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PREFACE 

The major part of this work is taken from a doctoral dissertation submitted by 
Harry E. Montgomery, and directed by F. K. Chan, to the Department of Space Science 
and Applied Physics, Catholic University of America, Washington, D.C. The rerngning 
part, Appendix A, is taken from the course "Advanced Celestial Mechanics" taught by 
the second author during the academic year 1968-69. 
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Harry E. Montgomery 

Goddard Space Flight Center 
and 

F. K. Chan* 
Catholic University o f  America 

INTRODUCTION 

In 1963, Ken (Reference 1) presented an exact solution of Einstein's empty-space field equations 
that might be the exterior field of a rotating body. He presented his metric in two sets of coordinates 
which were later labeled as the E and the M coordinates. He also stated that the two parameters in his 
solution are the Schwarzschild mass and the specific angular momentum of the central body. 

In 1964, Boyer and Price (Reference 2) used Kerr's metric in E coordinates and obtained the equa- 
tion of motion of a particle in the equatorial plane and then studied the precession of the pericenter of 
the orbit. By comparing this result with the motion of the pericenter as determined by Lense and 
Thirring (Reference 3), who had obtained in 191 8 the perturbations of the elements of planetary orbits 
in an approximate gravitational field of a uniformly rotating sphere of constant density, Boyer and 
Price identified the two parameters m and -a in the Kerr metric as the mass of the sphere and the spe- 
cific angular momentum of the sphere, thus confirming Kerr's assertion. 

In 1966, Carter (Reference 4) studied the motion of a particle along the symmetry axis of the 
Kerr gravitational field using E coordinates. 

In 1967, Boyer and Lindquist (Reference 5) discussed some coordinate systems usepal in the study 
of the Kerr metric which they called the Minkowski-like M, Eddington-like E,  and Schwarzschild-like S 
coordinates. Certain properties of the Kerr metric, including the behavior of geodesics lying in the 
equatorial plane, were examined in some detail. 

In 1968, DeFelice (Reference 6) investigated the geodesic motion in the equatorial plane of the 
gravitational field of a rotating source using E coordinates. The differential equations of the geodesics 
were studied to obtain the shape of the loci of turning points of test particles without i~ltroducing 
numerical values of the parameters involved. Figures were given that show the behavior of geodesics 
for different ranges of these parameters. 

*F. K. Chan is presently with Computer Sciences Corp., Silver Spring, Md. 20910. 



In 1968, Carter (Reference 7j demonstrated that the Hamilton-Sacobi equation for a test particle 
using E coordinates can be separated. 

The present work deals with the motion of a particle in a Kerr gravitational field. It begins with 
a brief review of the Kerr metric in the three coordinate systems and also a derivation of the equations 
of motion of a test particle. These equations are derived in the E and the S coordinate systems. 

Next, a step-by-step procedure is presented for the qualitative analysis of the complete set of 
orbits of a t a t  particle in the equatorial plane, using S coordinates. The results for each value of a are 
represented in a master diagram that gives the complete topological genera of the orbits for various 
ranges of the two parameters: the angular momentum per unit mass of the test particle h and the 
"energy" per uinit mass of the test particle e. In addition, the physical orbits corresponding to the 
master diagram are given. 

A discussion is then given of the determination of the direction of orbital motion, the scaling of 
solutions for 0 f 2, conversion of results of the present S coordinates to E coordinates, and, finally, 
the pseudosinguluity at u = t lD.  

The method of solution used in the analysis relies heavily upon Chan's qualitative solution of the 
motion of a particle in the Schwarzschild gravitational field. Because this work is unpublished, it is 
presented in Appendk A. The algebraic details that were omitted in the text are included as Appen- 
dix IB. 

EOUATIOfgS OF MOTION OF A JEST PARTICLE IN THE KERR GRAVITATIONAL FIELD 

Various Forms of the Kerr Metric 

For a rotating body, the exterior gravitational field is described by the metric originally given by 
Ken ((Reference 1) in the form (henceforth referred to as the Minkowski-like 11.1 form) 

where k is given by 

(r*2 + a2 )r*k = r*2 ( x  d x  + y d y )  + ar*(x dy  - y d x )  + (r*2 + a2)(z  dz + Y* dt*) . (2) 

The coordinate r* is defined by 
r*4 - ( ~ 2  - a2)y*2 - a 2 z 2  = 0 ,  

where 
R 2  = x 2  + y 2  + z 2  . 

In these equations m can be interpreted as the Schwarzschild mass and -a the angular momentum per 
unit mass a'bout the z axis. However, in this form of the line element, it is difficult to understand truly 
the physical nature of the "radial" coordinate r* because of the presence of too many off-diagonal 
terms in the metric tensor gyv .  Moreover, setting the parameter a equal to zero does not simply yield 
the welEknown Schwarzschild metric. In his work, Kerr also introduced the following transformation, 

x = (r*2 + a2)lI2 sin O*  cos , ( 5 )  



y = (r*' + a2)'t2 sin O* sin (4* - tan-L (66 

Z = Y *  COSO*,  47) 

to obtain the line element in the form (henceforth referred to as the Eddington-like E form) 

ds2 =-dr*2 - ;?asin2 O*dr*d$*- (r*2 +a2)sin2 O * c ~ 4 * ~  - P * ~ o * ~  +dt*2 

2mr* - -  (dr* + a sin2 O* dip* i- dt*12 , 
P* 

where P* is defined by 
P* r r * 2  + a 2  cos2 6* . 

Even now with the elimination of some off-diagonal terms in gpv,  it is still difficult to interpret the 
radial coordinate r* or to obtain the Schwarzschild metric directly by setting a = 0. 

However, Boyer and Lindquist (Reference 5) later introduced the following transformation: 

a dr* 
d@=d@*+-  

A '  

or* dr* 
dt  = dt* - - 

A '  
where 

which then reduces Equation 8 to the form (henceforth referred to as the Schwarzschild-like S form) 

where 
P r2 + a2 cos2 6 . 

The outstanding feature of this equation is that it has only one off-diagonal component g@, and reduces 
nicely to the standard Schwarzschild metric when a = 0. 

The transformation given by Equations 10 to 14 reveals that there is a mathema tical pseudo- 
singularity introduced when A = 0. Even though in this respect the E coordinates appear to be better 
for analysis of the Kerr metric, it turns out that the S coordinates are preferable in terns of physical 
significance in that they determine the location of horizons or stationary null hypersurfaces when 
A = 0. (For a more detailed discussion, see Boyer and Lindquist (Reference 9.) 



Equations of Motion for a Test Particle in the Equatorial Plane 

Boye~r and Price (Reference 2) used the E form of the Kerr metric in their study on the interpre- 
tation of tlhe parameter -a as the angular momentum per unit mass of the central spinning body. For 
test particles with orbits in the equatorial plane they obtained the following equation of motion: 

where 

du* du * 
A * ( * )  ( )  + &B*(u*) - - C(u*)  = 0 ,  

d@* 

It can be shown that 
C* EB*D* 

where 

Next, the equation of motion in the S form will be derived from first principles. (It may also be 
obtAned from Equation 17, which is for the E coordinates, and Equations. 10 and 12, which are the 
equations of transformation from (r*, @*) to (r, $). A method of finding equations of motion corre- 
sponding to a general metric gPv is given by Synge (Reference 8). If the line element is denoted as 

and the Lagrangian F(x, i )  is defined by 



then the equations of motion are given by 

where 

Now, for the case of equatorial orbits we have 8 = n/2, so that from Equation 15 the Lagranam 
becomes 

Hence, the following three equations corresponding to r, (6, and t  result: 

These three equations and the line-element equation (Equation 15) constitute a set of equations of 
which only three are independent. It is simplest to use Equations 15, 35, and 36 to obtain the equa- 
tion of motion in the equatorial plane. 

Because F, which is given by Equation 33, is not a function of @, Equation 35 implies that 
aF/a& is equal to a constant -2h; therefore, 

Similarly, because F is not a function of t ,  aF/ai is equal to a constant 2e; thus 

From Equations 37 and 38 for & and i, it follows that 

If u = llr, then 

Equations 39 and 40 then become 
1 4 = - [-P(h +ea)u + hl , 
A 



Substitution of these equations into the line element given by Equation 15 yields 

2 o2 ( ~ 1  
=B(u)- , (44)  

E2 (u )  
where 

~ ( u )  = ~ ( h  + e a ) 2 ~ 3  - [h2 t (1 - e2)a2]u2 t pu - (1 - e 2 ) ,  (45)  

111 addition, A(u)  is defined by 

It follows from Equation 26 that the following identity holds: 

Equation 44 is studied extensively in the next section and was chosen in preference to Equation 
17 because it is simpler and its metric reduces to the standard Schwarzschild metric when a = 0. 

With the S coordinates the equation of equatorial orbital motion has been obtained in a simpler 
form as given by Equation 44. The E form obtained by Boyer and Price as given by Equation 17 may 
also be reduced to a simpler form, as follows: Completing the square in Equation 17 results in 

By using the identity in Equation 26, Equation 50 takes the form 

Letting 
du+ - du* aB* - - -  - + -  
dq)+ d@* A* 

then 

When a = 0, this equation also reduces to the equation of motion in Appendix A except for a factor of 



I z * ~ .  Because u+ = zc *, Equation 5 2 yields 

k * d$* dr* 
dl$+ = 7 

A* dr* - a ~ * r * ~  d@* 

A * d$' dr* 
d$* = 

A* dr* + a ~ * r * ~  d$+ 

Hence, Equations 53 and 55 give the transformation from (r*, $I*) to (ri, $+). However, one 
drawback of this transformation is that Equation 55 involves the constants of motion &* and e* of the 
test particle because of the presence of B* in the equation. This is to be contrasted with the Irans- 
formation from (r*, $:") to (r, $) given by Equations 10 and 12 for which no such weakness occurs. 

Equations of Motion of a Test Particle Not Restricted to the Equatorial Plane 

The differential equations for general orbits using the E form of the Kerr metric have been derived 
in this study. Because the method of derivation is the same as that used to obtain Equations 102 to 
105 in the S form, the resulting equations are presented, without derivation, for future refere~ce. 
Using the following definitions, 

x* = r* 
1 657) 

and letting the dot denote dlds, the differential equations of motion are 



where 

bf = -2ax:@, sin2 x; - 4axfxz /* sin x f  cos x f  - 2.x:~: /*2 sin2 x; 

- 2(xr2 + a2)xg* c$*2 sin xg cos X I  - 2 ( x ~ ~  + a2)Q1 $* sin2 x f  - P* xz2 + 2 i*T1 

b; = -&GI sin2 x; - 4a )*xg* sin x; cos x f  - 2T, + 2xf /*2 sin2 xg + 2x* *2 
1 X 6  

gj* = - (pae*xr sin2 x f  +ph* * - h*P* +aP*xf sin2 x f )  , 
P*A* sin2 x; 

1 

P* = 2x*x* 3 . 5  - h 2 x :  cos x f  sin x f  , (78) 

I 
T ,  =- [pah*x: + e* b ( x  f + a 2 )  + 2e*P*xrxg* + e*@a2x: sin2 x f  

P*A* 
+ 2 e * f h 2 x x  sin x f  cos x f  + Pp*xf2 + b f  ~ * x f ]  

i* 
- -  [A* P* + P(2xp: - px;)] , (79) P*A* 



1 
= -@e*xT sin2 xz - 2Pae*x:xz sin x; cos x; 

P*A* sin2 x; 

- Dh*xT + h* P* - a P*X: sin2 x; - ZnP*x:xf sin xf cos xf 

- $* 1(2x:xT - Px;)P* sin2 x; + P*A* sin2 X; + 2P*A*xz sinxf COSX:] 

Equations 63 to 68 with appropriate initial conditions x*(so) = x i  can be solved by numerical 
integration. Only five of the values of x* may be chosen independently and the remaking one m s t  

10 
be chosen to satisfy Equation 8 at s = so. 

