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SUMMARY

Analytical formulation of the integrated potential

approach for general unsteady supersonic configurations is

related to numerical solution approaches using an arbitrary

finite element mesh. Work remains to be done on adequate

numerical handling of singular integrals, discussed in an

appendix.

Limited results on a planar rectangular wing are

presented.
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SYMBOLS

a Speed of sound in free stream
o

A11,A,2,Ap1,App Influence coefficient matrices in Eqn. 4?

C Defined by Equation 4la

f1^2' f3 Functions defined by Equations 33 through 39
Fl> 2' 3' 4

F A typical function

G, G^ Defined by Equations 53 and 56 respectively
S

Jp Bessel functions of order 2r

I Singular integral
S " r-

&, L, L0 Defined 'by Equations 19, 21 and 22.

t A reference length

M Mach Numbero

r Radius of a characteristic cone

R Hyperbolic radius

S Body Surface

t Time

T Transformation Matrix (Equation 30)

-U_ . Velocity components in the ith coordinate direction

•U>" Normal wash

U Flight Speed '

.V Enclosed volume between leading Mach envelope and
the characteristic surface

xI(u,,z,, System Coordinates

X.Y.Z. Nondimensional transformed coordinates



SYMBOLS (CONT)

position vector

/•» f £- n \ "p"

r* Characteristic Envelope

I""1 Leading Mach envelope

•^ Deformation of body surface S

9 Defined in Equation 9

k XMo
o *X = Hir Reduced frequency

U
Defined by Equations 25 and 26 respectively

<£> Velocity potential (Equation 2)

A column vector of velocity potential

at the corners of an element

y Particular solution of Equation 3

yj Defined by Equation 25

to Circular frequency

ifi Interpolation function (Equation 27 and 28)

Subscripts and Notations

O . Receiving field point

L , u . Lower and upper limits

D _ ( ) Material derivative of the deformation of the
Dt body surface

( / Normal derivative operator

^ — ( ) Co-normal derivative operator
3v
A Difference between two values.



INTRODUCTION

General. - Developments reported in References 1 and 2

have demonstrated the approach to unsteady supersonic aerodynamic

determinations based on matrix/consistent element formulations.

"Consistent aerodynamic element" implies a transition from real

continuous variables (downwash, displacement, potential, etc.)

to numerical discrete variables, such that variationally equivalent

work is done. Additionally, the arbitrary shape and orientation

of the (triangular) element enables effective matching of

problem boundaries. These two features were contrasted with

general Mach box approaches in References 3 - 7 -

For shuttle-type flight vehicles with comparatively large

body diameter to wing span ratio, non-linear body interference on

the lifting surfaces is very significant in determining the

unsteady forces involved in flutter. In steady flow, thickness

may be taken into account in an approximate fashion by a "local

linearization" and replacement of the nonlinear equations by

locally linear ones with variable coefficients. Mathematical

justification is discussed in References 8 and 9. In the case of

unsteady flow this approach suggests that the fluid motion might be

calculated with satisfactory accuracy from linearized, unsteady

equations containing local values of the flow parameters as

affected by thickness, mean surface gradient, etc. (References

10, 11, 12.)

Additionally the downwash/potential integration formulation

in Reference 2 has disadvantages when considered for use in more

complex configurations, and other approaches to the integral

formulation should be considered.

The present task was to formulate an extension of the

consistent element approach involving two steps:

a) a change from a downwash/potential formulation to an

"integrated potential" formulation (Ref. 13)

b) the incorporation of arbitrary element attitude

to encompass more general configurations and space-

variable flows.



This report outlines initial developments for such

problems including
(1) choice and evolution of an acceptable analytical

approach;

(2) construction of "consistent finite element"

idealization compatible with structural aspects

of the problem;

(3) data handling and computational procedures at a

pilot program level;

discussion of future generalization.

It was assumed that some "best" method of defining the
steady field exists as a basis for superposing the linearized
unsteady perturbation (e.g. Ref.

