] = 0’ \
[ae] =0,
TAail= o,
> (45)
2
R
[aQ] = -%J2<p_0> cos i,

R
_ 3 0 _ . 2,
[Aw] = 4J2(—p> (4 - 5 sin” i)
Hence, for

i = arc sin <—-2—> = 63°4
N5

there is no secular advancement of the periapsis line.

Acco'rding to>what was said previously, the sixth orbital parameter, r,
is the difference between the perturbed and unperturbed mean anomaly at any
instant t. Since (Ref. 3)

AM(t) _ 5 M(t)
a -t Ta

where 6/dt is the already used variational operator, and

dM*(t) _ n
dt 70
we find by subtraction (see Eq. 9) that
dr SM(t)

JPL Technical Memorandum 33-594
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or

dr _ , SM(t)
il An + 3t (46)

Equation (46) can be written in a somewhat different form. From Kepler's

third law (8), we obtain, by differentiation,

_ 3n
An = - —Z—a-" Aa .
so that Eq. (46) takes the form
dr _ _3n EM(t)
- "z frt TR (47)
Kepler's equation
Y - e sin b = M(t) - (48)

and the two relations whieh we derive from the Keplerian motion

r cos 8 = a (cos ¢ -~ ¢e)

r sin 8 = b sin
where ¢ is the so-called eccentric anomaly angle, and

b =a¥Vl-e- (49)
is the semiminor axis of the osculating ellipse, enable us to obtain 6M(t)/dt
in terms of 86/dt and de/dfc. The ex_})ltessi_op wh1ch we f1nd_by usmg the

operator &/dt is

JPI1, Technical Memorandum 33-594.




or, taking again the true anomaly 8 as the independent variable,

2
dMI(t) _ r~ 2, 66 . de
36 —bp[(l-e)de-(2+ecos 0) s1n9%-] (50)
Combining Eqs. (36), (38), and (50), we find
62@(1:) - 2P < Pcos Gza- Zerg_g_ _ p cos 6 tan 1%;_) (51)
abe sin 6 ;

and, substituting (da)/(d6) and (di)/(d6), respectively, from Eqs. (41) and .

(32), we obtain

2
37.R | 2 2
M) _ 2 0 [(2 -3 sinzi)[e -<1 _2e >cos 0 - e cos 20 - 34_‘~cos 30

+ 24e cos (20 + 2w) - (28 - 13e2) cos (30 + 2w)

- 24e cos (40 + 2w) - 5e? cos (50 + 24) }] (52)

Although it is relatively simple to integrate Eq. (52), we shall do it by

partially utilizing the already derived expression for Aw + A2 cos i in

Eq. (44). Namely, subtracting expression (42) multiplied by V1 - e? from

Eq. (52), we find

dM(t)
de

- l-ez = JZ Vl-ezK(w)[2(2-3sin2 i)(1 + e cos 6)

Q.-I01
ol|lo

+ 3 sin2 i ‘e cos (6 + 2uw) +'v,2.‘cos (20 + 2w)

+ e cos (30 + ZQ)I] (53)

JPL Technical Memorandum 33-594
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Integrating the last equation, we obtain

0
j(—é—dl\%iz)d9+(Aw+AQcosi) l-ez
b

0

= JZ\/I - e2 K(w) [2(2 -3 sin2 i)(6 + e sin 8)

+ sin? i {3e sin (6 + 2w) + 3 sin (20 + 2w)

0

+ e sin (30 + 2w) ” (54)
8y

Equation (47) in the form (h = nab)

._d_-r = - 3 ( Aa) + _J.l
de 2
2a b

yields, after the integration,

At = - —3 (r2Aa) do + BM(") e (55)
2
2a b
% %

where the last term on the right-hand side is given by Eq. (54).

JPL Technical Memorandum 33-594.