Next, the general equations of motion in S form will be derived. From Equation 15, the 
Lagrangian is 

F = - P  Pr - (r2 + a2 )  d2 sin2 8 + t2 - - (a $ sin2 8 + 1j2 . 
P 

($3) 

Then, from Equation 3 1, the following four equations corresponding to 8,@, t, and r axe obtabed: 

Equations 84 to 87 and the line-element equation (Equation 15) constitute a set of equations of 
which only four are independent. Equations 15 and 85 to 87 were chosen for this study. In Equation 
83, F is not a function of @ or t .  Hence, Equations 85 and 86 imply that aF/a$ and ab;/ar' are equal to 
constants, denoted respectively as - 2h and 2e. Therefore, 



These equations are linear in $ and t and can be solved directly to obtain 

From Equation 87, the following Euler equation is obtained corresponding to the r coordinate: 

Finally, Equation 15 differentiated with respect to s becomes 

Equations 90 to 93 can be put into a form that is convenient for numerical integration by letting 

It3 y definition, we obtain 

- 
X 2  - X 6  ' 

Then, Equations 90 and 91 beco~ne 



Solving Equations 92 and 93 for i: and 8 and using Equations 94 to 99, it follows that 

a12a21 
where 



1 h 
+ =  - -.?Paxl + - (P -  oxl 

PA sin 2  X2 

. . I h 2hx6 cos x2 
@ =  - e&x5 + - ( P -  fix5) - 

2 3 
(1 19) 

PA sin X 2  sin X 3  

Equivalence of the Constants of Motion in the S and E Forms 

In Equation 17 for equatorial motion in the E form, there appear the two constants e* and h*, 
wKch are given by Equations 23 and 24. In the corresponding equation in the S form (Equation 44), 
there appear the constants e and h ,  which are given by Equations 37 and 38. It is obvious that these 
two sets of constants are not independent of each other. It will be shown that they are indeed identi- 
cal. Moreover, this identity holds not only for the case of motion in the equatorial plane but for all 
motion. 

From, the E form of the Kerr metric given by Equation 8, the Lagrangian F*(r*, 8 *, i* ,  0*, i*, f j  *) 
is 

Because dl;* is njot a function of $*, it follows that aF*lafj* may be set equal to a constant - 2h*; 
thus 

@*a2 sin2 O* par* 
t* sin2 8 " .  (121) 

P* 

Sirngarly, because F* is not a function of t*, aF*/at* may be set equal to a constant 2e* to obtain 

Solution of Equations 88 and 89 for motion in S coordinates for h and e yields 



Next, from Equations 10 to 13, it follows that 

i = i *  

Substitution for r, 8,(, and t from Equations 10, 1 1, 127, and 128 into Equation B 23 leads to 

Rearrangement of terms and substitution from Equation 14 yield 

which is precisely Equation 121 ; hence, 
h Z h * .  

Similarly, substitution for r, 8,(, and i from Equations 10, 11, 127, and 128 into Equation H 24 
leads to 

Again, rearrangement of terms and substitution from Equations 14 yield 

which is precisely Equation 122; therefore, 
e G e * .  



ANALYSIS OF EQUATORIAL ORBITS 

Approach 

A geometric-topological approach is used in the following analysis because there is no known 
direct analytical approach that provides exact so!utions. Moreover, even if one exists, it is expected 
that it would be rather long and cumbersome. For instance, in the case of the Schwarzschild gravita- 
tional field, a complete analytical solution of orbits as given by Hagihara (Reference 9) required 1 10 
pages in final journal form and was heavily dependent on elliptic functions. 

As in Appendix A, the results for each value of a are represented in a master diagram that gives 
the complete topologicaI genera of the orbits for various ranges of the two parameters h and e. In 
par"ccular, i:n the Newtonian limit, the quantity W e2 - 1 is the analog of 2E, where E is the energy 
per unit mass of the test particle. 

Summary off the Equation To Be Studied 

The equation of motion in the S form of a test particle in the equatorial plane of the Kerr gravita- 
tional field ]has been derived: 

where 

D(u)  = a2u2 - flu + 1 , (46) 

The constants of motion h and e are given by 

Without loss of generality, a > 0 is taken for the sake of simplicity of discussion. The quantities 
u,  4, h, and e have in Newtonian orbits the counterparts inverse radius, true anomaly, angular momen- 
tum per unit mass of test particle, and energy per unit mass of test particle, respectively. 

investigation of the Cubic B(u) 

The cubic B(u)  appearing in Equation 44 degenerates into h2 f (u )  for a = 0, where f ( u )  in this case 
is the one for the Schwarzschild gravitational field and h is a constant. Chan has made a complete 
study of f( ;w) for a = 0 and his results are now extended for values of a + 0. In view of this, it is 



desirable to study the cubic curve B(u). For h + ea f 0, B(u) = 0 can have only zero, one, two, or 
three positive roots. A general approach In this direction would require the algebraic knowledge of 
roots of the cubic equation, and this is wailable, but the analysis becomes very cumbersome algebrai- 
cally. In addition, it becomes more involved, for instance, in the case of one real pcsit~ve roor, 
whether the remaining two roots are real bui negative or are complex conjugates. Alternatively, the 
following approach can be taken: 011 successively differentiating 

it follows that 
dB 

B1(u) = - = 3P(h + ea)2u2 - 2[h2 + (1 - e2)a2 ] u + (137) 
du 

Hence, B"(u) is a straight line intersecting the u axis at 

where us is the point of symmetry of the cubic B(u). 

The intercepts, u;jl and u;j2 if they exist, of the parabola B1(u) with the u axis are given by 

where 

Now, in view of equation 139, Equation 140 can also be written in the form 

where for us > 0, the minus sign is associated with u;jl and the plus sign with u;j2 and for us < 0 the 
plus sign is associated with u; and the minus sign with uL2. 

From the coefficients of the parabola B1(u), noting that P > 0 in Equation 137, it follows that 
B1(u) can be classified into seven categories, as shown in Figure 1 : 

(a) No real root, us > 0 

(b) One real positive double root 

(c) Two distinct real positive roots 

(d) No real root, us = 0 



Figure 1 -Criterion for the seven classes of trace cubic curves. 

(e) No real root, us < 0 

(0 One real negative double root 

(g) Two distinct real negative roots 

Equations P 4 1 and 142 indicate that 

(1) V<Oforcases(a),(d),and(e). 

(2) V = 0 for cases (b) and (0. 

(3) 8 < V < 1 for cases (c) and (g). 

Correspondkg to these, the cubic B(u) can be classified into seven categories as shown in Figure 
2; for each case, all conceivable curves are qualitatively illustrated and are not obtained by simple 
vertical trar~slation from one another as can be verified by Equation 45. As a concrete example for 
discussion, the cubi'c-curve category c was chosen because it contains many features shared by the 
other types. The cubic B(u) is shown in Figure 3 with the three roots uB 1,B2,B3 (indicated by uI, 11, 111 

ira the figure) of B(u) = 0. In general, any real root of B(u) = 0 is denoted by uB . 
]For a double root, 

B(uB) = 0 

Hence, double roots of two types occur: 



Figure 2-Curves for each of the seven classes of trace cubic. 



Figure 3-Cubic curve o f  category c with W< 0. 

(2) - 
U B 2  -uB3 = u ; j 2 .  (146) 

For double roots of type 1 ,  uB = uB2 and Equation 143 becomes B(uk ) = 0. Substituting uLl 
from ]Equation 142, 

the square of wl~ich is 

SirnilarIy, for double roots of type 2, uB2 = uL2, and Equation 143 becomes I?(uL2) = 0. Substi- 
tuting uL2 diom Equation 142 and then squaring the resultant equation yields again Equation 148. 
That is, Equation 148 gives solutions of both type 1 and type 2 double roots of B(u)  = 0. 

Substituting for us and V from Equations 139 and 141 into Equation 148, the following equa- 
tion is obtained after much tedious algebraic work: 

where the coefficients Ai(e,  a, p )  are given by 

A, = a2 144 1 - e2 14a4 + p2a2 (27e8 - 72e5 + 62e4 - 16e2 - 1 )  + 4P4 e2 1 , (1 50a) 



Now, in principle, h can be solved as a function of e with a and /3 as parameters. However, this 
cannot be done in general because Equation 149 is of the sixth order. Instead, a relation between h 
and e with a and as parameters may be found by numerical methods. That is, for a given set (a, 0) a 
value of e is fixed and then values of h that satisfy Equation 149 are computed. This is then done for 
another value of e to obtain the corresponding values of h. Some typical results are presen1:ed in 
Figures 4 to 7; these figures are for 0 = 2 and a = 0, 0.7, 1, and 1.4, respectively. The symbols S and U 
designate, respectively, the loci for which double roots of B(u) = 0 of types 1 and 2 occur. That is, the 
S line is given by eliminating u; between 

and 

whereas the U line is given by eliminating uL2 between 

and 

Ht follows from Equations 142, 145, and 146 that there are no double roots of B(u) = O for 
V < 0. Because of this, the curves for which V = 0, known as V lines, are also plotted in Figures 4 to 
7. From Equation 45 it can be seen that the intercept of the cubic B(u) with the B(u) axis is given by 

so that 
B(0) = e2 - 1 = W , 

B(0) < 0 for W < 0 

B(0) > 0 for W > 0 . 
In these figures, the W lines are defined by W(e) = 0, where W(e) is given by Equation B 53. 

Next, the cubic B(u) is classified accordh~g to regions of the h, e space for a given set of (a, 0). 
For a = 0, B(u) degenerates to h2  f(u) where f(u) is the cubic studied by Chan in Append* A. Hn 
Figure A15 and Table A2, he has already classified the cubic into seven essentially differenl: regions of 
the h, W space labeled 1, 2, 3 ,4,4",  5, and 5". Table 1 gives the properties of the cubic B(u) in these 
regions and two other regions 6 and 6" which exist because of the additional cases of t?le quadratic 
Br(u) corresponding to u, < 0. 











Table 1-Characteristics of the cubic B(u) 
for various regions of the master diagram. 

and u>";320 not exist for V < 0. 

These cubics are shown in Figure 8. Using a one-to-one correspondence between F w r e s  LC and 
A1 5, the regions in Figure 4 are labeled. A little consideration reveals that the regions in Figures 5 to 
7 can be labeled as shown. Figure 4 is a master diagram for a = 0; however, Figures 5 to 7 are not yet 
master diagrams because f (u) = B(u)II2 (u) /E~ (u) and not just B(u)/h2 must be considered for a t' 0. 

For convenience, Z and N are defined as 

For Z > 0 and H # 0, the cubic B(u) of Equation 45 is similar to the one studied by Chan, wBrmich is 

and hence the labeling of regions 1, 2,3,4,4*,  5, and 5* of Figures 5 to 7 follow from Chan's work 
(Appendix A). The characteristics of the cubic B(u) corresponding to these regions are shown in 
Figure 8, which is equivalent to Table 1. We have already noted that for all seven of these regions the 
point of symmetry u, given by Equation 139 and the roots ubl and uL2 of Bf(u) = O given by Eqwa- 
tion 148 are greater than zero. 

In addition, two new regions previously mentioned occur for Z < 0 and W # 0. In these two 
regions the point of symmetry of the B(u) curve and the roots of Bf(u) = 0 are both less than zero. In 
region 6*, since V < 0, it is obvious that B(u) = 0 has only a single root, which is negative. In region 6, 
it can be proved that B(uLl ) > 0 and B(uL2) > 0 SO that there can only be one negative root of 
B(u) = 0. The details are given in Appendix B. Because of these additional regions, the lines for vlrhjlch 

known as the Z lines, are plotted in Figures 5 to 7. 



/v. B 

EGlON 2 : W <  0, V  > O  REGION 3 : W>O, V > O  

310N 5* : W< 0, V <  0 / REGION 4 REGION 

Figure 8-Characteristics of the B(u) curve in various regions. 

Finally, it remains to discuss the special case in which H = 0. For this, it is convenient to define 
the H line by 

H = h + e a = O ,  (159) 

which is always a straight line. From Equations 45 and 159 it is seen that on an N line, B(u) becomes 
the quadratic 

B(u) = -a2u2 + flu + e2 - 1 . (160) 
The roots of this equation are 

P *  Jp2 - 4a2(1 - e 2 )  



From Equation 16 1, it is noted that Equation 160 has distinct roots for 

a double root at 

and no real roots for 

As a summary, in the h, e plane for a given set (a, P)- 

(1) The S and U lines give the condition for double roots of the cubic B(u) = 0. 

(2) The I.' lines give the condition for double roots of the quadratic B1(u) = 0. 

(3) The W lines give the condition for B(0) = 0. 

(4) The Z lines give the condition for which the point of symmetry u, = 0. 