Mathematical Approach

Due to the complexity of the linear integral equation
kernels relating downwash and velocity potential or pressure,

general analytical solutions for arbitrary Mach numbers, plan- :

forms, and frequency parameters are not available. Consequently,

several numerical approaches, with various advantages and dis-

advantages, have been developed. The three most frequently
employed methods are:

1. The Collocation Method. - This method uses the inte-
gral relation between the downwash at a point and the

loading/acceleration potential assumed on the lifting
surface lying in its forward -Mach cone region, (e.g. Ref,

15). The simplicity of this method is that it yields

directly the loading corresponding .to any given

downwash vector. However, a severe short-coming of
the method is that discontinuous loading requires

special choice of the loading functions. Also, for

high frequency parameters, the loading functions
become highly oscillatory, requiring very close collo-

cation points in the chordwise and spanwise directions.



The Integrated Downwash Method. - This method yields

velocity potential at any point as an integral

relation between downwash and source, dipole or

quadrupole distributions in the forward Mach cone

region (Refs. 1 to 7, 16, 17). In the case of sub-

sonic leading e'dges or in "interference" cases,

downwash or source strengths in the so-called

•diaphragm surfaces' are unknown and must be determined

from the condition of zero diaphragm pressure differ-

ence. However, at low supersonic Mach numbers the

diaphragms may be much larger than the lifting surface

and the approach becomes very inefficient from compu-

tational time and storage points of view. Another

serious drawback of this method lies in difficulties of

determining the downwash/source strengths along singu-

lar leading edges.

For problems with interference the method requires both

source-downwash and potential-source strength solutions

adding to the total computational effort needed.

The Integrated Potential Method. - (Refs. 13, 18, 19)

This method yields the velocity potential at a point

as an integral involving the velocity potential taken

over the forward Mach Cone region. Since the potential

difference across diaphragms is zero, consideration of

these regions is not required.

The advantages of this method are:

1. diaphragm regions are avoided\ therefore

problems involving determination of singular

downwash terms/source strengths in wakes

are eliminated;



2. velocity potentials can be more easily

approximated, since they are continuous;

3. it should be computationally

efficient compared with method 2, especially

for complex configurations. :

Discretization

For thick bodies in supersonic flow., local velocity

and Mach. number distribution vary considerably. Any numerical

method using characteristic grid systems requires change of

the grid system with local Mach number. In the present approach,

•consistent finite element" formulations are used in a fixed

grid system which can account approximately for small variations

of local mean flow parameters; e.g., local Mach number and

velocity vector due to non-slender configuration.

The basic advantages of the finite element integrated

potential formulation are formidable.

1. Excellent boundary representations of leading,

trailing and tip edges of wings, etc., compared

with box and "sub-box" representations;

2. Possibility of tailoring other elements to

nacelle and body representations (e.g., ring and

conical "shell" elements);

3. Flexibility with respect to element type, size,

and orientation so that grid point density can be

varied compatible with spatial loading variations;

4. Kinematically consistent downwash, loading and

generalized force derivations;

5. Efficient handling of wake interference in that

wake edges can in effect, constitute a "single

element";

7



6. Feasibility of using common structural-aero-

dynamic grids is convenient for optimization

problems;

7. Formulation for locally varying Mach number

is possible, given a steady state flow field

distribution.

These advantages are expected to be even stronger

in more complex geometries such as wing-body interaction in

terms of feasibility of adequate modelling and economy of compu-

tational effort.

INTEGRAL EQUATION FORMULATION

The following development parallels that of Ref. 13 to

a large extent, the basic differences being (i) the extension of

the formulation from planar surfaces to arbitrary bodies (within

the bounds of a linearizable approach), and (ii) the retention

of the local Mach number parameter s so that some approximate

handling of its effect in a variable Mach number field is

facilitated.

The velocity potential $ (such that

satisfies
"̂(b

+

which transforms, using

^ = < f > &c,p ( - j \ Mrt
2 X e x p ( 2 )

P
to

in which X = ^/fitr , V - i/,/^ , Z _ z,/£r are the

non-dimensional coordinates with respect to the reference length -cj-

8



Defining J£o = (*o, Yo , *o) a field point, and

x. = (x0-x), g.
the characteristic cone from X is the surface

2Z = = O

If "p is some particular solution of (3), the generalized

Green's theorem states

(5)

In equation (5) A. _ — t ̂ _ 4. m.
~~ ax

4. rt _

is a differential-operator, \> is the co-normal such that

t,-m,.n. are direction cosines of the normal on S into V. (Fig. 1)

