BIBLIOGRAPHY OF
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE
1966-1971

April 1973

(NASA-CR-131889) BIBLIOGRAPHY OF
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE: 1966
- 1971 (George Washington Univ.) 219 p
HC $13.00

THE GEORGE WASHINGTON UNIVERSITY
DEPARTMENT OF MEDICAL AND PUBLIC AFFAIRS
BIOLOGICAL SCIENCES COMMUNICATION PROJECT
2001 S STREET, N.W., WASHINGTON, D.C. 20009
BIBLIOGRAPHY OF
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE

1966-1971

Frank D. Bradley
Marcy R. Nadel

Work Performed under NASA Contract NSR-09-010-027
for
Planetary Quarantine Office, Planetary Programs
NASA Office of Space Science

The George Washington University
Department of Medical and Public Affairs
Biological Sciences Communication Project
2001 S Street, N.W., Washington, D.C. 20009

GWU-BSCP 73-10P
April 1973
This bibliography presents a compilation of citations relating to planetary quarantine, previously listed in similar, separate annual publications, which were begun in 1967. Each such separate issue contained citations from the previous calendar year, forming a bibliography covering that 12-month period. The listings were augmented with references to documents of earlier dates, which had been acquired during the time specified. Bibliographies will continue to be compiled on an annual basis.

This volume, a consolidation of the material of the six previous publications, will, it is hoped, provide a useful reference in reviewing planetary quarantine research and development.

The Planetary Quarantine Office, Planetary Programs, Office of Space Science, National Aeronautics and Space Administration, Washington, D.C., has sponsored much of the research reflected in the citations.
CONTENTS

Preface .. iii
Citations ... 1
Permuted Title Index ... 103
Corporate Sources ... 209
CITATIONS

28. ANGELOTTI, R. Status report on D, z, and A_w value investigations. Presented before the Planetary Quarantine Committee, NASA, Cape Kennedy, Florida, 2-4 April 1968.

43. AUSTIN, P.R. Clean room personnel. Contamination Control 8(2): 28-31 and 34. 1969.

44. AUSTIN, P.R. Spacecraft preparation and sterilization as state of the art. Contamination Control 6:32,34,35. 1967.

83. BOMAR, M. Notes on the mechanism of the effect of fungitoxic compounds on microorganisms, II. Synergism of the bactericidal effect of certain chemical preservatives and low temperatures. Folia Microbiologica (Academia Scientiarum Bohemoslovenica) vol. 7: 298-305. 1962.

217. idem, September 1968. 4 p.

218. idem, April 1969. 12 p.

220. idem, April 1970. 3 p.

221. idem, final report. September 1970. 6 p.

230. COSPAR CONSULTATIVE GROUP, CHAIRMAN. Potentially harmful effects of space experiments. IN: Minutes of the meeting of the Executive Committee on Space Research at the 9th meeting of COSPAR, Vienna. May 1966. 4 p.

270. idem, quarterly status report for period 1 May - 1 August 1969. Fort Detrick, Frederick, Md. 1969. 1 p.

271. idem, quarterly status report for period 1 August - 1 November 1969. Fort Detrick, Frederick, Md. 1969. 1 p.

280. DOUGLAS, J. Recovery of known numbers of microorganisms from surfaces by swabbing. Laboratory Practice (UK) 17(12): 1336-1337. 1968.

341. FARMER, F.H. Microbiological contamination control in spacecraft sterilization. Presented at the Sterilization Technology Symposium at the 13th annual technical meeting of the Institute of Environmental Sciences, San Diego, April 1966. 4 p.

355. idem, report No. 20. 1968. 21 p.

357. idem, report No. 22 for period April - June 1968. 1968. 16 p.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

FAVERO, M.S. Services provided in support of the planetary quarantine requirements of NASA. Presented to a meeting of the Planetary Quarantine Advisory Committee, Raleigh, North Carolina, 11 February 1970. 21 p.

375.

376.

377.

378.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

32

442. GREENE, V.W. and T.J. Quan. Sensitivity of bacteriological detection techniques to low levels of contamination. Applied Microbiology 14: 979. 1966.

481. HALL, L.B. Decade of development in sterilization technology by the United States space program. Presented at the 15th annual COSPAR meeting, Madrid, Spain, May 1972. 9 p.

777.

778.

779.

780.

781.

782.

783.

784.

785.

786.

787.

788.

816. NATIONAL COMMUNICABLE DISEASE CENTER. Services provided in support of the planetary quarantine requirements of NASA. Reduction of microbial dissemination; germicidal activity of ethylene oxide; reduction of microbial contamination on surfaces. Evaluation of leakage of microbial contamination from Gemini space suits. 8th quarterly report. Atlanta, Ga., Department of Health, Education and Welfare, Public Health Service. 1967. 5 p.

818. NATIONAL COMMUNICABLE DISEASE CENTER. Services provided in support of the planetary quarantine requirements of NASA. Reduction of microbial dissemination and germicidal activity of ethylene oxide. 10th summary report of progress. Atlanta, Ga., Department of Health, Education and Welfare. 1968. 11 p.

64
824.

825.

826.

827.

828.

829.

830.

831.

832.

833.

834.

835.

836.

943. PORTNER, D.M. Microbial contamination obtained on surfaces exposed to room air or touched by the human hand. U.S. Army, Fort Detrick, Frederick, Md. July 1963. Protection branch report of test No. 1-64. 9 p.

948. PORTNER, D.M. Use of sporicides and heat to sterilize resins. U.S. Army, Fort Detrick, Frederick, Md. 1963. Protection branch report of test No. 4-64. 7 p.

1168.

1169.

1170.

1171.

1172.

1173.

1174.
idem, 1969 supplement. Indiana, Notre Dame, Lobund Laboratory, University of Notre Dame. 1971. 30 p.

1175.

1176.

1177.

1178.

1179.

1180.

1209.

1210.

1211.

1212.

1213.

1214.

1215.

1216.

1217.

1218.

1219.

1220.

1221.

1222.

1223.

94

1236.

1237.

1238.

1239.

1240.

1241.

1242.

1243.

1244.

1245.
1246.

1247.

1248.

1249.

1250.

1251.

1252.

1253.

1254.

1255.

1256.

1257.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutated Title Index</td>
<td></td>
</tr>
<tr>
<td>Adsorption-desorption of water by bacterial spores and its relat</td>
<td></td>
</tr>
<tr>
<td>Acid vapor/Sporicidal effect of peracetic acid</td>
<td>1023</td>
</tr>
<tr>
<td>Activation/Dual meaning of</td>
<td>956</td>
</tr>
<tr>
<td>Activation of spores of Clostridium welchii/Heat and radiation</td>
<td></td>
</tr>
<tr>
<td>Activity of Beta-propiolactone vapor/Effect of bacterial cell mo</td>
<td>1013</td>
</tr>
<tr>
<td>Activity of ethylene oxide/Reduction of microbial dissemination</td>
<td>546</td>
</tr>
<tr>
<td>Activity of sodium hypochlorite at subzero temperatures/Sporicid</td>
<td>818</td>
</tr>
<tr>
<td>Aeolian erosion/Natural space environmental studies</td>
<td>616</td>
</tr>
<tr>
<td>Aeolian erosion on microbial release from solids/Effects of</td>
<td></td>
</tr>
<tr>
<td>Aeolian erosion/Release of buried contamination by</td>
<td></td>
</tr>
<tr>
<td>Aeolian fallout during a 2 1/2 year study/Survival of microorgani</td>
<td>450</td>
</tr>
<tr>
<td>Aerobic and anaerobic bacteria in agar subjected to freezing, di</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Automatic, instantaneous monitor for counting the bacter</td>
<td>947</td>
</tr>
<tr>
<td>Aerosol chambers with Beta-propiolactone/Disinfection of microbio</td>
<td>167</td>
</tr>
<tr>
<td>Aerosol/Contamination control handbook</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Design requirements for laminar airflow clean rooms and</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Dry heat resistance of spores of Bacillus subtilis var.</td>
<td>1034</td>
</tr>
<tr>
<td>Aerosol in a microbiological safety cabinet/Containment of micro</td>
<td>393</td>
</tr>
<tr>
<td>Aerosol/Laminar flow for the neurosurgical operating room. Tec</td>
<td>694</td>
</tr>
<tr>
<td>Aerosol/Life in extraterrestrial environments</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Life in extraterrestrial environments</td>
<td>392</td>
</tr>
<tr>
<td>Aerosol/Novel multi-slit large volume air sampler</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Principles and applications of laminar-flow devices</td>
<td>451</td>
</tr>
<tr>
<td>Aerosol/Reduction of microbial dissemination germicidal activit</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Services provided in support of the planetary quarantin</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Sterilization action of gaseous ethylene oxide. The effec</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Study of aseptic maintenance by pressurization</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Study of the application of laminar flow ventilation to</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Study of the possible movement of microorganisms through</td>
<td></td>
</tr>
<tr>
<td>Aerosol/Survival of microorganisms on covered stainless steel i</td>
<td></td>
</tr>
<tr>
<td>Aerosols by a sonic disseminator technique/Production of low con</td>
<td></td>
</tr>
<tr>
<td>Aerosols/Filtration of submicron virus</td>
<td>452</td>
</tr>
<tr>
<td>Aerosols/Peracetic acid</td>
<td></td>
</tr>
<tr>
<td>Agar/Improved method for pouring Rodac plates</td>
<td>444</td>
</tr>
<tr>
<td>Agar spray/Improved technique for microbiology sampling on surfa</td>
<td>146</td>
</tr>
<tr>
<td>Agar spray technique/Surface sampling with an</td>
<td></td>
</tr>
<tr>
<td>(AIMP) Anchored interplanetary monitoring platform compilation ma</td>
<td></td>
</tr>
<tr>
<td>AIMP spacecraft. Part 1/Microbiological burden on the surfaces o</td>
<td></td>
</tr>
<tr>
<td>AIMP spacecraft. Part 2/Microbiological burden on the surfaces o</td>
<td>961</td>
</tr>
<tr>
<td>AIMP spacecraft. Part 3/Microbiological burden on the surfaces o</td>
<td>962</td>
</tr>
<tr>
<td>AIMP spacecraft. Part 4/Microbiological burden on the surfaces o</td>
<td>963</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>AIMP spacecraft. Part 4/Microbiological burden on the surfaces of</td>
<td>964</td>
</tr>
<tr>
<td>AIMP-D spacecraft/Decontamination of the</td>
<td>675</td>
</tr>
<tr>
<td>AIMP-E spacecraft/Microbial decontamination and sampling program</td>
<td>678</td>
</tr>
<tr>
<td>airborne contamination/Effectiveness of laminar air flow for con</td>
<td>530</td>
</tr>
<tr>
<td>(airborne particulate)Comparison of microbial contamination levels</td>
<td>377</td>
</tr>
<tr>
<td>airborne particulate contamination/Monitoring</td>
<td>688</td>
</tr>
<tr>
<td>(airborne particulate)Laminar flow for the neurosurgical operating</td>
<td>56</td>
</tr>
<tr>
<td>(airborne particulate)Microbiological studies conducted in a ver</td>
<td>722</td>
</tr>
<tr>
<td>(airborne particulate)Use of laminar flow for environmental control</td>
<td>1271</td>
</tr>
<tr>
<td>(airborne)Stochastic model describing bacterial aerosol concentrations</td>
<td>529</td>
</tr>
<tr>
<td>airflow equipment in microbiology/Use of laminar flow</td>
<td>381</td>
</tr>
<tr>
<td>airflow velocity on biocontamination in laminar flow rooms/Effect of</td>
<td>1240</td>
</tr>
<tr>
<td>air sampler/Novel multi-slit volume</td>
<td>150</td>
</tr>
<tr>
<td>alcohol sporulation method/Evaluation of</td>
<td>594</td>
</tr>
<tr>
<td>alcohol sporulation method/Evaluation of</td>
<td>595</td>
</tr>
<tr>
<td>alcohol/s/Reversible inhibition of spore germination by</td>
<td>1191</td>
</tr>
<tr>
<td>(allocation model)Preliminary quarantine analysis of a possible</td>
<td>233</td>
</tr>
<tr>
<td>anaerobic bacteria in agar subjected to freezing, diurnal freezing</td>
<td>167</td>
</tr>
<tr>
<td>(anaerobic)Reduction of microbial dissemination and germicidal activity</td>
<td>818</td>
</tr>
<tr>
<td>Analytical techniques in planetary quarantine and spacecraft systems</td>
<td>1062</td>
</tr>
<tr>
<td>analytical techniques in planetary quarantine/Study of germicidal</td>
<td>324</td>
</tr>
<tr>
<td>analytical techniques in planetary quarantine/Study of</td>
<td>1073</td>
</tr>
<tr>
<td>Antarctic desert soil bacteria exposed to various temperatures</td>
<td>172</td>
</tr>
<tr>
<td>Antarctic dry valleys/Growth of bacteria in soils from</td>
<td>168</td>
</tr>
<tr>
<td>Antarctic dry valley soil microbial incubation and gas composi</td>
<td>164</td>
</tr>
<tr>
<td>Apollo and contamination control. Boeing's role</td>
<td>196</td>
</tr>
<tr>
<td>Apollo and contamination control. Grumman Aircraft's role</td>
<td>1287</td>
</tr>
<tr>
<td>Apollo and contamination control. McDonnell Douglas's role</td>
<td>668</td>
</tr>
<tr>
<td>Apollo and contamination control. NASA's role</td>
<td>1223</td>
</tr>
<tr>
<td>Apollo and contamination control. Rocketdyne's role</td>
<td>181</td>
</tr>
<tr>
<td>(Apollo)Approach to computerized bacterial identification</td>
<td>275</td>
</tr>
<tr>
<td>(Apollo)Defining Mars' atmosphere - a goal for the early mission</td>
<td>1088</td>
</tr>
<tr>
<td>Apollo lunar module engine exhaust products</td>
<td>113</td>
</tr>
<tr>
<td>(Apollo)Model for the quantification of the qualitative microbiota</td>
<td>1003</td>
</tr>
<tr>
<td>Apollo modules/Determination of quantitative microbial sampling</td>
<td>1002</td>
</tr>
<tr>
<td>(Apollo)Planetary quarantine program</td>
<td>1050</td>
</tr>
<tr>
<td>Apollo program/Handbook for contamination control on the</td>
<td>804</td>
</tr>
<tr>
<td>(Apollo)Search for viable organisms in a lunar sample</td>
<td>865</td>
</tr>
<tr>
<td>(Apollo spacecraft)Computerized bacterial identification system</td>
<td>276</td>
</tr>
<tr>
<td>(Apollo)User's manual for the planetary quarantine lunar inform</td>
<td>1008</td>
</tr>
<tr>
<td>Apollo 6 spacecraft during final assembly and testing/Microbial</td>
<td>971</td>
</tr>
<tr>
<td>Apollo 9 spacecraft/Microbial contamination detected on the</td>
<td>972</td>
</tr>
<tr>
<td>Apollo 10 and 11 spacecraft/Quantitative and qualitative microbiota</td>
<td>973</td>
</tr>
<tr>
<td>aseptic maintenance by pressurization/A study of</td>
<td>186</td>
</tr>
<tr>
<td>aseptic maintenance by pressurization/A study of</td>
<td>187</td>
</tr>
<tr>
<td>aseptic maintenance by pressurization/A study of</td>
<td>666</td>
</tr>
<tr>
<td>aspects of spacecraft sterilization/Biological and engineering</td>
<td>701</td>
</tr>
<tr>
<td>(assay)Effect of dimethyl sulfoxide on the sporicidal activity</td>
<td>1135</td>
</tr>
<tr>
<td>(assay)Methyl bromide as an aid to ethylene oxide sterilization</td>
<td>952</td>
</tr>
<tr>
<td>assay of space hardware/Microbiological</td>
<td>349</td>
</tr>
</tbody>
</table>
Paraformaldehyde for surface sterilization and detoxification
Planetary quarantine supporting activities
Procedures for the microbiological examination of space habitation
Quality assurance monitoring of the microbiological aspect
Reduction of microbial dissemination germicidal activity
Relative frequency distribution of $D_{125^\circ C}$ for values for sterilization
Study of aseptic maintenance by pressurization
Assay technique/Virtual monitoring as an assay technique
Vacuum probe: new approach to the microbiological sampling technique
Assay by the NASA standard procedure/Effect of low numbers
Assaying buried biological contamination/An analytical basis for assembly and development laboratory routine cleaning and decontamination
Assembly and sterilization of spaceflight hardware/Engineering ground procedures
Apollo and contamination control. McDonnell Douglas' role
Assembly areas needed for spacecraft sterilization/Microbial control
Class 100 clean room program. Pilot shop operations
Clean room in space technology
Compatibility of sterilization and contamination control
Assembly/Contamination and sterilization
Assembly Contamination control
Assembly contamination model/Assembly and sterilization
Development laboratories EASL and SADL/The microbiological contamination model
Assembly Development of mechanical sterile insertion engineering
EASL/SADL test and operation. Phase II: summary
Assembly Effect of airflow velocity on biocontamination in laminar flow
Assembly Effect of current cleaning procedures on sterilization
Assembly Evaluation of microbiological filters for liquids and assembly, Explorer XXXV spacecraft/Clean room facilities for assembly facility operations/Microbiological monitoring of spacecraft assembly in the sterilization assembly development laboratory/Biological method of particulate contamination
Assembly of CMTM for purposes of determining areas of contact during assembly of sterilizable planetary landing capsules/Visual monitoring
Assembly/Progressive biological monitoring on lunar orbiters
Assembly Recommendations for determination of spacecraft sterilization
Assembly Research study to definitize a bio-isolation suit system
Assembly Space hardware assay methodology
Assembly Spacecraft preparation and sterilization as state of the art
Assembly Status review of technology developments for spacecraft assembly/sterilizer facility feasibility program final report
Assembly/sterilizer facility feasibility program final report
Assembly/sterilizer - Facility for the sterilization and assembly techniques/Experimental study of sterile assembly techniques/Experimental study of sterilization assembly techniques/Experimental study of sterile technology feasibility spacecraft. Sterilization and b
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal sterilization process calculation for spacecraft</td>
<td>545</td>
</tr>
<tr>
<td>Testing and fabrication of plastic vacuum probe surfaces</td>
<td>913</td>
</tr>
<tr>
<td>Valve bioload reduction and sterilization study</td>
<td>596</td>
</tr>
<tr>
<td>Atmosphere and beyond/Microbes in the upper</td>
<td>139</td>
</tr>
<tr>
<td>Apollo lunar module engine exhaust products</td>
<td>1113</td>
</tr>
<tr>
<td>Approach to contamination identification</td>
<td>305</td>
</tr>
<tr>
<td>ATP assay of terrestrial soils - a test of an exobiological test</td>
<td>739</td>
</tr>
<tr>
<td>Comparative evaluation of methods for the search for</td>
<td>576</td>
</tr>
<tr>
<td>Designing for the laminar flow environment</td>
<td>1273</td>
</tr>
<tr>
<td>Development of two closely controlled humidity systems</td>
<td>407</td>
</tr>
<tr>
<td>Effect of a simulated Martian environment on certain</td>
<td>69</td>
</tr>
<tr>
<td>Effect of cell moisture on the thermal inactivation</td>
<td>552</td>
</tr>
<tr>
<td>Ethylene oxide sterilization, a current review of</td>
<td>637</td>
</tr>
<tr>
<td>Exospheric temperatures on Mars and Venus</td>
<td>555</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large</td>
<td>103</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large</td>
<td>104</td>
</tr>
<tr>
<td>Feasibility study of an experiment for determining the</td>
<td>12</td>
</tr>
<tr>
<td>atmosphere flown on Aerobee NASA 4.150/Experiment to detect microorganisms - Goal for the early missions/Defining Mars'</td>
<td>919</td>
</tr>
<tr>
<td>Instrument for study of microbial thermal inactivation</td>
<td>274</td>
</tr>
<tr>
<td>Investigations into a diffusion model of dry heat sterilization</td>
<td>60</td>
</tr>
<tr>
<td>Martian scene</td>
<td>533</td>
</tr>
<tr>
<td>Microbiological methods of testing the</td>
<td>1233</td>
</tr>
<tr>
<td>1973 Viking voyage to Mars</td>
<td>1248</td>
</tr>
<tr>
<td>atmosphere of Jupiter/The upper</td>
<td>1094</td>
</tr>
<tr>
<td>Atmosphere on polymeric materials/Effects of simulated Venus</td>
<td>618</td>
</tr>
<tr>
<td>Simulation of the Venus</td>
<td>1100</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry into</td>
<td>1154</td>
</tr>
<tr>
<td>Spacecraft sterilization by destructive heating</td>
<td>1156</td>
</tr>
<tr>
<td>Spacecraft sterilization - the grand requirements</td>
<td>843</td>
</tr>
<tr>
<td>Study of aseptic maintenance by pressurization</td>
<td>187</td>
</tr>
<tr>
<td>Atmospheres of different water contents/Heat resistance of Bacillus</td>
<td>587</td>
</tr>
<tr>
<td>Atmospheres of Mars and Venus/The</td>
<td>317</td>
</tr>
<tr>
<td>Study of the thermal kill of viable organisms</td>
<td>157</td>
</tr>
<tr>
<td>Atmospheric pressure/Resistivity of spores to ultraviolet and gamma</td>
<td>1108</td>
</tr>
<tr>
<td>Automatic biodetecting and monitoring instruments open new doors</td>
<td>437</td>
</tr>
<tr>
<td>Rapid identification of microorganisms</td>
<td>573</td>
</tr>
<tr>
<td>Instrument for study of microbial thermal inactivation</td>
<td>274</td>
</tr>
<tr>
<td>automation/AEC/NASA symposium on contamination control; current</td>
<td>1060</td>
</tr>
<tr>
<td>Bacteria under simulated Martian conditions</td>
<td>1301</td>
</tr>
<tr>
<td>Biophysical analysis of the spore</td>
<td>748</td>
</tr>
<tr>
<td>Dry heat destruction of B. subtilis var. niger in a closed system</td>
<td>791</td>
</tr>
<tr>
<td>Environmental microbiology as related to planetary quarantine</td>
<td>886</td>
</tr>
<tr>
<td>Environmental microbiology as related to planetary quarantine</td>
<td>888</td>
</tr>
<tr>
<td>Estimation of microbial survival in heat sterilization</td>
<td>1071</td>
</tr>
<tr>
<td>Martian surface simulation facility for bacterial studies</td>
<td>231</td>
</tr>
<tr>
<td>Microbiological aspects of ethylene oxide sterilization. Eff</td>
<td>641</td>
</tr>
<tr>
<td>on the sporicidal activity of ethylene oxide/Effects of</td>
<td>636</td>
</tr>
<tr>
<td>Planetary quarantine program</td>
<td>1054</td>
</tr>
<tr>
<td>Sterilising properties of ethylene oxide</td>
<td>901</td>
</tr>
</tbody>
</table>
Sterilization of space hardware
Survival of microbial spores under several temperature and h
A_w value investigations/Status report on D, z, and
Bacillus subtilis and Staphylococcus epidermidis population/Comp
B. subtilis spores/Gamma irradiation of
Bacillus subtilis/Sporulation mutations induced by heat in
(Bacillus subtilis var. niger)Comparison of microbial contaminat
(Bacillus subtilis var. niger)Ecology and thermal inactivation o
(Bacillus subtilis var. niger)Efffect of temperature and gas velo
(Bacillus subtilis var. niger)Environmental microbiology as rela
(Bacillus subtilis var. niger)Environmental microbiology as rela
(Bacillus subtilis var. niger)Evaluation of a NASA biological is
B. subtilis var. niger in a closed system/Dry heat destruction r
B. subtilis var. niger in a closed system: Measurement of water
B. subtilis var. niger in a closed system: Thermal destruction s
Bacillus subtilis var. niger in association with soil mineral pa
Bacillus subtilis var. niger/Influence of spore moisture conten
Bacillus subtilis var. niger/Method for obtaining free bacterial
Bacillus subtilis var. niger on Kapton and Teflon film at high t
(Bacillus subtilis var. niger)Services provided in support of th
(Bacillus subtilis var. niger)Services provided in support of th
Bacillus subtilis var. niger spores included within water-solubl
B. subtilis var. niger spores occluded in water-insoluble crysta
B. subtilis var. niger spores on mated surfaces/Dry heat resist
Bacillus subtilis var. niger spores with gaseous ethylene oxide
(Bacillus subtilis var. niger)Sporicidal activity of sodium hypo
(Bacillus subtilis var. niger)Sporicidal effect of peracetic aci
(Bacillus subtilis var. niger)Survival of microorganisms in spac
Back contamination
bacteria and bacteria spores/Observations regarding the steriliz
bacteria and viruses in liquids/Detection of
(bacteria)Combined effects of ultrahigh vacuum and temperature o
(bacteria)Comparison of methyl-bromide and ethylene oxide resista
(bacteria)Dry heat survival of Bacillus subtilis var. niger in a
bacteria/Effect of diurnal freeze-thawing on survival and growth
(bacteria)Ethylene oxide sterilization, a current review of prin
bacteria exposed to various temperatures and to three years of c
bacteria from eccofoam FP and diatomaceous earth/Recovery of veg
(bacteria)Germicidal activity of ethylene oxide
(bacteria)Heat injury of Bacillus subtilis spores at ultrahigh t
bacteria in agar subjected to freezing, diurnal freezing and tha
bacteria in soils from Antarctic dry valleys
bacteria in the human
bacterial aerosol concentrations in enclosed spaces
bacterial aerosols/ The sterilizing action of gaseous ethylene oxide
bacterial cell moisture on the sporicidal activity of Beta-propi
bacterial cells/ Effects of simulated space vacuum on
bacterial contamination of space components/Laboratory for monit
bacterial contamination of surfaces/ A comparative evaluation of
bacterial contamination on nonporous surfaces/ A direct surface a
bacterial contamination on surfaces/ Services provided in support
bacterial contamination on surfaces/ Services provided in support
bacterial contamination on surfaces/ Services provided in support
bacterial identification/ Approach to computerized
(bacteria) Life in extraterrestrial environments
(bacterial inactivation/ Optimizing thermal and radiation effects
(bacterial isolants from rigorous environments/ Systematic descrip
(bacterial loading of an aerosol/ Automatic, instantaneous monitor
(bacteria) Low temperature growth characteristics of clostridia
(bacterial populations by means of factor profiles/ Characterizati
(bacterial response to the soil environment/
(bacterial spore test piece for the control of ethylene oxide ste
(bacterial spores and its relation to dry heat resistance/ The abs
(bacterial spores as a spore control procedure/ Limitations of the
(bacterial spores/ Effect of cell moisture on the thermal inactiva
(bacterial spores/ Effect of dry heat upon
(bacterial spores/ Effect of gamma and x-rays upon dry
(bacterial spores/ Effect of temperature and gas velocity on the d
(bacterial spores/ Kinetics of heat activation and of thermal deat
(bacterial spores of Bacillus subtilis var. niger/ Method of obtai
(bacterial spores/ Probit method to interpret thermal inactivation
(bacterial spores recovered from Mariner- Mars 1969 spacecraft/ Dry
(bacterial spores/ Studies on trace elements in the sporulation of
(bacterial spores/ Studies with a simulated Martian environment
(bacterial spores under some simulated lunar conditions/ Survival
(bacterial sterilization/ Thermoradiation as a means of
(bacterial studies/ Martian surface simulation facility for
(bacterial thermal death time curves/ Some observations on
(bacteria) Mathematical model of the effects of a predator on spe
(bacteria) Microbiological techniques for recovery from interior
(bacteria) Quantitative aspects of shedding of microorganisms by
bacteria. Sterilization of suspensions of Serratia marcescens an
(bacteria) Survival of cocci after exposure to ultrahigh vacuum a
(bacteria) Survival of microorganisms in a simulated Martian envi
(bacteria) Synergism in ethylene oxide - methyl bromide steriliza
bacteria to diurnal freezing and thawing/ The response of spore-f
Bacteria under simulated Martian conditions
bactericidal effects of reduced ambient water activity: use of m

