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ABSTRACT

Closed-form analytic expressions for the time variations of

instantaneous orbital parameters and of the topocentric range and range rate

of a spacecraft moving in the gravitational field of an oblate large body are

derived using a first-order Variation of Parameters technique. In addition,

the closed-form analytic expressions for the partial derivatives of the topo-

centric range and range rate are obtained, with respect to the coefficient of

the second harmonic of the potential of the central body (J?). The results
o

are applied to the motion of a point-mass spacecraft moving in the orbit

around the equatorially elliptic, oblate Sun, with J_ s 2.7 X 10
LJ
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I. INTRODUCTION

The results of the theory of motion of a particle moving in a close

orbit around a large oblate body are well known in the literature. Although

the equation of the trajectory cannot be obtained in the closed form, a multi-

tude of solutions to this problem have been found in many different forms,

with different orders of accuracy, by means of power series of the coeffi-

cient of the second harmonic J?.

The ultimate purpose of this study is twofold: first to determine the

effects of the additional disturbing force generated by the oblateness of the

central body on the observables — topocentric distance (range) and radial

velocity (range rate) of a point-mass spacecraft, and secondly, to furnish

the analytic expressions for partial derivatives of the two observables

needed for the trajectory improvement analysis.

For close-to-Sun missions, assuming an oblate Sun having an oblateness

coefficient J = 2. 7 X 10" , due to the fact that the coefficient is very small,

a first-order perturbation theory would yield sufficiently accurate results.

II. POTENTIAL FUNCTION OF THE CENTRAL BODY AND
THE EQUATION OF MOTION OF THE SPACECRAFT

The potential of the attraction force exerted upon a particle by a large

oblate body of mass M is given by (Refs. 1, 2)

v= -
oo /„ v n

^(-r) Pn<^
n=2

where r is the magnitude of the position vector of the particle relative to

the center of mass of the large body, J are coefficients of zonal harmonics,
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R is the equatorial radius of the large central body, and GM is its

gravitational constant; P ( £.) are Legendre polynomials of argument

= sn

where 4> is the latitude of the particle measured from the equatorial plane

of the central body.

Considering only the equatorial ellipticity of the central body, we can

write the potential in the form

V = -
GM

(1)

where is the Legendre polynomial of the second order

The acceleration of the attraction force, having a potential given by Eq. (1),

is

I = 4j^ = -grad V = -VV

Hence, the acceleration can be written in the form

dv _ GM— —
dT rr + ap (2)

where ap is the additional, disturbing acceleration, caused by the equatorial

ellipticity of the large body,

(3)

and r is the heliocentric position vector of the particle.
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Let us introduce now an inertial frame of reference xyz, with the

origin at the center of mass of the central body and the xy-plane coinciding

with the equatorial plane of the central body. Then,

sin <f> = t, = —, r = xi + y j + zk

Performing the gradient operation indicated in Eq. (3), we find, for

the disturbing part of the acceleration,

ap -= | GMJ2

As it is customary in the theory of orbital perturbations, we shall

assume the solution of Eq. (2) in the qua si'-elliptic form

r = *- (4)1 + e cosG . v ;

where the semi-latus rectum p and the eccentricity e are functions of time.

Such an ellipse, different in shape and dimensions at each point, is known

and referred to in the literature as the osculating ellipse, since the true

trajectory of the particle and this ellipse have a common point and the same

velocity at each instant during the motion of the particle (Refs. 3, 4). Using

mathematical language, we can say that the true trajectory of the particle

and the ellipse given by Eq. (4) have the tangency (or osculation) of the

second order at every point during the motion. We must add here that the

polar angle 6, also called the true anomaly of the particle, differs from the

true anomaly of the unperturbed elliptic motion due to the action of the dis-

turbing force.

Denoting by

R 2

- (5)
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we can write the expression for the disturbing acceleration in the form .

4 r — |
a—, = ef — 1 (5 sin cj) - 1) — - 2k sin (j) (6)

For the Sun, J = 2. 7 x 10"5 (Ref. 5). Using the values (Ref. 6)
LJ

GM = 1. 327 X 10 U km3/s2

R = 6. 980 x 105 km

we find, with p given in astronomical units,

P

Since € «1, we can use the first-order Variation of Parameters method

within the accuracy of O( e ). The parameters of the orbit (constants of

integration of the Keplerian motion) which we shall use in this study are

a = semimajor axis of the osculating ellipse

e = its eccentricity

. Q - longitude of the ascending node, i .e. , the angular distance

between the positive direction of the x-axis and the line of nodes,

in the equatorial plane of the central body

i - angle of inclination of the orbital plane to the equatorial plane of

the central body

w =' angular distance between the direction of the ascending node and

the periapsis, in the orbital plane. This angle is called the argu

ment of periapsis.

The first two elements, a and e, define the dimension and shape of

the osculating ellipse. The three angles, &, i, and co, are the three Euler

angles which describe the position in space of the orbital plane and the
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orientation of the osculating ellipse in that plane. These angles also

determine the motion of the plane under the action of the disturbing force.

The equation of the Keplerian, undisturbed motion is a second-order

vectorial differential equation, which, when integrated, contains six con-

stants of integration. The choice of the sixth constant of integration, which

is needed to introduce the time at which the particle is located at a certain

position, is a matter of preference. In this study, we shall choose this

sixth orbital parameter in the following manner. In Kepler's third law,

n2a3 = GM = ^ (8)

the quantity n represents the so-called mean motion, i. e. , the constant

angular velocity of a particle which, moving in a circle, has the same

orbital period as the particle moving in an ellipse. The quantity

M(t) = n(t - TQ)

where T is the time of the periapsis passage, is called the mean anomaly of

the particle at time t, located at point P(t) (Fig. 1). Let us assume that, at

a certain initial epoch tn, we have an osculating ellipse, which we shall take

as a reference orbit. According to the definition of the osculating orbit, if

at time t = t the perturbations stopped acting on the particle, it would con-

tinue to move in the initial reference ellipse and, at time t would be located

at P*(t) (Fig. 1). The mean anomaly of the particle in that position is M*(t).