From Eqs. (22) and (24),

J
2. "2 2[ .2,
r Aa = I (aRO) 2(2 - 3 sin” i)(1 + e cos 0)

+sin i{3e cos (6+2w) + 6 cos (20 +24) + 3e cos (36 + 2u) | ]

| (aLRoé2 . 2
+ 27, —3 1 ENRE (56)

0

Hence, by integration,

0 . 2 .
3 2 naRO
(r Aa)de = 3T, |——P, (¢ .) | At
2 2 3 2°>20
2a b T
90 0

J . .
+—2.A V1 - e2 K(w)[Z(Z -3 sin2 i)(6 + e sin 0)

+ s‘in2 i {3e sin (0 + 2w) +°3 sin (20 + 2w)

3]

+ e sin (36 + Zw)'}}

%

(57)

Finally, substituting the results obtained in Eqs. (54) and (57) into Eq. (55),

we find
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AT+ (Aw+ AQcos i) \ll—e2 = -JZAAt+J2 V 1 - e2 K(w)

x[ (2 - 3 sin%i)(0 + e sin @)

+%sin2 i l3e sin (6 + 2w) + 3 sin (20 + 2w)

6

+ e sin (36 + 20) }] (58)
%
where
naRg'
A = 3—5P,(y,) (59)
To

To find the change of v over one period,  we write, from Eq. (58),
[m]+([m]+ [AQ] cos i)- Vi-e? = cra+i2-3sin? )1 - e? Kio)

or, u‘sing the last two of Eqs. (45),

[AT] = -JZA = -3J2 3 PZ(QO) - (60)
From

P,lg,) = %[3 sin® i sin” (0, +w) - 1}
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it follows that, within the accuracy of O (Jg ) )

'[A’r] =0

if 90 is so chosen that

provided that

n

i 2 arc sin (—1—-) 3523
N3

Equations (25), (32), (33), (39), (44), and (58) give the time variations

of all six orbital parameters.

V. SUMMARY OF FORMULAE FOR Aa, Ae, Ai,
AQ, Aw, AND Ar

A, Auxiliary Quantities

We shall first compute the true anomaly angle 8 for the time t using
the equation of the unperturbed motion. In other words, assuming no change
in orbital parameters, we compute the eccentric anomaly angle | at the
time t from Eq. (48),

and the angle 6 from
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Next, we shall introduce the quantities
CN = A(cos NO) = cos (N6) - cos (NGO) '
N=1,2,3
Sy = A(sin N@) = sin (N6) - sin (N6)
KO = Afcos (8 - 2w)] = cos (8 - 2w) - cos (90 - 2W)
LO = Alsin (8 - 2w) ] = sin (6 - 2w) - sin (60 - 2w)

K.. = Alcos (N6 +2w)]

L. = Alsin (N6 +2w)] =

6 - 60-

cos (N6 + 2w) - cos (Ne0 + 2w)

N:].,Z_,- i

sin (N6 + 2w) - sin (NG0 + 2w)

The next step is to

compute the constants

2
aR
K(a) = %—( 03)

P
1(RY .
K(l) = g '—p— Sin 2i
1 RO °
K(R2) = i\ .cosi

I =2-3 sin? i
IZ'= sin 1
na.R(?;
A = 375 Pyl
To
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Having found all the necessary auxiliary quantities, we shall proceed

with the calculation of the orbital parameter time variations.

B. Time Variations of Orbital Parameters

Substituting all the auxiliary quantities into Eqs. (25), (32), (33), (39),
(44), and (58), we obtain

2
_ 2 e .
Aa = JZK(a) II'[(4 + e )Cl + 2eCZ +——3 C3]

+ 3e(4+é2)

1 3
+,—212 [e (K0+K5) (K1+K3)

2. 2
+4(2 + 3e9K,, + 6e K4]

Ai = .]'ZK(l)(3eK1 + 3K2 + eK3)
2

Ae = -l;g—(éé - tani Ai)

e Z2a

Group [3]
AQ =~-J2K(S'2)(6A6 +6eS, - 3eL, - 3L, - eL3l)
44362

Aw = -Afcos i+ T K(w)il . lae + 2228 g

: 2 1 e 1

g . e iy
+55,+ 12s3>+ 2412[3e(L0+L5)

, ' 2 2
_12-21e L +28+11e L

e 1 e 3

+ lé(3L2 + L4)J=
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AT = - (Aw+ AR cos 1) \)1 - e2 - JZA.At

+I,V1 - e’ K(w) [Il(Ae + eL Group (3]

7

+ lI (3eL

272

] + 3L2 +.eL3.)]