108
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacteriological detection techniques to low levels of contaminant</td>
<td>442</td>
</tr>
<tr>
<td>bacteriology of "clean rooms"/The</td>
<td>768</td>
</tr>
<tr>
<td>bacteriology of clean rooms/The</td>
<td>776</td>
</tr>
<tr>
<td>(barrier)Design feasibility of sterile insertion techniques</td>
<td>39</td>
</tr>
<tr>
<td>barrier equipment and techniques/Microbiological</td>
<td>909</td>
</tr>
<tr>
<td>barrier techniques/Microbiological</td>
<td>910</td>
</tr>
<tr>
<td>barrier techniques/Microbiological</td>
<td>911</td>
</tr>
<tr>
<td>(barriers)Techniques for sterile insertion and repair of spacecraft</td>
<td>1188</td>
</tr>
<tr>
<td>Beta-propiolactone/Disinfection of aerosol chambers with</td>
<td>7</td>
</tr>
<tr>
<td>Beta-propiolactone/Disinfection of microbial aerosol chambers with</td>
<td>8</td>
</tr>
<tr>
<td>Beta-propiolactone/Sterilization of instruments and materials with</td>
<td>10</td>
</tr>
<tr>
<td>(Beta-propiolactone)Sterilization of space hardware</td>
<td>892</td>
</tr>
<tr>
<td>Beta-propiolactone vapor as a disinfectant</td>
<td>550</td>
</tr>
<tr>
<td>Beta-propiolactone vapor Decontamination</td>
<td>551</td>
</tr>
<tr>
<td>Beta-propiolactone vapor/Effect of bacterial cell moisture on the</td>
<td>135</td>
</tr>
<tr>
<td>Beta-propiolactone vapor. Effect on the etiological agents of space</td>
<td>546</td>
</tr>
<tr>
<td>Beta-propiolactone vapor/Method for disinfecting large enclosure</td>
<td>254</td>
</tr>
<tr>
<td>(bibliographies)Planetary quarantine: principles, methods and pr</td>
<td>1137</td>
</tr>
<tr>
<td>Bibliography from the Literature Retrieval System, Space Biology</td>
<td>422</td>
</tr>
<tr>
<td>Bibliography of lunar and planetary research, 1960-1964</td>
<td>1032</td>
</tr>
<tr>
<td>Bibliography on applications of ethylene oxide</td>
<td>1291</td>
</tr>
<tr>
<td>Bibliography on inactivation of viruses and rickettsiae by heat</td>
<td>1260</td>
</tr>
<tr>
<td>Bibliography on planetary quarantine. Vol. I. Policy</td>
<td>1292</td>
</tr>
<tr>
<td>Bibliography on planetary quarantine. Vol. II. Environmental mic</td>
<td>1293</td>
</tr>
<tr>
<td>Bibliography on planetary quarantine. Vol. III. Engineering para</td>
<td>1294</td>
</tr>
<tr>
<td>(bibliography)Planetary Quarantine. Volume V. 1967 supplement</td>
<td>1261</td>
</tr>
<tr>
<td>(bibliography)Sterilization handbook</td>
<td>302</td>
</tr>
<tr>
<td>(bibliography)Surveyor sterilization. Literature review of the p</td>
<td>1285</td>
</tr>
<tr>
<td>bibliography/Use of ethylene oxide: a partially annotated</td>
<td>921</td>
</tr>
<tr>
<td>(bioassay)Assembly of CMTM for purposes of determining areas of</td>
<td>130</td>
</tr>
<tr>
<td>(bioassay)Assembly/sterilizer facility feasibility program final</td>
<td>1308</td>
</tr>
<tr>
<td>(bioassay)Assembly/sterilizer facility feasibility program final</td>
<td>1309</td>
</tr>
<tr>
<td>(bioassay)Basic studies in environmental microbiology as related</td>
<td>1235</td>
</tr>
<tr>
<td>(bioassay)Biological evaluation of the biodetection grinder</td>
<td>1090</td>
</tr>
<tr>
<td>(bioassay)Class 100 clean room program, preparation and initial</td>
<td>731</td>
</tr>
<tr>
<td>(bioassay)Clean room facilities for Explorer 35 spacecraft</td>
<td>673</td>
</tr>
<tr>
<td>(bioassay)Contamination control and sterilization in space progr</td>
<td>823</td>
</tr>
<tr>
<td>(bioassay)Continuation of the development of a typical Mars land</td>
<td>48</td>
</tr>
<tr>
<td>(bioassay)Development of a laminar airflow biological cabinet</td>
<td>1</td>
</tr>
<tr>
<td>(bioassay)Effect of a simulated Martian environment on certain e</td>
<td>69</td>
</tr>
<tr>
<td>(bioassay)Environmental microbiology as related to planetary qua</td>
<td>86</td>
</tr>
<tr>
<td>(bioassay)Estimation of the parameters in exponential decontamin</td>
<td>222</td>
</tr>
<tr>
<td>(bioassay)Evaluation of new penetrating sporicide potentially us</td>
<td>4</td>
</tr>
<tr>
<td>(bioassay)Life in the clouds</td>
<td>35</td>
</tr>
<tr>
<td>(bioassay)Microbiological sampling of surfaces</td>
<td>380</td>
</tr>
<tr>
<td>(bioassay)Microbiology quality activities for a planetary missio</td>
<td>195</td>
</tr>
<tr>
<td>(bioassay)Natural selection of microorganisms in extreme environ</td>
<td>5</td>
</tr>
<tr>
<td>bioassay of spacecraft/Development of new and improved technique</td>
<td>1304</td>
</tr>
<tr>
<td>(bioassay)Possible contamination of earth by lunar or Martian li</td>
<td>6</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Spacecraft sterilization</td>
<td>563</td>
</tr>
<tr>
<td>Spacecraft sterilization - A new engineering and sanitization</td>
<td>498</td>
</tr>
<tr>
<td>Sterilization procedures for planetary landers</td>
<td>728</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for planetary landing</td>
<td>391</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for planetary landing</td>
<td>1045</td>
</tr>
<tr>
<td>User's manual for the planetary quarantine lunar infrastructure</td>
<td>1008</td>
</tr>
<tr>
<td>Clean facilities are needed for spacecraft sterilization/Integrations</td>
<td>762</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>358</td>
</tr>
<tr>
<td>Biocontamination in laminar flow rooms/Effect of airflow velocity</td>
<td>1150</td>
</tr>
<tr>
<td>Biodetection and monitoring instruments open new doors for environment</td>
<td>1240</td>
</tr>
<tr>
<td>Biodetection grinder/Biological evaluation of the</td>
<td>877</td>
</tr>
<tr>
<td>Release of microorganisms from solid matter</td>
<td>451</td>
</tr>
<tr>
<td>Services provided in support of the planet</td>
<td>368</td>
</tr>
<tr>
<td>Services provided in support of the planet</td>
<td>369</td>
</tr>
<tr>
<td>Antarctic soil algal crusts: scanning electron microscopy</td>
<td>370</td>
</tr>
<tr>
<td>Approach to contamination identification</td>
<td>165</td>
</tr>
<tr>
<td>Compatibility and shielding analysis of scientific equipment</td>
<td>305</td>
</tr>
<tr>
<td>Contamination control</td>
<td>779</td>
</tr>
<tr>
<td>Defining Mars' atmosphere - a goal for the early mission</td>
<td>1224</td>
</tr>
<tr>
<td>Development of an increased sampling rate methodology</td>
<td>1088</td>
</tr>
<tr>
<td>Life detection systems</td>
<td>1274</td>
</tr>
<tr>
<td>Mechanical sterile insertion system. Quality</td>
<td>683</td>
</tr>
<tr>
<td>Quantitative and qualitative microbiological studies</td>
<td>278</td>
</tr>
<tr>
<td>Study of the automated biological laboratory</td>
<td>973</td>
</tr>
<tr>
<td>Vacuum probe for removing organisms for counting</td>
<td>828</td>
</tr>
<tr>
<td>Bio-isolator suit system/Research study to definitize a</td>
<td>795</td>
</tr>
<tr>
<td>Bio-isolator suit system/Research study to definitize a</td>
<td>417</td>
</tr>
<tr>
<td>Analytical basis for assaying buried biological contamination</td>
<td>420</td>
</tr>
<tr>
<td>Comments on the in-flight recontamination hazards</td>
<td>644</td>
</tr>
<tr>
<td>Defining Mars' atmosphere - a goal for the early mission</td>
<td>1225</td>
</tr>
<tr>
<td>Immediate and future challenges to contamination control</td>
<td>1088</td>
</tr>
<tr>
<td>Mathematical models for contamination and pollution prevention</td>
<td>314</td>
</tr>
<tr>
<td>Potential effects of recent findings on spacecraft sterilization</td>
<td>825</td>
</tr>
<tr>
<td>Procedures for the microbiological examination of spacecraft</td>
<td>1079</td>
</tr>
<tr>
<td>Quality assurance monitoring of the microbiological aspect</td>
<td>352</td>
</tr>
<tr>
<td>Quality assurance requirements manual for planetary spacecraft</td>
<td>413</td>
</tr>
<tr>
<td>Bio-isolator suit system/Research study to definitize a</td>
<td>755</td>
</tr>
<tr>
<td>Sterilization and decontamination techniques for space</td>
<td>596</td>
</tr>
<tr>
<td>Spacecraft sterilization: Some specific examples</td>
<td>232</td>
</tr>
<tr>
<td>Spacecraft sterilization - the grand requirements</td>
<td>844</td>
</tr>
<tr>
<td>Study program on the development of mathematical model</td>
<td>843</td>
</tr>
<tr>
<td>Biological and engineering aspects of spacecraft sterilization</td>
<td>760</td>
</tr>
<tr>
<td>Biological aspects of spacecraft sterilization/Handbook of</td>
<td>701</td>
</tr>
<tr>
<td>Biological burden during spacecraft assembly/Effect of environment</td>
<td>655</td>
</tr>
<tr>
<td>Biological burden estimation of Mars probes and capsules and a m</td>
<td>1164</td>
</tr>
<tr>
<td>Biological cabinet/Development of a laminar airflow</td>
<td>92</td>
</tr>
<tr>
<td>(buried contamination) Evaluation of a quantal response model with buried contamination</td>
<td>223</td>
</tr>
<tr>
<td>(buried contamination) Evaluation of new penetrating sporicide potency</td>
<td>4</td>
</tr>
<tr>
<td>(buried contamination) Investigation of methods for the sterilization of buried contamination</td>
<td>1201</td>
</tr>
<tr>
<td>(buried contamination) Microbial contaminants in the interiors of solid materials</td>
<td>855</td>
</tr>
<tr>
<td>(buried contamination) Microorganisms, alive and imprisoned in a solid material</td>
<td>1212</td>
</tr>
<tr>
<td>(buried contamination) Multiplication of certain soil microorganisms</td>
<td>738</td>
</tr>
<tr>
<td>(buried contamination) Natural space environmental studies</td>
<td>1167</td>
</tr>
<tr>
<td>(buried contamination) Objectives and technology of spacecraft sterilization</td>
<td>493</td>
</tr>
<tr>
<td>(buried contamination) Potential effects of recent findings on spore sterilization</td>
<td>1079</td>
</tr>
<tr>
<td>(buried contamination) Release of microorganisms from solid materials</td>
<td>451</td>
</tr>
<tr>
<td>(buried contamination) Release of microorganisms from solids after sterilization</td>
<td>850</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>364</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>367</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>368</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>370</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>974</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>1215</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>1216</td>
</tr>
<tr>
<td>(buried contamination) Services provided in support of the planet</td>
<td>1220</td>
</tr>
<tr>
<td>(buried contamination) Spacecraft sterilization</td>
<td>563</td>
</tr>
<tr>
<td>(buried contamination) Spacecraft sterilization by destructive heating</td>
<td>1156</td>
</tr>
<tr>
<td>(buried contamination) Study of dry heat sterilization of microorganisms</td>
<td>946</td>
</tr>
<tr>
<td>(buried contamination) Survey of electronic components</td>
<td>695</td>
</tr>
<tr>
<td>(buried contamination) Survival and release of viable microorganisms</td>
<td>397</td>
</tr>
</tbody>
</table>