(5) The M lines give the condition for which B(u) is a quadratic; otherwise, B(u) is a cubic. 

investigation of the Function f(u) 

Now consider the equation 
D2 (u) 

f (u) = B(u) - 
E2 ( ~ 1  

where B(u), D(td), and E(u) (defined in Equations 45 to 47) are cubic, quadratic, and linear in u, 
respectively. Let uT be any root of the equation 

For a double root, 

Speclifically, let u, be any value for which these two equations hold. It can be shown that Equations 
167 and 168 are the necessary and sufficient condition for a circular orbit to exist. (See Appendix A 
discussion lof Equations A7 to A 10 and A 19.) 

Table 2 presents all of the conceivable combinations of the zeros of B(u), D(u), and E(u) for 
wEch Equation 166 could possibly have a degenerate root u,. That most of these cases are impossible 
can be shown as follows: Let uB , uD , and uE be any real root of B(u) = 0, D(u) = 0, and E(u) = 0, 



Table 2-Ways in which f (u )  = 0 could have a degenerate root u,. 

aThese cases are actually possible. 

respectively. That is, by definition 
B(uB) = 0 ,  

D(uD) = 0 ,  

E(u,)=O. 
The condition 

B(uD) = 0 

- 
U~ - U~ 

is examined first. From Equation 49, which is 

A D + ~ ~ B E E ~ ,  
and the definition D(uD ) 0,  

a2 B(uD ) = E~ (uD ) . 
It follows that 

Hence, cases 3, 4, 5, 8,  10, 13, and 15 of Table 2 are impossible. 

Next, the condition 
Df(uD ) = 0 



is considerecl. Differentiation of Equation 49 results in 

From Equations 49, 174, and the definition D(uD ) -= 0, it follows that 

Hence, from. Equations 17 1, 173, and 175, 

Therefore, case 6 of Table 2 is impossible. 

The condition 

is examined next. From Equations 49 and 174 and the definition E(uE) 0, the following are obtained: 

A1(uE)~(uE)  + A(uE) D1(uE) + a2 B1(uE) = 0 .  

From Equations 177 to 179, therefore, 

For Equation 180, there are three cases: (a) A(uE) = 0 and D(uE) = 0, (b) A(uE) = 0 and 
L)4uE) f 0, and 4c) A(uE) f 0 and D(uE) = 0. It is shown in Appendix B that A(uE) = 0 and 
D(uE)  = O cannot be satisfied simultaneously and hence case a is impossible. From Equation 18 1, it 
is seen that 

A1(u, )D(u, ) = 0 , (182) 
so that 

A1(uE) = 0 .  (1 83) 

It is shown in Appendix B that A1(uE) f 0 for any finite uE, and hence case b is impossible. Finally, 
from Equation 18 1, 

A(uE) D1(~,) = 0 , (184) 
so that 

D1(uE) = 0 . (1 85) 
It follows from this discussion that 



From the identity 
D(uE) = O*uD = uE * E ( u D )  = 0 ,  

Equation 186 becomes 
B(uE)  = 0 E(uD)  = 0 

=+ 

Bt(uE ) = 0 D1(uD ) = 0 

Hence, cases 9 and 14 of Table 2 are impossible. 

From Equations 45 to 47, we see that B(u;  h, e, a, P )  = 0, D(u; a, 0)  = 0, and E(u; h, e, a,  0) = O do 
not contain any common factors for all values of (h, e, a, 0). It follows that there exist values of 
(h, e, a, 6 )  for which cases 1, 2, 7, and 12 are possible. 

From Equations 172 and 176, the following is obtained: 

Because it is obvious from Equations 46 and 47 that the left-hand side of Equation 189 can be satisfied, 
case 1 1 is possible. 

Finally, for case 16, consider only the equations 

The remaining two equations, B(uD ) = 0 and Bt(uD ) = 0, are automatically satisfied in view of Equa- 
tion 189. It is shown in Appendix B that this set of equations has the solution given by the following 
equations: 



Hence, case 16 is possible. 

In s u m m q ,  all the possible cases for which f ( u )  = 0 can have a degenerate root at u, are 1, 2, 7, 
11, 12, and 16, as indicated in Table 2. 

Next, the properties of the cubic B(u) at the values uD and uE will be investigated. From Equa- 
tion 17 1 it follows that 

1 

which, in view of the definition D(uD) = 0 or 

~ ( u ~ ) = a ~ u g  - @uD + 1 = O ,  
becomes 

It is obvious that 

) > 0 otherwise , 

where uD is either of the two real roots uD and uD2 

In view of this, the Dl line and D2 line in the h, e space for a given set (a, 0) are defined by 
the respective equations: 

e@ D h + -  
1 = 0 

a u ~  1 

eP D 2 r h +  - = O ,  
a u ~  2 

where uD and uD2 are the two roots of D(u) = 0; i.e., 

- J- 
- 

u ~ 1 , ~ 2  
2a2 



In general, a D h e  refers to either one of these and thus may be defined by eliminating u between the 
equations 

It is shown in Appendix B that B(uE) has the following two equivalent forms: 

ae2 p2 h 
B(uE = (eh - a + ae2) [(:) + - - + p2 

p2 (h + el2 a e 

For convenience, the El line in the h, e space for a given value of a is defined as 

For the case p2 - 4a2 Z 0, so that by Equation 197 the roots of D(u) = 0 are real, it is preferable 
to use Equation 200 from which results 

h, e on D line 
B(uE) = 0- 

or h, e on El line 

B(uE) 2 0 otherwise. 

In this case, the sign of B(uE) is determined by the combination of the D and El lines. Typical results 
are presented in Figures 9 and 10 for 0 = 2 and a = 0.7 and a = 1, respectively. In Figure 10 the regons 
between the D lines disappear for a = 1. 

For the case p2 - 4a2 < 0, so that the roots of D(u) = 0 are not real, it is preferable to use Equa- 
tion 199 from which can be seen that 

B(uE)=O-h,eonEl line 
in view of 

because the discriminant (p2 /a2)(p2 - 4a2) < 0. Moreover, 

Hence, in this case the sign of B(uE) is determined by the El line only. Typical results are presented 
inFigure 11 fo r /3=2anda=  1.4. 









It follows that the El line is defined by eliminating u between 

and 

but 

Now that the sign of B(uD) and B(uE) can be determined in various regions of the h, e space, the 
conditions that determine the relation between the order of uE , uD1, and uD must be found as follows: 

From the definition of uE which yields 
h 

it is noted that the difference 6 defined by 
6 = u D  - U E  

can also be written as 

where uD is defined by 
a2u i  - /3aD + 1 = 0 .  

From Equations 208 and 209, it follows that 

a2 u i  - - S2 = U D 2  - UE - 
P(h + ea) 

Thus, the ordering of uE, uD and uD2 is determined by the H and D lines. 

Moreover, from Equation 209 and the relation 

1 

derived from it, Equation 196 for the two D lines may also be written as 

Hence, the H line does not lie between the two D lines. Also, the Dl line has a less-negative slope than 
the Dz line. Typical results are presented in Figures 12 to 14 for 0 = 2 anda = 0.7,1, and 1.4, respectively. 



ENERGY PER UNIT MRSS 





R
N

G
U

LR
R

 
M

O
M

EN
TU

M
 P

E
R

 
U

N
IT

 M
R

SS
 

Fi
gu

re
 1

4-
Ty

pi
ca

l 
cl

as
si

fic
at

io
n 

of
 h

, e
 s

pa
ce

 a
cc

or
di

ng
 to

 th
e 

or
de

rin
g 

of
 u

~
,

 
U

D
1,

 a
nd

 u
D

2 
an

d 
si

gn
 o

f u
~

 fo
r 

1 
<

a
 <

 00 
(s

ho
w

n 
he

re
 fo

r a
 =

 1
.4

);
 

in
 th

e 
ca

se
 1

.0
 <

 a <
 ", 

no
 r

oo
ts

 u
~

,
 

an
d 

u
D

2
 ca

n 
ex

is
t f

or
 D

(u
) =

 0
. 



(In these diagrams, subscripts 1 and 2 in the two D lines and subscript 1 from the El line hwe 
been omitted for the sake of simplicity. This use of notation should not result in the erroneous 
interpretation of these lines as the D(u) = 0 and E(u) = 0 lines, as defined in Equations 46 and 47. 
Rather, any line in the h, e space can denote at most only a relation F(h, e; a, 0) = 0, where a and 0 
are parameters, and cannot involve u.) 

Finally, from Equations 197 and 206 it can be seen that 

< o  h 
for - 

h + ea < o ,  

= 0 for h = 0 ,  
=+=J for h + e a  = 0 .  

As a summary of this investigation of the function f (u), the following points are given concerning 
the h, e space for a given set (a, 0): 

(1) The positive definiteness of B(uD) is determined by the D lines. 

(2) The sign of B(uE) is determined by the combination of the D and El lines. 

(3) The ordering of uE , uD and uD2 is determined by the combination of the D and H h e s .  

(4) uD and uD2 depend only on (a, 0); uD > 0 and uD2 > 0. 

(5) The sign of uE is determined by the combination of the e axis, h = 0, and the H line, 
h + ea = 0. 

(6) There are two D lines for p2 - 4a2 > 0, one degenerate D line for f12 - 4a2 = 0, and none for 
132 - 4a2 < 0. 

Construction of the Master Diagram 

In this section, the results of the two preceding sections will be used to construct the master dia- 
gram for each a such that it will give all admissible orbits corresponding to a given set 42, e and 0 = 2 in 
Equation 44. 

For concreteness, first consider the case of a = 0.7, which illustrates all the features of 0 < a < 1. 
Superposition of Figures 5,9, and 12 produces Figure 15. It is now necessary to divide the regions I ,  
2,3,4,4*, 5, S*, 6, and 6* into subregions which we will label with a letter as a suffix (Table 3). W i f i  
the information in Figure 8 and Table 3, it is quite easy to determine the ordering of the roots of 
B(u) = 0, D(u) = 0, and E(u) = 0 in the subregions of l ,4,4*, 5, 5*, 6, and 6". However, this deter- 
mination is more difficult in the subregions of 2 and 3 because it appears that the values of all these 
roots must be known explicitly to effect their ordering. The roots of D(u) = 0 and E(U) = 0 are given 





Table 3-Characteristics of the cubic B(u) for various subregions of h, e space for O < a < 1. 

agecause V < 0 in these regions, ui and uiI do not exist. 
Note: Because in subregions 2b, 2bf, 3b, 3bf, 5b*, and 5b*' B(uE) < 0 and ( d u / d ~ ) ~  = f(uE) = B ( u ~ )  [ D ~ ( U ~ ) / E ~ ( U E ) I ~  , it i s  

unnecessary to distinguish between the primed and unprirned subregions in the master diagram. 

explicitly by equations 197 and 206. The roots of the cubic B(u) = 0 are available from the algebraic 
theory of cubic equations but, as already mentioned, this leads to very cumbersome algebrajic expres- 
sions. Alternately, the same objective may be achieved by going continuously along some deskable 



curve in the h ,  e space from a subregion with known ordering to one whose ordering has to  be 

lFor instance, consider the boxed region P in the third quadrant of Figure 15. If we begin with 
(a) any point in subregion la, then we know from Figure 8 and Table 3 that the ordering of the roots 
is as shown in Figure 16a. Let us now take any continuous curve that goes from this starting point to 
(b) any point on the boundary given by the S line, then to (c) any point in region 2a, next to (d) any 
poht  on the boundary given by the W line, and finally to (e) any point in subregion 3a. Then, the 
ordering of the roots is obtained as shown in Figure 16. 

In the same way, we obtain the ordering in 
subregions 2d, 2e, 3d, and 3e in the fourth quad- 
rant of Figure 15 by starting from any point in 

U 

subregion 1 c as shown in Figure 17. 

I / Next, to determine the ordering of the roots 
in subregions 26 and 2c in the second quadrant 
of Figure 15, it is simplest to consider first any 
point on the H line in subregion 2b. The B(u) 
curve is now the degenerate quadratic given by 

u Equation 160. From Equation 195, B(uD ) > 0 
because the point under consideration is not on 
a D line. From Equation 2 1 5, it follows that 
uE = +-. Consequently, the ordering of the 
roots is as shown in Figure 18a. As described for 
Figure 16, the ordering of the roots is obtained 

u as shown in Figure 1 8. 

Finally, the ordering of the roots in subregions 
( c )  SUBREGION 2a 

(d) W-LINE BETWEEN ,SUBREGIONS 2a AND 3a 

( e )  SUBREGION 3a 

Figure 16-Ordering of u ~ ,  U D , ,  and u~~ in some 
illustrative subregions of the third quadrant in the 
master diagram of Figure 15. 