VI. PERTURBATIONS OF THE HELIOCENTRIC DISTANCE AND
THE POLAR ANGLE OF THE SPACECRAFT

From Ref. 3, it follows that the disturbing effects on the heliocentric
distance and the polar angle 6 (the true anomaly) and their derivatives

(radial énd angular velocities, r and é, respectively) are

Ar = gAa - cos BAe + a_be sin 6AT

Ag =2 (1 + £'>sin 6Ae +22 At
P T rZ
nae a 2
AT = - sinh 8Aa + nb{—) sin 8Ae
2b . r
Group [4]
a 2
+ nae (;) cos BAT
. 3nb 2>
86 = - 222 Ag + 22 (ZB cos 6 - e) Ae L
—> fa Ty \er cos v -¢e) o

2r br

3
- 2ne (%) sin 6A T
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In the first two equations of Group (4], Ar and A6 are the differences
between the heliocentric position and the polar angle of the particle in its
perturbed trajectory at time t and the corresponding quantities related to
an imaginary particle moving in the initial undisturbed elliptic orbit at the
same time t. The same explanation holds for Ar and Aé, given by the

second two equations of Group [4].

VII. PARTIAL DERIVATIVES OF ORBITAL PARAMETERS
WITH RESPECT TO J,

Since the orbital parameters 25, €4 iO’ QO"wO’ and M*(t) of the
initial osculating reference orbit do not depend on JZ’ the partial derivative

of any orbital parameter ¢ with respect to JZ is

.08 _ a(AE)

37, = 797,

Hence, we can write immediately

8(la) _ _ | 2 | e2. |

+ L1 [e3(K +K,)+3e(4+e’) (K. +K,)

2°2 0 75 ) 1 37
2 2 )

+ 4(2 + 3e )KZ + be K4]} Group [5]
a(AL) 3 . :
an = (DILJ) = K(l)(3eK1 + 3K2 + eK3)

2

o(Ae) _ _ 1 -¢e7 [ (DAJ) .
35’2 = (DEJ) = o [ 5= -tanl(DIJ)]
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| s _ _
'a_JZ— = (DOJ) = -K(Q)(6AB+6eSl- 3eL1—3L2— eL3)
3(Aw) | 4+3e°
© - (DWJ) = -(DOJ)cos i - K(w){I.lag+=—25
37, 1\’ e 1
. _ .
+58,+ 1253) 311, [3e(L0 + Ls)
.2 2
_lz-21e” ) 28+ 11e”
e 1 e 3
Group [5]
+18(3L, + L) ”
aé?") = (DTJ) = - [(DWJ) + (DOJ) cos i]\/l - el
> 4
-AAt+Kw)\/ [ (Ae+eLl)
1 . .
+50,(3eL, + 3L, + eL3)]

VIII. CALCULATION OF ORBITAL PARAMETERS i, @, w FROM
EQUATORIAL ORBITAL PARAMETERS i', @', AND «'

Most of the time in practice, the position of the orbital plane of a

. point-mass spacécraff, defined by the three Euler angles i, ©, and w, is

given relative to one of the Earth reference planes: the equatorial or ecliptic

plane for a certain fixed epoch, say-1950.0.- The orbital elements i, Q, and
w which we have used so far are relative to the equatorial plane of the central
body, in particular, the equatorial plane of the Sun. To transfer from one
system of Euler angles, i', Q', w' (Earth equatorial), which are normally

given, to the other system of Euler angles, i, @, and w, which we need
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for the calculation of perturbations of the position of the orbital plane in
space, we have to use Eqs. (16). With a and & given in Egs. (15), the

expressions from which we calculate i, 2, and w are -

cosi = sin 6 cosi' - cos & sin i' sin (a - Q')