We choose the sixth element T to be the difference (Ref. 3)

T - M(t) - M*(t) (9)

The orbital geometry and Euler's angles Q, i, and w are shown in

Fig. 2. From the spherical triangle shown in Fig. 3, we find

L, = sin <j> = s i n i sin ( 6 + w) (10)

Since our ultimate goal is to find the effect of the disturbing force on

the topocentric range and range rate of the spacecraft, we have to find the
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coordinates of the spacecraft in an Earth equatorial system XYZ, where

the XY-plane is the equatorial plane of the Earth. The geometry is shown

in Fig. 4. If a and 6 are the right ascension and declination of the north

pole of the Sun, then, from Fig. 4,

: YN = a - 270 deg

iN = 90 deg - 6

Taking the x-axis in the direction of the node N, we see that, in order

to bring the coordinate system XYZ into the position of the system xyz, we

have to perform the following two rotations:

(1) A positive rotation about the Z-axis by the angle YN; this rota-

tion brings the X-axis into the position of the x-axis;

(2) A positive rotation about the x-axis by the angle i^.. This rota-

tion brings the Z-axis into the position of the z-axis.

Therefore, we can write the transformation equations

and vice-versa,

where

.X

Y

Z

x

y

x

X

X

Y

1 0 0

0 sin 6 cos 6

0 -cos 6 sin 6

(11)

(12)

(13)
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and

-sin a cos a 0

-cos a -sin a 0

0 Q 1

(14)

With respect to the mean equinox and Earth equator of 1950. 0, the

spherical coordinates of the north pole of the Sun are (Ref. 7)

a = 286?0193

6 = 63T7718

(15)

The three Euler angles i, £1, and w of the orbital plane of the spacecraft, with

respect to the equatorial plane of the central body (Sun), can be calculated

from the corresponding angles i', £2', and co', given with respect to the equa-

torial plane of the Earth, in the following manner. From the spherical

triangle NN N' (Fig. 4), we find

cos i = sin 6 cos i' - cos 6 sin i ' sin (a -

sin i cos (w1 -w) = sin 6 sin i1 + cos 6 cos i1 sin (a - £2')

sin i sin (w1 - co) = -cos 6 cos (a - S2')

sin i cos £2 = -cos 6 cos i' - sin 6 sin i1 sin (a -

sin i sin £2 = -sin i1 cos (a - £2')

(16)

III. TWO INTEGRALS OF MOTION

The differential equation of motion (2), with the disturbing accelera-

tion a_ given by Eq. (6), admits two integrals: the energy (vis-viva or

Laplace's) integral and one scalar angular momentum integral. Indeed,

writing the equation of motion in the form
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dv ,
= "grad

and dot -multiply ing both sides of this equation by vdt = dr, we find

v . dv = -dr • grad V

and, since dr • grad V = dV, the integration of the above equation yields

or

where the constant H has the value

-

Since for the elliptic osculating motion at t_ - 0,

VQ = GM( — -

the last equation for H transforms into

H = - 2 E 0 + f « p / . £ - J P 2 U - 0 ) (18)

where

GM
0 " 2a(0)

is the total energy of the particle at t- = 0; a(0) is the value of the semi-

major axis at that instant. Also, r = r (0) and £_ =
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To obtain the scalar angular momentum integral, we shall cross -

multiply the differential equation (2) by vector r from the left. Thus, we

obtain

dh - -
dF = r X aP

where h = r x v is the angular momentum vector. Substituting the value of

a.p from Eq. (6), we o,btain

(19)

Vector r X k lies in the equatorial plane of the central body. Hence,

dh _ _ _
- = (r x k) • k = 0

where h is the component of the vector h along the z-axis. Integrating thez
last equation, we have

h = constant = h (0)z zv '

From Fig. 2, we see that

h = h • k = h cos i
z

and the scalar angular momentum integral becomes

h cos i = hQ cos iQt iQ = i(0), hQ = h(0) (20)
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IV. PERTURBATIONS OF THE OSCULATING
ORBITAL PARAMETERS

In order to obtain the time variations of the osculating orbital param-

eters due to the effect of the disturbing force, we shall first utilize the

already obtained integrals of motion given by Eqs. (17) and (20). Since, for

the osculating ellipse,

v = GM(M)
we obtain by subtraction

(21)

1
a(0)

1
a

T R2

'J2R0
P 2U) P 2 ( ^0 )

3 J 3

r°

Further,

1 j_ _ a - a(0) _ a - a(0)
a(0) 'a - a(0)a = ^^2

n
™

\

/

and because of J_ «.l, we can write

Aa = -

0"

(22)

where an = a(0), pn = p(0) , and Aa = a - a (0) .

Taking the true anomaly as the variable, we obtain from Eq. (4)

"?
cos 6 +-4- cos 26 + ̂ - cos 36 (23)

LJ ~r

Also, from

PZ( t.) " 7 [3

10 JPL Technical Memorandum 33-594



we find

P 2 ( £ ) = \ [(3 sin2 i - 2) - 3 sin2 i cos (26 + 2w)J (24)

If we multiply Eqs. (23) and (24) and express everything in terms of multiple

angles, we obtain, instead of Eq. (22), the following expression:

2 2 2

Aa = J7K(a) (2 - 3 sin i) (4 + e ) cos 6 + 2e cos 26 + -^- cos 3 6

e3 cos ( 6 - 2u>) + 3e(4 + e2) cos ( 6 + 2u)

+ 4(2 + 3e2) cos (2 6+ 2u) + 3e(4 + e2) cos ( 3 6 + 2u)

2 3
+ 6e cos (46 + 2u>) + e cos (56 + 2w) (25)r

'e.

where 6n = 6(0) . The quantities e, i, and w on the right-hand side of Eq. (25)

should be written as e_, in> and w^, but for the sake of simplicity, we shall

drop the subscript zero in further writing. The constant K(a) is given by

(R a")2

K(a) = ^ ° (26)

where the subscript zero has been dropped again.