(carbon dioxide) Apollo lunar module engine exhaust products	1113
(carbon dioxide) Exospheric temperatures on Mars and Venus	555
carbon dioxide mixtures on bacteria and bacteria spores/Observations	151
carbon/Heat sterilization of activated cells	970
(carbon monoxide) Apollo lunar module engine exhaust products	1113
(celestial bodies) Spacecraft sterilization - the grand requirement	843
cell moisture on the sporicidal activity of Beta-propiolactone	546
cell moisture on the thermal inactivation rate of bacterial spores	552
cell recovery from solid materials/Microbial cells	301
cells/Effect of heat treatment on the growth of surviving cells	623
(CETEX) Sterilization of lunar and planetary space vehicles	194
chamber/Ethylene oxide - Freon 12 decontamination procedure: chemical and physical factors/Sterilization with gaseous ethylene	1099
(chemical) An investigation of a sono-chemical approach in sterilization	313
(chemical) An investigation of a sono-chemical approach in sterilization	925
(chemical) Apollo lunar module engine exhaust products	926
(chemical) Application of bench tests in the development of heat chemical approaches/Detection of low levels of microbial contaminants	1113
chemical approaches/Detection of low levels of microbial contaminants	428
chemical approaches/Detection of low levels of microbial contamination	429
(chemical) Contaminant inventory for lunar missions/Implementation	320
Disinfection of microbial aerosol chambers with Beta-p	
Effects of various gas atmospheres on destruction of mi	
Effects of simulated Venus atmosphere on polymeric mat	
Environmental microbiology as related to planetary qua	
Environmental microbiology as related to planetary qua	
Heat sterilizable battery development	
Heat sterilizable battery development	
chemical impregnation/Evaluation of a NASA biological isolation	
Investigation of methods for the sterilization of pott	
Investigations on sterilizable battery separators	
Kinetics of disinfection	
1973 Viking voyage to Mars	
Observations regarding the sterilizing effect of ethyl	
Peracetic acid aerosols	
Practical procedures for microbial decontamination	
Properties and essential information for safe handling	
chemical resistance of Bacillus subtilis var. niger spores inclu	
Resistance of B. subtilis var. niger spores occluded i	
Review of the possible existence of a Jovian atmospher	
Sterilization	
Use of ethylene oxide: a partially annotated bibliogra	
Virucidal properties of dimethyl sulfoxide	
Modern methods and means of sterilization of spacecra	
Class 100 clean room program, preparation and initial operations	
class 100 laminar-flow clean room for viable contamination clean	
class 100,000)Clean room in space technology	
clean areas/Monitoring	
Clean assembly and sterilization laboratory	
clean assembly and sterilization of spaceflight hardware/Enginee	
cleanliness at JPL's EASL and SADL/Microbial	
(cleanliness)on the destruction of Bacillus subtilis var. niger	
Clean room and work station requirements, controlled environment	
(clean room)Apollo and contamination control. Boeing's role	
(clean room)Apollo and contamination control. McDonnell Douglas'	
(clean room)Apollo and contamination control. Rocketdyne's role	
(clean room)Basic studies in environmental microbiology as relat	
(clean room)Biological and engineering aspects of spacecraft ste	
(clean room)Checklist of good contamination control practices fr	
(clean room)Clean assembly and sterilization laboratory	
(clean room)Comparative studies of conceptual design and qualifi	
clean room complex for microbial contamination control/A	
(clean room)Contamination control in the manufacturing sequence	
(clean room)Contamination control. State-of-the-art review	
(clean room)Deposition of nutrients to surfaces by Rodac plates	
(clean room)Development and test of flexible film coupon strips	
clean room during an eleven week test period/The level of microb	
clean room/Evaluation of clean-up efficiency for viable contamin	
Effect of environment on biological burden during sp	
facilities for Explorer 35 spacecraft	
clean room for viable contamination cleanup/Evaluation of the ef	64
(clean room)Handbook of biological aspects of spacecraft steril	655
(clean room)HEPA:LAF environmental control at Riker laboratories	415
(clean room)Improved model of the vacuum probe	796
(clean room)Industrial applications of laminar airflow	348
clean room in space technology/The	793
(clean room)JPL spacecraft sterilization technology program: A s	290
(clean room)Mathematical models for contamination and pollution	825
(clean room)Microbiologic filters - liquid and gas	601
(clean room)Microbiological aspects of sterilization assembly de	868
(clean room)Microbiological studies conducted in a vertical lami	722
(clean room)Microbiology of surgery suites	1208
clean room/Monitoring a Class 100	1268
clean room monitoring for planetary quarantine program/Systems a	1044
clean room monitoring for planetary quarantine program/Systems a	1045
clean room monitoring for planetary quarantine program/Systems a	1046
(clean room)Monitoring of sterile areas	725
Clean room personnel	43
(clean room)Planetary quarantine program./Systems analysis and c	1036
(clean room)Planetary quarantine program./Systems analysis and c	1042
(clean room)Planetary quarantine program./Systems analysis and c	1049
(clean room)Planetary quarantine progress	824
clean room program. Pilot shop operations/Class 100	732
clean room program. Pilot shop operations/Class 100	733
clean room program. Pilot shop operations/Class 100	734
clean room program, preparation and initial operations/Class 100	731
(clean room)Progressive biological monitoring on lunar orbiters	849
(clean room)Quality assurance monitoring of the microbiological	413
(clean room)Services provided in support of the planetary quaran	366
(clean room)Services provided in support of the planetary quaran	1218
(clean room)Services provided in support of the planetary quaran	1219
(clean room)Sterilization facility concepts	610
(clean room)Sterilization. Selected bibliography from the litera	423
(clean room)Study of the application of laminar flow ventilation	392
(clean room)Techniques for the limitation of biological loading	730
Clean room technology	1222
(clean room)Traditional concepts for contamination control	914
(clean room)Ultraclean technology	491
(clean room)Use of laminar flow for environmental control	1271
(clean room)Vacuum probe: new approach to the microbiological sa	1280
clean room when occupied by operating personnel/ Microbial contam	942
clean rooms and devices/Design requirements for laminar airflow	694
clean rooms and work stations for the microbi ally controlled envi	814
"clean rooms"/Bacteriology of	768
clean rooms/Bacteriology of	776
clean rooms. Classified list of selected references, 1955-1964/D	395
clean rooms/Comparative levels and types of microbial contaminat	375
clean rooms/Comparative levels of microbial contamination among	749
clean rooms/Comparison of microbial contamination levels among h	377
clean rooms/Estimation of particulate loads on components of dev	273
Clean rooms in medical and life science research/Present day USA 409
Clean rooms/Investigation of a new ventilating system for 9
Clean rooms/Microbial contamination in 953
Clean rooms/Microbial contamination in conventional and laminar 379
Clean rooms/Microbial profile of laminar flow 959
Clean rooms/Monitoring of laminar downflow 1269
(Clean rooms) Principles and applications of laminar-flow devices 727
Clean rooms/Reduction of microbiological shedding in 1123
Clean rooms used for the assembly and test of lunar spacecraft/C 1189
Clean-up efficiency for viable contamination by a Class 100 lamin 64
(Closed ecology) Microbiological barrier techniques 911
Clostridia/Low temperature growth characteristics of 1014
Clostridium perfringens. Heat resistance and toxigenicity/Some p 1264
(Clostridium perfringens) Reduction of microbial dissemination an 818
Clostridium welchii/Heat and radiation resistance and activation 1013
Comparative levels and types of microbial contamination detected 375
Comparative levels of microbial contamination among hospital ope 749
Comparison of microbial contamination levels among hospital oper 377
Comparison of two model-discrimination criteria 763
Compartmental models/Simultaneous estimation by partial totals f 65
Component sterilization-reliability effects/An integrated test p 156
Component survivability during entry into the Jovian atmosphere 1154
(Components) Application of bench tests in the development of hea 1249
(Components assembly) Clean room facilities for Explorer 35 space 673
(Components assembly) Use of laminar flow for environmental contr 1271
(Components) Biological decontamination of a spacecraft system 671
(Components) Checklist of good contamination control practices fr 57
(Components) Clean assembly and sterilization laboratory 206
(Components) Clean room complex for microbial contamination contr 237
(Components) Clean room technology 1222
(Components) Designing for the laminar flow environment 1273
(Components) Development and application of a system model for sp 319
Components/Dry heat destruction of spores in simulated space veh 31
Components/Dry heat destruction rates for microorganisms on ope 884
Components/Ecology and thermal inactivation of microbes in and o 13
Components/Ecology and thermal inactivation of microbes in and o 14
Components/Ecology and thermal inactivation of microbes in and o 15
Components/Ecology and thermal inactivation of microbes in and o 16
Components/Ecology and thermal inactivation of microbes in and o 17
Components/Ecology and thermal inactivation of microbes in and o 18
Components/Ecology and thermal inactivation of microbes in and o 19
Components/Ecology and thermal inactivation of microbes in and o 20
Components/Ecology and thermal inactivation of microbes in and o 21
Components/Ecology and thermal inactivation of microbes in and o 22
Components/Ecology and thermal inactivation of microbes in and o 23
Components/Ecology and thermal inactivation of microbes in and o 24
Components/Ecology and thermal inactivation of microbes in and o 25
Components/Ecology and thermal inactivation of microbes in and o 174
Components/Ecology and thermal inactivation of microbes in and o 175
Planetary quarantine plan, Voyager project