S and V are taken as the surface and volume defined by Pu

the leading wave front, F], the forward characteristic surface

from X , and the body surface. Since L (Cp) = L ("U>) = 0,
U •

Equation (5) becomes

= 0
(6)

On the wave front Pu
is chosen such that "\L> and

becomes

and = O
are zero on P,

) dS= O

Ref. 13 gives the appropriate Vj's as

, hence if "y

Eqn (6)

(7)

(8)



Figure 1 Supersonic Flow Envelope About

The Surface S
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(which are singular on 3&«-T) , and where

<? = k«(*'_r»; , «. £ (9)

By the common potential theory maneuver of excluding the

singularities by. small limiting surfaces and proceeding to a

limit, Eq. (7) becomes

R / a s > (10)
s

where
R2^ DC2- r-2 (11)

Using Eq. (2) , and dropping exp (lA"T) throughout

(coskR) ^1 ~rp(-i .ic M0(X^ X)) HS

Defining the "normal" derivative at a field point

the normal velocity at this point is

Then,

R

(15)

11



or

a (coskR) ^

f
l

_
d.?a R

) d̂ (X)1
J S^ J

(16)

For panels on thin wings and on bodies (i.e., with flow

on both sides and one side respectively) handling of the

(difference) and A requires some comment, condensed in the

following:

Panel of a
thin surface

Panel of a
body

A^

Nonzero if
interference
occurs

Nonzero

a|*
Nonzero
case
Zero for
case.

Nonzero

in interfering

non -interfering

in general

Allen & Sadler, (Ref. 20), Woodcock (Refs. 18, 21) con-

sider °V̂ v to be identically zero for plate-like elements.

However, A^Vy^^ is not zero for interfering cones such as

will occur in wing-body interference. This term can and will be

considered in future developments in this work.

COMPUTATIONAL METHOD

General Formulation

The integral equations (12&16") for the potential are so

complex that closed form solutions are not considered. Numerical

integration methods are invariably employed for which Refs. 20 &

21 for example, use characteristic grid systems. In these analyses,

12



non-singular terms within each element are expressed by means

of interpolation functions while singular terms are evaluated

considering -only the finite part of the integrals. For planar

elements, the singular terms are few in number and the singular

integrations may not affect the results significantly. How-

ever, in non-planar cases the integrals in Equation (16) are

strongly singular and there are more terms than in planar cases.

This section discusses the possible means of reducing the

number of singular terms, and the extent or domain of singular

functions.

The kernel (cos k R j in Equation (16) exhibits square root

singularity as the characteristic surface is approached. This

form of singularity can be expressed by a well-behaved Bessel

series Refs. (3) and (22). Performing the required normal deri-

vation and simplifying the terms, the. velocity potential and

downwash integrals can be written as

(17)

and the downwash integral as

av ] X
^ j X

AX

13



In these equations,

3 (19)

in which LL0 = (Jio^ -+ ̂ r\0rr\ _^_ yi0n)

(21)
(22)

and AX =(X0_X), AY^ (Y 0_Y), AZ =*

Watson's relation. (Ref. 22), is

cos kR

in which

with X = Yo-Y (25)

and x ^sCXo-X-C^o- (26)

The velocity potential in Equation ' (17) is singular only

at the apex of the characteristic cone, while the normal wash

integral has singular terms at the apex and on the characteristic

surface for a general configuration. However, for a planar case

the singularity in the normal wash term is limited to the apex

only.

The numerical integrations of Equations (17) and (18) can

be performed on any convenient discrete element basis such as

triangular, quadrilateral or conical ring elements. This ideali-

zation requires description of the doublet (A (jp ) or source (̂$\̂

distributions within each element in terms of its nodal or boun-

dary values. These distributions might be limited to linear

or quadratic expressions in space coordinates.



Triangular Element. - These are the simplest elements

suitable for many irregular configurations. Curved surfaces can

be represented adequately with a sufficient number of flat

triangles.

Quadrilateral Element. - Consideration of quadrilateral

elements in place of triangular elements is valuable in terms

of computational efficiency for a given flat lifting surface.

Conical Ring Element. - For axisymmetric bodies of revo-

lution it is possible to use a circumferential description of

normal wash and the corresponding doublet/source distributions

in the form of Fourier sine or cosine series.