_ _ sin i' cos (a - Q')
tan @ = o6 cos i + sin 6 sin i'sin (a - Q') Group (6]

cos 6 cos (a - Q")
sin 6 sin i'+ cos § cos i'sin (a - Q')

tan (w - w')

IX. PERTURBATIONS OF RANGE AND RANGE RATE

Let us denote by p the topocentric postion vector of the spacecraft
relative to the observer's position at point P (Fig. 5), which is uniquely
determined by the geocentric position vector E If r and ;E are the helio-
centric position vectors of the spacecraft and the Earth, respectively, from

the diagram shown in Fig. 5, we can write

p=r- ;E - g (61)
Differentiating Eq. (61) with respect to time, we find
P=T-Tp-E (62)

The disturbing effect of the eq\iatorial ellipticity of the central body ‘(Sun)
affects not only the motion of the spacecraft but also the motion of the Earth.
The position of the observer, however, defined by the geocentric position

vector E, remains unchanged, i.e., unaffected by the disturbing force.

Denoting by T* and ?*E'-: the undisturbed position vectors of the space--

craft and the Earth, respectively, in other words the heliocentric position
vectors of points in which the spacecraft and the Earth would be at time t if

the perturbing effect were turned off at the time t then, also

0’
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By subtraction of the last equation from Eq. (61), we obtain

—k

AP =p -p¥ = (r-1¥) - (T - T}

E E) = Ar - ArE (63)
and, similarly,
Ap =p -p¥ = (r-7% - (rg - TE)
= AT - A?E
= Av - AVE (64)

where v and ;E are, respectively, the velocities of the spacecraft and the
Earth. '

Since
P Ap= plAp

we find, dot-multiplying Eqs. (61) and (63), that

1 T 4T)- AT-T. AT
Ap—p[rAr+rEArE-(rE+§) Ar-r-ArE]

or, because ¢ /p <<1,
1 — -
Ap=§(rAr+rEArEfrE- Ar -1 - ArE) (65)

where, within the same order of accuracy,

o ~ 1/2 .
o - [rz prd o a(F - Ty ] (66)

From
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we obtain, by differentiation,

. ]. - - - = .
Ap =5 (P Aptp- Ap-pAp) (67)
and, substituting expressions (63) and (64) into the last equation, we find,

with the same accuracy as before,

Ap = .Fl)_[(;- VE) - (AT - A?E) + (T - ?E) - (AV - AVE) - ﬁAp] (68)

where Ap is given by Eq. (65).

Let X,Y,Z be the heliocentric rectangular coordinates of the space-

craft in the Earth equatorial space-fixed system of reference axes, and XE,
YE’ ZE the heliocentric equatorial coordinates of the Earth in the same
system. In the xyz-reference frame, with the equatorial plane of the central

body (Sun) as the fundamental plane, the coordinates of the spacecraft and the

Earth and their velocity components are, respectively, (Fig. 4 and Eq. 12),

F'X- -X1
=[] (3], |
X & z
M % ] ')’(}
L= Lo [3ee] |
- z - LZ. -
Group [7]
XE FXE
- LR
ve | =[] [3ve], |ve
| °E | _ZEJ
— - r-' -
*E Xp
0
e | = [o] [3+e] |%=
% Z
L E | E
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The orbital plane parameters of the Earth, i

and w relative

_ E’ QE’ E’
to the equatorial plane of the central body, can be easily determined in a
manner similar to that used in determining the orbital plane elements of the
spacecraft, using the equations of Group [6]. For the Earth, we should set
Q:E = 0, and i:E = é.E’ where ¢r is the obliquity of the ecliptic. In reality,
however, the orbital plane of the Earth (using astronomers' jargon, we can
call it true ecliptic, or instantaneous ecliptic plane) moves as a result of
perturbations, and its position may be determined relative to the fixed
Earth equatorial plane for the epoch 1950.0. From Ref. 7, we find, for