Preliminary quarantine analysis of a possible Marin

Sterilization assembly and development laboratory

Sterilization techniques

Contaminant control in spacecraft/New approaches to... 233

Basic studies in environmental microbiology as related... 1159

Preliminary quarantine analysis of a possible Marin... 706

Sterilization techniques 586

Contaminant control in spacecraft/New approaches to... 42

Basic studies in environmental microbiology as related... 1235

Contaminants in the interiors of spacecraft components/Microbial... 855

Microbiological barrier techniques 910

Contaminants on space hardware/Factors influencing detection and... 347

Contaminants/Special problem of encapsulated... 133

Contaminants throughout the test cycle/Degradation due to... 874

Contaminated by handling and by aerial fallout during a 2 1/2 ye... 947

Contaminated Mars?/Panspermia revisited, or have we already... 567

Contaminated stainless steel by laminar airflow/Microorganisms... 955

Adaptive allocation of planetary quarantine viola... 215

Contamination among hospital operating rooms and industrial clea... 182

Contamination analysis and monitoring 749

Analytical method for calculating heat sterilizat... 611

Analytical techniques in planetary quarantine... 263

Analytical techniques in planetary quarantine... 318

Contamination and pollution prediction/Mathematical models for... 825

Assembly of CMTM for purposes of determining area... 479

Contamination associated with the Apollo 6 spacecraft during fin... 971

Bacteriology of clean rooms 776

Biological and engineering aspects of spacecraft... 701

Biological losses and the quarantine policy for... 1140

Biostatistics and space exploration: Microbiology... 216

Contamination by a Class 100 laminar flow clean room/An evaluati... 64

Contamination by aeolian erosion/Release of buried... 61

Contamination by terrestrial microorganisms/Analytical basis for... 244

Capsule sterilization canister separation joint... 326

Clean room and work station requirements, control... 248

Clean room facilities for assembly, Explorer XXXV... 1221

Clean room facilities for Explorer 35 spa... 673

Contamination cleanup/Evaluation of the efficiency of a Class 10... 64

Consideration for the Martians 32

Contributions of microbiological safety to space... 906

Contamination control 192

Contamination control 1224

Contamination control after terminal sterilization/Microbial... 1305

Contamination control and sterilization in space programs... 823

Contamination control: a very old, new field... 406

Avionics clean room 210

Contamination control/Biological... 905

Contamination control. Boeing's role/Apollo and... 196

Contamination control/Clean room complex for microbial... 237

Clean room facilities for Explorer 35 spa... 673

Clean room technology 1222

Contributions of microbiological safety to space... 906

Contamination control 192

Contamination control 1224

Contamination control after terminal sterilization/Microbial... 1305

Contamination control and sterilization in space programs... 823

Contamination control: a very old, new field... 406

Avionics clean room 210

Contamination control/Biological... 905

Contamination control. Boeing's role/Apollo and... 196

Contamination control/Clean room complex for microbial... 237

Clean room facilities for Explorer 35 spa... 673

Clean room technology 1222
contamination control; current and advanced concepts in instru
(contamination control) Designing for the laminar flow environmen
(contamination control) 5 year forecast for
contamination control for Tital IIIB program/Some new concepts i
contamination control, Grumman Aircraft's role/Apollo and
Contamination control handbook
Contamination control handbook for ground fluid systems
contamination control in spacecraft sterilization/Microbiologica
Contamination control in the manufacturing sequence
contamination control, McDonnell Douglas' role/Apollo and
contamination control/Microbiological
contamination control, NASA's role/Apollo and
contamination control: Needs and areas of application/Laminar ai
(contamination control) Control of microbiological hazards in the laborat
contamination control on the Apollo program/Handbook for
contamination control/Outbound spacecraft: Basic policy relating
(contamination control) Planetary quarantine and space vehicle st
contamination control: Policy and responsibility/Outbound lunar
contamination control: Policy and responsibility/Outbound planet
contamination control practices from a manufacturing viewpoint/C
Contamination control principles
contamination control, Rocketdyne's role/Apollo and
(contamination control) State-of-the-art review
(contamination control) Sterile access studies in the Pilot Assem
(contamination control) Sterilization and decontamination techniq
contamination control/Systems approach to
(contamination control) Technology/Immediate and future challenge
contamination control/Traditional concepts for
contamination control with application to spacecraft assembly/Co
(contamination) Design requirements for laminar airflow clean ro
contamination detected in industrial clean rooms/Comparative lev
(contamination) Determination of quantitative microbial sampling
(contamination) Develop and test of a sterile insertion repair te
(contamination) Development and test of flexible film coupon stri
(contamination) Development of a laminar airflow biological cabin
contamination/Die-off of microbial
(contamination) Discussion of the planetary quarantine constraint
(contamination) Dry heat inactivation kinetics of naturally occur
(contamination) Ecology and thermal inactivation of microbes in a
(contamination) Effectiveness of laminar airflow for controlling
contamination/Environmental microbiology and the control of micr
(contamination) Environmental microbiology as related to planetar
(contamination) Environmental microbiology as related to planetar
(contamination) Environmental microbiology as related to planetar
(contamination) Estimation of planetary contamination probabiliti
(contamination) Evaluation of alcohol sporulation method
(contamination) Evaluation of alcohol sporulation method
(contamination) Experiment to determine the effects of solid and
<table>
<thead>
<tr>
<th>Contamination Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential decontamination models for count data</td>
<td>229</td>
</tr>
<tr>
<td>Contamination failure mode/Model for determining the probability</td>
<td>1185</td>
</tr>
<tr>
<td>Contamination from fractured solids/Release of microbial</td>
<td>880</td>
</tr>
<tr>
<td>Contamination from Gemini space suit/Evaluation of leakage of microbial</td>
<td>817</td>
</tr>
<tr>
<td>(Contamination) Gaseous sterilization</td>
<td>138</td>
</tr>
<tr>
<td>(Contamination) Handbook of biological aspects of spacecraft sterilization</td>
<td>655</td>
</tr>
<tr>
<td>(Contamination) HEPA: LAF environmental control at Riker laboratory</td>
<td>415</td>
</tr>
<tr>
<td>Contamination identification/Approach to</td>
<td>305</td>
</tr>
<tr>
<td>Contamination in a clean room during an eleven week test period</td>
<td>941</td>
</tr>
<tr>
<td>Contamination in a clean room when occupied by operating personnel</td>
<td>942</td>
</tr>
<tr>
<td>Contamination in clean rooms/Microbial</td>
<td>953</td>
</tr>
<tr>
<td>Contamination in clean rooms used for the assembly and test of</td>
<td>1189</td>
</tr>
<tr>
<td>Contamination in conventional and laminar flow clean rooms/Microbial</td>
<td>379</td>
</tr>
<tr>
<td>(Contamination) Industrial applications of laminar airflow</td>
<td>348</td>
</tr>
<tr>
<td>Contamination inside balsa wood and explosive charges (squibs, p</td>
<td>938</td>
</tr>
<tr>
<td>Contamination inside cured solid propellant/Investigation of</td>
<td>939</td>
</tr>
<tr>
<td>Contamination inside electronic components/Technique for the inv</td>
<td>610</td>
</tr>
<tr>
<td>Contamination inside electronic components/Investigation of</td>
<td>933</td>
</tr>
<tr>
<td>Contamination inside electronic components/Investigation of</td>
<td>934</td>
</tr>
<tr>
<td>Contamination inside electronic components/Investigation of</td>
<td>935</td>
</tr>
<tr>
<td>Contamination inside electronic components/Investigation of</td>
<td>936</td>
</tr>
<tr>
<td>Contamination inside irradiated and heated electronic components</td>
<td>940</td>
</tr>
<tr>
<td>Contamination inside solar panel/Investigation of bacterial</td>
<td>937</td>
</tr>
<tr>
<td>Contamination in space hardware/Methodology of measuring internal</td>
<td>441</td>
</tr>
<tr>
<td>Contamination/Instrumentation and methodology in measurement of</td>
<td>1277</td>
</tr>
<tr>
<td>Contamination in the interior of spacecraft components/Conference</td>
<td>1133</td>
</tr>
<tr>
<td>(Contamination) Investigation of the reliability of sterile inser</td>
<td>1152</td>
</tr>
<tr>
<td>(Contamination isolates) Services provided in support of the plan</td>
<td>357</td>
</tr>
<tr>
<td>(Contamination) Laboratory evaluation of the plastic vacuum probe</td>
<td>343</td>
</tr>
<tr>
<td>(Contamination) Laminar flow for the neurosurgical operating room</td>
<td>56</td>
</tr>
<tr>
<td>Contamination levels among hospital operating rooms and the indu</td>
<td>377</td>
</tr>
<tr>
<td>Contamination levels in a laminar flow operating room</td>
<td>393</td>
</tr>
<tr>
<td>Contamination located between mated surfaces and on exterior sur</td>
<td>930</td>
</tr>
<tr>
<td>Contamination log/Planetary microbiological</td>
<td>321</td>
</tr>
<tr>
<td>(Contamination logs) Planning, evaluation and analytical studies</td>
<td>51</td>
</tr>
<tr>
<td>(Contamination logs) Planning, evaluation and analytical studies</td>
<td>52</td>
</tr>
<tr>
<td>(Contamination logs) Planning, evaluation and analytical studies</td>
<td>53</td>
</tr>
<tr>
<td>(Contamination) Mariner Mars 1971 planetary quarantine plan</td>
<td>540</td>
</tr>
<tr>
<td>(Contamination) Microbiological cleanliness at JPL's EASL and SADL</td>
<td>867</td>
</tr>
<tr>
<td>(Contamination) Microbiological burden on the surfaces of Explore</td>
<td>960</td>
</tr>
<tr>
<td>(Contamination) Microbiological burden on the surfaces of the AIM</td>
<td>961</td>
</tr>
<tr>
<td>(Contamination) Microbiological burden on the surfaces of the AIM</td>
<td>962</td>
</tr>
<tr>
<td>(Contamination) Microbiological burden on the surfaces of the AIM</td>
<td>963</td>
</tr>
<tr>
<td>(Contamination) Microbiological burden on the surfaces of the AIM</td>
<td>964</td>
</tr>
<tr>
<td>(Contamination) Microbiological exploration of the stratosphere</td>
<td>876</td>
</tr>
<tr>
<td>(Contamination) Microbiological flora of the Gemini IX spacecraft</td>
<td>568</td>
</tr>
<tr>
<td>(Contamination) Microbiological studies conducted in a vertical</td>
<td>722</td>
</tr>
<tr>
<td>(Contamination) Microbiological studies conducted in the Experiment</td>
<td>723</td>
</tr>
<tr>
<td>(Contamination) Microbiological studies on planetary quarantine</td>
<td>656</td>
</tr>
<tr>
<td>(Contamination) Microbiological survey of environmentally control</td>
<td>869</td>
</tr>
</tbody>
</table>

120
Microbiological techniques for recovery from inte 737
Microbiology quality activities for a planetary m 195
contamination/Microscopic method of particulate 977
contamination/model/An assembly 1092
contamination/Monitoring airborne particulate 688
(contamination)/Monitoring clean areas 725
(contamination)/Monitoring of laminar downflow clean rooms 1269
(contamination)/NASA standard procedures for the microbiological 806
contamination obtained on surfaces exposed to room air or touche 943
contamination of a planet/Analysis and sensitivity studies relat 598
contamination of a surface by handling/Microbial 958
Contamination of Mars 1030
contamination of Mars. Cold and aridity as constraints on the su 866
contamination of Mars/Probability of biological 1211
contamination of Mars/Spacecraft sterilization and 1031
contamination of Mars. Survival of terrestrial microorganisms in 1082
Contamination of planets 520
contamination of planets and the Earth/Dangers of 1129
Contamination of planets by nonsterile flight hardware 1290
contamination of space with terrestrial life/Discussion of a pos 152
contamination of surfaces/Comparative evaluation of methods for 29
contamination of the planets by unsterile spaceflight hardware/T 235
contamination on flat surfaces/Effect of time and temperature in 1241
contamination on space hardware/Factors influencing the detectio 367
contamination on surfaces by chemical approaches/Detection of lo 426
contamination on surfaces by chemical approaches/Detection of lo 427
contamination on surfaces by chemical approaches/Detection of lo 428
contamination on surfaces by chemical approaches/Detection of lo 429
contamination on surfaces by chemical approaches/Detection of lo 875
contamination on surfaces. Evaluation of leakage of microbial co 816
contamination on surfaces. Evaluation of leakage of microbial co 817
contamination on surfaces of space hardware by ultrasonics/Asses 967
contamination on surfaces/Services provided in support of the pl 199
contamination on surfaces/Services provided in support of the pl 200
contamination on surfaces/Services provided in support of the pl 201
contamination on surfaces/Services provided in support of the pl 202
contamination on surfaces/Services provided in support of the pl 203
contamination on surfaces/Use of ultrasonic energy in assessing 975
(contamination)/Organic constituent inventory for planetary fligh 332
(contamination)/Planetary quarantine provisions for unmanned plan 811
(contamination)/Planning study for an organic constituents invent 715
(contamination)/Potential effects of recent findings on spacecraf 1079
contamination: Practical approach for developing sterilizing pro 211
(contamination)/Principles and applications of laminar-flow devic 727
contamination probabilities by non-landing vehicles/Estimation o 327
contamination probabilities due to flight of the U.S.S.R. Venus 1063
contamination probability from viable organism penetration of bi 1181
contamination probability/Mariner Venus 67 – prelaunch analysis 526
contamination/Procedures necessary for the prevention of planeta 494
(contamination)/Progressive biological monitoring on lunar orbite 849
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality assurance requirements manual for planeta</td>
<td>755</td>
</tr>
<tr>
<td>Rational model for spacecraft sterilization requirements</td>
<td>113</td>
</tr>
<tr>
<td>Recent developments in planetary quarantine</td>
<td>487</td>
</tr>
<tr>
<td>Recurring problem/Biological and chemical surface</td>
<td>478</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal</td>
<td>819</td>
</tr>
<tr>
<td>Re-evaluation of planetary quarantine constraints</td>
<td>323</td>
</tr>
<tr>
<td>Multi-stage decision model for mission</td>
<td>1184</td>
</tr>
<tr>
<td>Research on microbiological sterilization problem</td>
<td>197</td>
</tr>
<tr>
<td>Scale-up of heat sterilization operations</td>
<td>1244</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>355</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>356</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>358</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>360</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>362</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>819</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry</td>
<td>1155</td>
</tr>
<tr>
<td>Spacecraft sterilization</td>
<td>45</td>
</tr>
<tr>
<td>Spacecraft sterilization and the prevention of planetary quarantine</td>
<td>488</td>
</tr>
<tr>
<td>Spacecraft sterilization: Some specific examples</td>
<td>844</td>
</tr>
<tr>
<td>Spacecraft sterilization, techniques and equipment</td>
<td>845</td>
</tr>
<tr>
<td>Spacecraft sterilization - the grand requirements</td>
<td>843</td>
</tr>
<tr>
<td>Statistical problems in the standardization of a mission</td>
<td>631</td>
</tr>
<tr>
<td>Sterilization of electronic components of spacecraft</td>
<td>212</td>
</tr>
<tr>
<td>Sterilization of space vehicles: the problem of microbial</td>
<td>1297</td>
</tr>
<tr>
<td>Sterilization of spacecraft to prevent extraterrestrial contamination</td>
<td>247</td>
</tr>
<tr>
<td>Sterilizing space probes</td>
<td>490</td>
</tr>
<tr>
<td>Study of aseptic maintenance by pressurization</td>
<td>666</td>
</tr>
<tr>
<td>Study of the application of laminar flow ventilation</td>
<td>392</td>
</tr>
<tr>
<td>Study of the biological cleanability of surfaces</td>
<td>416</td>
</tr>
<tr>
<td>Study of the thermal kill of viable organisms during</td>
<td>157</td>
</tr>
<tr>
<td>Surface sampling with an agar spray technique</td>
<td>575</td>
</tr>
<tr>
<td>Survey of electronic components</td>
<td>695</td>
</tr>
<tr>
<td>Synergistic effects of ethylene oxide and other agents</td>
<td>628</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for planetary quarantine</td>
<td>1045</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for planetary quarantine</td>
<td>1046</td>
</tr>
<tr>
<td>Techniques for the limitation of biological load</td>
<td>730</td>
</tr>
<tr>
<td>Testing and fabrication of plastic vacuum probes</td>
<td>913</td>
</tr>
<tr>
<td>The clean room in space technology</td>
<td>793</td>
</tr>
<tr>
<td>Contamination to which spacecraft components are subjected during</td>
<td>378</td>
</tr>
<tr>
<td>Ultraclean technology</td>
<td>491</td>
</tr>
<tr>
<td>Use of laminar airflow equipment in microbiology</td>
<td>381</td>
</tr>
<tr>
<td>Use of laminar airflow for environmental control</td>
<td>1271</td>
</tr>
<tr>
<td>User's manual for planetary quarantine lunar program</td>
<td>1296</td>
</tr>
<tr>
<td>Biological losses and the quarantine policy for Mars</td>
<td>1140</td>
</tr>
<tr>
<td>Consideration for the Martians</td>
<td>32</td>
</tr>
<tr>
<td>Contamination control and sterilization in space program</td>
<td>823</td>
</tr>
<tr>
<td>Microbial survival after simulated meteoroid impact</td>
<td>848</td>
</tr>
<tr>
<td>Planetary microbiological contamination log</td>
<td>321</td>
</tr>
<tr>
<td>Planetary quarantine plan Voyager project</td>
<td>603</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Potential effects of recent findings on spacecraft sterilization</td>
<td>1079</td>
</tr>
<tr>
<td>Potentially harmful effects of space experiments</td>
<td>230</td>
</tr>
<tr>
<td>Probability of biological contamination of Mars</td>
<td>1211</td>
</tr>
<tr>
<td>Procedures necessary for the prevention of planetary contamination</td>
<td>494</td>
</tr>
<tr>
<td>Rational model for spacecraft sterilization requirements</td>
<td>113</td>
</tr>
<tr>
<td>Relationship of planetary quarantine to biological search</td>
<td>686</td>
</tr>
<tr>
<td>COSPAR Resolution 26.5. Draft/National Aeronautics and Space Ad</td>
<td>483</td>
</tr>
<tr>
<td>COSPAR/Soviet spacecraft sterilization methods aired at</td>
<td>73</td>
</tr>
<tr>
<td>Spacecraft sterilization and contamination of Mars</td>
<td>1031</td>
</tr>
<tr>
<td>Spacecraft sterilization and planetary quarantine, background criteria</td>
<td>390</td>
</tr>
<tr>
<td>Spacecraft-sterilization issue may effect pace of Mars and criteria</td>
<td>37</td>
</tr>
<tr>
<td>Planetary quarantine and space vehicle sterilization critique</td>
<td>763</td>
</tr>
<tr>
<td>Planetary quarantine and space vehicle sterilization critique</td>
<td>763</td>
</tr>
<tr>
<td>Planetary quarantine and space vehicle sterilization critique</td>
<td>763</td>
</tr>
<tr>
<td>life in extraterrestrial environments</td>
<td>1061</td>
</tr>
<tr>
<td>life in extraterrestrial environments</td>
<td>467</td>
</tr>
<tr>
<td>Low temperature growth characteristics of clostridia</td>
<td>1014</td>
</tr>
<tr>
<td>Preliminary sublimation studies</td>
<td>1207</td>
</tr>
<tr>
<td>Influence of a set of extremal factors on biological crystals</td>
<td>70</td>
</tr>
<tr>
<td>Dry heat or gaseous chemical resistance of Bacillus sub</td>
<td>798</td>
</tr>
<tr>
<td>Interactive computer information system for planetary</td>
<td>1007</td>
</tr>
<tr>
<td>User's manual for planetary quarantine lunar program cycle</td>
<td>1296</td>
</tr>
<tr>
<td>for a possible Mars capsule/Determination of the terminal cycles</td>
<td>534</td>
</tr>
<tr>
<td>on ethylene oxide - Freon 12 decontamination and decontamination</td>
<td>621</td>
</tr>
<tr>
<td>Compatibility tests/Anchor interplanetary monitor decontamination</td>
<td>445</td>
</tr>
<tr>
<td>Adsorption of formaldehyde by various surfaces decontamination</td>
<td>122</td>
</tr>
<tr>
<td>decontamination and dry heat sterilization cycles/Studies on eth</td>
<td>621</td>
</tr>
<tr>
<td>decontamination and encapsulation of MOSFETS circuitry/Handling</td>
<td>677</td>
</tr>
<tr>
<td>decontamination and sampling program for anchored interplanetary</td>
<td>678</td>
</tr>
<tr>
<td>Decontamination and sterilization of lunar and planetary spacecraft</td>
<td>834</td>
</tr>
<tr>
<td>decontamination and sterilization of spacecraft/Proceedings of m</td>
<td>812</td>
</tr>
<tr>
<td>decontamination and sterilization on spacecraft polymeric material</td>
<td>679</td>
</tr>
<tr>
<td>decontamination and sterilization/Survey of certain nonthermal m</td>
<td>1104</td>
</tr>
<tr>
<td>Beta-propiolactone vapor decontamination Clean assembly and sterilization laboratory</td>
<td>551</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology decontamination</td>
<td>218</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology decontamination</td>
<td>221</td>
</tr>
<tr>
<td>Clean assembly and sterilization laboratory decontamination cleaning</td>
<td>206</td>
</tr>
<tr>
<td>and encapsulation of electron decontamination Clean room facilities</td>
<td>674</td>
</tr>
<tr>
<td>for Explorer 35 spacecraft decontamination Comments on the in-flight</td>
<td>673</td>
</tr>
<tr>
<td>recontamination hazard decontamination Disinfection of aerosol</td>
<td>1225</td>
</tr>
<tr>
<td>chambers with Beta-prop decontamination Disinfection of microbial</td>
<td>7</td>
</tr>
<tr>
<td>aerosol chambers with decontamination Efficiency of sterilants in</td>
<td>8</td>
</tr>
<tr>
<td>terrestrial and ext decontamination Environmental microbiology as</td>
<td>1024</td>
</tr>
<tr>
<td>related to planet decontamination environments/Environmental</td>
<td>88</td>
</tr>
<tr>
<td>specification Voyager decontamination Martian quarantine risk model</td>
<td>1146</td>
</tr>
<tr>
<td></td>
<td>1141</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Method for disinfecting large enclosures with B 1137</td>
<td>1137</td>
</tr>
<tr>
<td>Decontamination models/Estimation of the parameters in exponents</td>
<td>222</td>
</tr>
<tr>
<td>Decontamination models for count data/Exponential</td>
<td>229</td>
</tr>
<tr>
<td>Decontamination of a spacecraft system/Biological</td>
<td>671</td>
</tr>
<tr>
<td>Decontamination of enclosed spaces with Beta-propiolactone vapor</td>
<td>135</td>
</tr>
<tr>
<td>Decontamination of SADL facility/Sterilization assembly and deve</td>
<td>706</td>
</tr>
<tr>
<td>Decontamination of spacecraft/Development of parametric data for</td>
<td>245</td>
</tr>
<tr>
<td>Decontamination of the AIMP-D spacecraft</td>
<td>675</td>
</tr>
<tr>
<td>Practical procedures for microbial</td>
<td>916</td>
</tr>
<tr>
<td>Decontamination procedure: Control and determination of moisture</td>
<td>1099</td>
</tr>
<tr>
<td>Decontamination procedure: Quantitative estimation of ethylene o</td>
<td>620</td>
</tr>
<tr>
<td>(decontamination)Sterilizable liquid propulsion system</td>
<td>111</td>
</tr>
<tr>
<td>(decontamination)Sterilizable liquid propulsion system</td>
<td>1016</td>
</tr>
<tr>
<td>(decontamination)Sterilization, and thermal vacuum exposures/Spac</td>
<td>1015</td>
</tr>
<tr>
<td>(decontamination)Sterilization. Selected bibliography from the</td>
<td>423</td>
</tr>
<tr>
<td>(decontamination)Sterilization techniques</td>
<td>586</td>
</tr>
<tr>
<td>System/Automatic ethylene oxide</td>
<td>1097</td>
</tr>
<tr>
<td>Decontamination techniques for space vehicles/Sterilization and</td>
<td>232</td>
</tr>
<tr>
<td>Decontamination techniques/Spacecraft cleaning and</td>
<td>1086</td>
</tr>
<tr>
<td>(decontamination)Testing a sterilizable liquid propulsion system</td>
<td>634</td>
</tr>
<tr>
<td>(decontamination)Use of ultraviolet radiation in microbiological</td>
<td>918</td>
</tr>
<tr>
<td>(decontamination)Valve bioload reduction and sterilization study</td>
<td>596</td>
</tr>
<tr>
<td>(dehydration)Effects of high intensity visible and ultraviolet</td>
<td>188</td>
</tr>
<tr>
<td>Desert microflora</td>
<td>161</td>
</tr>
<tr>
<td>Desert microflora</td>
<td>162</td>
</tr>
<tr>
<td>Desert microflora. Desert soil algae survival at extremely low t</td>
<td>171</td>
</tr>
<tr>
<td>(desiccation, and relative cleanliness) on the destruction of Bac</td>
<td>283</td>
</tr>
<tr>
<td>(desiccation)Effect of bacterial cell moisture on the sporicidal</td>
<td>546</td>
</tr>
<tr>
<td>Design criteria for typical planetary spacecraft to be sterilize</td>
<td>241</td>
</tr>
<tr>
<td>Desorption of water by bacterial spores and its relation to dry</td>
<td>1023</td>
</tr>
<tr>
<td>Destruction of Bacillus subtilis var. niger spores with gaseous</td>
<td>283</td>
</tr>
<tr>
<td>Destruction of microorganisms in dry heat/Effect of various gas</td>
<td>897</td>
</tr>
<tr>
<td>Destruction of microorganisms/Thermal</td>
<td>896</td>
</tr>
<tr>
<td>Destruction of spores in simulated space vehicle components/Dry</td>
<td>31</td>
</tr>
<tr>
<td>Destruction patterns/Heat</td>
<td>890</td>
</tr>
<tr>
<td>Destruction rate of bacterial spores/Effect of temperature and g</td>
<td>396</td>
</tr>
<tr>
<td>Destruction rate of B. subtilis var. niger in a closed system/Dr</td>
<td>791</td>
</tr>
<tr>
<td>Destruction rates of B. subtilis var. niger in a closed system:</td>
<td>430</td>
</tr>
<tr>
<td>Destruction rates of B. subtilis var. niger in a closed system:</td>
<td>790</td>
</tr>
<tr>
<td>Destruction rates of microorganisms on surfaces/Dry heat</td>
<td>895</td>
</tr>
<tr>
<td>Destruction rates of microorganisms on surfaces/Dry heat</td>
<td>1239</td>
</tr>
<tr>
<td>Destruction studies/Dry heat destruction rates of B. subtilis va</td>
<td>790</td>
</tr>
<tr>
<td>Detoxification/Paraformaldehyde for surface sterilization and</td>
<td>1172</td>
</tr>
</tbody>
</table>
Development and application/Method for microbial surface sampling
Development and test of flexible film coupon strips for use as a
development in environmental microbiology/Research and
development laboratories EASL and SADL/Microbiological aspects o
Development of a biological indicator for dry heat sterilization
development of a mathematical model(s) for microbial burden pred
development of a mathematical model(s) for microbial burden pred
development of a mathematical model(s) for microbial burden pred
development of a mathematical model(s) for microbial burden pred
Development of an increased sampling rate monitoring system
developments in planetary quarantine/Recent
(devices)Advances in large-volume air sampling
(devices)Vacuum probe: new approach to the microbiological sampl
diatomaceous earth pellets used as a protective material in dry
diatomaceous earth/Recovery of vegetative bacteria from eccofoam
(die-away)Development and test of flexible film coupon strips fo
(die-away)Stochastic model describing bacterial aerosol concentr
(die-off)Exponential decontamination models for count data
die-off of contaminants/Basic studies in environmental microbiol
Die-off of microbial contamination
(die-off)Survival of microorganisms on covered stainless steel i
(die-off)Thermal destruction of microorganisms
(diffusion barriers)Sterilization with gaseous ethylene oxide: r
diffusion model of dry heat sterilization/Investigations into a
(diffusion)Relationship of the surface mass average and geometri
dimethyl sulfoxide on the sporicidal activity of ethylene oxide
(dimethyl sulfoxide)Sterilization of space hardware
dimethyl sulfoxide/Virucidal properties of
disinfectant/Beta-propiolactone vapor as a
(disinfectant)Sporicidal activity of sodium hypochlorite at subz
disinfecting large enclosures with Beta-propiolactone vapor/Meth
disinfection/Gaseous
disinfection/Kinetics of
Disinfection of aerosol chambers with Beta-propiolactone
Disinfection of heat-sensitive material by low-temperature steam
Disinfection of microbial aerosol chambers with Beta-propiolacto
dissemination and germicidal activity of ethylene oxide/Reducio
disseminator technique/Production of low concentration particula
distribution of the likelihood ratio statistics -2lnλn under a c
diurnal freezing and thawing/Response of spore-forming vs. nonsp
DNA in wet heat sterilization of microorganisms/Role of
downflow clean rooms/Monitoring of laminar
(dry heat)Analysis of vacuum effects in the sterilization of mic
dry heat and ethylene oxide gas upon spore contamination located
(dry-heat)Bacteriology of clean rooms
(dry heat)Biological and engineering aspects of spacecraft steri
(dry heat)Clean room complex for microbial contamination control
(dry heat)Consideration for the Martians
(dry heat)Controlled contamination: Practical approach for devel
(dry heat) Potential effects of recent findings on spacecraft ste