3b and 3c can be obtained from Figure 18; the 
ordering is the same except that now uB1 < 0 be- 
cause B(0) > 0 in region 3. 

From a knowledge of the ordering of the roots 
of B(u) = 0, D(u) = 0, and E(u) = 0 and from the 
fact that 

a complete characterization can be made of the 
f(u) curve in various subregions of the h,  e space 
for a given set (a, p). For the present case of 
0 < a < 1, this characterization is given in Fig- 
ure 19. For this reason, Figure 15 is known as a 
"master diagram." It is specifically for a = 0.7, 
but qualitatively valid for 0 < a < 1. 



(a) SUBREGION l c  (b) S-LINE BETWEEN SUBREGIONS (c) SUBREGION 2d 
Ic AND 2d 

(d) W-LINE SUBREGION 2d AND 3d ( e )  SUBREGION 3d (f) D-LINE BETWEEN SUBREGIONS 
3d AND 3e 

(h) W-LINE BEWEEN SUBREGIONS ( i )  SUBREGION 2e 
3e AND 2e 

Figure 17-Ordering of uE, 0 ~ ~ .  and uD2 in some illustrative subregions of the fourth quadrant in the master diagram 
of Figure 15. 

(a) H-LINE BETWEEN SUBREGIONS (b) SUBREGIONS 2b (left of H line) (c) SUBREGION 2b' (right of H line) 
2b AND 2b' 

(d) D-LINE BETWEEN SUBREGIONS ( e )  SUBREGION 2c 
2b AND 2c 

Figure 18-Ordering of u ~ ,  UD,,  and uD2 in some illustrative subregions of the second quadrant in the master diagram 
of Figure.15. 



c. 
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f(u) CURVE 
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f(u) CURVE f(u) CURVE 

B(u) CURVE 

f(u) CURVE 
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BIu) CURVE B(u) CURVE B(u) CURVE B(u) CURVE 
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REGION 3a REGION 3b REGION 3c REGION 3d 

Figure 19-Characteristics of the f(u) curve in various subregions for 0 <a < 1. 
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f(u) CURVE f(u) CURVE 
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f(u) CURYE /I/ REGION 2b-5b (U  line) 

f(u) CURVE 

REGION 2c-5c ( U  line) 

Figure 19 (continued)-Characteristics of the f (u)  cunte in various subregions for O < a < 1. 





In the same way, the characterization for the case of a  = 1 is given in Figures 20 and 21 and 
Table 4, and for the case a  = 1.4, which is qualitatively valid for 1 < a  < -, the characterization is 
given in Figures 22 and 23 and Table 5. 

Master diagrams for 0 = 2 and for values of a  ranging from a  = 0 to a  = 100 are presented in Appen- 
dixC. FiguresCl toC10arefora=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,and0.9;FigureCB1 isfor 
a =  l ;andFiguresC12toC38arefora= 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 ,3 ,4 ,  S,6, 7, 8,9,  
10, 20,30,40, 50, 60, 70, 80, 90, and 100. 

The method of obtaining the mathematical solutions u(@) from the differential equation, Equa- 
tion 44, is discussed next. The equation 

o2 (u) 
= f (u) = B(u) - 

E2 (u) 

is autonomous; therefore, the whole one-parameter family of solutions is given by 

where c is an arbitrary constant. That is, if any one solution in the family is known, the others in the 
family are obtained by a translation. However, from the theory of nonlinear first-order ordina~y dif- 
ferential equations it is possible that there are singular solutions of Equation 2 16 that are not included 
in Equation 2 17. These singular solutions are of various types, among which are the ""iolated9' solu- 
tion, the envelope, and the "asymptotic" envelope as discussed in Appendix A. Hence, because the 
f (u) curve is already classified in Figures 19, 2 1, and 23 for 0 < a  < 1, a  = 1, and 1 < a < =, respec- 
tively, it is quite easy to sketch qualitatively the solutions u(@) in the various subregions of the t h e e  
kinds of master diagrams typified by Figures 15, 20, and 22. 

The special case in which there is a subregion with f(uE) = +=; i.e., B(uE) > 0, D(uE) f 0, and 
E(uE) = 0, gives quite unexpected results because it leads to 

and, at first sight, it is uncertain which of the two branches should be taken to continue the solution 
u(@) at uE. The governing principle is that the solution is to be continued in such a way that the proper 
time s always increases. From Equations 14,42,46, and 47, the following is obtained: 

From this equation and the condition given by Equation 21 8, it follows that an orbit must be chosen 
with a reversal in @ at uE. 

The qualitative solutions for each subregion of the master diagram are presented in Appendix ID 
for 0 < a  < 1 (Figures D 1 to Dl 5), a  = 1 (Figures D 16 to D29), and 1 < a  < - (Figures D30 to D42). 
In addition, the "physical orbits", i.e., orbits in the r, $J plane, are sketched. 
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Figure 21-Characteristics of the f (u)  curve in various subregions for a = 1. 







Table 4-Characteristics of the cubic B(u) for various subregions of h, e space for a = 1. 

agecause V < 0 in these regions, u; and uiI do not exist. 
Note: Because in subregions 2b, 2bf, 3b, 3bf, Sb*, and Sb*' B(uE) < 0 and (du/d@12 E f(uE) = B ( u ~ ) [ D ~ ( u ~ ) / E ~ ( u ~ ) ] ,  it is 

unnecessary to distinguish between the primed and unprirned subregions in the master diagram. 
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Figure 23-Characteristics of the f (u)  curve in various subregions for 1 < a  < w. 
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Figure 23 (continued)-CharaGtaristics of the f ( u )  curve in various subrqions for 1 <a  <=, 





Table 5-Characteristics of the cubic B(u) for various subregions of 
h,  e space fora > 

aBecause a > 1 and @ =  2, uD1 and U D ~  do not exist. 
b~ecause V < 0 in these regions, u; and u' do not exist. 
Note: Because in subregions Zb, 2b': 3b, 3b: 5b*, and 5b*' B(uE)< 0 and 

(du/d@12 = f(uE) = B ( U ~ ) [ D ~ ( U ~ ) [ E ~ ( U ~ ) ] ,  it is unnecessary to distinguish between the p d e d  
and unprimed subregions in the master diagram. 



From these diagrams, a collection of all the various types of orbits is obtained (Figure 24); there 
are 25 essentially different ones. In this diagram, the name given to describe each orbit attempts to 
illustrate its properties at r,,, and rmin. For example, for orbit of type 6, the outer part of the orbit 
is like that of a parabola whereas the inner part is that of a limit circle. 

All the results of the solutions given in Appendix D and Figure 24 are tabulated in Table 6, which 
shows all admissible orbits in each subregion of a master diagram for 0 < a < 1, a = 1, and 1 < a < =. 

TYPE IS:  STABLE CIRCULAR ORBlT 
TYPE I U :  UNSTABLE CIRCULAR ORB11 

TYPE 5r: ELLIPTIC L IMIT CIRCLE 
WlTH REVERSAL 

@ 
TYPE 8: LIMIT-CIRCLE SPIRAL 

69 
N P E  2: ELLIPTiC-LIKE ORBlT 

fl 
N P E  6: PARABOLIC L l M l T  CIRCLE 

N P E  Br: LIMIT-CIRCLE SPIRAL 
WlTH REVERSAL 

J -) ,' 

N P E  3: PARABOLIC-LIKE ORBlT NPE 4: HYPERBOLIC-L~KE ORBIT N P E  5: ELLIPTIC L IMIT CIRCLE 

N P E  7r: HYPERBOLIC L l M l T  CIRCLE 
TYPE 6r: PARABOLIC L l M l T  CIRCLE 7: HYPERBOL'C 'IRCLE WlTH REVERSAL 

WlTH REVERSAL 

N P E  9: ELLIPTIC SPIRAL 

WITH REVERSAL 
TYPE lor: PARABOLIC SPIRAL N p E  11: HYPERBOLIC SPIRAL TYPE Ilr: HYPERBOLIC SPIRAL 

WlTH REMRSAL 

TYPE 15: CUSPED ELLIPTIC SPIRAL 

TYPE 14: CUSPED ELLIPTIC L IMIT CIRCLE 

TYPE 13: LIMIT~CIRCLE ELLIPSE 

Figure 24-Types of orbits that exist in the equatorial 

TYPE 9r: ELLIPTIC SPIRAL NPE 10: PARABOLIC SPIRAL 
WITH REVERSAL 

NPE 12: LIMIT-CIRCLE 
L l M l T  CIRCLE 

- 

N P E  16: UNBOUNDED L l M l T  CIRCLE 
RADIAL AT I N F I N I N  

N P E  1Zr: LIMIT-CIRCLE 
LIMIT CIRCLE 
W I M  REMRSAL 

N P E  17: UNBOUNDED SPIRAL 
RADIAL AT I N F I N I N  

plane of the Kerr gravitational field. 



Schwarzschild Metric 



cs\ Table 6-Complete classification of the orbits of a test particle in+ the equatorial plane of the Ken  gravitational field by region and 
E3 

subregion of the master diaaams-concluded. 

Schwarzschild Metric 
a = 0 

1-2 (S line) 

2-5 (U line) 

3-4 (U line) 

2-3 (W = 0 line) 

4-5 (W = 0 line) 

Admissible 
Orbits 

1 a-2a (S line) 
1 b-2e (S line) 
1 c-2d (S line) 

2a-5a (U line) 
2b-5b (U line) 
2c-Sc (U line) 
2d-5c (U line) 

3a4a (U line) 
3b4b (U line) 
3c4c (U line) 
3d-4c (U line) 

2a-3a (W = 0 line) 
2b-3b (W = 0 line) 
2c-3c (W = 0 line) 
2d-3d (W = 0 line) 
2e-3e (W = 0 line) 

4a-5a (W = 0 line) 
4b-5b (W = 0 line) 
4c-5c (W = 0 line) 

Admissible 
Orbits 

lU, 7r, 8 ,12 
lU, 7 ,8 ,12 
lU, 7r, 8 ,12  
IU, 7 ,8 ,12 

IS, lU, 5r,8,12 
IS, lU, 5,8,12 
IS, lU, 5,8,12r 

lU, 5,8,12,12r 
lU, 5 ,8 ,12  
lU, 5,8,12,12r 
lU, 5,8,12,12r 

lU,7,8,12,12r 
lU, 7 ,8 ,12 
lU, 7,8,12,12r 
lU, 7,8,12,12r 

lU, 3, 5r, 8 ,12 
lU, 6 ,9 ,12,13 
lU, 6,9,12r, 13 
lU, 3,5,8,12r 
lU, 3 ,5 ,8 ,12 

lU, 6r, 8 ,12 
lU, 6 ,8 ,12 
lU, 6,8,12r 

Ke:: Metric 

1 a-2a (S line) 
lb-2e (S line) 
2b (S-D line) 

2a-5a (U line) 
2b-5b (U line) 
2b-2e (U-D line) 

3a-4a (U line) 
3b4b (U line) 
3b-3e (U-D line) 

2a-3a (W = 0 line) 
2b-3b (W = 0 line) 

2e-3e (W = 0 line) 

4a-5a (W = 0 line) 
4b-5b (W = 0 line) 

Admissible 
Orbits 

Admissible 
Subregiona 

Orbits 

1 a-2a (S line) 
lb-2b (S line) 

2a-5a (U line) 
2b-5b (U line) 

3a-4a (U line) 
3b4b (U line) 

2a-3a (W = 0 line) 3,9r 
2b-3b(W=Oline) , 3 , 9  

4a-5a (W = 0 line) lor 
4b-5b (W = 0 line) 10 



4a*-5a* (W = 0 line) 
4b*-5b* (W = 0 line) 
4c*-5c* (W = 0 line) 

la-1 b (E line) 
6b * (E line) 
5a*-5b* (E line) 

2b (H line) 
3b (H line) 

lb-lc (Dl line) 
2b-2c (Dl line) 
2d-2e (D 1 line) 
3d-3e (Dl line) 
5b-5c (Dl line) 
5b*-5c* (Dl line) 
2b-2c (02 line) 
3b-3c (02 line) 

4a*-5a* (W = 0 line) 
4b*-5b* (W = 0 line) 

la-1 b (E line) 
6b * (E line) 
5a*-5b* (E line) 

n(E line, W = 0 line) 

2b (H line) 
3b (H line) 

2b (D-S line) 
2b-2e (D-U line) 
3b-3e (D line) 

4a*-5a* (W = 0 line) 
4b*-5b* (W=Oline) 

la-lb (E line) 
6b* (E line) 
5a*-5b* (E line) 

n(E line, W = 0 line) 

l b  (H line) 
2b (H line) 
3b (H line) 

1 10r 
10 

1 U, 6,8r 
1U,6,8 

15 
11 
15 

17 

None 
2 
4 

aRegions or subregions separated by a hyphen denote the b o u i l d ~  common to f f ~ e  ~egions or subregions. The symbol n denotes the boundary point common to the 
subregions that follow it. 