The second integral of motion, given by Eq. (20), yields

di _ cot i dh _ cot i /r- dh \
dt h dt ~ h2 \h ' dt I

w^here h = |h|. Substituting in this equation dh/dt given by Eq. 19),

we find

JPL Technical Memorandum 33-594 11



di

For the instantaneous osculating orbit,

2 d6 i
r dt = h

so that, taking the true anomaly 6 as the independent variable, we obtain

(28>

We shall now substitute p/r from Eq. (4) and

-rjr = sin i cos ( 6 + 0 0 )
do

which we obtain by differentiating Eq. (10) with respect to 6 . (For this

differentiation, we keep i and w constant. ) After the substitution, Eq. (28)

becomes

4^ = -6J,K(i)(l + e cos 6) sin (26 + 2w) (29)
del L,

where

/R \2

K(i) = ^( -^1 sin 2i (30)

Rewriting Eq. (29) in the form

•|| = - 3J2K(i) [ e sin ( 6 + 2u) + 2 sin (26 + 2cj) + e sin (36 + 2<4J (31)

12 JPL Technical Memorandum 33-594



and integrating, keeping e, i, and o> fixed, we obtain

r ne
Ai = J_K(i) 3e cos ( 6 + 2w) + 3 cos (26 + 2co) + e cos (36 + 2w) (32)

L JeQ

where

Ai = i - i(0)

To find the time variation of the angular distance of the ascending node, £2,

we use the relationship (Ref. 3)

fl£2 _ tan (6 + co) di
d6 sin i d6

Substituting di/d6 from Eq. (29), we obtain

"1 " cos ( 2 e + 2w) (1 + e cos e )

After the integration, we find

A£2 = - J K(S2) 6 ( 6 + e sin 6 ) - 3e sin ( 6 + 2w)

I6-3 sin ( 2 6 + 2w) - e sin (36 + 2w) (33)

where

2R
~- cos i (34)

and

Afi = S2 - £2(0)

As previously, the parameters e, i, and u> have been kept constant

during this integration.
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From Ref. 3, we further find

dw d£2 ._ + _ C O S i l = _

where 6/dt is the well known variational operator. Taking the angle 6

as the independent variable, the last equation can be written in the

form

^£ , d£2 _ 66
de + de cos * ~ de

Applying the variational operator to the polar equation of the osculating

ellipse (4) and remembering that 6r = 0* and that for every orbital parameter

-L = A
dt ~ dt

we find, taking the angle 6 as the independent variable,

. Q 66 de Q 2p , . di , „ , .6 sme de = ~de~cos e r t a n ide- (36)

Also, from the definition of the semi-latus rectum,

p = — = a(l - e) (37)

we find, by differentiation,

de _ P da p. di1 ,,, — - w— -, n - —— ran i T^
d6 _ 2 d6 ae d62a -e

*The Brown-Milankovic variational operator 6/dt is defined in the two
basic equations of the Calculus of Perturbations

6r~ = 0

6 v = a.pdt

14 JPL Technical Memorandum 33-594



Considering a, e, and i constant, we obtain, by integration,

Ae = 75 fir - tan * Ai) (39)

Combining Eqs. (36) and (38), we find

• r, 68 P cosG da 2e 4- (1 + e ) cos 6 , . di ,„,..e s i n e aff = IT" He -- r-1- — tani3e (40)

From Eq. (25), we obtain, by differentiation,

- = - J K ( a ) f(2 - 3 sin2i]
2 ?

(4 + e ) sin 6 4- 4e sin 26 + e sin 36

, 2 .
je3 sin (6 - 2u) + 3e(4 + e2) sin (6+ 2w)

+ 8(2 + 3e2) sin (26 + 2u)

-I- 9e(4 + e2) sin (36 + 2w) + 24e2 sin (46 + 2w)

+ 5e3 sin (59' + 2w) jl (41)

Subsituting expressions (41) and (31) into Eq. (40) and dividing the result by

e sin 6 , we obtain

(2 - 3 sin2 i . )M + 4 +
4 *

 e cos 6 + cos 26 + J cos 36J

+ - Q - |e cos (6 - 2oo) - - cos (6+ 2co)

2
+ 24 cos (26 + 2co) + 28 + lle cos (36 + 2w)

+ 24 cos (49 + 2w) + 5e cos (56 + 2w) (42)

JPL Technical Memorandum 33-594 15



with

An integration of Eq. (35) with the angle i considered as constant yields

Aco + An cos i

6

,
i = - / (-jQ

0

or, after the performed integration on the right-hand side of the last

equation,

cos ( 2 - 3 s in 2 i ) f e + 4 +
4 ̂

 sin e + \ sin 2e + fz sin 3B)

. 2 .. sin+ — 1 I A • / f. -I \ ,1 O "" t» J. C • t r\ t >~\ \— { 3e sin (6 - 2w) sin ( 6 + 2u>)
I e

2
+ 36 sin (26 + 2oj) + 28 + lle sin (36 + 2w)

ir)Jeo
+ 18 sin (46 + 2w) + 3e sin (56 + 2w)

'Jec

(44)

Incidentally, it is interesting to note at this stage that the expressions

for Aa, Ae, Ai, An, and Aw, given by Eqs. (25), (39), (32), (33), and (44),

respectively, well agree with the known results. We find, namely, that Aa,

Ae, and Ai are purely periodic, while An and Aw contain secular terms.

Denoting by

M=£
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the average value of an orbital element | over the period, we find that

\
[Aa] = 0,

[Ae] = 0,

i] - 0,

[Anj = --|J,\-^ cos i,

= J ( 4 • 5 sin2

> (45)

Hence, for

i = arc sin
5/

= 63? 4

there is no secular advancement of the periapsis line.

According to what was said previously, the sixth orbital parameter, T ,

is the difference between the perturbed and unperturbed mean anomaly at any

instant t. Since (Ref. 3)

dM(t) _ , 6M(t)~ ~ ~ n + ~ ~

where 6/dt is the already used variational operator, and

dM*(t)
dt = nO

we find by subtraction (see Eq. 9) that

dr
"dT ~ n - nO

6M(t)
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or

dr . .,.(46)

Equation (46) can be written in a somewhat different form. From Kepler's

third law (8), we obtain, by differentiation,

3n
An = -

so that Eq. (46) takes the form

dt Za "~ ' dt

Kepler's equation

4> - e sin 41 = M(t) (48)

and the two relations whieh we derive from the Keplerian motion

r cos 0 = a (cos \\i - e)

r sin 9 = b sin L(J

where ijj is the so-called eccentric anomaly angle, and

b = a VI - e- (49)

is the semiminor axis of the osculating ellipse, enable us to obtain 6M(t)/dt

in terms of 66/dt and de/dt. The expression which we find by using the

operator 6/dt is

6M(t) r" TP 66 A , P \de . ."I
+ r ) d t S i n 6 Jdt bp la dt

18 JPL Technical Memorandum 33-594.



or, taking again the true anomaly 6 as the independent variable,

6M(t) r (",, 2. 66 /-> , Q\ • Q de 1,. = T— (1 - e ) •%% - (2 + e cos 0) sin 6 -3-̂de bp |_v de ' de J

Combining Eqs. (36), (38), and (50), we find

6M(t)
de

P / Pcos 6 - 2er da Q, . di\
—- f 21 de - P cos e tan 1 de
sin 6 \ /abe sin

and, substituting (da) / (d6) and (di) / (d6) , respectively, from Eqs. (41) and

(32), we obtain

•3 T p

6M(t) _ 3 J2KQ
d6 4bpe

. 2 .