(dry heat) Precisely controlled, low range humidity system

(dry heat) Procedure manual for planetary spacecraft to be steril

(dry heat) Procedures for the microbiological examination of space

(dry heat) Recent advances in microbiological environmental control

(dry heat) Relative frequency distribution of D_{125°C} values for spores of Bacillus subtilis var. niger

(dry heat) Resistance of Bacillus subtilis var. niger spores occluded in dry heat

Dry heat resistance of Bacillus subtilis var. niger spores occluded in dry heat

Dry heat resistance of Bacillus subtilis var. niger spores on mated substrate

Dry heat resistance of bacterial spores recovered from Mariner M

Dry heat resistance of naturally occurring organisms widely dispersed in dry heat

Dry heat resistance of spores of Bacillus subtilis var. niger on mated substrate

dry heat resistance studies/Reproducibility of results in dry heat

Dry heat/Resistivity of microorganisms to inactivation by dry heat

Dry heat/Resistivity of microorganisms to thermal inactivation

(dry heat) Services provided in support of the planetary quarantine

(dry heat) Services provided in support of the planetary quarantine

(dry heat) Services provided in support of the planetary quarantine

(dry heat) Spacecraft sterilization, techniques and equipment

(dry heat) Spacecraft sterilization. Thermal considerations

(dry heat) Special problem of encapsulated contaminants

(dry heat) Sterilizable photomultiplier tubes

(dry heat) Sterilization

Dry heat sterilization: A general review/Biological and physical considerations

Dry heat sterilization cycles/Studies on ethylene oxide - Freon

Dry heat sterilization/Development of a biological indicator for sterilization

Dry heat sterilization for planetary-impacting spacecraft

Dry heat sterilization for planetary-impacting spacecraft

Dry heat sterilization: Its development and application to components

Dry heat sterilization modeling

Dry heat sterilization/Observations regarding factors important

Dry heat sterilization of interplanetary vehicles

Dry heat sterilization of microorganisms at 105°C/Study of sterilization

Dry heat sterilization of microorganisms/Role of water activity

(dry heat) Sterilization of space hardware

(dry heat) Sterilization of space probe components

(dry heat) Sterilization of space probe components

(dry heat) Sterilization procedures for planetary landers

Dry heat sterilization procedures on polymeric products/Effects of sterilization

(dry heat) Sterilization/Protective mechanism affecting sterilization

(dry heat) Sterilization studies/Quantitative spore recoveries from sterilization

(dry heat) Sterilization techniques

(dry heat) Studies for sterilization of space probe components

(dry heat) Studies of spacecraft sterilization parameters

Dry heat survival of Bacillus subtilis var. niger in association

(dry heat) Systems analysis and clean room monitoring for planetesimals

(dry heat) Systems analysis and clean room monitoring for planets

(dry heat) Terminal sterilization process calculation for spacecraft

(dry heat) Thermal destruction of microorganisms

Dry heat upon dry bacterial spores/Effects of sterilization

127
(dry heat)Voyager effort focused on sterilization

<table>
<thead>
<tr>
<th>D-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-125C</td>
<td>values for spore isolates from the Mariner-Mars 1969 space</td>
</tr>
<tr>
<td>D-125C</td>
<td>Analytical basis for planetary quarantine</td>
</tr>
<tr>
<td>D-value</td>
<td>Contamination control in the manufacturing sequence</td>
</tr>
<tr>
<td>D-value</td>
<td>Detection of low levels of microbial contamination on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction of Bacillus subtilis spores on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates for microorganisms on open surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of Bacillus subtilis var. nihilo</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of Bacillus subtilis var. nihilo</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of microorganisms on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of microorganisms on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of microorganisms on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction rates of Bacillus subtilis var. nihilo</td>
</tr>
<tr>
<td>D-value</td>
<td>Dry heat destruction for planetary-impacting spacecraft</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Ecology and thermal inactivation of microbes in and on surfaces</td>
</tr>
<tr>
<td>D-value</td>
<td>Effect of humidity, location, surface finish and separation</td>
</tr>
<tr>
<td>D-value</td>
<td>Effect of relative humidity on the penetrability and separation</td>
</tr>
<tr>
<td>D-value</td>
<td>Effect of temperature and gas velocity on the dry-heat resistance</td>
</tr>
<tr>
<td>D-value</td>
<td>Environmental microbiology as related to planetary quarantine</td>
</tr>
<tr>
<td>D-value</td>
<td>Environmental microbiology as related to planetary quarantine</td>
</tr>
<tr>
<td>D-value</td>
<td>Germicidal activity of ethylene oxide/14 summary report</td>
</tr>
<tr>
<td>D-value</td>
<td>Inactivation and division delay of E. coli B/r by combination</td>
</tr>
<tr>
<td>D-value</td>
<td>Influence of spore moisture content on the dry-heat resistance</td>
</tr>
<tr>
<td>D-value</td>
<td>Measurement of the destruction of bacterial spores by dry heat</td>
</tr>
<tr>
<td>D-value</td>
<td>Methodology of measuring internal contamination in space</td>
</tr>
<tr>
<td>D-value</td>
<td>Microbial resistance to ethylene oxide</td>
</tr>
<tr>
<td>D-value</td>
<td>Microbial sterilization in ultra-high vacuum and outer space</td>
</tr>
<tr>
<td>D-value</td>
<td>Microbiological aspects of ethylene oxide sterilization</td>
</tr>
<tr>
<td>D-value</td>
<td>Microbiological aspects of ethylene oxide sterilization</td>
</tr>
<tr>
<td>D-value</td>
<td>Observations on bacterial thermal death time curves</td>
</tr>
<tr>
<td>D-value</td>
<td>Properties of heat-resistant and heat-sensitive strains</td>
</tr>
<tr>
<td>D-value</td>
<td>Reproducibility of results in dry heat resistance studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
<tr>
<td>D-value</td>
<td>Services provided in support of the planetary quarantine studies</td>
</tr>
</tbody>
</table>
Services provided in support of the planetary quarantine
Space vehicle sterilization problem
Sporicidal activity of ethylene oxide
Sterilization of space hardware
Study of dry heat sterilization of microorganisms at 10
Synergistic characteristics of thermoradiation steriliz
Thermal death of Bacillus subtilis var. niger spores on
Thermal destruction of microorganisms
D, z, and Aω value investigations/Status report on

EASL-SADL test and operations. Summary
EASL and SADL/Microbial cleanliness at JPL's
EASL and SADL/Microbiological aspects of sterilization assembly
EASL/Microbiological survey of environmentally controlled areas
eccofoam FP and diatomaceous earth/Recovery of vegetative bacter
electrophoresis/Rapid identification of microorganisms by contin
encapsulated contaminants/Special problem of
Encapsulation, electronics, eccofoam
capsulation of MOSFETS circuitry/Handling, cleaning, decontami
(environment)Absorption and desorption of ethylene oxide
(environment)Absorption-desorption of water by bacterial spores
environmentally controlled areas/Microbiological survey of
Environmental microbiology/Bibliography on planetary quarantine.
environmental microbiology/Research and development in
environmental microbiology/Short courses on basic
environmental microbiology/Short courses on basic
environmental studies/Natural space
environmental understanding/Automatic biodetecting and monitorin
(environment)Analytical basis for planetary quarantine
(environment)Analytical basis for the estimation of planetary co
environment and possible biology of Mars/Surface
(environment)Apollo and contamination control. McDonnell Douglas
(environment)Atmosphere of Mars and Venus
(environment)Atmospheric contaminants in spacecraft
(environment)Avionics clean room
(environment)Bacterial response to the soil
(environment)Bacteria under simulated Martian conditions
(environment)Bacteriology of clean rooms
(environment)Behavior of certain soil microorganisms in the "art
(environment)Biological evaluation of the biodetection grinder
(environment)Class 100 clean room program
environment/Clean room and work station requirements, controlled
(environment)Clean room facilities for Explorer 35 spacecraft
(environment)Clean room in space technology
(environment)Clean room personnel
(environment)Comparative evaluation of methods for the search fo
(environment)Computerized program for statistical treatment of b

129
Microbial analysis

Microbial contamination control after terminal sterilization

Microbial contamination detected on the Apollo 9 spacecraft

Microbial release from solids after simulated hard landings

Microbial survival in deep space

Microbiological analysis of snow and ice from the Antarctic

Microbiological methods of testing the atmosphere

Microbiological monitoring of spacecraft assembly and launch

Microbiological sampling of returned Surveyor III spacecraft

Microbiological studies on planetary quarantine

Microorganism study: bacterial isolants from harsh environments

Microorganisms under simulated Martian environments

Model for the quantification of the qualitative microbial load

Monitoring clean areas

Monitoring of sterile areas

New approaches to contaminant control in spacecraft

New concepts in contamination control for Titan III

1973 Viking voyage to Mars

Environment on biological burden during spacecraft assembly and launch

Pan'sperma revisited, or have we already contaminated Earth

Planetary probe-origin of atmosphere of Venus

Planetary quarantine constraints for advanced missions

Possible contamination of earth by lunar or Martian environments

Possibility of survival of terrestrial organisms under extraterrestrial conditions

Possibility of the spreading of viable germs in outer space

Post-launch recontamination studies

Preliminary analysis of the radiation burden of a terrestrial environment

Present day usage of clean rooms in medical and life sciences

Problems posed by the planet Venus

Quality assurance monitoring of the microbiological environment

Recent developments in planetary quarantine

Reduction of microbial dissemination and germicidal action

Reproducibility of results in dry heat resistance studies

Research study to definitize a bio-isolator suit system

Response of microorganisms to a simulated Martian environment

Response of spore-forming vs. nonspore-forming bacteria

Review of the possible existence of a Jovian atmosphere

Role of soil science in space exploration

Environments/Ability of microorganisms to establish ecological niches

Environments/Association of terrestrial microorganisms with the sterilization of planetary capsules

Environments/Biochemical activities of terrestrial microorganisms

Environments/Biological contamination of Mars. Survival of terrestrial life under extreme conditions