In this section, four topics will be discussed: (1) the determination of direction of orbital motion 
for a given set of constants of motion (h, e) for the test particle in the Kerr field of a central body with 
mass rn = 11 and a given specific angular momentum -a, (2) the scaling of master diagrams and solutions 
from the case in which 0 2m = 2 to one in which P f 2, (3) the conversion of the results obtained in 
the S coordinates to those in the E coordinates, and (4) the behavior of solutions in the neighborhood 
of the pseudosingulaity at u = uD . 

Direction of Orbital Motion 

From Appendix D, which illustrates the admissible types of orbits in each subregion of a master 
diagram for the cases of 0 < a < 1, a = 1, and 1 < a < =, it is observed that the mathematical solution 
u(gl) of Equation 44 has two branches at every point in the 9, u plane in which the one-parameter 
famdy of solutions F(rj + c,  u )  = 0 is defined. One would expect that the branch to be taken is deter- 

ed by the spedfic angular momentum h of the test particle. Such is the case in the Schwarzschild 
gravitational field. For the present case there is the more general condition given by Equation 2 19, 

in wkch the proper time s is taken to be always increasing. This equation thus determines the direc- 
tion of orbital motion. 

For an illustrative case, consider a central body with 0 = 2 and a = 0.7 and a test particle with 
h < 0 and e < 63 such that (h, e) lies in region l a  in the third quadrant of the master diagram given by 
Figure l 5. (There is also a subregion la  in the first quadrant for which h > 0 and e > 0.) Table 6 
hdicates that there are four kinds of orbits for this subregion: 1 U, 5r, 8, and 12, which are then 
o b t ~ n e d  from Figure 24. In subregion l a  of Figure 15, h + ea < 0; and Figure Dl shows that 
0 < uE < uD < uD 2 .  With this information, Figure 25 was constructed, which indicates that @ 
decreases for uB < u < uE and uD < u < uD and 9 increases for uE < u < uD and uD < U .  

Consequently, the orbits have direction of motion as shown in Figure 26. 

Sealing of Master Diagrams and Solutions 

Bn this work, the value 0 = 2 was arbitrarily set by taking the central body to have mass m = 1. 
The results of this study can easily be applied to the case 0 Z 2: Suppose that for a given set (h, e, a, P) 
there is thle solution 

u = ~ ( 9 ;  h, e, a, 0) (221) 
of the differential equation 



Figure 25-Illustrative case of determination of sign of d+/ds. 

Figure 26-Illustrative case of determination of direction of 
motion. 



Next, Bet a set of new variables (3, ii, 5, Z, a', 0) be defined by 

where h is an arbitrary constant not equal to zero; then, it is obvious from Equations 45 to 47 that 

B(ii; h, Z, a, 3) =B(u; h, e, a, p) 

D(G; a, p) D(u; a, 0) (223) 

E(ii;h, e,Z, P)=XE(u;h, e, a, P) 
and that 

From Equations 44, 223, and 224, it follows that 
- 

= ii(& h, e, a, fl) 
is automatically a solution of the differential equation 

Hence, the transformations in Equation 222 yield the desired scaling of the master diagram and the 
solution. 

As a concrete example, consider the case of a central body with mass m = 5 (i.e., = 10) and 
specific angular momentum -a = - 3 and a test particle with constants of motion h = 7 and e = 1 1. 
Because the master diagrams in this work are constructed for 0 = 2, from Equation 222 it follows that 

the master diagram for which 
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and the subregion containing the point - 
h 7 h = - = -  = 1.4 
X 5 

are then used to obtain the various types of admissible orbits and the direction of motion. IFrom these 
orbits in the r, l$ plane, the orbits in the < 5 plane are obtained from the relations F= b = 5r and 8 = 4. 
That is, the desired admissible orbits are stretched by a factor of 5. 

Conversion of Results From S to E Form 

The present qualitative solutions are obtained by considering the differential equation that is in the 
S form, Equation 44. However, to obtain the solutions in the E form for which the differential equa- 
tion is 

where A *, B*, and C* are given by Equations 19 to 2 1, it is not necessary to solve this more corngli- 
cated equation. Instead, Equations 10, 12, 14, and 46 are used to obtain 

du* - du - - -  
dl$* dl$* 

- a dr* 

dl$ A dl$* 

where D # 0. Therefore, 

Inview of the fact that (h*, e*) G(h, e) as proved earlier, Equation 232 gives the solution u(@*;h*, e*,aa, P )  
in the E form from a knowledge of the solution u(l$; h, e, a, P )  in the S form when D # 0. 

Because du/dl$ -+ +oo as u -+ uE , it is concluded from Equation 232 that 



Equation 23 1 indicates that if D $: 0, then 

which holds at u = uB, as can be easily seen from Equation 44. 

For the case in which du/d@ f 0 or du/d@ $: +=, Equation 23 1 may also be used to study the 
qualitative nature of the conversion of du/d@ to du/d@* as follows: For simplicity, let a > 0. Then, 
there are two cases: .D > 0 and D < 0. 

For D >. 0, there are four subcases. Subcase 1 has the conditions 

so that 

or 

In subcase 2, 

so that 

which is a contradiction; hence, this case is impossible. For subcase 3, 

so that 



or 

Subcase 4 has the conditions 

so that 

which is a possibility and for this 

Similarly, the corresponding four subcases for D < 0 are the following: 



Thus, EquaGons 233 to 240 are sufficient to provide all the pertinent information for conversion 
of any solution in the @, u plane to one in the @*, u plane, provided that D + 0 anywhere in the 
solu~on. Because Equation 230 is also autonomous, the one-parameter family of solutions is given by 

so that all the remaining members in the family can be obtained from any one member by a simple 
transla~on. Figures 27 and 28 illustrate, respectively, the transformation of u(4) to u(@*) in the 
neiglrborhood of a turning point and of a reversal point. 

F ig re  27-Conversion of S form to E form in the neighborhood of a turning point P. 



Figure 28-Conversion of S form to E form in the neighborhood of reversal point Q 

Pseudosingularity at u = u, 

In the transformation from E to S coordinates given by Equations 10 to 13, a pseudosinguldly 
is introduced when A = 0; i.e., D(u) = 0. This means that the transformation of the qudta tke  results 
back from S to E coordinates holds only if D f 0; i.e., u f uD . 

It remains now to study the behavior of solutions u(@*) in the neighborhood of u = udD. For this, 
we must go directly to the equation of motion in E form (Equation 17) which, in view of ht u*, 
e e*, and h h*, may be written simply as 



Hence, if D(u) = 0, then 

Now from Equation 172 which is 

U U 

D >+O 
INFLEXION POINT 

'U D 

D>-O 

Figure 29-Behavior of solution u($*)  in the neighborhood of u = uD # uE. 



and Equation 244, it follows that only the neighborhood of u = uD # uE need be shtdied because 
otherwise the only possibility is 

This equation and the results of the conversion from S to E form suffice to detemine the qualitative 
nature of the solution u(4*) in the neighborhood of u = uD = uE. 

Remembering that by Equation 195 B(uD ) > 0 under these conditions and using Equations 236 
to 241 and 244, the six cases for the solution u(@*) in the neighborhood of u = uD # ut? we deter- 
mined as illustrated in Figure 29. 

Finally, Equation 243 indicates that, at a reversal point in the solution u($*), A(u) = 10 must hold. 
In other words, 

where 

which is obtained from Equations 19, 13 1, and 134. 

CONCLUSIONS 

The main results are summarized as follows: 

(1) For equatorial orbital motion, the differential equation in the S coordinates is used because 
of its simple form. 

(2) For p = 2 and 0 < a  < =, several master diagrams are obtained for the h,  e space of parmeters. 

(3) These master diagrams are of three types corresponding to the ranges 0 < a < 1, n = 1, and 
1 <a<-. 

(4) Each master diagram is divided into subregions such that each has the same types of admis- 
sible orbits. 

(5) There are 25 essentially different types of orbits for a # 0 (Kerr metric) as compared to 1 li 
for a = 0 (Schwarzschild metric). 

(6) Among the most interesting results are orbits with reversal points or cusps. 

(7) A method is given for scaling master diagrams and solutions for the case of /3 # 2. 
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Appendix A 

A QUALITATIVE STUDY OF THE COMPLETE SET OF SOLUTIONS OF THE 
DIFFERENTIAL EQUATION OF MOTION OF A TEST PARTICLE IN  THE EXTERIOR 

SCHWARZSCHILD GRAVITATIONAL FIELD 

F. K. Chan 
Department o f  Space Science and Applied Physics 

Catholic University o f  America 
Washington, D. C. 

INTRODUCTION 

The relativistic orbits of a test particle around a centrally attracting mass have been studied time 
and again since Einstein (References A1 and A2) first studied the quasi-elliptic orbits in connection 
with his analysis of the precession of the orbit of Mercury around the Sun. Later work on this type of 
orbit has been contributed by several authors among whom are Droste (References A3 and A4), 
de Sitter (References A5 and A6), Greenhill (Reference A7), and Forsyth (Reference A8). Although 
Droste and Morton (Reference A9) have also considered various other types of orbits, theiir works are 
not really complete because they do not give an exhaustive account of all possible types of orbits. It 
was not until the work of Hagihara (Reference A10) that a truly complete and exhaustive analytical 
treatment of the whole problem was first published. Work following this includes that of ICaplan 
(Reference A1 1) who studied only the circular orbits, Darwin (References A1 2 and A 13) who obtained 
a fairly detailed but not totally complete account of the various types of orbits, Metzner (Reference 
A14) who essentially completed the studies of Darwin, and Galkin (Reference A1 5) who made some 
study, though not elaborately revealed, on certain aspects of relativistic orbits. A fairly complete 
account is also given by ArzeliZs (Reference A1 6). However, the works of Hagihara, Darwin, and 
Arzelie's, to mention the most authoritative sources on the subject, are rather involved and rely heavily 
on the use of elliptic functions. A different and apparently much simpler approach to the analysis of 
these orbits, involving a qualitative study of the solutions of the governing differentian equatioi~ of 
motion of the test particle, was obtained by the present author in 1965 with only a knowledge, at that 
time, of the first paper of Darwin. The analysis given here is essentially taken from his unpublished 
work on certain aspects of nonlinear ordinary differential equations in which he studied, as an exam- 
ple, the relativistic differential equation of motion of a test particle in an exterior Schwarzschind 
pavitational field. 



The motion of a test particle in the exterior Schwarzschild gravitational field produced by a 
spherical bo'dy of mass m is given by the well-known equation 

where h and W are constants of the motion dependent only on the initial conditions of the test parti- 
cle. The qumtity h may be interpreted as the angular momentum per unit rest mass of the particle, 
except now, as contrasted with the Newtonian analog, it is defined in terms of the rate of change of 
the angle @ with respect to the proper time s of the particle, i.e., 

The quantity W may be interpreted as a measure of the "energy" of the particle and in the Newtonian 
h i t  it reduces to 2E, where E is the total energy per unit mass of the particle. 

Topolo~ca'i properties of the solutions satisfying Equation A 1 will be studied by considering the 
geometric-topological nature of the surface a(@, u, v) = 0, where for convenience ( d ~ / d @ ) ~  is denoted 
by v. In Equation Al,  @ does not appear explicitly; consequently, in the 4, u, v space, the surface - 

a(@, w, v) = 0 is a cylinder with a cubic curve as the trace in the u, v plane. Because the radius r is 
defhed to be nonnegative, the region to be studied is in the $, u plane for which u > 0. Furthermore, 
it is necessary that u 2 0; therefore, the region to be considered in the $, u plane is that for which 
w > 0 and v > 0. Consequently, conditions are sought for which there are zero, one, two, or three 
positive roots of the trace cubic curve. A general approach in this direction would require the algebraic 
knowledge of roots of the cubic equation and this is available; but the analysis becomes very cumber- 
some algebraically. In addition, it becomes more involved, for instance, in the case of one real posi- 
tive root whether the remaining two roots are real but negative or are complex conjugates. 