[ i / r 2\ 2 )
( 2 - 3 sin i) e -f 1 - ~- Jcos 6 - e cos 26 - ^ -cos 36

cos (9 - 2oo) + (4 + 17e ) cos (0 + 2u)

+ 24e cos (26 + 2w) - (28 - 13e2) cos (39 + 2w)

- 24e cos (49 + 2w) - 5e2 cos (59 + 2w) ! (52)

Although it is relatively simple to integrate Eq. (52), we shall do it by

partially utilizing the already derived expression for Aw + A£2 cos i in

Eq. (44). Namely, subtracting expression (42) multiplied by V 1 - e from

Eq. (52), we find

,.' - Vl - e 4^ = J_ Vl - e K(co) 2 ( 2 - 3 sin i ) ( l + e cos 9)
de d6 2 L

+ 3 sin2 i (ecos (9 + 2w) + .2.cos (20 + 2w)

+ e cos (39 + 2w)| (53)
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Integrating the last equation, we obtain

dG cos ii\/l - e

i2 K(w) 2 ( 2 - 3 sin2 i)(9 + e sin 9)

+ sin2 i I 3e sin (9 + 2w) + 3 sin (20 + 2o>)

+ e sin (39 + 2w) (54)

Equation (47) in the form (h = nab)

de ~ " 2,2a b de

yields, after the integration,

(55)

where the last term on the right-hand side is given by Eq. (54).
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From Eqs. (22) and (24),

r2Aa = -£ (aRQ)2 [2(2 - 3 sin2 i ) ( l + e cos 6)

+ sin iJ3e cos (0 + 2w) +6 cos (29 4-2w) + 3e cos (30 +• 2co) |J

4- 2J. (56)

Hence, by integration,

2a b

e
/ (r Aa)d9 = 3J. At

•-—- \1 - e2 K(w) 2(2 - 3 sin2 i)(6 + e sin 6)

+ sin i J3e sin (9 + 2w) + 3 sin (29 + 2w)

e sin (36 + 2u>)

(57)

Finally, substituting the results obtained in Eqs. (54) and (57) into Eq. (55),

we find
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AT -I-(Aw + A£2 co si) Vl - e2 = - J AAt + J V1 - e2 K ( w )

X ( 2 - 3 sin2 i ) ( 6 + e sin 6)

+ -5- sin i |3e sin (6 + 2w) + 3 sin (26 + 2w)
o

e sin (36 + 2w) (58)
/Jeo

where

2
naRQ

A = 3 r"P2U0) (59)
ro

To find the change of r over one period, we write, from Eq. (58),

[ArJ + ([Au.] + [Afi] cos iV VI - e2 = -J2A + J 2(2 - 3 sin2 i) \ 1 - e2 K(w)

or, using the last two of Eqs. (45),

naR2

[ A r ] = -J2A - -3J2 3^P 2 (C 0 ) (60)
ro

From

Q) = -||3 sin2 i sin2 (eQ +w) - ll

22 JPL Technical Memorandum 33-594



it follows that, within the accuracy of O (j J ,

[AT] = o

if 6 is so chosen that

sin (60
ft • •v3 sin i

provided that

i > arc sin l—\ s 35° 3in ( ] =?
W3/

Equations (25), (32), (33), (39), (44), and (58) give the time variations

of all six orbital parameters.

V. SUMMARY OF FORMULAE FOR Aa, Ae, Ai,
AS7, Aw, AND AT

A. Auxiliary Quantities

We shall first compute the true anomaly angle 6 for the time t using

the equation of the unperturbed motion. In other words, assuming no change

in orbital parameters, we compute the eccentric anomaly angle i|> at the

time t from Eq. (48),

(\j - e sin i|j - n(t - t ) = nAt

and the angle 9 from

2 .
, ,, Vj. - e sintan 6 = cos \\i - e
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Next, we shall introduce the quantities

= A (cos N6) = cos (N6) - cos (NeQ)

S = A (sin N6) = sin (N6) - sin (N6Q)

> N = l , 2,"3

K = Afcos (9 - 2oo)J = cos (6 - 2u) - cos (9Q - 2u)

L = A [sin (0 - 2w) ] = sin (6 - 2w) - sin (6 - 2co)

K = A[cos (N6 + 2W)] = cos (N6.+ 2w) - cos (N6 + 2w)

L = Afsin (N6 + 2u>)] = sin (N6 + 2u>) - sin (NeQ + 2co)

N = l , 2 , . r - , - 5

A6 = 6- 6
0

The next step is to compute the constants

K(a) = £
3^
8 3

o
0

p

K(£2) - T

sin

C O S 1

U. =

R \2
°1

P

o , . 2 .2-3 s in i

. 2 .
sin i

naR
A = 3 •P2^0 )

Group Q'l}

Group
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Having found all the necessary auxiliary quantities, we shall proceed

with the calculation of the orbital parameter time variations.

B. Time Variations of Orbital Parameters

Substituting all the auxiliary quantities into Eqs. (25), (32), (33), (39),

(44), and (58), we obtain - .