ecliptic elements of the orbital plane of the Earth,

ig = 0°013076t - 0°000009 2
Qp. = 174240956 - 0224166t + 0200006 £2 | (69)
Wl = 287767097 + 0256494t + 0200009 £2

where the time is expressed in so-called Julian centuries, i.e., units of

36, 525 days. Similarly, the obliquity of the ecliptic is (Ref. 7)

iE = EE(t) = 2374457888616 - 020130141669 t

- 0°09445 X 10'5 tZ +0°05000 X 10'5 t3 (70)

" The geometry of the orbital plane of the Earth is shown in Fig. 6.
The orbital elements relative to the equatorial plane of the Earth for the

epoch 1950. 0 are obtained from the spherical triangle YN NZ' Equations

1
corresponding to Eqs. (16) are
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.1 : L1 S L R "
cos i cos i, cos €, - sin i, sin €_ cos Q;
E E E E E E \

1

in il cos . cos i, sin + sini'. cos e_ cos Q"
s €
E E . E E E E

E
RS B L | "
sin ip sin QE = sin ip sin QE > {(71)
s st ( ! H) PP b os € + cos .1 sin € Q”
sin iy cos (wp -wp) = sinip ¢ E os in E €08 Q4
inil, sin (Wl - wlk) = sin ¢_ sin Q" )
sinip sin (wp - wp) = 3 E

Thus, we obtain

o ! - o1t _ . I - : 1
cos 1E = ¢cos 1E cos 35 sin IE sin GE co.s QE
. A . Q”
sin i_, sin
tan Q]'E = ~ E - E — | Group [8]
cos lE sin GE + sin IE cos GE cos QE
. . 1"
\ o sin eE sin QE
tan (wE - wn) = - - - -
sin g cos €m + cos lE sin eEcos QE

Taking now the line of nodes as the principal reference axis in the

orbital plane of the spacecraft (Fig. 2), we see that the coordinates of the

spacecraft in the plane are (r cos u, r sin u, 0), where
u=06+w (72)

The rectangular equatorial coordinates x,y, z can be derived from the
coordinates in the orbital plane by two rotations: first, a positive rotation
about the line of nodes by the inclination angle i; second, a negative rotation

about the polar axis of the central body by the angle Q. In other words,
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} (73)

- ' q \
x r cosu
T T
y = [ Q ] [ i ] r sin u
z x
b'd 0
L ] L J
r7 r y
x T
T T T
AR IR N
Z X - Z
z 0
L . - .J )
For the Earth, we have two similar equations:
!- x ] [ r_ cos u ]
E E E
T T
Ve = [QE] [ IE:I T sin un
z x
z Q
E
. i 1
X rE 1
T T T
e | =[], el [=), | =t
z x z
Zg 0 )
L . L i

Since the equations for the Earth are obtained just by adding the subscript E

we shall write only the equations for the spacecraft and keep in mind that

the same equations exist for the Earth., In expressions (73) and (74),

are rotation matrices
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cos Q =sin Q 0 ]
T
[ Q ] = | sin @ cos 0
] (
0 0 1
L J
1 0 o |
T .
[ i ] = 0 cos i -sin i (75)
< .
0 sin 1 cos i
- v . -
cos u -sinu 0
T
[ u ] = sin u CcCOS U 0
z B
0 0 1
L §

Three rotation matrices can be written for the Earth by adding the

subscript E to all quantities involved.