However, in the following analysis the surface +(@, u, u) = 0 will be studied without having to 
consider these difficulties. In this process, a geometric meaning will be given to the angular momen- 
hum h and the energy W. Also, because the surface is cylindrical, only the trace in the u, v plane will 
be considerled. 

For convenience, the expression on the right-hand side of Equation A1 is denoted by f(u), so that 

2m 
f (u) = 6mu2 - 2u + - , 

h2 



It is seen that f"(u) does not involve h or W and is therefore independent of the initial conditions of 
the test particle. In other words, the curve f "(u) is the same for all orbits in the field of a gravitational 
mass m; it is a straight line intersecting the u axis at u = 1/6m or r = 6m. 

The first integral of fff(u), i.e., ff(u), is a parabola with the axis of symmetry at us = 1/6m. From 
Equation A4, it is seen that the angular momentum appears in the constant of integration. If they 
exist, the intercepts ujl and u;, of this parabola ff(u) with the u axis are given by 

which indicates that 0 < uil < 1/6m and 1/6m C ui2 < 1/3m. A sketch of this family of parabolas, 
with h2 as the parameter, is shown in Figure Al.  

The second integral of fU(u), i.e., f(u), is a cubic curve and involves a second a r b i t r q ~  constant 
given by w/h2. That is, the quantity W which is a measure of the energy of the particle appears only 
in the second integral off "(u), whereas the angular momentum h makes its first appearnee in the 
first integral of ff(u). A sketch of this family of cubic curves, with W as the parameter, corresponding 
to the four cases of the parabolas given in Figure Al,  is shown in Figure A2. 

The two intercepts, if they exist, of the parabola ff(u) determine the maximum and the minimum 
of the cubic curve f(u) and are in turn determined by the angular momentum. Consequenl:ly, the role 
of the angular momentum h is to determine the distance of separation between the points of maximum 

and minimum in the f(u) curve, whereas the 

I fiu) I I quantity W or rather w/h2 determines its verti- 
I I 
I I 

cal displacement. 

The region in the @, u plane for which u 2 O 
and v 2 0 is a simply connected one for the case 
in which 0 < h < 1 2m2, as seen in Figure A2. 
However, for h2 > 12m2, it is possible for this 
region to consist of two simply connected se- 
gions that are disjoint from each other (see Fig- 
ures A2c and A2d); this situation comesponds to 
the case in which the cubic curve f(u) has two 
or three real positive roots. 

Attention will be focused on the trace cubic 
curve as shown in Figure A2c because it con- 
tains features that are shared by the other thee  
types. For example, consider the surface 
a(@, u, v) = 0 with trace on the u, u plane as 
shown in Figure A3. The quantities and u ; ~  
(u; and uiI in the figure) correspond to the two 

Figure Al-Criterion for the four classes of trace cubic roots of the parabola fl(u) = O and are given by 

curves. Equation A6, whereas the quantities ufl , uf2, 



Figure A2-The four classes of trace cubic curves. 



Figure A3-Trace cubic curve of class c with W< 0 and 1/4m < u;,  < I/&. 

and uf (uI, uII, uIII) correspond to the three roots of the cubic curve f(u) = 0. From this, the surface 
F(@, u, w) = 0 is obtained (Figure A3) where w = duldq5; this surface corresponds to Equation A B in 
the 4, u, w space. 

From F(4, u, w) = 0, it is easily seen that in the 0, u plane the three lines u = uf uf2, and uf3 
correspond to envelopes or singular solutions; this result follows from the sufficient conditions (see 
Reference 1 7): 

F(4, u, w) = 0 , (87) 



From the trace of the surface F(4, u, v) = 0 as shown in Figure A3, the family of solutions u = u(4) as 
&own in Figure A4 is obtained. 

The solutions uf < u(Q) < uf2 are periodic and almost sinusoidal. In fact, they correspond to 
the elliptic orbits of the Newtonian theory for which the trace in the u, v plane is a parabola so that 
the coltresponding trace in the u, w plane is a circle. As contrasted with the Newtonian theory, the 
relativistic theory gives an additional region u(@) > uf 3 ,  where solutions exist. 

ILet us now study the effects of shifting vertically the surface @(4, u,  v) = 0 or, equivalently, the 
trace in the u, v plane. This corresponds to the parameter W assuming various values. 

If this cubic curve is lowered, the u(@) solutions as shown in Figure A4 retain their topological 
properties until the situation is reached where the roots uf and uf2 coincide, given a double root 

- I u = ufl = uf2 - uf l .  Here the whole family of solutions uf < u(@) < uf has degenerated into a single 
line u = uil which is now an "isolated solution" and corresponds to the case of circular orbits. (Per- 

Figure A4-Solutions u(4) corresponding to differential equa- 
tion given by trace cubic curve of Figure A3. 



haps it should be pointed out here that the three singular solutions u = uf uf2, and q3 as shown in 
Figure A4 are not physically admissible as real orbits because they are three circles of different radii 
but with the same angular momentum h and also the same "energy" measure W. However, they are 
mathematically admissible because they are also solutions of the differential equation of motion.) On 
shifting the trace curve lower, we see that only the region u(@) > uf3 continues to persist and notlning 
essentially different happens thereafter. 

Now if the trace curve as shown in Figure A3 is raised, again there are no topological changes in 
the solutions u(@) until either one of two situations occurs: Either the cubic cuwe at u = O becomes 
positive before the minimum point at u = u;, does or vice versa; i.e., either f(0) >f(ui2 ) or vice versa. 
As shown later in this analysis, the criteria for these two cases are 1/4m < ui2 < 1/3m and 1/6m < 
ui2 < 1/4m, respectively. However, for the present discussion, it does not matter which happens first, 
and only the former case will be considered in detail. When this situation is reached, there is no change 
in the mathematical properties of the solutions ~ ( 4 ) ;  they are still oscillatory in nature except that now 
they assume at various points the value u(q5) = 0. Physically, however, it means that the particle s tat-  
ing at some initial radius greater than I/u either begins to move inward, corresponding to olne family 
of solutions, to some smaller radius and then flies off to infinity or, on the other hand, it begins to 
move outward to infinity, corresponding to the other family of solutions. In either case, the particle 
"barely" makes it to infinity. 

Now, for the sake of convenience, an orbit is classified as elliptic-, parabolic-, or hyperbolic-l&e 
according to whether W is less than, equal to, or greater than zero. This criterion reduces to that for 
Newtonian orbits except that now the orbits are not true ellipses, parabolas, or hyperbolas.. Also, 
the orbits shown in the upper region of Figure A4 will be referred to as "captured" orbits because they 
are bounded and eventually fall into the central attracting mass because u($) +- M, a.s @ + +-=. 

If we continue to raise the trace cubic curve higher, no essential changes oc(cur in the orbits ex- 
cept that they become hyperbolic-like. Eventually the situation is reached in which the roots uf2 and 
uf3 coincide, thus giving a double root u = uf2 = uf3 = u;, . The traces on the u, u plane and the u,  w 
plane now appear as shown in Figure AS. 

If the variable 17 is defined as 
q = u -  u;, , 

then it may be verified that Equation A1 can also be written as 

where 

Because h2 > 12m2 for the type of trace cubic curve being considered (see Figure A ~ c ) ,  from Equa- 
tions A6 and A13 it follows that we have a2 > 0. 



Figure A5-Trace cubic curve of class c with W>O and 
1 /4m < u; , < 1 /3m. 

In a small neighborhood of the line u = u;, in the 0, u plane, 

from which the whole family of solutions is given by 

In other words, instead of having the regular type of envelope at u = u;~, there is an "asymptotic" 
envelope and the family of solutions u(0) is shown as sketched in Figure A6. For completeness of 
discussion, if h2 = 1 2m2, then a2 = 0 and Equation A1 2 becomes 

from which is obtained 
U = U i 2  + 4(c+fi3 G ) - ~  , 

thus giving solutions that are essentially the same in nature as those sketched in Figure A6. 



Figure A6-Solutions u(q5) corresponding to differential equation 
given by trace cubic curve of Figure A5. 

Corresponding to the two solutions passing through a given point in the 4, u plane, from Figtare 
A6 is seen that a test particle, starting at some initial radius greater than l / u b ,  would either spiral in 
toward a circle of radius 1 1 ~ ; ~  or would fly off to infinity. Similarly, if it is initially inside that circle 
it would either spiral out toward it or would fall into the center of the attracting mass rn. The circle 
of radius l/ui2 in this case is a physically admissible orbit and any particle starting to move on it will 
continue to do so. However, this circular orbit is unstable with regard to any small perturbation in 
the sense that any outward disturbance would send the particle off to infinity whereas any inward one 
would send it into the center of the attracting mass. In contrast, the circular orbits previously dis- 
cussed with radius l/uil are stable because any perturbation, inward or outward, would result in an 
elliptic-like orbit close to the unperturbed circular one. 

Considering now the case in which the minimum point of the trace cubic curve becomes positive 
before the point at u = 0 does (i.e., f (ub)  > f(O)), it is seen that there are essentially no differences 
from the previous case as illustrated in Figures A5 and A6 except that now the orbits are bounded 
instead of unbounded, as shown in Figures A7 and A8. 

Summarizing the more important results obtained up to this point, the conditions 0 < uil < 1/6m 
and 1/6m 6 ui2 < 1/3m have been established and, from the nature of the solutions illustrated in 
Figures A4, A6, and A8, it is seen that circular orbits with radius 6m < r < 03 are always stable whereas 
those with radius 3m < r < 6m are always unstable with regard to perturbations. Moreover, for 
4m < r < 6m the outward perturbed orbits are bounded whereas for 3m < r < 44m they are unbounded; 



Figure A7-Trace cubic curve of class c with 
W <  0 and 116m < u;, < 114m. 

Figure As-Solutions ~ ( $ 1  corresponding to dif- 
ferential equation given by trace cubic curve of o - 0 

Figure A7. 



in both cases the inward perturbed orbits eventually fall into the central attracting mass nit. The mGn 
result is that no circular orbit can exist with a radius r < 3m. It has also been estabfished that, be- 
cause 1 /6m < ui2 < 1 /4m corresponds to the case off (0) < f (u;~), all the elliptic-Be orbits must 
have a perihelion not less than 4m. (See Figure A7.) Similarly, because 1/4m < u h  < 1/3m corre- 
sponds to the case off (0) > f (ui2 ), therefore all hyperbolic-like orbits must have a perihelion not less 
than 3m. (See Figure AS.) Also, the minimum perihelion for a parabolic-like orbit is 4m. 

If both the trace cubic curves as shown in Figures A5 and A7 are raised, then the two correspond- 
ing families of solutions u(@) are obtained as,shown in Figures A9 and Al0. On further rGsing the 
trace cubic curve in Figure A7 so that it is everywhere positive for u > 0, then the fmily of solutions 
in Figure A10 will look essentially like that in Figure A9. No further changes occur in either of these 
two cases on continued vertical displacement of this trace'curve. 

The orbits in the lower region of Figure A6 (W > 0) are referred to as "hypelrboEc h i l :  cirdes" 
and the corresponding ones in Figure A8 (W < 0) as "elliptic limit circles." The orbits in the upper 
region in these two diagrams are called "limit-circle spirals." For the case of W = O in F i ~ r e :  A6 or 
A8, orbits occur in the lower region which are referred to as "parabolic limit circles." Finally, those in 
Figures A9 and A10 are called "hyperbolic spirals" and "elliptic spirals," respectively. As contrasted 
with the mathematical representation of these various types of orbits in the 4, u plane, Figure Al B 
illustrates the physical appearance of these orbits. In this diagram, the name given to desc~be each 
orbit attempts to illustrate its properties at rmax and r,*. Thus, elliptic spirals and capbred orbits 
are classified as of the same type. 

Figure AS-Solutions u(4) corresponding to differential Figure A1 0-Solutions ~ ( $ 1  corresponding to diNerentiaD 
equation given by trace cubic curve of Figure A5 with a equation given by trace cubic curve of Figure A7 with a 
larger positive value of W. less-negative value of W. 