Aa = J2K(a){lJ (4 + + 2eC

4(2 + 3e2)K2 + 6e2K4~|

Ai = J2K(i)(3eK1

A 1 - e /Aa ,Ae = — 1—— - tan i
e \ 2a

Aoo = -AS2 cos ii + J_K(u) |l. (AS + 4 + 3e S,
2 1 \ e l

12 - 21e2 _ . 28 + l ie 2
 T

e Ll + i L3

18(3L

Group E3]
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AT = - (Aw + Afi cos i) \1i) \1 -

- e
['.

eL 3)]

Group [3]

VI. PERTURBATIONS OF THE HELIOCENTRIC DISTANCE AND
THE POLAR ANGLE OF THE SPACECRAFT

From Ref. 3, it follows that the disturbing effects on the heliocentric

distance and the polar angle 6 (the true anomaly) and their derivatives

(radial and angular velocities, r and 6, respectively) are

Ar = -Aa - cos 6Ae + r sin GAr
a b

A 6 ' • == - (\ + £'\ si
P \ r /

sin GAe +^ AT
r

nae. . _ . . . . .. .
Ar = - , sin 6Aa + nb ( — I sin 6 Ae,

2b

nae( —1 cos GAT

/a\ .
( — I si\r J

(f)

--•XA i 3nb . . na /-, p _ . .A6 = =- Aa + j (2— cos 6 - e ) Ae
.^ _ _ — £- \ -I*

2r br

- 2ne { — ) sin 6A(f) *

Group
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In the first two equations of Group [4], Ar and A0 are the differences

between the heliocentric position and the polar angle of the particle in its

perturbed trajectory at time t and the corresponding quantities related to

an imaginary particle moving in the initial undisturbed elliptic orbit at the

same time t. The same explanation holds for Ar and A6, given by the

second two equations of Group

VII. PARTIAL DERIVATIVES OF ORBITAL PARAMETERS
WITH RESPECT TO J_

. w , and M*(t) of theSince the orbital parameters a , e , i , £

initial osculating reference orbit do not depend on J_, the partial derivative

of any orbital parameter £ with respect to J? is

8J, dJ7
L* LJ

Hence, we can write immediately

= (DAJ) - K(a) l (4j ( ZeC (C

+ -T]

4(2 + 3 e ) K

= K(i)(3eK 1

= (DEJ) =

Group C5]
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= (DOJ) = -K(n)(6A6 - 3eL - 3L -eL )

= (DWJ) = - (DOJ)cos i - K ( c o ) l 1 A e +
"

{l1(
I 1 y"
\

12- 21e2
 T 28 + l ie2 _L. -f. j,

e 1 e 3

18(3L

= (DTJ) = - [(DWJ) + (DOJ) cos i]Vl -

- AAt | Ij

Group [5]

VIII. CALCULATION OF ORBITAL PARAMETERS i, J2, w FROM
EQUATORIAL ORBITAL PARAMETERS i', W, AND w'

Most of the time in practice, the position of the orbital plane of a

point-mass spacecraft, defined by the three Euler angles i, £2, and w, is

given relative to one of the Earth reference planes: the equatorial or ecliptic

plane for a certain fixed epoch, say 1950. 0.- The orbital elements i, £2, and

w which we have used so far are relative to the equatorial plane of the central

body, in particular, the equatorial plane of the Sun. To transfer from one

system of Euler angles, i1, £2', w' (Earth equatorial), which are normally

given, to the other system of Euler angles, i, £2, and w, which we need

2-8 JPL Technical Memorandum 33-594



for the calculation of perturbations of the position of the orbital plane in

space, we have to use Eqs. (16). With a and 6 given in Eqs. (15), the

expressions from which we calculate i, £2, and to are

cos i = sin 6 cos i' - cos 6 sin i' sin (a - £2")

tan £2 =

tan (u> - W) =

sin i' cos (a - S2')
cos 6 cos i1 + sin 6 sin i' sin (a - £2'

cos 5 cos (a - £2')
sin 6 sin i' + cos 6 cos i1 sin (a - £2')

Group

IX. PERTURBATIONS OF RANGE AND RANGE RATE

Let us denote by P the topocentric postion vector of the spacecraft

relative to the observer's position at point P (Fig. 5), which is uniquely

determined by the geocentric position vector |. If r and r are the helio-
. Jl*

centric position vectors of the spacecraft and the Earth, respectively, from

the diagram shown in Fig. 5, we can write

P = r - r

Differentiating Eq. (61) .with respect to time, we find

(61)

p = r - r, (62)

The disturbing effect of the equatorial ellipticity of the central body (Sun)

affects not only the motion of the spacecraft but also the motion of the Earth.

The position of the observer, however, defined by the geocentric position

vector |, remains unchanged, i.e., unaffected by the disturbing force.

Denoting by r* and r^, the undisturbed position vectors of the space-
-Cj

craft and the Earth, respectively, in other words the heliocentric position

vectors of points in which the spacecraft and the Earth would be at time t if

the perturbing effect were turned off at the time tn, then, also
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By subtraction of the last equation from Eq. (61), we obtain

A"P = p" - p* = (7-7*) - (7 - P£) = A7 - A7 (63)

and, similarly,

A"p = "p - p~* = (7 - 7*) - (7E - 7£)

= A7 - A7E

= A v - Av (64)

where v and v.-_, are, respectively, the velocities of the spacecraft and the

Earth.

Since

P • A p = p A p

we find, dot-multiply ing Eqs. (6 1) and (63), that

Ap = — rAr 4- r_Ar_ - ( r + £) • Ar - r • Ar
L j

or, because | /p « 1,

Ap = -p- (rAr + rEArE - TE • Ar - r • ArE ) (65)

where, within the same order of accuracy,

" " r 2 2 - - I172
P = I r 4- r£ + 2(r • r£) I (66)

From

P" • ? = PP
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we obtain, by differentiation,

Ap = (P • Ap + P . Ap - pAp) (67)

and, substituting expressions (63) and (64) into the last equation, we find,

with the same accuracy as before,

Ap
1 f _ _ _ _ _

P = p" ( v - VE) ' (Ar - ArE) + (r -

_
(Av - - p A p j (68)

where Ap is given by Eq. (65).

Let X, Y, Z be the heliocentric rectangular coordinates of the space-

craft in the Earth equatorial space-fixed system of reference axes, and X ,
C-i

Y Z the heliocentric equatorial coordinates of the Earth in the same
sLt *L

system. In the xyz-reference frame, with the equatorial plane of the central

body (Sun) as the fundamental plane, the coordinates of the spacecraft and the

Earth and their velocity components are, respectively, (Fig. 4 and Eq. 12),

X

y
z

X

y

z

"XE "

E

z
E _

- * "*

XE

*E

_.*E _

•[•]>•].