To demonstrate the method consider the triangular element

with a linear distribution of doublet or source strength, i.e.,

(27)

or

where

in which

(28)

= [ X Y 1 J ~T is a transformation matrix, (29)

Y2

-1
1 '

1

l (30)

and t and A £>y are the values of the source and doublet

strengths respectively at the vertices of the triangle. Using

(27) and (28) in Equations (1?) and (18), the velocity potential

and normal wash integrals for each element in the domain of

influence are given by:



(31)

and

.
AX

as (32)

respectively.

The following definitions are observed in equations (31)

and (32)5

I «, L(X)ia(X,Y)
J t (33)

=2=

(35)

(36)

(37)

(38)

(39)

The general forms of the integrals in.Equations (31) and

(32) are of only two types, i.e., involving single and cross-

derivatives of the function y/ . The function *y/ is well behaved

16



in the fore Mach Cone region, but its derivatives are non-

analytic on the characteristic surface. The functions such as

f^ to f_ and FI to F^ (with the exception of the term

L*(X)L(X)/R2' in F! and F2
 wnich wil1 be discussed later

under singular integrals) are also analytic throughout the domain

of integration.

To take advantage of the well-conditioned function "\p ,

it is necessary to cast the integrands in a particular form for

numerical integration. Consider for example an integral of the

form

in which the function F is analytic throughout the domain of '

dependence.

In performing numerical integration the infinitesimal

surface area dS can be treated as that projected onto a plane

whose unit normal is parallel to the normal of the element

under consideration, e.g., if the normal of the element is close

to the Z-axis then the infinitismal area

4S± J1+(̂ +fSE? dXdY

= C(X,Y)dXdY (̂ la)

On the other hand, if the unit normal is close to the Y axis, then

dX dZds= '+
the integral is

v J "" jy /y\ ~'" ~ (̂ 2)
A i. IL̂ X

The integrand under the Y integral can be rewritten as

r ̂  (̂ vA
ax

17
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The first and the last terms' vanish for elements with no

sides parallel to the Y-axis. The numerical integration

utilizes Gaussian weights and pivotal points. Limits of

integration for complete and partial elements are shown in

Figures 2 and 3-

The second set of integrals is the one with a single

derivative of the function )£/ i.e..
Yu

iV dYdX

X ~YL(X) (45)

Performing partial integration, Equation (44) can be written

as X0 .
lzss f nr(x>ru(X))>Cx>Y0Cx))-F(x,x(x))>(x,YLCx))|

-

Using the form of the integrals given by equations (44) and (46),

the normal-wash integration in Equation (32) will be evaluated

for all elements in the fore Mach Cone zone.

Considering all nodes on the lifting surface the velocity

potential and normal wash in matrix notation are given by:

= A,, A^i + A,2A<i
<^Vand

, 22.
v (4?)

19



Figure 2 Integration Limits of A Complete Triangular Element

(i) (11)

Figure .3 Integration Limits of a Partial Triangular Element

20



Woodcock and York (Ref. 21) consider A

for antisymmetric distribution of velocity potential on the

upper and lower surfaces of a panel. However,, in the presence

of the interference, since $,¥ $_ , it appears that a differ-

ential source distribution is required to satisfy the normal

wash condition in the second set of equations in (47) • These

two sets of distributions can .be solved from the two sets of

equations in (̂ 7). However, based on other analyses which omit

these terms, (Ref. 21 ) the neglect of the term Â 9̂ £ is

obviously sometimes justifiable. An independent study might

be conducted to reveal its general significance.

Influence of the Wake

Determination of .velocity potential for wings with sub-

sonic trailing edges or tandem surfaces is very much influenced

by velocity components in the wake region of the forward wing.