(See Figures A13 and A141 

TYPE 2: ELLIPTIC-LIKE ORBl l  

(See Figure A4, W < 0) 

TYPE 3: PARABOLIC-LIKE ORBIT 

(See Figure A4, W = 0) 

TYPE 4: HYPERBOLIC-LIKE ORBIT 

(See Figure A4, W > 0) 

- 
TYPE 5. ELLIPTIC L I M I T  CIRCLE TYPE 6: PARABOLIC L I M I T  CIRCLE TYPE 7: HYPERBOLIC L I M I T  CIRCLE TYPE 8: LIMIT-CIRCLE SPIRAL 

(See Figure A8, W < 0) (See Figure A6, W = 0) (See Figure A6, W > 0) (See Figures A6 and A8) 

TYPE 9: ELLlP TIC SPIRAL TYPE 10: PARABOLIC SPIRAL 
C) 

TYPE 11: HYPERBOLIC SPIRAL 

(See Figures A10, W < 0) (See Figure A9, W = 0) (See Figure A9, W > 0) 

Figure A1 I-Physical appearance of various types of orbits. 

Although the trace curve in the u, v plane as shown in Figure A2c has been discussed specifically, 
the cases as shown in Figures A2b and A2d in the limits of uil = ui2 = 1 /6m and ui2 = 1/3m, respec- 
tively, have actually also been covered. The remaining case as shown in Figure A2a is virtually the 
same as that of Figure A2b as far as the family of solutions u(4) in the 4, u plane is concerned. 

The next step is to show that ui2 = 1/4m is the line of demarcation for the two cases described 
earlier; i.e., whether f(0) > f(ui2) or vice versa. To do this, consider the following theorem: 

For a general cubic curve of the form 

Bet x = 2 be the axis of symmetry of the cubic curve, let xo be the value of x corresponding to either 
the local maxhum or the minimum value of y ,  and let To be the value of x such that 

Y(F0) =y(x0) 

for ?o ric: x0.  Then the following relationship is always true: 

2(x0 - a=?- x", . 
Accepting this theorem and returning to the problem, it can be seen that because the trace cubic 



cun-a aiways lnas u = l/6m as its axis of s y m m e ~ ,  the following relations result: if 

then, respectively, 

fC0) < f(ui2) , 
as shown in Fig~are A12. 

The relationship between the radius and the angulu momentaxrn (per unit mass) for cbcular orbits 
is detemhed next. From the preceding discussion it is noted that circiliar orbits, whether stabit: or 
unstable, correspond to the sih~atisn in which there is a double root in the trace cfibii:: c u m  in the 
u, u plane; i.e., flu,) = O and f '(uf) = 0. For a specific value of angular momentum, tbesc double 

roots are given by Equation A6. Denoting 
the inverse radius of a circalar orbit by ilC; 

i the following relationship is obtained belween 
the radius (7, = l / u c )  of a given ckc~lari. orhit 
around a gravitating mass m and the ang~slx 
momentum per unit mass h which the parti- 
cle must hzve to remain at that rzdius: 

1 
U, = - (A 19) 

i 6m 

It follows that for a given angular momenhm, 
there exist two possible ci.rcular orlbits; in 
Equation A 19, the plus sign is associated with 
unstable circular orbits and the sni~~us  sign 
with stable circular orbits. Hn either case, it 
follows from this equation that ckcular orbits 

I I I 
I I I can only exist if the following inequafity is 
I I I C x 

I 
- - 
xe X 5 satisfied : 

P 2m2 
Figure Al2-The general cubic curve illustrating the v ~ l -  - >0. 

relation 2 - Zo = 2(xo - F). h2 



In Equation A 19 the larger root corresponds to the family of unstable orbits as shown in Figure A 13 
whereas the small root corresponds to the family of stable orbits as shown in Figure A14. 

Next, the ]relationskip between the radius and the "energy" W ,  for circular orbits is obtained 
from Equation A3 : 

Substitution of u, from Equation A 19 yields 

1 h 
S G W  = -  -(1 - a )  + - (a3 - 3a + 2) 

c1 3 1 0 8 m 2  

for 0 < u, < 1/6m, and 

1 h 
U r W  = - - ( I + & ) -  ---- (a3 - 3 a -  2) 

c2 3 1 0 8 m 2  

From Equations A22 and A23 it is observed that the continuity result S = U holds at u, = 1/6nz (i.e., 
a = 0) as expected. 

Figure A13-Criterion for unstable circular orbits, 
3nGrG6m.  

Figure A1 4-Criterion for stable circular orbits, 
6rn < r < =. 



Introducing, for convenience, the variable [ defined by 

the following asymptotic representations for S and U when + = are obtained: 

The complete qualitative nature of the solutions of Equation A 1 for all physically admissible 
ranges of the two parameters h and W has been studied. I t  is to be noted that the plzysically admissible 
ranges of h and W are 0 < h2 < = and - 1 < W < w, the latter condition resulting from the f(3llowing 
equations: 

All the results are represented in the master diagram shown in Figure A 15, which gives the topologicd 
genera of the orbits corresponding to a given set of values of these two parameters. This diagram is to 
be used in conjunction with Table A1 and Figure A1 1 for determining the physical appearance of 
admissible orbits corresponding to a given set (h, W) in Equation Al.  

Characteristics of the cubic curve f (u) in various regions of the master diagram (Fligure A E 5) are 
illustrated in Figure A 16 and tabulated in Table A2. 

From the Newtonian theory, the following relationships between the radius (rc = I/u,) and the 
angular momentum per unit mass h and the energy per unit mass E hold for circular orbits: 

so that the corresponding, but much less complicated, master diagram appears as in Figure A 17. Be- 
cause W + 2E in the Newtonian limit, the quantity 2E is used as the variable on the vertical axis. Also, 
the gravitational constant 6,  which is set to unity in the relativistic diagram, now maltes its appear- 
ance in the variable on the horizontal axis. 



Figure A35-The master diagram fo r  relativistic orbi ts in terms o f  Wand h, b o t h  per u n i t  rest mass o f  test 
particle. 



Table XI-Complete classification of the orbits of 
a test particle in the equatoria.1 plane of the 
Schwarzschild gravitationsi held. 

Intersection of 

f ( u ) .  

- 
U U U 

1 : W< 0 ,V;O REGION 2 : W <  0 ,V>O REG:ON 3 2 W>O,V>G 

Figure A%G-Characteristics of the f (u) curve in various regions. 



Table A2-Characteristics of the f(u) curve for 
various regions of the master diagram. 

and u;Z do not exist for V < 0. 

1 HYPERBOLIC 
PARABOLIC 

\ 
CIRCULAR 

Figure A17-The master diagram for Newtonian orbits in 
terms of E and h,  both per unit mass of test particle. 

From a comparison of the results obtained from these two theories, it is concluded that- 

( I )  The S curve is identical with the 2Ec curve for large values of the variable h2/m2 

('2) There is no lower limit to the quantity 2E for the Newtonian orbits; but one does exist for 
for the energy measure W for the case of relativistic orbits. 



(3) For a given set of (h, 2E) there exists only one type of Newtonian orbit; for m given set of 
(h, W) there can exist one, two, or even three types of relativistic orbits. 

(4) It is well known that the shape of Newtonian orbits is completely specified by only one 
parameter, the eccentricity E, which is defined by the equation 

However, in contrast, relativistic orbits of a given type cannot be specified by just one 
parameter. 

(5) The relativistic orbits experience no singular behavior at r = 2m. This is an indirect proof 06 
the lack of any intrinsic geometrical singularity at the Schwarzschild radius. 

(6) In Newtonian theory, circular orbits are possible for all radii. However, in relativity theory, 
no circular orbit can exist with a radius r < 3m. Moreover, circular orbits are stable if 
6m < r < 00 and unstable if 3m < r < 6m. Finally, if 3m < r 4m, the outward perturbed 
orbits are unbounded; whereas if 4m < r < 6m, they are bounded. In both eases, Ithe in- 
ward perturbed orbits eventually fall into the central attracting mass. 

(7) In relativity theory, elliptic-like and parabolic-like orbits must have a perihelion not less 
than 4m whereas hyperbolic-like orbits must have a perihelion not less than 3m. However, 
no such limits exist for their Newtonian analogs. 
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Appendix B 

DETAILED DERIVATION OF RELATlONSHBPS USED B E \ %  
AMALMSIS OF EQUATORIAL ORBITS 

The exprcssion f.sr B(u) is given by Equation 45, wEch is 

and the roots oQBP(u) = 0 irse given by Equation 142: 

lii3 region 6, 
~ $ 0 ,  

e 2 -  1>0.  

Subselktion of Equations 142, B 1, and B2 into Equation 45 leads to 

From Equations B2 and B4 it follows that 



Hence, fmm Equations B3,B4, and B7, it is seen that 

Next, consider the remaining group of terms in Equation B6. For convenience, the following defini- 
tion is made: 

pus 
F(e, h) = - + e2 - 1 . 039) 

3 

If Equation B9 is substibted into this equation, then 

wkch is quadratic in h whose discriminant d is given by 

Because e2 - I > 0 by Equation B5, then 
d < O  

md so 
B(uL)#O. 

Next it is noted that 
1 - e2 

F(e, 0) = e2 - I + - >0, 
9e2 

so that, in view of Equation B 12, it follows that 

Hence, from Equtitions B8 and B 15, 
B(uL) > 0 

in region 6. 

PROOF THATA(u,) = O AND D(uE)  = O SIMULTANEOUSLY ARE IMPOSSIBLE 

From the equation 
D(u) = a2 u2 - pu + 1 

and the identi@ EI(uE) = 0 or, equivalently, 



the followkg is obtained: 
~ ( u , )  = a2u i  - pu, + 1 

- 
a2 h2 

- - 
Oh 

+ 1 
p2 (h  + ea12 P(h + ea) 

1 
- - (a2h2 +ap2eh +a2p2e2) .  

p2 ( h  + ea12 
The equation 

A(u)  = h2 + ( 1  - e2)a2 - P(h + ea12u 
and Equation 206 yield 

A(u,) = h2 + (1 - e2)a2 - h(h + ea) 

= a 2  - a2e2 - hea.  
Given the equations 

A(u,) = a2 - a2e2 - hea 

then substihation of hea from Equation B 19 into Equation B20 leads to 

which is impossible because 0 # 0 and a # 0. 

PROOF TWATA'(U,) = 0 IS lMPOSSlBLE 

From the equation 
A(u)  = h2 + (1 - e2)a2 - P(h + ea12u, 

it follows that 
A ' (u)  = -O(h + ea12 

for all u. From this equation and 

- h 

u~ - ~ ( h  + ea) ' 
it is seen that 

for any finite U ,  . 



From Equations 45 to  47 m d  190, the iFulEowin~ equations are o"o&md: 

EquaQi<o~s 193 and B24 indicate that uD is a double root of D(u) = 6,  so that 

Equations B24 and 19 1 d yield 
0 = +2a 

pu, = 2 . Qaa'J) 

Xence, su bsltihtion s f  uD and @ from Equations 19 1 d and B 9 1 c into Equation B25 leads to 

h = - 2 e a .  (B28) 

Then, from Equations B26 to B28, the follo-~& are obtained: 

3pe2a2uD - ( 3 e b 2  + o2 ) = 0 , 

Consequently, Equation I328 then gives 
2 

h = ~ - a .  
4 

FACTORIZATION OF B(uE 

From Equations 178, B 17, and B 18, the following definitions result: 



Ecpation B30 can bi: written in the form 

From the defhition 
2 2 D WD -fluD + 4 = 8 ,  

the sum (uD + uD ) and product uD I uD ~f the roots are 

From this, Equation B32 can be written as 

Hence, it follows from Equations B29, B3 I ,  and B32 that B(uE) can be written as 

Similarly, from Equations B29 to B 3 1, 





Appendix G 

MASTER DIAGRAMS FOR P = 2 AND VALUES OF a RANGING FROM a = O TO a = 100 















ANGULAR MOMENTUM P E R  UNIT MASS 

Figure C6-Master diagram for a = 0.5,P = 2.0. 



































































Appendix D 

QUALITATIVE SOLUTIONS IN  REGIONS OF MASTER DIAGRAMS FOR 
O<a<1,a= 1,AND I < a < o o  





B(u) CURVE 

f(u) CURVE 

B(u) CURVE 

f(u) CURVE 

U 

u ~ 2  

UE 

UDI 

+ 
SOLUTION u (6) SOLUTION u (9) SOLUTlON u (9) 

REGION la-PHYSICAL ORBITS REGION lb-PHYSICAL ORBITS REGION lc-PHYSICAL ORBITS 

Figure D1-Qualitative solutions in region 1 for 0 <a  < 1. 