Environments/Biological contamination of Mars. Cold and aridity

Search for life on Mars - where we stand today

Efficiency of sterilants in terrestrial and extraterrestrial environments

Environmental specification of Voyager capsule flight

Services provided in support of the planetary quarantine

Simulation of the Venus atmosphere

Ethylene oxide sterilization of spores in hygroscopic environments
Environmental microbiology as related to planetary quarantine

environmental microbiology

ethylene oxide/Absorption and desorption of
ethylene oxide and methyl bromide against microorganisms on vari
(ethylene oxide and methyl bromide)Dry heat on gaseous chemical
ethylene oxide and methyl bromide mixture/Efficiency of steriliz
ethylene oxide and other agents/Synergistic effects of
(ethylene oxide)Assembly of CMTM for purposes of determining are
ethylene oxide/Bibliography on applications of
ethylene oxide - carbon dioxide mixtures on bacteria and bacteri
(ethylene oxide)Comparative studies of conceptual design and qua
ethylene oxide concentration by gas chromatography/The ethylene
(ethylene oxide)Contamination control and sterilization in space
ethylene oxide cycle for decontamination of spacecraft/Developme
ethylene oxide decontamination environments/Environmental specif
ethylene oxide decontamination system/Automatic
ethylene oxide/Effect of \(\Delta g \) on the sporicidal activity of
(ethylene oxide)Effect of decontamination sterilization, and the
(ethylene oxide)Effect of dimethyl sulfoxide on the sporicidal a
ethylene oxide. Effect of ethylene oxide and related compounds u
ethylene oxide. Effect of moisture/The sterilizing action of
(ethylene oxide)Effects of decontamination and sterilization on
(ethylene oxide)Elimination of toxicity from polyvinyl trays aft
(ethylene oxide)Evaluation of new penetrating sporicide potenti
(ethylene oxide)Evaluation of sterilization by gaseous oxide
ethylene oxide for sterilization: a partially annotated bibliogr
ethylene oxide - Freon 12 and heat/Surveyor sterilization
ethylene oxide - Freon 12 and its compatibility with materials a
ethylene oxide - Freon 12 decontamination and dry heat steriliza
ethylene oxide - Freon 12 decontamination and dry heat steriliza
ethylene oxide - Freon 12 decontamination procedure: Control and
ethylene oxide - Freon 12 decontamination procedure: Quantitativ
Ethylene oxide - Freon 12 decontamination procedure: Reactions i
(ethylene oxide - Freon 12)Experimental study of sterile assembl
(ethylene oxide - Freon 12)Experimental study of sterile assembl
ethylene oxide - Freon 12 sterilant gas mixture/Literature revie
(ethylene oxide - Freon 12)Surveyor sterilization. Studies of st
(ethylene oxide)Gaseous disinfection
(ethylene oxide)Gaseous sterilization
Ethylene oxide gaseous sterilization. Concentration and temperat
Ethylene oxide gaseous sterilization. Influence of method of hum
ethylene oxide gas mixtures/Sterilization with
ethylene oxide gas on Scotch tape/Penetrability and effect of

133
ethylene oxide gas upon spore contamination located between mate
(ethylene oxide)Germicidal activity of
(ethylene oxide)Handbook of biological aspects of spacecraft ste
ethylene oxide/Influence of various pretreatments [carriers, des
(ethylene oxide)Investigation of microbial contamination inside
(ethylene oxide)Investigation of a sono-chemical approach in ste
(ethylene oxide)Limitations of thioglycolate broth as a sterilit
ethylene oxide - methyl bromide sterilization of very dry spore
ethylene oxide/Microbial resistance to
(ethylene oxide)Penetration by gases to sterilize interior surfa
(ethylene oxide)Principles and applications of laminar flow devi
ethylene oxide process specifications and procedures/Development
ethylene oxide process specifications and procedures/Development
ethylene oxide/Properties and essential information for safe han
(ethylene oxide)Recent advances in microbiological environmental
ethylene oxide/Reduction of bacterial dissemination; germicidal
ethylene oxide/Reduction of microbial dissemination; germicidal
(ethylene oxide)Resistance of B. subtilis var. niger spores occl
Ethylene oxide resistance of nondesiccated and desiccated spores
ethylene oxide resistances of Bacillus subtilis and Staphylococcus
ethylene oxide: Review of chemical and physical factors/Steriliz
ethylene oxide. Review/Sterilizing action of gaseous
(ethylene oxide)Semiannual review of research and advanced devel
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu
(ethylene oxide)Services provided in support of the planetary qu

(ethylene oxide) Services provided in support of the planetary qu 367
(ethylene oxide) Services provided in support of the planetary qu 368
(ethylene oxide) Services provided in support of the planetary qu 369
(ethylene oxide) Services provided in support of the planetary qu 370
(ethylene oxide) Services provided in support of the planetary qu 371
(ethylene oxide) Services provided in support of the planetary qu 372
(ethylene oxide) Services provided in support of the planetary qu 373
(ethylene oxide) Services provided in support of the planetary qu 374
(ethylene oxide) Services provided in support of the planetary qu 1215
(ethylene oxide) Services provided in support of the planetary qu 1216
(ethylene oxide) Services provided in support of the planetary qu 1217
(ethylene oxide) Services provided in support of the planetary qu 1218
(ethylene oxide) Services provided in support of the planetary qu 1219
(ethylene oxide) Services provided in support of the planetary qu 1220
(ethylene oxide) Severe Voyager sterilization criteria set 1257
ethylene oxide/Simple improvised chambers for gas sterilization 1084
(ethylene oxide) Spacecraft preparation and sterilization as stat 44
(ethylene oxide) Spacecraft sterilization 563
(ethylene oxide) Spacecraft sterilization: Specifics 844
(ethylene oxide) Space vehicle sterilization problem 272
ethylene oxide/Sporicidal activity of 697
(ethylene oxide) Status review of technology developments for spa 260
ethylene oxide sterillant gases/Compatibility of Centaur/Surveyor 1298
ethylene oxide/Sterilising properties of 901
(ethylene oxide) Sterilizable liquid propulsion system 110
(ethylene oxide) Sterilizable liquid propulsion system 111
(ethylene oxide) Sterilizable liquid propulsion system 704
(ethylene oxide) Sterilizable liquid propulsion system 705
(ethylene oxide) Sterilization and decontamination techniques for 232
ethylene oxide sterilization/Bacterial spore test piece for the 68
ethylene oxide sterilization/Biological-chemical indicator for 127
ethylene oxide sterilization. Current review of principles and p 637
ethylene oxide sterilization. Effects of humidity and water acti 641
ethylene oxide sterilization. Experimental apparatus and methods 639
ethylene oxide sterilization. Influence of thickness of polyethy 642
ethylene oxide sterilization/Methyl bromide as an aid to 952
ethylene oxide sterilization. Microbial resistance to ethylene o 640
ethylene oxide. Sterilization of contaminated objects with ethyl 900
(ethylene oxide) Sterilization of interplanetary spacecraft 549
(ethylene oxide) Sterilization of spacecraft 899
(ethylene oxide) Sterilization of space hardware 892
Ethylene oxide sterilization of spores in hygroscopic environmen 854
ethylene oxide sterilization/Problem areas of 285
Ethylene oxide sterilization rates and protective influences 547
Ethylene oxide sterilization studies 991
Ethylene oxide sterilization without special equipment 1289
ethylene oxide/Sterilizing techniques with 1259
(ethylene oxide) Synergistic effects in sonochemical sterilizatio 95
(ethylene oxide) Test environments associated with the sterilizat 625
(ethylene oxide) Testing a sterilizable liquid propulsion system 634
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The age of Bacillus subtilis spores and their resistance to ethylene oxide</td>
<td>84</td>
</tr>
<tr>
<td>The Model Assembly Sterilizer for Testing (MAST)</td>
<td>342</td>
</tr>
<tr>
<td>Voyager effort focused on sterilization of exobiological space probes</td>
<td>1258</td>
</tr>
<tr>
<td>Dry heat sterilization: Its development</td>
<td>144</td>
</tr>
<tr>
<td>Atmospheres of Mars and Venus</td>
<td>317</td>
</tr>
<tr>
<td>Consideration for the Martians</td>
<td>32</td>
</tr>
<tr>
<td>Contamination control</td>
<td>1224</td>
</tr>
<tr>
<td>Dangers of contamination of planets and the Earth</td>
<td>1129</td>
</tr>
<tr>
<td>Defining Mars' atmosphere - a goal for the early mission</td>
<td>1088</td>
</tr>
<tr>
<td>Effects of sterilization in spacecraft design</td>
<td>841</td>
</tr>
<tr>
<td>General review of chemical sterilization in space</td>
<td>851</td>
</tr>
<tr>
<td>Hypothetical Martian biosphere</td>
<td>696</td>
</tr>
<tr>
<td>Life detection systems</td>
<td>683</td>
</tr>
<tr>
<td>Life in extraterrestrial environments</td>
<td>453a</td>
</tr>
<tr>
<td>Life in the clouds</td>
<td>35</td>
</tr>
<tr>
<td>Mathematical models for contamination and pollution</td>
<td>825</td>
</tr>
<tr>
<td>Multi-stage decision model for mission non-contamination</td>
<td>1182</td>
</tr>
<tr>
<td>1973 Viking voyage to Mars</td>
<td>1248</td>
</tr>
<tr>
<td>Planning study for an organic constituents inventory</td>
<td>715</td>
</tr>
<tr>
<td>Possible contamination of earth by lunar or Martian</td>
<td>6</td>
</tr>
<tr>
<td>Research and development in environmental microbiology</td>
<td>1250</td>
</tr>
<tr>
<td>Spacecraft sterilization - the grand requirements</td>
<td>843</td>
</tr>
<tr>
<td>Space probe sterilization</td>
<td>813</td>
</tr>
<tr>
<td>Sterilization and storage compatibility study of_growth</td>
<td>761</td>
</tr>
<tr>
<td>Sterilization of electronic components of spacecraft</td>
<td>212</td>
</tr>
<tr>
<td>Sterilizing unmanned spacecraft</td>
<td>593</td>
</tr>
<tr>
<td>Viruses respond to environmental exposure</td>
<td>1252</td>
</tr>
<tr>
<td>Experimental approaches to controlling the environment</td>
<td>769</td>
</tr>
<tr>
<td>Experimental Assembly and Sterilization Lab (EASL) microbiological study</td>
<td>93</td>
</tr>
<tr>
<td>Experimental Assembly and Sterilization Laboratory (EASL)/Microbial</td>
<td>721</td>
</tr>
<tr>
<td>Experimental Assembly and Sterilization Laboratory (EASL)/Microbiol</td>
<td>723</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interplanetary</td>
<td>101</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interplanetary</td>
<td>102</td>
</tr>
<tr>
<td>exploration/Sterilizability of scientific payloads for planetary</td>
<td>141</td>
</tr>
<tr>
<td>exploration/Sterilization requirements for space</td>
<td>729</td>
</tr>
<tr>
<td>Explorer XXXIII spacecraft/Microbiological burden on the surface</td>
<td>960</td>
</tr>
<tr>
<td>Explorer XXXV spacecraft/Clean room facilities for assembly of</td>
<td>673</td>
</tr>
<tr>
<td>exponential model/Estimation for a one-parameter</td>
<td>226</td>
</tr>
<tr>
<td>exponential model/Estimation for a simple</td>
<td>227</td>
</tr>
<tr>
<td>exponential model/Spearman estimation for a simple</td>
<td>255</td>
</tr>
<tr>
<td>exponentials/Method for fitting linear combinations of</td>
<td>214</td>
</tr>
<tr>
<td>(extrapolation)Effect of low numbers of microorganisms on sample</td>
<td>1091</td>
</tr>
<tr>
<td>extrapolation of microbial survivor curves for planetary</td>
<td>118</td>
</tr>
<tr>
<td>extraterrestrial biological contamination/The sterilization of</td>
<td>247</td>
</tr>
<tr>
<td>extraterrestrial environments/Effectiveness of sterilizers in terre</td>
<td>1024</td>
</tr>
<tr>
<td>extraterrestrial environments/Life in</td>
<td>453a</td>
</tr>
<tr>
<td>extraterrestrial environments/Life in</td>
<td>467</td>
</tr>
<tr>
<td>extraterrestrial environments/Life in</td>
<td>469</td>
</tr>
</tbody>
</table>
gamma radiation environment/Kinetic analysis of spore inactivation
(gamma radiation) Study of the effectiveness of thermoradiation
(gamma radiation) Thermoradiation as a means of bacterial sterilization
Gamma sterilization/Investigation of garments/Evaluation of two NASA biological isolation
Gas chromatography/Ethylene oxide - Freon 12 decontamination process
Gaseous chemical resistance of Bacillus subtilis var. niger spore
Gaseous ethylene oxide/Influence of various pretreatments [carrier gas]
Gaseous ethylene oxide: Review of chemical and physical factors
Gaseous sterilization
Gases/Evaluation of filters to sterilize liquids and gases
Gemini IX spacecraft before and after flight/Microbiological flora
Gemini space suit/Evaluation of leakage of microbial contamination
Germicidal activity of ethylene oxide/Reduction of microbial dis
Germicides/Criteria for selection of germination/Survival of microorganisms in a simulated Martian environment
Gnotobiotic technology/Sterile insertion - an aerospace application
Gnotobiotics in relation to space biology
(gnotobiotics) Sterilization literature abstracts
(gnotobiotics) Ultraclean technology
growth characteristics of clostridia/Low temperature
growth detection in the search for extraterrestrial life/Analysis of growth/Effect of reduced barometric pressure on water availability
(growth) Effects of simulated space vacuum on bacterial cells
(growth) Inactivation and division delay of E. coli B/r by combination
(growth) Mathematics of microbial populations
Growth media for extraterrestrial use/Sterilization and storage
Growth media for extraterrestrial use/Sterilization and storage
Growth of aerobic and anaerobic bacteria in agar subjected to fright
Growth of bacteria in soils from Antarctic dry valleys
Growth (P) of viable microorganisms in Martian environments/Pro
Guidelines for clean assembly and sterilization of spaceflight hardware
handbook/Contamination control
handbook for engineers/Procedure manual for planetary spacecraft
handbook/Sterilization
(hardware) Apollo and contamination control. Boeing's role
(hardware) Application of thermal modeling to space vehicle sterilization
(hardware) Assembly of CMTM for purposes of determining areas of
(hardware) Assembly/sterilizer facility feasibility program final
(hardware) Assembly/sterilizer - facility for the sterilization of
(hardware) Bacteriology of clean rooms
(hardware) Biostatistics and space exploration: microbiology and
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilization and thermal-vacuum effects on spacecraft</td>
<td>1017</td>
</tr>
<tr>
<td>Sterilization of electronic components of spacecraft</td>
<td>212</td>
</tr>
<tr>
<td>Studies of spacecraft sterilization parameters</td>
<td>1255</td>
</tr>
<tr>
<td>Techniques for the prevention of contamination of the planetary quarantine</td>
<td>235</td>
</tr>
<tr>
<td>Thermal death of Bacillus subtilis var. niger spores</td>
<td>871</td>
</tr>
<tr>
<td>Traditional concepts for contamination control</td>
<td>914</td>
</tr>
<tr>
<td>User's manual for planetary quarantine lunar programs</td>
<td>1296</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Thermal death of Bacillus subtilis var. niger spores</td>
<td>871</td>
</tr>
<tr>
<td>Traditional concepts for contamination control</td>
<td>914</td>
</tr>
<tr>
<td>User's manual for planetary quarantine lunar programs</td>
<td>1296</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
<tr>
<td>Heat activation and of thermal death of bacterial spores</td>
<td>1096</td>
</tr>
<tr>
<td>Heat and gamma radiation environments/Kinetic analysis of spore</td>
<td>295</td>
</tr>
<tr>
<td>Heat and radiation resistance and activation of spores of Clostr</td>
<td>1013</td>
</tr>
<tr>
<td>Heat and radiation/Study of the factors influencing sterilization</td>
<td>1288</td>
</tr>
<tr>
<td>Heat/Bibliography on inactivation of viruses and rickettsiae</td>
<td>1260</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>101</td>
</tr>
<tr>
<td>Heat chamber for sterilization of large interplanetary structure</td>
<td>102</td>
</tr>
<tr>
<td>Heat destruction of microorganisms located in these areas/Study</td>
<td>291</td>
</tr>
<tr>
<td>Heat destruction of spores in simulated space vehicle components</td>
<td>31</td>
</tr>
<tr>
<td>Heat destruction patterns</td>
<td>545</td>
</tr>
<tr>
<td>Heat destruction rate of bacterial spores/Effect of temperature</td>
<td>396</td>
</tr>
</tbody>
</table>
heat sterilization and ethylene oxide decontamination environments
heat sterilization cycles/Studies on ethylene oxide - Freon 12 decontamination
heat sterilization/Estimation of microbial survival in heat sterilization for planetary-impacting spacecraft/Dry
Novel multi-slit large volume air sampler
impregnation/Evaluation of a NASA biological isolation garment
Inactivation and division delay of E. coli B/r by combined treat
inactivation by dry heat/Resistivity of microorganisms to
inactivation characteristics of Bacillus subtilis at ultrahigh t
inactivation in a composite heat and gamma radiation environment
inactivation/Instrument for study of microbial thermal
inactivation kinetics of naturally occurring spore populations
inactivation of bacterial spores/Probit method to interpret ther
inactivation of dry Bacillus subtilis var. niger spores/Mathemat
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of microbes in and on interplanetary space vehicle
inactivation of viruses and rickettsiae by heat/Bibliography on
inactivation/Optimizing thermal and radiation effects for bacter
(inactivation)Precisely controlled, low range humidity system
inactivation rate of bacterial spores/Effect of cell moisture on
(inactivation)Synergistic characteristics of thermoradiation ste
information system for planetary quarantine for lunar programs/I
information system using the CDC 217 remote console/User's manua
inhibition of spore germination by alcohols/Reversible
(insonation)Services provided in support of the planetary quaran
instrument requirements/Sampling of planetary surface solids for
instrumentation and automation/AEC/NASA symposium on contaminat
Instrumentation and methodology in measurement of viable and non
(instrumentation)Automatic, instantaneous monitor for counting t
(instrumentation)Model for determining the probability of failur
(instrumentation)Monitoring a class 100 clean room
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum probe for removing microorganisms for co</td>
<td>795</td>
</tr>
<tr>
<td>Skin carriage of bacteria in the human</td>
<td>1209</td>
</tr>
<tr>
<td>interplanetary exploration/Problems in the design of unmanned sp</td>
<td>777</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology</td>
<td>13</td>
</tr>
<tr>
<td>and thermal inactivation</td>
<td>14</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/ann thermal inactiv</td>
<td>15</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology</td>
<td>16</td>
</tr>
<tr>
<td>and thermal inactivation</td>
<td>17</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>18</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/ann thermal inactiv</td>
<td>19</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>20</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology</td>
<td>21</td>
</tr>
<tr>
<td>and thermal inactivation</td>
<td>22</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>23</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>24</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>25</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>26</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/ann thermal inactiv</td>
<td>174</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology</td>
<td>175</td>
</tr>
<tr>
<td>and thermal inactivation</td>
<td>985</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>986</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>987</td>
</tr>
<tr>
<td>interplanetary space vehicle components/Ecology/and thermal inactiv</td>
<td>988</td>
</tr>
<tr>
<td>interplanetary structures/Experimental heat chamber for steriliz</td>
<td>101</td>
</tr>
<tr>
<td>inventory program/Planning study for an organic constituents</td>
<td>102</td>
</tr>
<tr>
<td>(ionizing radiation)Effects of high intensity visible and ultrav</td>
<td>715</td>
</tr>
<tr>
<td>ionosphere and stratosphere/Survival chances of microorganisms u</td>
<td>88</td>
</tr>
<tr>
<td>isolation garment after chemical impregnation/Evaluation of a NA</td>
<td>881</td>
</tr>
<tr>
<td>(isolators)Techniques for sterile insertion and repair of spacec</td>
<td>452</td>
</tr>
<tr>
<td>Jovian atmosphere/Review of the possible existence of a</td>
<td>1130</td>
</tr>
<tr>
<td>Jovian atmosphere/Spacecraft component survivability during entr</td>
<td>1154</td>
</tr>
<tr>
<td>Jupiter/Upper atmosphere of</td>
<td>648</td>
</tr>
<tr>
<td>(Jupiter)Flight path and mission strategies to satisfy outer pla</td>
<td>425</td>
</tr>
<tr>
<td>Jupiter/Pioneer program. Pioneer F/G planetary quarantine plan</td>
<td>477</td>
</tr>
<tr>
<td>Kapton and Teflon film at high temperatures/Dry heat resistance</td>
<td>145</td>
</tr>
<tr>
<td>kinetic analysis of spore inactivation in a composite heat and g</td>
<td>295</td>
</tr>
<tr>
<td>(kinetics)Effects of high intensity visible and ultraviolet ligh</td>
<td>188</td>
</tr>
<tr>
<td>(kinetics)Mathematics of microbial populations</td>
<td>872</td>
</tr>
<tr>
<td>kinetics of disinfection</td>
<td>966</td>
</tr>
<tr>
<td>kinetics of thermal death of bacteria/The</td>
<td>786</td>
</tr>
<tr>
<td>(kinetics)Proper use of biological indicators in sterilization</td>
<td>128</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>liquid propulsion system/Sterilizable</td>
<td>109</td>
</tr>
<tr>
<td>liquid propulsion system/Sterilizable</td>
<td>110</td>
</tr>
<tr>
<td>liquid propulsion system/Sterilizable</td>
<td>111</td>
</tr>
<tr>
<td>liquid propulsion system/Sterilizable</td>
<td>704</td>
</tr>
<tr>
<td>liquid rocket engine combustion on the viability of microorganisms</td>
<td>846</td>
</tr>
<tr>
<td>liquid sterile insertion/Feasibility study of</td>
<td>1165</td>
</tr>
<tr>
<td>liquids and gases/Evaluation of filters to sterilize</td>
<td>307</td>
</tr>
<tr>
<td>logarithmic extrapolation of microbial survivor curves for plane</td>
<td>118</td>
</tr>
<tr>
<td>Log-normal model for microbial survival in heat sterilization/</td>
<td>1078</td>
</tr>
<tr>
<td>lunar and planetary missions/Examination of engineering requirement</td>
<td>590</td>
</tr>
<tr>
<td>lunar and planetary research, 1960-1964/Bibliography of</td>
<td>1032</td>
</tr>
<tr>
<td>lunar and planetary spacecraft/Decontamination and sterilization</td>
<td>834</td>
</tr>
<tr>
<td>lunar and planetary space vehicles/Sterilization of</td>
<td>194</td>
</tr>
<tr>
<td>(Lunar environment)Survival of bacterial spores under some simul</td>
<td>560</td>
</tr>
<tr>
<td>(Lunar missions)Systems analysis and clean room monitoring for p</td>
<td>1045</td>
</tr>
<tr>
<td>(Lunar missions)Systems analysis and clean room monitoring for p</td>
<td>1046</td>
</tr>
<tr>
<td>lunar orbiters/Progressive biological monitoring on</td>
<td>849</td>
</tr>
<tr>
<td>(Lunar)Planning study for an organic constituents inventory prog</td>
<td>715</td>
</tr>
<tr>
<td>lunar probes/Chances of retrieval of viable microorganisms depos</td>
<td>1178</td>
</tr>
<tr>
<td>lunar programs information system using the CDC 217 remote conso</td>
<td>1296</td>
</tr>
<tr>
<td>lunar programs/Interactive computer information system for plane</td>
<td>1007</td>
</tr>
<tr>
<td>Lunar rough landing capsule development program</td>
<td>600</td>
</tr>
<tr>
<td>lunar spacecraft/Comparative levels of microbial contamination i</td>
<td>1189</td>
</tr>
<tr>
<td>lunar space vehicles. Engineering examination/Sterilization of u</td>
<td>592</td>
</tr>
<tr>
<td>lunar surface conditions/Survival of bacterial spores under some</td>
<td>560</td>
</tr>
<tr>
<td>(Lyophilization)Ecology and thermal inactivation of microbes in</td>
<td>24</td>
</tr>
<tr>
<td>(Lyophilization)Ecology and thermal inactivation of microbes in</td>
<td>982</td>
</tr>
<tr>
<td>manual for planetary quarantine lunar programs information syste</td>
<td>1296</td>
</tr>
<tr>
<td>manual for planetary spacecraft to be sterilized by heating. Pro</td>
<td>657</td>
</tr>
<tr>
<td>manual for the microbial burden prediction model/Study program o</td>
<td>736</td>
</tr>
<tr>
<td>Mariner-Mars 1969 planetary quarantine plan</td>
<td>1083</td>
</tr>
<tr>
<td>(Mariner-Mars 1969)Services provided in support of the planetary</td>
<td>363</td>
</tr>
<tr>
<td>Mariner-Mars 1969 spacecraft/Dry heat resistance of bacterial sp</td>
<td>1256</td>
</tr>
<tr>
<td>Mariner-Mars 1969 spacecraft/Relative frequency distribution of</td>
<td>90</td>
</tr>
<tr>
<td>(Mariner-Mars 1971)Implications of change in probability of micr</td>
<td>329</td>
</tr>
<tr>
<td>Mariner-Mars 1971 planetary quarantine plan</td>
<td>539</td>
</tr>
<tr>
<td>Mariner-Mars 1971 planetary quarantine plan</td>
<td>540</td>
</tr>
<tr>
<td>Mariner-Mars 1971 post-launch analysis of compliance with planet</td>
<td>541</td>
</tr>
<tr>
<td>Mariner-Mars 1971 prelaunch analysis of probability of planetary</td>
<td>542</td>
</tr>
<tr>
<td>Mariner 1964 mission/Study of the probability of depositing viabl</td>
<td>527</td>
</tr>
<tr>
<td>(Mariner)Problems posed by the planet Venus</td>
<td>836</td>
</tr>
<tr>
<td>(Mariner)Relationship of planetary quarantine to biological sear</td>
<td>686</td>
</tr>
<tr>
<td>Mariner Venus '67 - prelaunch analysis of contamination probabil</td>
<td>526</td>
</tr>
<tr>
<td>Mariner Venus 1972 mission/Preliminary quarantine analysis of a</td>
<td>233</td>
</tr>
<tr>
<td>Mars and Venus/Atmospheres of</td>
<td>317</td>
</tr>
<tr>
<td>Mars and Venus/Exospheric temperatures on</td>
<td>555</td>
</tr>
</tbody>
</table>
Mars and Venus explorations/Spacecraft sterilization issue may a 37
Mars atmosphere/Feasibility study of an experiment for determini 12
Mars' atmosphere - goal for the early missions/Defining 1088
Mars atmospheric entry probe. Study of critical sterilization pr 159
Mars atmospheric entry/Study of the thermal kill of viable organ 157
(Mars) ATP assay of terrestrial soils - a test of an exobiologica 739
Mars/Biological losses and the quarantine policy for 1140
Mars capsule/Determination of the terminal sterilization cycle f 534
(Mars) Capsule sterilization canister separation joint 248
(Mars) Capsule system advanced development sterilization program 538
Mars. Cold and aridity as constraints on the survival of terrest 866
Mars/Comparative evaluation of methods for the search for life o 576
(Mars) Conference on hazard of planetary contamination due to mic 1133
(Mars) Contamination control and sterilization in space programs 823
Mars/Contamination of 1030
(Mars) Cryobiologist's conjecture of planetary life 1061
(Mars) Definition of requirements for advanced sterilizable compo 208
(Mars) Discussion of the planetary quarantine constraints. An int 692
Mars during the Mariner 1964 mission/Study of the probability of 527
(Mars) Efficiency of sterilants in terrestrial and extraterrestri 1024
Mars-entry-capsule aeroshell environmental history/Ground simula 801
(Mars) Evaluation of current technology in attaining planetary qu 261
(Mars) Experimental study of sterile assembly techniques 499
(Mars) Experiment to determine the effects of solid and liquid ro 846
(Mars) Growth of bacteria in soils from Antarctic dry valleys 168
Mars/Implications of change in probability of microbial growth f 329
(Mars) Influence of a set of extremal factors on biologically act 70
Mars lander mission/Preliminary analysis of the radiation burden 297
Mars landing capsule sterilization container/Development of a ty 47
Mars landing capsule sterilization container/Development of a ty 48
Mars landing capsule sterilization container/Development of a ty 751
Mars landing capsule sterilization container/Development of a ty 752
Mars landing capsule sterilization container/Development of a ty 753
(Mars) Life in extraterrestrial environments 467
(Mars) Life in extraterrestrial environments 469
(Mars) Microbial contaminants in the interiors of spacecraft comp 855
(Mars) Microbial survival after simulated meteoroids impact 848
Mars/Microorganisms on 561
Mars/1973 Viking voyage to 1248
Mars/Nomenclature of symbols relevant to the probability of cont 215
Mars orbiter/Planetary quarantine analysis for an unmanned 544
(Mars) Panspermia revisited, or have we already contaminated 567
(Mars) Planetary microbiological contamination log 321
(Mars) Planetary quarantine and space vehicle sterilization 234
(Mars) Planetary quarantine plan Voyager project 603
Mars/Probability of biological contamination of 1210
Mars/Probability of biological contamination of 1211
Mars probe-lander/Comparative studies of conceptual design and q 999
Mars probe-lander. Sterilization/Comparative studies of conceptu 664
Sterilization of spacecraft