= [6]x[f + a]z

[5] |"jE + Q 1
L Jx L 2 Jz

^ ™iX Z

" X

Y

Z

" X

Y
•

Z

" X E "

Y^
E

Z
E _

"V
YE

> _

Group
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The orbital plane parameters of the Earth, !„, S2^, and co_,, relative
SL, h, XL

to the equatorial plane of the central body, can be easily determined in a

manner similar to that used in determining the orbital plane elements of the

spacecraft, using the equations of Group [6]. For the Earth, we should set

& = 0, and i,-, = f , where e^ is the obliquity of the ecliptic. In reality,
H , Hi Hi sLt

however, the orbital plane of the Earth (using astronomers' jargon, we can

call it true ecliptic, or instantaneous ecliptic plane) moves as a result of

perturbations, and its position may be determined relative to the fixed

Earth equatorial plane for the epoch 1950.0. From Ref. 7, we find, for

ecliptic elements of the orbital plane of the Earth,

i" = Of013076t - O f 0 0 0 0 0 9 t 2

tL,

= 174f 40956 - Of 24l66t + O.°00006 t2 (69)

w" = 287f67097 + Of 56494t + O f 0 0 0 0 9 t2

where the time is expressed in so-called Julian centuries, i.e., units of

36, 525 days. Similarly, the obliquity of the ecliptic is (Ref. 7)

iE = 6E ( t ) = 23-44578886l6 - O.°013014l669 t

- Of 09445 X 10"5 t2 + Of 05000 X 10"5 t3 (70)

The geometry of the orbital plane of the Earth is shown in Fig. 6.

The orbital elements relative to the equatorial plane of the Earth for the

epoch 1950. 0 are obtained from the spherical triangle YN- .N- . Equations

corresponding to Eqs. (16) are
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COS

sin i_ cos S2_
XL, XL,

cos ip, cos e - sin i~ sin f. cos n".

cos i^ sin t + sin i^ cos e cos fi"
XL, XL XL XL XL

sin iE sin £}„ = sin i sin n,p

sin i' cos (w' - oo" ) = sin i_ cos e „ + cos i" sin e cos Si''
XL XL, XL SL EJ EJ JL, IL

sin i^ sin (to,., - = sin e sin \2
XL XL

(71)

Thus, we obtain

cos i-_ = cos i._ cos €„ - sin i,-, sin £_, cos £2,_E E E E E E

tan n^
cos i-p, sin e

sin i^ sin £2,-,
H i r* /

+ sin i£ cos £E
A"cos i2_^

XL

itan
sin eE sinfiE

sin irr cos e _, + cos i,-, sin e,-,cosrrXL,
,-,
XL,

Group

Taking now the line of nodes as the principal reference axis in the

orbital plane of the spacecraft (Fig. 2), we see that the coordinates of the

spacecraft in the plane are (r cos u, r sin u, 0), where

u = 6 + (72)

The rectangular equatorial coordinates x, y, z can be derived from the

coordinates in the orbital plane by two rotations: first, a positive rotation

about the line of nodes by the inclination angle i; second, a negative rotation

about the polar axis of the central body by the angle £2. In other words,
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X

y

X

y
•
z

r cos u

r sin u

0

ru

0

(73)

For the Earth, we have two similar equations:

X

E

XE

= K]L J x

cos

H;

UE

-

\

fE

rE*E

0

/

> (74)

Since the equations for the Earth are obtained just by adding the subscript E,

we shall write only the equations for the spacecraft and keep in mind that

the same equations exist for the Earth. In expressions (73) and (74),

[B

are rotation matrices
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H:

cos fi -sin &

sin £2 cos £1

0 0

1 0

0 cos i

0 sin i

cos u -sin u

sin u cos u

0 0

0

0

1

0

-sin i

cos i

0

0

1

l

J

> (75)

Three rotation matrices can be written for the Earth by adding the

subscript E to all quantities involved.

Let us now write the expressions for the disturbing effects in range

and range rate of the spacecraft, Ap and Ap, given by Eqs. (65) and (68),

respectively, in the following forms:

y - y E z - Z ]

Ax -
±L,

Ay - AyE

Az - Az
E

Group [9]
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A P = P -

+ 1

P = [ (

» = *!

/

[X — X V — V Z - ZT / * T T71 1p. j1/ r j I

^

X " XE Y ~ YE Z " ZE

A - Ax_x E

Ay - AyE

Az - Az_iL

Ax - AxHi

Ay - AyE

Az - AzE

\

- p A p .

'

•'".)'•(-.>'•(-.)']"'

X " XTT Y ~ YfT' Z ~ ZTTp i f i r j i

X ' - X E

• *y - y E

• •
Z — Z

Group [91

Frorn Eqs. (73) (and, subsequently, Eqs. 74), we find, by differentiation,

AX
Ay

Az
an 81 Ai

r cos u

r sin u

0

Ar

rAu

0

(76)
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Ax

Ay

Az

/jLr -iT\r iTr I(an n i u
\ L JT; / L Jx L J\

Au

r

ru

0

KH:H:
Ar

A(rii)

0

(77)

We have, however,

(78)

a r IT r 3 i T
•£-' U - ~T U9u L J2 L 2
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so that, accordingly, Eqs. (76) and (77) become

Ax

Ay

Az

Ax

Ay

Az

he . .
r = sin 6

P

u =~
r

Au = A6 + AOJ

Au = A6

Ar

rAu

0

r

ru

0

Ar

rAu + uAr

0

r cos u

r sin u

0

Group [10]

where Ar, Ar, A6, and A 6 are given by the equations of Group [4].
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X. PARTIAL DERIVATIVES OF RANGE AND RANGE RATE

The partial derivatives of the topocentric range and range rate can be

derived directly from the equations for the perturbational changes Ap and

Ap by simply replacing the operator A with 9/8J- in the equations of

Groups C93 and QO]. Hence, from the equations of Group [10], we obtain

the partial derivatives of the rectangular coordinates x, y, z and velocity

components x, y, z, with respect to J_. Denoting by (Refs. 8 and 9)

9x
= (DXJ) = (DXEJ)

- = (DYJ)
y'E = (DYEJ)

9z
= (DZJ)

dx = (DDXJ)

dz
E

dJ,

= (DZEJ)

(79)

= (DDXEJ)

- (DDYJ)
8J.

= (DDYEJ)

3z = (DDZJ) = (DDZEJ)
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we can write

'(DXJ)

(DYJ)

(DZJ)
<DOJ>

r iT r* nH PH(
L Jz

 L Jx

r cos u

r sin u

0

(DRJ)

r(DUJ)

0

(DDXJ)

(DDYJ)

(DDZJ)

r

ru

0

(DDRJ)

r(DDUJ) + u(DRJ)

0

Group [11]
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where

9r

8u

\ (80)

(DDRJ) = -QJ"

for the spacecraft, and

(DDUJ) = 9j-

8r,
(DREJ) =

(DUEJ) =
*E

> (8D

for the Earth.