B B d  u~ %I B(u) CURVE UD2 

B(")lw 

/;I U D ~  UE ~ D z u W u m  

f(u) CURVE f(u) CURVE f(u) CURVE 

SOLUTION u (9) Q SOLUTION u (9) + SOLUTION u (+) @ 

REGION 2a-PHYSICAL ORBITS REGION 2b-PHYSICAL ORBITS REGION 2c-PHYSICAL ORBITS 

Figure D2-Qualitative solutions in region 2 for 0 <a < 1. 



1 B(u) CURVE ;, / B(u) CURVE 

f(u) CURVE f )/I f(u) CURVE 

I 

SOLUTION u (4) SOLUTION u (4) 4 

REGION 2d-PHYSICAL ORBITS REGION 2e-PHYSICAL ORBITS 

Figure 02 (concluded)-Qualitative solutions in region 2 for 0 <a < 1. 



B(u) CURVE B(u) CURVE 

f(u) CURVE 

U 

02 

UD1 

E 

urn 
"u 

SOLUTION u ( 4 )  

REGION 3a.PHYSICAL ORBITS REGION 3b-PHYSICAL ORBITS REGION 3c-PHYSICAL ORBITS 

Figure D3-Qualitative solutions in region 3 for 0 <a < 1. 



U n  UrnUoi Uo2 
B(u) CURVE B(u) CURVE 

YUnj UrnUol Uo2 

f(u) CURVE f(u) CURVE 

SOLUTION u (6) SOLUTION u (d)) 

REGION 3d - PHYSICAL ORBITS REGION 3e - PHYSICAL ORBITS 

Figure D3 (concluded)-Qualitative solutions in region 3 for 0 < a  < 4. 



/ 
B(u) CURVE B(u) CURVE 0 B(u) CURVE 

f(u)  CURVE f(u) CURVE f(u) CURVE 

U U U 

' ~ 2  U ~ 2  U ~ 2  

UE 

U ~ l  "DI 

E 

SOLUTION u (+) SOLUTION u (4) 

REGION 4a-PHYSICAL ORBITS REGION 4b-PHYSICAL ORBITS REGION 4~-PHYSICAL ORBITS 

Figure D4-Qualitative solutions in region 4 for 0 <a < 1. 



B(u) CURVE B(u) CURVE j B(u) CURVE 

U , ~ U ~  UD1 U ~ 2  U 

f(u) CURVE i f(u) CURVE f(u) CURVE 

DZ UD2 D2 

U~ 

U D ~  UDI " ~ 1  

"E 

SOLUTION u ( 9 )  9 SOLUTION u ( 9 )  9' SOLUTION u (9,) 

REGION 4a'-PHYSICAL ORBITS REGION 4b'-PHYSICAL ORBITS REGION 4c'-PHYSICAL ORBITS 

Figure D5-Qualitative solutions in region 4" for 0 < a  < 1. 
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B(u) CURVE B(u) CURVE 

U U 

f(u) CURVE f(u) CURVE 

I 

SOLUTION u (9) SOLUTION u (9) 9 SOLUTION u (9) 9 

REGION 5a-PHYSICAL ORBITS REGION 5b-PHYSICAL ORBITS REGION 5c-PHYSICAL ORBITS 

Figure D6-Qualitative solutions in region 5 for 0 <a < 1. 



B(u1 

U UI UD1 uD2 UI UD1 U~ U ~ 2  

B(u) CURVE B(u) CURVE B(u) CURVE 

f(u) CURVE f(u) CURVE f(u) CURVE 

I I 

SOLUTION u ( 6 )  + SOLUTION u ( 4 )  + 
SOLUTION u ( 6) 

REGION 5a'-PHYSICAL ORBITS REGION 5b' -PHYSICAL ORBITS REGION 5 c e -  PHYSICAL ORBITS 

Figure D7-Qualitative solutions in region 5' for 0 <a < 1. 



, - 

f(u) CURVE 
UD1 U ~ 2  u 
f(u) CURVE 

SOLUTION u (4) SOLUTION u (4) 

REGION 6a-PHYSICAL ORBITS 

Figure D8-Qualitative solutions in region 6 for 0 < a < 1. 



B(u) CURVE 

UE U D ~  U ~ 2  
f (u)  CURVE 

B(u) CURVE 

/ ,k, 
/UI 'E 1 ' ~ 2  

f(u) CURVE 

SOLUTION u ( 9 )  SOLUTION u ( 9 )  

REGION 6a' PHYSICAL ORBITS REGION 6b' .PHYSICAL ORBITS 

Figure D9-Qualitative solutions in region 6* for 0 <a < 1. 
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REGION l b - l c  (Dl line)-PHYSICAL ORBITS REGION 2b-2c (Dl line)-PHYSICAL ORBITS REGION 2d-2e (Dl line)-PHYSICAL ORBITS 

Figure D10-Qualitative solutions on Dl line for 0 <a < 1. 
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SOLUTION u (6) SOLUTION u ($) SOLUTION u (9) 

1 
REGION 363e (Dl line)-PHYSICAL ORBITS REGION 5b-5c ( D l  line)-PHYSICAL ORBITS REGION 5bc-5c* ( D l  tine)-PHYSICAL ORBITS 

Figure D l 0  (concluded)-Qualitative solutions on Dl line for 0 <a < 1. 
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SOLUTION u (4) 4 SOLUTION u (4) Q 

REGION 2b-2c (D2 l ine) PHYSICAL ORBITS REGION 3b-3c ( D 2  l ine )-PHYSICAL ORBITS 

Figure D l  1-Qualitative solutions on D2 line for 0 <a < 1. 
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Figure D12-Qualitative solutions on E line for 0 <a < 1. 
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SOLUTION u (gi) + SOLUTION u (9) 

REGION 26 (H line)-PHYSICAL ORBITS REGION 3b (H line)-PHYSICAL ORBITS 

Figure D13-Qualitative solutions on H line for 0 <a < 1. 
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I 
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REGION la-2a (S line) - PHYSICAL ORBITS REGION l b - 2 e  (S line) - PHYSICAL ORBITS REGION l c - 2 d  (S line) - PHYSICAL ORBITS 

Figure D14-Qualitative solutions on S line for 0 <a < 1. 
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REGION 2a.5a (U line)-PHYSICAL ORBITS REGION 2b-5b (U line)-PHYSICAL ORBITS REGION 2c-5c (U line)-PHYSICAL ORBITS 

Figure D15-Qualitative solutions on U line for 0 < a  < 1. 
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REGION 2d-5c (U line).PHYSICAL ORBITS REGION 3a-4a (U line)-PHYSICAL ORBITS REGION 3b-4b (U line)-PHYSICAL ORBITS 

Figure D l5  (continued)-Qualitative solutions on U line for O<a < 1. 
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f(u) CURVE 

SOLUTION u (4) 9 
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REGION 3d-4c (U line)-PHYSICAL ORB1 

Figure D l 5  (concluded)-Qualitative solutions on U line for 0 <a < 1. 
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REGION la-PHYSICAL ORBITS REGION lb-PHYSICAL ORBITS 

Figure DIG-Qualitative solutions in region 1 for a = 1. 
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REGION 2a-PHYSICAL ORBITS REGIONS 2b-PHYSICAL ORBITS REGION 2e-PHYSICAL ORBITS 

Figure D17-Qualitative solutions in region 2 for a = 1. 
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REGION 3a .  PHYSICAL ORBITS REGION 3b - PHYSICAL ORBITS REGION 3e - PHYSICAL ORBITS 

Figure D18-Qualitative solutions in region 3 for a = 1. 
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UE 
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Figure Dig-Quaetative solutions in region 4 for a = 1. 
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REGION 4bX.PHYSICAL ORBITS 

Figure D2O-Qualitative solutions in region 4' for a = 1 .  



B(u) CURVE 

SOLUTION u (+) + 
I 

SOLUTION u (+) 4 

REGION 5a-PHYSICAL ORBITS REGION 5b-PHYSICAL ORBITS 

Figure D21-Qualitative solutions in region 5 for a = 1. 
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SOLUTION u (4) 
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REGION 5a'-PHYSICAL ORBITS REGION 5b'-PHYSICAL ORBITS 

U 

Figure D22-Qualitative solutions in region 5* for a = 1. 
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UD U 
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REGION 6a  -PHYSICAL ORBITS REGION 6b-PHYSICAL ORBITS 

Figure D23-Qualitative solutions in region 6 for a = 1. 
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REGION 6.3' PHYSICAL ORBITS REGION 6b'PHYSlCAL ORBITS 

Figure D24-Qualitative solutions in region 6* for a = 1. 
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REGION 2b (D-S line) - PHYSICAL ORBITS REGION 2b-2e (D-U line)-PHYSICAL ORBITS REGION 3b-3e (D line) -PHYSICAL ORBITS 

Figure D25-Qualitative solutions on D line for a = 1. 
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REGION l a - l b  (E line)-PHYSICAL ORBITS REGION 6b8(E line)-PHYSICAL ORBITS REGION 5a'-5b* (E line) -PHYSICAL ORBITS 

Figure D26-Qualitative solutions on E line for a = 1. 
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SOLUTION u (9) 4 SOLUTION u ( 4 )  

REGION 2b (H line) -PHYSICAL ORBITS REGION 3b (H line)-PHYSICAL ORBITS 

Figure D27-Qualitative solutions on H line for a = 1. 



B ~ u )  CURVE 

/ f(u) CURVE 

L 
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REGION l a - 2 a  (S line)-PHYSICAL ORBITS REGION l b - 2 e  (S 11ne)-PHYSICAL ORBITS REGION 2b(S-D Ihne)-PHYSICAL ORBITS 

Figure D28-Qualitative solutions on S line for a = 1. 
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+ 

REGION 2a-5a (U 11ne)-PHYSICAL ORBITS REGION 2b-5b(U 11ne)-PHYSICAL ORBITS REGION 2b.2e (U.D 11ne)-PHYSICAL ORBITS 

Figure D29-Qualitative solutions on U line for a = 1. 
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REGION 3a-4a (U I ~ n e )  -PHYSICAL ORBITS REGION 3b-4b (U I ~ n e )  PHYSICAL ORBITS REGION 3b.3e (WD 11ne)-PHYSICAL ORBITS 

Figure D29 (concluded)-Qualitative solutions on U line for a = 1. 
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Figure D30-Qualitative solutions in region 1 for 1 < a  < rn. 
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SOLUTION u (9) # SOLUTION u (as) Q" 

REGION 2a-PHYSICAL ORBITS REGION 2b-PHYSICAL ORBITS 

Figure 031-Qualitative solutions in region 2 for 1 <a <m. 
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REGION 3a-PHYSICAL ORBITS REGION 3b-PHYSICAL ORBITS 

Figure D32-Qualitative solutions in region 3 for 1 <a < a. 
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REGION 4a-PHYSICAL ORBITS REGION 4b-PHYSICAL ORBITS 

Figure D33-Qualitative solutions in region 4 for 1 <a < 00. 
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REGION 4a*-PHYSICAL ORBITS REGION 4b*-PHYSICAL ORBITS 

Figure D34-Qualitative solutions in region 4* for 1 <a < -. 



/ B(u) CURVE 

U 
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REGION 5a-PHYSICAL ORBITS REGION 5b-PHYSICAL ORBITS 

Figure D35-Qualitative solutions in region 5 for 1 <a < -. 
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Figure D36-Qualitative solutions in region 5" for 1 < a < 

SOLUTION u ($1 Q, SOLUTION u (4) ' 
m/ - "I 
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SOLUTION u ( 6 )  9' 

REGION 6a.PHYSICAL ORBITS REGION 6b-PHYSICAL ORBITS 

Figure D37-Qualitative solutions in region 6 for 1 <a <a. 
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REGION 6a'-PHYSICAL ORBITS REGION 6b'-PHYSICAL ORBITS 

Figure D38-Qualitative solutions in region 6* for 1 <a  <-. 
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Figure D39-Qualitative solutions on E line for 1 < a  <-. 
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REGION l b  (H line) REGION 2b (H line)-PHYSICAL ORBITS REGION 3b (H line)-PHYSICAL ORBITS 

Figure D40-Qualitative solutions on H line for 1 <a < m. 
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Figure D41-Qualitative solutions on S line 1 <a < m. 
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Figure D42-Qualitative solutions on U line for 1 <a < =. 
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Figure D42 (concluded)-Qualitative solutions on 

U line for 1 <a<- .  