methyl bromide sterilization of very dry spore and staphylococca

methyl bromide vapor/Sterilization with

interplanetary space vehicle components

microbes in and on interplanetary space vehicle components

Microbes in the upper atmosphere and beyond

Microbial aerosol chambers with Beta-propiolactone/Disinfection

Microbial analysis

Microbial burden prediction model

microbial burden prediction/Study program on the development of

microbial burden predictions. Technical Report/Study program on

microbial burden predictions. User's manual for the microbial bu

microbial burden predictions. Appendices/Study program on the de

microbial burden predictions. Appendices, addendum/Study program

microbial burden prediction. Revisions to Vol. VI User's manual

Microbial cell recovery from solid materials

Microbial contaminants in the interiors of spacecraft components

microbial contaminants on space hardware/Factors influencing det

Microbial contamination associated with the Apollo 6 spacecraft

Microbial contamination control after terminal sterilization

(microbial contamination)Control and sampling in sterile rooms

microbial contamination control/Clean room complex for

microbial contamination/Control of

microbial contamination detected in industrial clean rooms/Compa

Microbial contamination detected on the Apollo 9 spacecraft

microbial contamination/Die-off of
Microbial contamination/Environmental microbiology and the contr
microbial contamination from fractured solids/Release of
microbial contamination from Gemini space suit/Evaluation of lea
microbial contamination in a clean room during an eleven week te
Microbial contamination in a clean room when occupied by operati
Microbial contamination in clean rooms
microbial contamination in clean rooms used for the assembly and
Microbial contamination in conventional and laminar flow clean r
(microbial contamination) Industrial applications of laminar airf
microbial contamination inside balsa wood and explosive charges
microbial contamination inside cured solid propellant/Investigat
microbial contamination inside irradiated and heated electronic
microbial contamination levels among hospital operating rooms an
Microbial contamination obtained on surfaces exposed to room air
Microbial contamination of a surface by handling
microbial contamination of space hardware/Review of naturally
microbial contamination on flat surfaces/Effect of time and temp
microbial contamination on space hardware/Factors influencing th
microbial contamination on surfaces by chemical approaches/Detec
microbial contamination on surfaces. Evaluation of leakage of mi
microbial contamination on surfaces. Evaluation of leakage of mi
microbial contamination on surfaces. Evaluation of leakage of mi
microbial contamination on surfaces/Services provided in support
microbial contamination on surfaces/Use of ultrasonic energy in
microbial contamination/ Possibility of using hydrogen peroxide m
(microbial contamination) Progressive biological monitoring on lu
microbial contamination to which spacecraft components are subje
Microbial control in assembly areas needed for spacecraft steril
Microbial decontamination and sampling program for anchored inte
microbial dissemination and germicidal activity of ethylene oxid
microbial dissemination and germicidal activity of ethylene oxid
microbial dissemination and germicidal activity of ethylene oxid
microbial growth/Effect of reduced barometric pressure on water
microbial growth for Mars/Implications of change in probability
microbial incubation and gas composition/Antarctic dry valley so
microbially controlled environment/Standards for clean rooms and
microbial particles/Air filtration of
microbial populations/ Mathematics of
Microbial profile of a vertical laminar airflow surgical theater
Microbial profile of laminar flow clean rooms
Microbial release from solids after simulated hard landings
microbial release from solids/Effects of aeolian erosion on
microbial release probabilities/Analysis of
microbial release probabilities from a Martian lander/ Estimation

150
Microbial release probabilities on spacecraft sterilization requirements
Microbial resistance to ethylene oxide
Microbial resistance to ethylene oxide/Microbiological aspects of microbial sampling problems/Model for the quantification of the quality of microbial sampling requirements for Apollo modules/Determination (microbial) Services provided in support of the planetary quarantine microbial shedding from humans/Reduction of microbial spore destruction/Mathematical basis for a diffusion model for the quantification of the quality of microbial spores under several temperature and humidity conditions Microbial sterilization in ultra-high vacuum and outer space: kinetic aspects of the JPL sterilization assembly development assay and certification of spacecraft hardware surfaces of Explorer XXXIII spacecraft surfaces of the AIMP spacecraft surfaces of the AIMP spacecraft surfaces of the AIMP spacecraft microbial thermal inactivation/Instrument for study of microbial aerosol stabilizers as substitutes for bound water microbiological aspects of the JPL sterilization assembly development microbiological assay and certification of spacecraft hardware microbiological assay of space hardware microbiological barrier equipment and techniques microbiological barrier techniques Microbiological burden on the surfaces of Explorer XXXIII spacecraft Microbiological burden on the surfaces of the AIMP spacecraft Microbiological burden on the surfaces of the AIMP spacecraft Microbiological burden on the surfaces of the AIMP spacecraft Microbiological contamination control in spacecraft sterilization microbiological contamination control: Needs and areas of application microbiological contamination control: State of the art report microbiological contamination in the interior of spacecraft components microbiological contamination log/Planetary microbiological contamination/Statistical problems in the standard microbiological environmental control/Recent advances in microbiological evaluation of a large volume air incinerator microbiological examination of space hardware: NASA's current edition microbiological examination of space hardware/NASA standard procedure microbiological examination of space hardware/NASA standard procedure microbiological examination of space hardware/Standard procedure microbiological filters for liquids and gases/Evaluation of microbiological flora of the Gemini IX spacecraft before and after microbiological hazards in the laboratory/Control of
Microbiological investigation of selected spacecraft parts and m 50
microbiological laboratories/Use of ultraviolet radiation in 918
Microbiological methods of testing the atmosphere 1233
Microbiological monitoring of spacecraft assembly facility opera 190
Microbiological monitoring of spacecraft assembly facility opera 191
Microbiological monitoring of spacecraft assembly facility opera 1166
microbiological profiles of the Apollo 10 and 11 spacecraft/Quan 973
microbiological safety cabinet/Containment of microbial aerosols 58
microbiological safety to space research/Contributions of 906
Microbiological sampling of returned Surveyor III electrical cab 646
Microbiological sampling of surfaces 380
microbiological sampling of surfaces/Vacuum probe: new approach 1280
microbiological shedding in clean rooms/Reduction of 1123
microbiological sterilization problems/Research on 197
Microbiological studies conducted in a vertical laminar airflow 722
Microbiological studies conducted in the Experimental Assembly a 723
Microbiological studies on planetary quarantine 656
microbiological studies on the Apollo 10 and 11 spacecraft/Quali 864
Microbiological studies on the performance of a laminar airflow 724
Microbiological survey of environmentally controlled areas 869
Microbiological techniques for recovery from interiors of solids 737
microbiological techniques for recovery from surfaces/Survey of 1234
Microbiologic filters - liquid and gas 601
Microbiology and sterilization/Biostatistics and space explorati 216
Microbiology and sterilization/Biostatistics and space explorati 217
Microbiology and sterilization/Biostatistics and space explorati 218
Microbiology and sterilization/Biostatistics and space explorati 219
Microbiology and sterilization/Biostatistics and space explorati 220
Microbiology and sterilization/Biostatistics and space explorati 221
microbiology and the control of microbial contamination/Environm 718
microbiology as related to planetary quarantine. Assay methodolo 1235
microbiology as related to planetary quarantine/Basic studies in 782
microbiology as related to planetary quarantine/Environmental 86
microbiology as related to planetary quarantine/Environmental 87
microbiology as related to planetary quarantine/Environmental 88
microbiology as related to planetary quarantine/Environmental 783
microbiology as related to planetary quarantine/Environmental 885
microbiology as related to planetary quarantine/Environmental 887
microbiology as related to planetary quarantine/Environmental 888
Microbiology of space probe sterilization 438
Microbiology quality activities for a planetary mission 195
microbiology/Research and development in environmental 1250
microbiology sampling on surfaces: Agar spray/Improved technique 862
microbiology/Short courses on basic environmental 439
microbiology/Short courses on basic environmental 443
microbiology/Space age 965
(microbiology)Traditional concepts for contamination control 914
microbiology/Use of laminar airflow equipment in 381
(microbiotank)Reduction of microbial dissemination and germicida 818