Let us now write the expressions for the disturbing effects in range
and range rate of the spacecraft, Ap and Ap, given by Eqgs. (65) and (68),

respectively, in the following forms:

Ax - AXE
1
Ap = ﬁ[x-le Y-Yg z—zE] | &y - Ayg Group [9]
Az -
i z AzE ]
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Az - Az

+[x-xE Y- Ygp z-zE] Ay-AyE

AZ - A3

-pApy

Group (9]

From Eqs. (73) (and, subsequently, Eqs. 74), we find,

AX

o G lol ) oo (&L T

Az

DO

by differentiation,

T cosu
)Ai r sin u
0
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We have, however,

QO
o
=
—_
x H
1
L

w
™5
1
o
e

W
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S0 th.at, accordingly, Eqs, (76) and (77) become

Ax-} rcosu7
(31r T T 3
Ay | = [ -Q] [1] AQ+[Q] [—-1] Al r sin u
T z X Z 2 X
Az ' 0
L _ L J
T AT T| AT
e [ (o] | =
: Z X z
0
Ax 2 T T T 3 T
S (B [ T[T [o T o [ ]
Aé zZ X zZ Z xX z
T ~ . T r
. 3
+[Q] [1] [7~-u] Au) ra
z x Z 0
T T T Ar
+[Q] [1] [u] rAu + UAr
zZ X Z
0
r =—sin6
_h_
)
r &
Au = AB+ Aw
AU = AB

where Ar, Ar, A®, and Abare given by the equations of Group [4].
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X. PARTIAL DERIVATIVES OF RANGE AND RANGE RATE

The partial derivatives of the topocentric range and range rate can be
derived directly from the equations for the perturbational changes Ap and
Ap by simply replacing the operator A with 8/8.]'2 in the equations of
Groups [9] and [10]. Hence, from the equations of Group [10], we obtain
the partial derivatives of the rectangular coordinates x,y, z and velocity

components X, y, z, with respect to J Denoting by (Refs. 8 and 9)

5
. X
9% _ (pxy —E _ pxED
EN EN] .
2 2
9y
Y _ (DY) —E - (DYED)
57 57
2 2
oz .
=% = (DZJ) -7~ = (DZEJ)
2 2
(79)
. 9x
2% _ (ppx7) —2 - (DDXEJ)
57 EN] ,
2 2
. ay '
2Y - (DDY) == = (DDYEJ)
9 57
2 2
| 3z
22 _ (DpzJ) £ - (DDZEJ)
3] ENj
2 2
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we can write

(DXJ)

T ,
(DYJ) | = { [321‘- - sz] [ i ] (DOJ)
(DZJ) z X
T r cos u
+ [Q:l [%TL - i] (DIJ)} r sin u
z X 0
T T T | (PRJ)
LT | o
z X z : :
0
(DDXJ) - .
(DDYJ) | = ‘ [32_" - Q] [ i ] [ u ] (DOJ) Group [11]
(DDZJ) z L Ox z

’ : ’ (DDRJ)
T T T
+ [ Q ] [ i ] [ u ] r(DDUJ) + u(DRJ)
z X Z .
L 0
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where

(DRJ)

(DU

(DDRJ)

(DDUT)

for the s_pacecraft, and

for the Earth.

(DREJ)

(DUEJ)

(DDREJ)

(DDUEJ)
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Since r* and €% do not depend on J5, we find from the equations of
Group [4] and Eq. (72) that

(DRJ) = = (DAJ) - a cos & (DEJ) + 22 sin 6 (DTJ)
(DUJ) = %(1 + rﬁ) sin 6 (DEJ) + 22 (DTJ) + (DWJ)
r
nae a 2
(DDRJ) = - 328 sin 6 (DAJ) + nb(;) sin 6 (DEJ) Group [12]
a2
+ nae (;) cos 68 (DTJ)
' 3nb na3 p
(DDUJ) = - —n—é- (DAJ) +=55 <z;cos 6 - e)(DEJ)
2r br
a3
- 2ne (;—) sin 6 (DTJ)
and similar expressions for the partial derivatives of T i"E, U and ﬁE’
with respect to .TZ.
Finally, we can write
(DXJ) - (DXEJ) \
op _ 1 . ‘
53, =5 [x-xE y ‘yE z-zE] (DYJ) - (DYEJ)
(DZJ) - (DZEJ)
, T (DXJ) - (DXEJ) ?
__a; _ 1 - N s s _
27, = P [x *p §-Vg 2 zE] (DYJ) - (DYEJ) (82)
| (DZJ) - (DZEJ)
[ (DDXJ) - (DDXEJ)
tH[x-%X V-V 2z - 2 (DDYJ) - (DDYEJ) | = p -2&
E E E a7,
| (DDZJ) - (DDZEJ) }

The computational sequence in the form of a flow chart is shown in Fig., 7.