It is a difficult task to determine the equilibrium position of

a wake sheet even in the case of s-teady flow for a simple con-

figuration. However, linearized computation methods assume that

the wake sheet remains planar with the trailing edge (planes)

panels. Having defined the assumed position of the wake sheet

the velocity potential difference across the sheet can be evalu-

ated in terms of the trailing edge values only. Since the

pressure difference across the wake sheet is zero the potential

difference is given by

The potential in the wake is therefore dependent only

on the trailing edge nodal values and there is no need to distri-

bute elements in the wake region, (in contrast to the integrated

downwash approach) . Instead line elements of trailing edge can

be used to describe the variation of ACL^' The integrals involved
J-Ji

in the normal wash are essentially the same as in Equation (18),

21



with the following terms replaced, i.e.,

replaced by eacp i — <• /<M0 ('^0*--U+fL2

and
-£•*"]

= [X Y 1]T replaced by iTL -.F YU~Y V- YL

The upper limits of X are determined from the vanishing

of the hyperbolic radii of the characteristic envelope. (See

Figure 4).

Singular Integrals

Equation (32) contains singular integrands as the

integration limits approach the characteristic cone. Accuracy

of solutions depends critically on numerical treatment of these

singular functions. For this reason, the number of singular

integrals involved has been reduced by certain transformations.

Numerical computation of singular integrals is discussed in this

section.

The general form of singular integrals is given "by

.-
rY»CX) , ^

fT(X,Y) \^(^L VdYdX
J axW/
YCX)

where

KX.Y) a I / (X0) t LaOOLCx)! (52)

Let

X.CX-J
(53)l ;

22



Wake Element

Figure 4 Wake Element In The Integrated Potential Method
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The first term in Equation (53) is non-singular and

hence can be integrated by parts. The second term is zero for

coplanar elements, while for non-coplahar elements it becomes

singular as the field point approaches the characteristic

surface.

Figure (3) shows two forms of element inter-

ception by the Mach Cone, i.e.,

(i) when the element is away from the receiving point;

(ii) when the receiving point lies on a node of an

element.

Case i .

Put
LoOOLQO

R2-
YL(XO

where X. is the ith Gaussian integration pivot in the X direction.

Since the function y/ is well behaved over the area ABCD, Fig. 3, it can

be expressed in terms of its nodal or boundary values, i.e.

];£!;::• <55>
Then performing the required differentiation, Equation (54) can be

written as Y , .

W.f" ''F(X.Y)dY
JX(XO (56)

Let Y (^i ) be the last Y coordinate in the Gaussian integration.

Then Hadamard' s - finite part of the integral is given by

(57)
"



The last .term in Equation (57) is given by

r̂ lr -' '
J R' ECAXf-AzfJ'A

Y(YA
W)

UAX'-AZ1)'4- AW v
' = 'u

X (58)

Considering only the finite part of Equation 58, the finite part

of the singular integral Equation (57) is given by
YXv)

F(X-uY)- F(X».Y*ldY:i
R*

or

[Ax^AZ8]'4 - AY]
Laxf-a2.fJ* + AY]

r

F(X;.Y>-'F.(Xi.Y*)- dV _ FCXi.V*) ITR J_ . J_ 1
R2 LAYO AYj

CXL) (59)
Case ii

•In this case, a. singularity exists in the X-direction
as the integration point approaches the apex of the 'Characteristic

cone. Rewriting the singular. Integral using the definition of
the inner integral given by Equation

Is = f expf~t.*<M0AX}G(X)dX

Let X* be the last X-coordinate in the Gaussian integration then
the finite part of this integral .is

Xu
c " """ ' *' "v"dx

(61)

Thus, all integrals involved have been formulated ..for numerical

computation with a minimum of singular behavior.



DISCUSSION

The first objective of the study, the extension of the

integrated potential method of analysis to the three-dimensional

flow-field problem formulation', has been illustrated. In this

formulation, the varying Mach number-velocity vector is not

treated explicitly. Rather, such variations will be considered

in a piecewise fashion, from element to element,and in the

determination in a sequential manner of the effective domains

of influence and dependence of nodal source and field locations.

Some developments in the formulation of the integral

equation are discussed resulting in improved handling of singu-

larities on the Mach cone. These aspects of the formulation are

however incomplete (See Appendix).

In particular, the integral equations given in Equation

18 are more complex than those encountered in the planar case.

They were therefore checked in a simple.configuration in prefer-

ence to tackling the arbitrarily oriented element. Indeed,

general element codings were outside the scope of the task and

limited aims have been achieved. In particular, a quadrilateral/

triangular element was formulated and coded for restricted circum-

stances only, with the original intention of. applying it to a

simple wing-body interference problem. .