(DDREJ) =

(DDUEJ) =

JPL, Tec
hnical Memorandum 33-594
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Since r* and 6* do not depend on J7, we find from the equations of
LJ

Group £4] and Eq. (72) that

(DRJ) = - (DAJ) - a cos 9 (DEJ) + - sin 6 (DTJ)
cl D

(DUJ) = - (l + £\ sin 6 (DEJ) + ̂ b (DTJ) + (DWJ)
P V r/ 2

(DDRJ) =. - sin 6 (DAJ) + nb- sin 6 (DEJ)

cos 6 (DTJ)

(DDUJ) = -
br'

COB 6 - e)(DEJ)
I

(f) -- 2ne(-) sin 6 (DTJ)

Group [12]

and similar expressions for the partial derivatives of r^,, r_, u^, and u,-,,
iL lit £j r.

with respect to J?.

Finally, we can write

-IE. - Ir
9 J 2 P [

9J ~ p" *

+ r
L

X - X E y;yE Z - Z E ]

[*v — "V \r ^ xr *7 *7 \•A- -A-__, V V £1 ~ £1 \
\* * * t^ TJ^ 1PJ P. _Qj 1

J

V ^ V \ r - \ 7 " "7- *7 1X XE y YE Z ZEj

" DXJ) - (DXEJ)l
fDYJ) - (DYEJ)

(DZJ) - (DZEJ)

"(DXJ) - (DXEJ)~|

(DYJ) - (DYEJ)

(DZJ) - (DZEJ)

"(DDXJ) - (DDXEJ)]

fDDY ~[} (TTnYF"n p ^ ^
J2(DDZJ) - (DDZEJ)

• j

(82)

The computational sequence in the form of a flow chart is shown in Fig. 1.
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It should be mentioned, in conclusion, that a much higher accuracy is

obtained if, instead of taking initial orbital parameters a , e , i , £2 , and

w in the equations of Group [3D and thereafter, we repeat the calculations of

Aa, Ae, Ai, Aft, Aw,, and AT with the mean values of elements

1 . . . , A a
am = 2 (aO + a) =' aO + ~T

= I (e + e) = e + —
' m 2 . 0 0 2

etc.

NOMENCLATURE

a semimajor axis of the osculating ellipse at time t

a_ = a(0) semimajor axis of the initial osculating reference ellipse

at time t

a acceleration vector of the particle

a. disturbing acceleration vector

A constant of integration

b semiminor axis of the osculating ellipse

C-, difference between cosines of angle N6 at time t and

time t for N= 1, 2, 3

e eccentricity of the osculating ellipse

en = e(0) eccentricity of the initial osculating reference ellipse

E- total energy of the particle at time tn

G universal constant of gravitation

h magnitude of the angular momentum vector

h = h(0) magnitude of the angular momentum vector at time tn

h component of the angular momentum vector along the z-axis
z
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h (0) component of the angular momentum vector along thez
z-axis at time t

h angular momentum vector

H constant of integration

i angle of inclination of the orbital plane of the spacecraft

to the equatorial plane of the central body

i = i(0) angle of inclination of the orbital plane of the spacecraft to

the equatorial plane of the central body at time t

i1 angle of inclination of the orbital plane of the spacecraft to

the equatorial plane of the Earth for 1950. 0

ip angle of inclination of the orbital plane of the Earth to the

equatorial plane of the central body

ijp angle of inclination of the orbital plane of the Earth to its

equatorial plane for 1950.0

i" angle of inclination of the orbital plane of the Earth to the

ecliptic plane for 1950.0

i,^ angle of inclination of the equatorial plane of the central

body to the equatorial plane of the Earth for 1950. 0

i unit vector along the x-axis

Ilf I_ constants depending on the angle of inclination i
J. LJ

j unit vector along the y-axis

J_ coefficient of the second harmonic of the potential of the

central body

k unit vector along the z-axis

Kn difference between the cosines of angle 6 - 2to at time t

and time t

-,. difference between the cosines of angle N0 + 2wat time t

and time t~ for N = 1, 2, • • • , 5

K(a ) ,K( i ) , l coefficients of expressions for the time variations of
K(n) ,K(w) , ... ... ,osculating orbital parameters
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Ln .difference between the sines of angle 6 - 2w at time t and

time tn

L difference between the sines of angle N6 + 2w at time t and

time t for N = 1, 2, • • • , 5

M mass of the central body

M(t) mean: anomaly angle of the particle in its true orbit at

time t

M*(t) mean anomaly angle of an imaginary particle moving in the

initial osculating reference orbit at time t

n mean motion of the particle in its orbit

n = n(0) mean motion of the particle at time t

N subscript

p semi-latus rectum of the osculating ellipse at the time t

pn = p(0) semi-latus rectum of the initial osculating reference ellipse

P (^) Legendre polynomial of order n

P _ ( £ , ) Legendre polynomial of order two

r magnitude of the heliocentric position vector of the

spacecraft

r magnitude of the heliocentric position vector of the space-

craft at time t

r,-, magnitude of the heliocentric position vector of the Earth

r* magnitude of the heliocentric position vector of an

imaginary particle moving in the initial osculating reference

ellipse at time t

r radial velocity of the spacecraft

f _ radial velocity of the Earth

r" heliocentric position vector of the spacecraft at time t

rn heliocentric position vector of the spacecraft at time t
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r* heliocentric position vector of an imaginary particle moving

in the initial osculating reference ellipse at time t

r^p, heliocentric position vector of the Earth at time t

f-f heliocentric position vector of an imaginary Earth moving
E

in an initial osculating reference ellipse without

p e rturb ati on s

"r" velocity vector of the spacecraft

r" velocity vector of the Earth

r"^ velocity vector of an imaginary particle moving in the initial

osculating ellipse without perturbations
•

r^ velocity vector of an imaginary Earth moving in the undis-

turbed initial osculating ellipse

R equatorial radius of the central body

S,j difference between sines of the angle N6 at time t and

initial time t_ for N = 1, 2, 3

t time

tn initial time of osculation (epoch)

Tn time of periapsis passage

u = 0 + w argument of latitude

u-rp argument of latitude of the Earth

u angular velocity of the spacecraft in its orbit

Uyp angular velocity of the Earth in its orbit

v magnitude of the velocity vector of the spacecraft

v~ magnitude of the velocity vector of the spacecraft at time t,.