JPL Technical Memorandum 33-594



It should be mentioned, in conclusion, that a much higher accuracy is

obtained if, instead of taking initial orbital parameters 2 €4 io, QO’ and
wg in the equations of Group [3] and thereafter, we repeat the calculations of
Aa, Ae, Ai, AQ, Aw, and AT with the mean values of elements
a, = %(a0+a) = a.O+A—2a
etc.
NOMENCLATURE
a : semimajor axis of the osculating ellipse at time t
ag = a(0) semimajor axis of the initial osculating reference ellipse
at time t0
a acceleration vector of the particle
E.p disturbing acceleration vector
A constant of integration
b semiminor axis of the osculating ellipse
CN difference between cosines of angle N6 at time t and
time tO’ for N=1,2,3
e eccentricit:y of the osculating ellipse
eq = e(0) eccentricity of the initial osculating reference ellipse
EO total energy of the particle at time to
G universal constant of gravitation
h magnitude of the angular momentum vector
hO = h(0) magnitude of the angular momentum vector ;.t time tO
hz componént of the angular momentum vector along the z-axis
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K(a), K(i),"
K(Q2), K(w)

component of the angular momentum vector along the

z-axis at time tO

angular momentum vector
constant of integration

angle of inclination of the orbital plane of the spacecraft

to the equatorial plane of the central body

angle of inclination of the orbital plane of the spacecraft to

0
angle of inclination of the orbital plane of the spacecraft to
the equatorial plane of the Earth for 1950,0

the equatorial plane of the central body at time t

angle of inclination of the orbital plane of the Earth to the

equaforial plane of the central body

angle of inclination of the orbital plane of the Earth to its

equatorial plane for 1950.0

angle of inclination of the orbital plane of the Earth to the
ecliptic plane for 1950.0

angle of inclination of the equatorial plane of the central

body to the equatorial plane of the Earth for 1950.0
unit vector along the x-axis

constants depending on the angle of inclination i

unit vector along the y-axis

coefficient of the second harmonic of the potential of the

central body
unit vector along the z-axis

difference between the cosines of angle 6 - 2w at time t

and time t0

difference between the cosines of angle N6 + 2Zwat time t

and time to for N=1,2,¢-+,5

coefficients of expressions for the time variations of

osculating orbital parameters
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e

H|

H |

difference between the sines of angle 6 - 2w at time t and

time tO |
difference between the sines of angle N6 + 2w at time t and
timetoforN= 1,2,---,5

mass of the central body

mean’ anomaly angle of the particle in its true orbit at

time t

mean anomaly angle of an imaginary particle moving in the
initial osculating reference orbit at time t

mean motion of the particlé in its orbit

mean motion of the particle at time to

subscript

semi-latus rectum of the osculating ellipsg at the time t

semi-latus rectum of the initial osculating reference ellipse
Legendre polynomial of order n
Legendre polynomial of order two

magnitude of the heliocentric position vector of the
spacecraft -
ma.gnitude of the heliocentric position vector of the space-
craft at time tO

magnitude of the heliocentric position vector of the Earth

magnitude of the heliocentric position vector of an
imaginary particle moving in the initial osculating reference

ellipse at time t

rAadial velocity of the spacecraft

radial velocity of the Earth

heliocentric positioh vector of the spacecraft at time t

heliocentric position vector of the spacecraft at time t0

JPL Technical Memorandum 33-594

45



46

i i
RIS
w

i, Hl. Rl ) o
trll I ! t*'J-x—ltlji

}

"
Q7

=

6.+ w

heliocentric position vector of an imaginary particle moving

in the initial osculating reference ellipse at time t

“heliocentric position vector of the Earth at time t

heliocentric position vector of an imaginary Earth moving
in an initial osculating reference ellipse without