Instead, a rectangular wing of aspect ratio 2 was treated

and is compared in Table 1 with Reference 23. Agreement is

limited and improvement is desirable. .

After some investigation the source of inaccuracy (suspect-

ed as program coding for some time) was found to be in the formu-

lation and computational treatment of the improper integrals.

The present status is discussed in the Appendix.
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TABLE 1.

COMPARISON OF GENERALIZED AERODYNAMIC FORCES FOR RECTANGULAR

WING OF ASPECT RATIO 2.0 AT MQ - 1.2

Mode 1 - Heave

Mode 2 - Pitch about mid-chord

Method

Number of

Elements on
Chord

k

0

0.3

0.6

G.F.

*11

Q22

Qll
Q12
Q21

Q22

*11
Q12

Q21
Q22

Present

5

Re Im-v

3.31

-0.5

0.0644 0.938
3.176 0.027
-0.043 -0.147

-0.4685 : 0.273

0.068 1.730
3.057 0.3034

-0.166 -0.107
-0.3307 -0.503

Reference 23

30

Re Im

3-75

-0.38

0.188 1.009
3.369 -0.499
-0.0045 -0.130
-O.4ll4 0.164

0.348 . l.64o
2.838 -o.294:

-0.2424 -0.2860

-0.379 0.450



APPENDIX

This section discusses alleviation or elimination of

some of the strong singular integrals encountered in the

downwash functions (Equation 15)- This requires proper

ordering of integrations and differentiations.

Consider the downwash integral given by Equation (15)

(coskR) aftl
I R j av>J

(Al)

For flat elements (triangular or quadrilateral) the

normal and co-normal derivatives can be expressed in terms of

local normal and co-normal derivatives, i.e.,

and

(A3)
using V and Z component velocities expressed in terms of the

local Zx component (See Figure Al).

Using the Bessel series expansion for \CoskH)/R

(See Equation 24) the expression in Equation (Al) may be

written as



are WB : system
coordinates

are element
'coordinates>
Z'normal to T,-
plane of
element

Local . r
FIGURE Al CoSines of a -

and Comp
onents of Direction



APPENDIX (CONT) .

The last two terms can be integrated with respect to Y
/ .

in terms of yj at the upper and lower limits of Y(X) -«

Should the limits be on the Mach line, the Sin" ( //JL)

term becomes ± f/2. and y/=> ±ZL J0(U M) , the derivatives of

which exist. .

The singular nature of the dpwnwash integral stems from

the first two terms i.e., the integrals of the form

and

I,, i- fiexpJ-tkM0AX} I f ^ W f x y i d X d Y '

(A6)

Handling of these two integrals will be typified in this section

by simple examples. For the sake of simplicity let v ' = 0,

(representing a planar wing case). Then the downwash integral is

represented by .

X0Yy'(x)
^ c£Oc,YO dXff

JJ
X,YL(X)

Since X,CX) and YL(X) are independent of z', integration

with respect to Y results in

L
 u

, /
(since, in a triangular element, fl is linear in X, Y. )
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At the upper and/or lower limits of Y on the Mach line, the

V/ and \yj terms are purely functions of J /k>u.)5 the

derivatives of which exist. Hence the normal derivatives

or cL_ can be performed under the integral sign.

For illustrative purpose let 0S(X,Y) be constant

within a triangle. Then Equation (A8) may be written as

f
;J

(A9)

where

=s ZtH J" (kju) for a side on the Mach line, in which

r
For a diamond element formed by two triangles (Fig. A2), the

contribution from lines CB and C'B is

- AL t±- f «p
"" 2.tr t̂ J

• (A 10)

where /-c * = Xo ""-X

Note the regularity of the function, /A Ji (. * A^ = 1
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which normally would have been singular. For the steady

state case (k«O) the contribution to the downwash with

constant < in element 2 is zero.

*• Y

Figure A 2

The contribution from the triangle (1) can be obtained by

differentiation of the >{, and Var functions with respect to

and Z0 and taking the limits as Z Since this

is a non-singular element, no elaboration is necessary.

A similar treatment can be •; applied to elements inclined

to the flow direction (i.e., with t-£ O ).

This illustrates how the strong singular integrals

appearing in Equations (12) and (15) can be reformulated so

that errors are minimized in the numerical stage.
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