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SYMBOLS

; ’ L ML,
C temperature-viscosity ratio, ——
fhoad

Lj length over which the pressure rise occurs in a shock-wave boundary-layer inter-

action (fig. 9)

m mass flow rate

M Mach number

p static pressure

Pp pitot pressure

Py total pressure

q heat-transfer rate

R recovery factor, Tfr}leasuridT— Ttrue
Lirue true

Re Reynolds number

T temperature

 § total temperature

U streamwise velocity component

XY, Z spatial coordinates

o angle of attack of wedge forebody

5 boundary-layer thickness

5% displacement thickness

€ flow angle; surface angle

0 momentum thickness

A cowl initial turning angle

i viscosity



x|

Subscripts

152

Superscript

vi

density
shear stress

: C
viscous-interaction parameter, M?> =
ReX

stations specifiea in figure 9

boundary-layer edge

station at which laminar boundary-layer calculations are initiated
geometric surface

wall

tunnel free stream

coordinate measured from the geometric surface
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SUMMARY

Analytical and experimental investigations were conducted to determine the internal flow
characteristics in model passages representative of hypersonic inlets for use at Mach numbers
to about 12. The passages were large enough to permit measurements to be made in both the
core flow and boundary layers. The goal of the program was to obtain the analytical and experi-
mental information needed to improve the current method of designing internal contours of
hypersonic inlets. The experimental results were used in the evaluation of analytical techniques
for computing the flow fields in internal passages. '

Three large-scale inlet models, each having a different internal compression ratio, were
designed to provide high performance and approximately uniform static-pressure distributions
at the throat stations. A wedge forebody was used to simulate the flow-field conditions at the
entrance of the internal passages, thus removing the actual vehicle forebody from consideration
in the design of the wind-tunnel models. Tests were conducted in the Ames 3.5-Foot Hypersonic
Wind Tunnel at a nominal test Mach number of 7.4 and free-stream unit Reynolds number of
8.86X10° per meter.

The entering inviscid and viscous flow conditions were determined from flow-field survey
data at the inlet entrance. Profiles of flow properties were obtained near the centerlines of the
internal passages to define the boundary-layer development on the internal surfaces and the
internal shock-wave configuration. Flow-field properties were measured at several lateral locations
across the throat stations to evaluate the overall performance of the internal passages.

The experimental results for each inlet showed a nonlinear distribution of total-pressure
recovery in the core flow at the throat stations. For the inlet having the lowest compression ratio,
the internal recovery (the ratio of the total pressure at the throat station to that at the inlet-
entrance station) ranged from about 0.25 near the cowl to a maximum of about 0.96. For the
inlet with the intermediate compression the range was from about 0.54 near the cowl to 0.88 near
the centerbody. These ranges of recovery were in general agreement with those predicted, but the
measured distributions differed from those predicted. The distribution of recovery for the inlet
having the highest compression could not be determined accurately because of the uncertainty in
the measurements of the flow-field static pressures. The analytical techniques for predicting the
internal flow-field development, which utilized a displacement-thickness correction to account




for the coupling between the boundary layers and the inviscid flow fields, yielded integral boundary-
layer properties that were in poor to good agreement with experimental results. The desired uniform
static-pressure distributions at the throat stations were not obtained experimentally because of the
presence of unpredicted shock waves within the internal passages.

It was found that improvement in the analytical methods is needed for predicting (1) the
details of the boundary-layer development through and downstream of regions of boundary-layer
transition; (2) the boundary-layer and inviscid flow-field development downstream of leading edges
with small bluntness; and (3) the detailed characteristics of shock-wave boundary-layer interactions,
including the flow fields downstream of the interaction regions. Because of the specific vehicle con-
figuration under consideration, the design procedure could utilize two-dimensional inviscid flow
analyses with corrections for boundary-layer displacement effects. Despite the shortcomings of the
analytical methods for predicting details of the internal flow, the results show that this procedure
was sufficient fo design contours that provided high-pressure recovery in the core flow.

INTRODUCTION

The aerodynamic performance of the air~induction system is an important factor in establish-
ing the viability of a hypersonic vehicle design. Since inlet performance is primarily a function of
the internal contour design, the development and assessment of analytical techniques for the
design of internal contours are items of primary concern, and they must be based on results of
wind tunnel tests of scale models of representative hypersonic inlets. Previous experimental
investigations (ref. 1, e.g.) have been performed with scale models of entire vehicle configurations,
and because of the very small internal flow passages, measurements of the internal flow field
properties were very difficult, or impossible, to obtain. Consequently, improvements in the
methods used for designing and analyzing hypersonic air-induction systems depend in large
measure on the development of techniques for testing relatively large-scale inlet models.

For this investigation a method was devised for testing a large-scale inlet model of one of
the engine modules used with the hypersonic vehicle configuration shown in figure 1. This air-
breathing vehicle, intended for flight at Mach numbers up to about 12, has a conical compression
surface that forms the forebody and delivers air to the engine modules located circumferentially
about the fuselage. Since the fuselage maximum diameter is large relative to the engine module
height, the flow at the inlet entrance and within the internal passage is nearly two-dimensional.
Thus, when the proper two-dimensional entrance flow is provided only the internal contours of
the inlet need to be modeled. For this investigation, a wedge was used to provide an entrance Mach
number of about 6.0, which corresponds to that on the vehicle for flight at M ~ 12. An approxi-
mately 1/3-scale, two-dimensional model (fig. 2) of the internal contours was used that provided
throat heights of 2 to 6 cm.

The objective of the investigation was to obtain experimental and analytical results that can
be used to improve the current methodology for designing the internal contours for hypersonic
inlets. Both the analytical and empirical techniques used to design the internal contours are
evaluated by comparing predictions for the flow field and boundary-layer properties, including
shock-wave patterns, boundary-layer development, and overall performance, with the properties
























































































































































































































































































































































































































































































