perturbations
velocity vector of the spacecraft
velocity vector of the Earth

velocity vector of an imaginary particle moving in the initial

osculating ellipse without perturbations

velocity vector of an imaginary Earth moving in the undis-

turbed initial osculating ellipse

equatorial radius of the central body

difference between sines of the angle N6 at time t and
initial time t0 for N=1, 2, 3

time

initial time of osculation (epoch)

time of periapsis passage

argument of latitude

argument of latitude of the Earth

angular velocity of the spacecraft in its orbit

angular velocity of the Earth in its orbit

magnitude of the velocity vector of the spacecraft
magnitude of the velocity vector of the s.p'acecraf:t at 'cime,‘cO
velocity vector of the spacecraft

velocity vector of the Earth

potential of the central body
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V(0)

XV, 2

X, Vs, 2Z

potential of the central body at time tO

heliocentric rectangular coordinates of the spacecraft in

the equatorial reference frame of the central body

velocity components of the spacecraft along the axes of the

equatorial reference frame of the central body

heliocentric rectangular coordinates of the Earth in the

equatorial reference frame of the central body

velocity components of the Earth along the axes of the

equatorial reference frame of the central body

heliocentric rectangular coordinates of the spacecraft in

the eqliatorial reference frame of the Earth

velocity components of the spacecraft along the axes of the

equatorial reference frame of the Earth

heliocentric rectangular coordinates of the Earth in the

equatorial reference frame of the Earth

velocity components of the Earth along the axes of the

equatorial reference frame of the Earth

right ascension of the north pole of the central body

vernal equinox point for 1950.0

declination of the north pole of the central body

a constant

obliquity of the ecliptic

aréument of Legendre prolynomia.ls; $ine of the latitude angle
value of ¢ at time tO

true anomaly angle of the spacecraft

true anomaly angle of an imaginary particle moving in the

unperturbed initial reference ellipse
true anomaly angle of the Earth

angular velocity of the spacecraft in its orbit
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angular velocity of the Earth in its orbit

true anomaly of the spacecraft at time tg
gravitational constant of the central body
geocentric position vector of the observer, £ = Ig_I
velocity vector of the obéerver |
topocentric range of the spacecraft

topocentric rang.e rate: radial velocity of the spacecraft

relative to the observer's position

topocentric position vector of the sp.acecraft
velocity vector of the spacecraft relative to the observer
topocentric position vector of an imaginary particle moving

in the unperturbed initial ellipse

velocity vector, relative to the observer, of an imaginary

particle moving in the initial unperturbed orbit

difference between the mean anomalies of the spacecraft and

an imaginary particle moving in the undisturbed orbit
latitude (declination) of the spacecraft
eccentric anomaly angle of the spacecraft

argument of perihelion of the spacecraft measured from the
intersection of its orbital plane with the equatorial plane of

the central body

argument of perihelion of the Earth measured from the
intersection of the Earth's orbital plane with the equatorial

plane of the central body '

argument of perihelion of the spacecraft measured from the
intersection line of the Earth's orbital and the equatorial

planes
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argument of perihelion of the Earth measured from the
intersection line of the Earth's orbital and equatorial

planes for 1950.0

argument of perihelion of the Earth measured from the
intersection of the Earth's orbital plane and the ecliptic

plane for 1590.0 -

longitude of the ascending node of the spacecraft's orbital

plane with respect to the equatorial plane of the central body

longitude of the ascending node of the Earth's orbital plane
with respect to the equatorial plane of the central body

longitude of the ascending node of the orbital plane of the
spacecraft relative to the equatorial plane of the Earth
for 1950.0

longitude of the ascending node of the orbital plane of the
Earth relative to its equatorial plane for 1950.0

longitude of the ascending node of the orbital plane of the
Earth relative to the ecliptic plane for 1950.0
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Fig. 7. Flow chart of the computational logic
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