v" velocity vector of the spacecraft

Vp, velocity vector of the Earth

V potential of the central body

46 JPL, Technical Memorandum 33-594



V(0) potential of the central body at time t

x, y, z heliocentric rectangular coordinates of the spacecraft in

the equatorial reference frame of the central body

x, y, z velocity components of the spacecraft along the axes of the

equatorial reference frame of the central body

x^, y--,, z heliocentric rectangular coordinates of the Earth in the
£. Jii Jii

equatorial reference frame of the central body

x y ZE velocity components of the Earth along the axes of the

equatorial reference frame of the central body

X , Y , Z heliocentric rectangular coordinates of the spacecraft in

the equatorial reference frame of the Earth
• • • '

X, Y, Z velocity components of the spacecraft along the axes of the

equatorial reference frame of the Earth

X , Y , Z heliocentric rectangular coordinates of the Earth in the
Jii lii .hi

equatorial reference frame of the Earth
• • • •

X , Y , Z,., velocity components of the Earth along the axes of the
E-i SLi Jii

equatorial reference frame of the Earth

a right ascension of the north pole of the central body

Y vernal equinox point for 1950.0

6 declination of the north pole of the central body

€ a constant

€,_, obliquity of the ecliptic
sLi

t, argument of Legendre polynomials; £ine of the latitude angle

£,n = £,(0) value of £, at time t

6 true anomaly angle of the spacecraft

6* true anomaly angle of an imaginary particle moving in the

unperturbed initial reference ellipse

6.-, true anomaly angle of the Earth

6 angular velocity of the spacecraft in its orbit
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6 angular velocity of the Earth in its orbit
E

6n true anomaly of the spacecraft at time tn

[i = GM gravitational constant of the central body

| geocentric position vector of the observer, £ = |"|

£ velocity vector of the observer

p topocentric range of the spacecraft

p topocentric range rate: radial velocity of the spacecraft

relative to the observer's position

P topocentric position vector of the spacecraft

•

P velocity vector of the spacecraft relative to the observer

P* topocentric position vector of an imaginary particle moving

in the unperturbed initial ellipse

P* velocity vector, relative to the observer, of an imaginary

particle moving in the initial unperturbed orbit

T difference between the mean anomalies of the spacecraft and

an imaginary particle moving in the undisturbed orbit

4> latitude (declination) of the spacecraft

qj eccentric anomaly angle of the spacecraft

w argument of perihelion of the spacecraft measured from the

intersection of its orbital plane with the equatorial plane of

the central body

u>F argument of perihelion of the Earth measured from the

intersection of the Earth's orbital plane with the equatorial

plane of the central body

cu' argument of perihelion of the spacecraft measured from the

intersection line of the Earth's orbital and the equatorial

planes
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argument of perihelion of the Earth measured from the

intersection line of the Earth's orbital and equatorial

planes for 1950. 0

argument of perihelion of the Earth measured from the

intersection of the Earth's orbital plane and the ecliptic

plane for 1590. 0

& longitude of the ascending node of the spacecraft's orbital

plane with respect to the equatorial plane of the central body

£2 longitude of the ascending node of the Earth's orbital plane
iii

with respect to the equatorial plane of the central body

ft' longitude of the ascending node of the orbital plane of the

spacecraft relative to the equatorial plane of the Earth

for 1950.0

ft' longitude of the ascending node of the orbital plane of thelii
Earth relative to its equatorial plane for 1950. 0

ft™ longitude of the ascending node of the orbital plane of the
.tlrf

Earth relative to the ecliptic plane for 1950. 0
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Fig. 2. Orbital geometry

JPL Technical Memorandum 33-594 51



ORBITAL PLANE

PROJECTION OF
SPACECRAFT ON
CELESTIAL SPHERE

-ASCENDING
NODE

EQUATORIAL
PLANE

Fig. 3. Argument of latitude

2w - a PERIHELION •

TT/2-S

Pn (z-AXIS)
(NORTH POLE
OF CENTRAL
BODY)

EQUATORIAL
PLANE OF CENTRAL
BODY
(xy-PLANE)

ORBITAL PLANE
OF THE SPACECRAFT'

"—EQUATORIAL
PLANE OF

- THE EARTH"
(XY-PLANE)

Fig. 4. Fundamental reference planes
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Fig. 5. Topocentric range of the
spacecraft

i EARTH
PERIHELION

-ECLIPTIC
PLANE, 1950.0

TRUE ORBITAL PLANE
OF THE EARTH

Fig. 6. Orbital geometry of the Earth
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INPUT:
f̂ TRi), i = i, ..., n
a(J), e(J), i'(J)
fl'(J), <J'(J)
J = 1 SPACECRAFT
J = 2 EARTH

r~

COMPUTE ANGtf S
i(J),fl(J),u(J)
GROUP C63

CONSTANTS
GROUP C2]

POSITION IN REFERENCE
ELLIPSE
r«(l,J), 8*(I,J), T*(I,J)

AUXILIARY
QUANTITIES
GROUP OD

Aa(l,J),Ae(l,J),
Ai(l,J), Afl(l,J),
Au(l,J), AT(|,J)
GROUP [3]

PARTIALS:
DAJ(I,J), DEJ(I,J),
DIJ(I.J), DOJ(I,J),
DWJO.J). DTJ(I,J)
GROUP DQ

Ar(l,J), Af(l,J)
Au(l,J) = A8(I,J) +t
Aii(|,J) = A8(I,J)
GROUP GO

/EQUATORIAL COORDINATES
YES/ AND VELOCITIES

\ X,Y,Z,X,Y,i(l,J) /
\ rilvFM /

NO
, , ,

GIVEN

TABLE OF VALUES
X,Y,Z,X,Y,Z(I,J)

COMPUTE
x,x,z,x,y/
Eqs. (73)

COMPUTE
x,y,z,*,4,i,(l,J)
GROUP L7]

Ax,Ay/Az,Ax,Ay,Az(i. J)
GROUP DOD

Eqs. (82)

PARTIALS OF r,f,u,u:
DRJ(I,J), DUJ(I,J)
DDRJ(I,J), DDUJ(I,J)
GROUPC12]

PARTIALS OF COORDINATES
AND VELOCITIES
DXJ(I,J), DYJ(I,J), DZJ(I,J)
DDXJ(I,J), DDYJ(I,J), DDZJ(I.J)
GROUPCll]

Fig. 7. Flow chart of the computational logic
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