152
microflora/Desert
microflora/Desert
microflora. Desert soil algae survival at extremely low temper...
microflora in soils of desert regions/Abundance of...
(microflora)Microbiological analysis of snow and ice from the An...
microorganism growth/Investigation of spacecraft materials that...
Microorganism shedding by human beings
Microorganism study: bacterial isolants from harsh environment
(microorganisms)Abundance of microflora in soils of desert regio
(microorganisms)Advances in large-volume air sampling
Microorganisms alive and imprisoned in a polymer cage
(microorganisms)Analytical basis for assaying buried biological
microorganisms/Analytical basis for the estimation of planetary
(microorganisms)Analysis of methods for growth detection in the
microorganisms/Analysis of vacuum effects in the sterilization o
microorganisms and plants under simulated Martian environments/S
microorganisms and surfaces/Improved sonification method for
microorganisms as a principle extremal factor of space environme
microorganisms/Astronautics information: Effects of sterilizing
microorganisms at 105°/Study of dry heat sterilization of
(microorganisms)ATP assay of terrestrial soils – a test of an ex
(microorganisms)Back contamination
(microorganisms)Balloon-borne bacterial collector
(microorganisms)Biological effectiveness of solar electromagneti
(microorganisms)Biological losses and the quarantine policy for
microorganisms by continuous particle electrophoresis/Rapid iden
microorganisms by humans/Quantitative aspects of shedding of
(microorganisms)Class 100 clean room program.
(microorganisms)Clean assembly and sterilization laboratory
(microorganisms)Clean room technology
(microorganisms)Comments on the in-flight recontamination hazard
(microorganisms)Comparative evaluation of methods for the search
(microorganisms)Contamination control and sterilization in space
(microorganisms)Contamination control: a very old, new field
(microorganisms)Continuation of the development of a typical Mar
(microorganisms)Continuation of the development of a typical Mar
(microorganisms)Cryobiologist's conjecture of planetary life
(microorganisms)Decontamination of AIMP-D spacecraft
microorganisms deposited on the moon by unmanned lunar probes/Ch
(microorganisms)Deposition of nutrients to surfaces by Rodac pla
(microorganisms)Designing for the laminar flow environment
(microorganisms)Determination of quantitative microbial sampling
(microorganisms)Develop and test of a sterile insertion repair t
(microorganisms)Development and test of flexible film coupon str
(microorganisms)Development of new and improved techniques for t
(microorganisms)Development of two closely controlled humidity s
(microorganisms)Discussion of a possible contamination of space
microorganisms/Effect of a high vacuum on
(microorganisms)Effect of ultrahigh vacuum on Bacillus subtilis
microorganisms/Effect of ultrahigh vacuum on viability of microorganisms/Effects of continuous and interrupted radiation on microorganisms/Effects of high intensity visible and ultraviolet microorganisms/Effects of simulated space environments on the viability of microorganisms/Electrostatic deposition device to deposit monolayers of microorganisms/Environmental microbiology as related to planetary environments/Environmental microbiology as related to planetary environments/Environmental microbiology as related to planetary environments/Environmental microbiology as related to planetary environments/Ethylene oxide sterilization, current review of microorganisms/Ethylene oxide sterilization rates and protective factors/microorganisms/Evaluation of a quantal response model with estimated regression parameters/microorganisms/Evaluation of a quantal response model with varied parameters/microorganisms/Experimental heat chamber for sterilization of microorganisms/Experimental heat chamber for sterilization of microorganisms/Experiment to determine the effects of solid and liquid substrates on microorganisms for counting/Vacuum probe for removing microorganisms from solids after simulated hard landings/Release from solid materials/Release of microorganisms from solids/Factors influencing the recovery of microorganisms from surfaces/Recovery of known numbers of microorganisms from surfaces/Factors influencing the recovery of microorganisms from surfaces/Feasibility of using ultrasonics for recovery of microorganisms from surfaces/Improved sonication method for removing microorganisms/Gaseous disinfection of microorganisms/Handbook of biological aspects of spacecraft sterilization/Heat destruction patterns of microorganisms/Improved model of the vacuum probe/microorganisms in a simulated Martian environment. Moisture and survival in a simulated Martian environment/Survival of microorganisms in a simulated Martian environment/Survival of microorganisms in a simulated Martian environment/Survival of microorganisms in desert soil exposed to five years of continuous dry heat/Effect of various gas atmospheres on survival of microorganisms in extreme environments/Natural selection of microorganisms in high ultraviolet flux/Survival of selected microorganisms in Martian environments/Probability of growth (Pg) in Martian environments/Enumeration of viable microorganisms in simulated Martian environments/Biological containment of microorganisms in simulated planetary environments/Biochemical analysis of microorganisms in simulated space/Study of viability of microorganisms in simulated space/Study of viability of Microorganisms in solid materials/microorganisms in space at orbital altitudes during Gemini satellite missions/microorganisms in space. Further rocket and balloon borne exposure of microorganisms in space/Survival of microorganisms in space/Survival of microorganisms in space/Survival of microorganisms/Integrated lethality of sterilization temperatures.
Microorganisms in the "artificial Mars" chamber/Behavior of cert
microorganisms in the desert soils of Turkmenia/Viability of
microorganisms in the upper atmosphere flown on Aerobee NASA 4.1
microorganisms in ultrahigh vacuum/The viability of
(microorganisms)Investigation of a sono-chemical approach in ste
(microorganisms)Investigations into a diffusion model of dry hea
(microorganisms)Investigations of methods for the sterilization
(microorganisms)Investigations of methods for the sterilization
(microorganisms)Laminar flow for the neurosurgical operating roo
(microorganisms)Life in extraterrestrial environments
(microorganisms)Limitations of thioglycolate broth as a sterilit
microorganisms located in these areas/Study of attributes of mat
(microorganisms)Mathematical model of the effect of a predator o
(microorganisms)Mathematical models for contamination and pollut
(microorganisms)Mathematics of microbial populations
(microorganisms)Microbiology quality activities for a planetary
(microorganisms)Model for the quantification of the qualitative
(microorganisms)Novel multi-slit large volume air sampler
(microorganisms)Observations regarding factors important in dry
microorganisms on covered stainless steel initially contaminated
microorganisms on fracture from solids/Probability of releasing
Microorganisms on Mars
Microorganisms on open surfaces, in mated surface areas and enca
Microorganisms on samples assayed by the NASA standard procedure
microorganisms on surfaces as a function of relative humidity; d
microorganisms on surfaces as a function of relative humidity/Dr
microorganisms on surfaces/Dry heat destruction rates of
microorganisms on surfaces/Dry heat destruction rates of
microorganisms on surfaces: studies to evaluate possible sources
microorganisms on various types of surfaces/Bactericidal activit
microorganisms/Physical methods of sterilization of
(microorganisms)Place of radiation sterilization in combined tec
(microorganisms)Planetary quarantine provisions for unmanned pla
(microorganisms)Planning, evaluation and analytical studies in p
(microorganisms)Potential effects of recent findings on spacecra
(microorganisms)Practical procedures for microbial decontaminat
(microorganisms)Precisely controlled, low range humidity system
(microorganisms)Preliminary sublimation studies
(microorganisms)Quality assurance monitoring of the microbiologi
microorganisms/Rational model for thermal sterilization of
(microorganisms)Reduction of microbial dissemination germicidal
(microorganisms)Relative frequency distribution of D125C values
Microorganisms removed from contaminated stainless steel by lami
(microorganisms)Response of spore-forming vs. nonspore-forming b
microorganisms/Role of DNA in wet heat sterilization of
microorganisms/Role of water activity in dry heat sterilization
(microorganisms)Services provided in support of the planetary qu
Services provided in support of the planetary qu	353
Services provided in support of the planetary qu	354
Services provided in support of the planetary qu	355
Services provided in support of the planetary qu	356
Services provided in support of the planetary qu	357
Services provided in support of the planetary qu	358
Services provided in support of the planetary qu	359
Services provided in support of the planetary qu	360
Services provided in support of the planetary qu	361
Services provided in support of the planetary qu	362
Services provided in support of the planetary qu	363
Services provided in support of the planetary qu	364
Services provided in support of the planetary qu	365
Services provided in support of the planetary qu	366
Services provided in support of the planetary qu	367
Services provided in support of the planetary qu	368
Services provided in support of the planetary qu	369
Services provided in support of the planetary qu	370
Services provided in support of the planetary qu	371
Services provided in support of the planetary qu	372
Services provided in support of the planetary qu	373
Soil moisture, relative humidity, and microbial	169
Spacecraft component survivability during entry	1155
Spacecraft sterilization	45
Spacecraft sterilization by destructive heating	1156
Spacecraft sterilization - implications and sugg	246
Spacecraft sterilization - the grand requirement	843
Spacecraft sterilization training manual	979
Status report on D, z and A_w value investigation	28
Sterilization and storage compatibility study of	761
Sterilization assembly development laboratory fa	990
Sterilization of spacecraft	580
Stochastic sterilization model	1081
Studies of spacecraft sterilization parameters	1255
Study of aseptic maintenance by pressurization	186
Study of aseptic maintenance by pressurization	666
Study of the application of laminar flow ventila	392
Study of the factors influencing sterilization b	1288
Systems analysis and clean monitoring for planet	1044
Techniques for the limitation of biological load	730
Thermal death of *Bacillus subtilis* var. *niger* sp	871
Thermal destruction of	896
Thermal radiative characteristics of viable	680
through small orifices/Study of the possible move	667
to a simulated Martian environment/Response of	524
to dry heat: Design of apparatus, operational pro	931
to establish ecological niches in different soils	470
to high vacuum/Resistance of	55
to inactivation by dry heat/Resistivity of	1102
microorganisms to simulated extraterrestrial space ecology/Expos 1105
microorganisms to thermal inactivation by dry heat/The resistivi 1103
microorganisms to ultraviolet rays/Resistance of certain strains 1306
microorganisms/Ultrahigh vacuum and 581
microorganisms under a simulated Martian environment/Study of 522
microorganisms under simulated Martian conditions/Multiplication 579
Microorganisms under simulated Martian environment 522
microorganisms under simulated space conditions/Survival of 155
Microorganisms under the environmental conditions of ionosphere 881
(model)Adaptive allocation of planetary quarantine violation pro 182
(model)Analytical basis for the estimation of planetary contaminin 326
(model)Analysis of vacuum effects in the sterilization of microoo 112
(model)Approximations to the Bayes estimate for a quantal assay 882
model/Assembly contamination 1092
Model assembly sterilizer for testing (MAST) 342
model/assembly sterilizer for testing (MAST)/Description of the 401
(model assembly sterilizer for testing [MAST])Development of new 1304
model/Bayesian analysis for an exponential surveillance 883
(model)Chances of retrieval of viable microorganisms deposited 1178
(model)Contamination control. State-of-the-art review 1272
model describing bacterial aerosol concentrations in enclosed sp 529
(model)Determination of terminal sterilization process parameter 1144
(model)Development of a typical Mars landing capsule sterilizati 751
(model)Development of a typical Mars landing capsule sterilizati 752
model-discrimination criteria/Comparison of two 763
model during assembly in the sterilization assembly development 1163
model/Estimation for a one-parameter exponential 226
model/Estimation for a simple exponential 227
(model)Estimation of planetary contamination probabilities by no 327
model for determining the probability of failure of a valve havi 1185
model for microbial survival in heat sterilization/Log-normal 1078
model for mission non-contamination requirements/Multi-stage dec 1182
Model for planetary quarantine requirements 1093
model for spacecraft sterilization/Development and application o 319
model for spacecraft sterilization requirements/Rational 113
model for the quantification of the qualitative microbial sampli 1003
model for thermal sterilization of microorganisms/Rational 114
model for the thermoradiation inactivation of dry Bacillus subti 296
model hardware/Development of mechanical sterile insertion engin 277
(model)Logarithmic extrapolation of microbial survivor curves fo 118
(model)Mariner-Mars 1969 planetary quarantine plan 1083
model/Martian quarantine risk 1141
model/Microbial burden prediction 535
(model)Microbiological studies on planetary quarantine 656
model 1973 mission/Voyager planetary quarantine 183
model of microbial spore destruction/Mathematical basis for a di 330
model of planetary quarantine primary objectives/Sequential deci 1183
model of the vacuum probe/Improved 796
(model)Planning, evaluation, and analytical studies in planetary 333
Planning, evaluation, and analytical studies in planetary systems analysis and clean room monitoring for planetary systems analysis and clean room monitoring for planetary systems analysis and clean room monitoring for planetary terminal sterilization process calculation for spacecraft with estimated concentrations/Evaluation of a quantal response modeling/Dry heat sterilization modeling to space vehicle sterilization/Application of thermal models/Estimation of the parameters in exponential decontamination models for contamination and pollution prediction/Mathematical models for count data/Exponential decontamination model(s) for microbial burden predictions. Vol. I: Technical Rep model(s) for microbial burden predictions. Vol. II: User's manual model(s) for microbial burden predictions. Vol. III: Appendices model(s) for microbial burden predictions. Vol. V: Appendices, a model(s) for microbial burden predictions. Vol. VIII. Revisions model(s) for microbial burden predictions. Vol. X. Final report models of bioclean facilities are needed for spacecraft sterilization moisture and oxygen requirements for Bacillus cereus and Bacillus subtilis moisture content on the dry heat resistance of Bacillus subtilis moisture on the thermal inactivation rate of bacterial spores/Ethylene oxide - Freon 12 decontamination moisture on the sporidical activity of Beta-propiolactone vapor moisture/Sterilizing action of gaseous ethylene oxide. The effect (MOLSINK) JPL develops double vacuum chamber for spacecraft tests monitoring as an assay technique/Visual monitoring/Contamination analysis and (monitoring) Development and test of flexible film coupon strips monitoring for planetary quarantine program/Systems analysis and monitoring for planetary quarantine program/Systems analysis and monitoring for planetary quarantine program/Systems analysis and monitoring instruments open new doors for environmental understa monitoring of laminar downflow clean rooms Monitoring of sterile areas monitoring on lunar orbiters/Progressive biological monitoring system/Development of a faster monitoring system/Development of an increased sampling rate
NASA biological isolation garment after chemical impregnation

NASA in relation to spacecraft sterilization
(NASA policies) Decontamination and sterilization of lunar and planetary orbiters
NASA program scope and definition
NASA requirements for the sterilization of spacecraft
NASA/Services provided in support of the planetary quarantine requirements
(NASA policies) Decontamination and sterilization of lunar and planetary orbiters
(non-parametric) Value of agreed standards of sterility
(non-parametric) Nonlinear estimation
(nonlinear) Multi-stage decision model for microbial contamination
(non-parametric) Non-parametric test statistics
(nonparametric) Certain uncorrelated
(nonthermal) Nonthermal methods of decontamination and sterilization
(nonparametric) Survey of the possible movement of microorganisms through orifices
(nominal) Design of clean rooms
(particulate) Designing for the laminar flow environment
(particulate) Degradation due to contaminants throughout the test
(particulate) Design of clean rooms. Classified list of selected and classified designs for laminar airflow clean rooms
(particulate) Design requirements for laminar airflow clean rooms
(particulate) Designing for the laminar flow environment

Organic constituent inventory for planetary flight missions
organic constituents inventory program/Planning study for an outer planet mission/Planetary quarantine consideration for outer planet quarantine constraints/Flight path and mission strategy
(outer planets) Planetary quarantine constraints for advanced mission oxygen requirements for Bacillus cereus and Bacillus subtilis sp

(panspermia) Meteorites and life
Panspermia revisited, or have we already contaminated Mars?
Paraformaldehyde for surface sterilization and detoxification
particulate aerosols by a sonic disseminator technique/Production particulate Air filtration of microbial particles
(particulate) Bacterial penetration of Robbins BCO filter
(particulate) Bacterial response to the soil environment
(particulate) Clean room in space technology
(particulate) Contamination control: a very old, new field
(particulate) Contamination control handbook for ground fluid systems
(particulate contamination) Microbiological aspects of sterilization
(particulate contamination) Microscopic method of
(particulate) Design of clean rooms. Classified list of selected and classified designs for laminar airflow clean rooms
(particulate) Design requirements for laminar airflow clean rooms
(particulate) Designing for the laminar flow environment
Recent developments in planetary quarantine

Planetary landers

Sterilization procedures for planetary landers

Study of the biological cleanability of surfaces by planetary landers

Planetary microbiological contamination log

Planetary missions

Examination of engineering requirements and performance

Planetary quarantine analysis for an unmanned Mars orbiter

Planetary quarantine

Analytical basis for planetary quarantine

Analytical techniques in planetary quarantine and spacecraft sterilization

Planning, evaluation of planetary quarantine and spacecraft sterilization

Planetary quarantine constraints for advanced missions

Planetary quarantine constraints. Introduction to the problems of planetary quarantine

Planetary quarantine: principles, methods and problems

Planetary quarantine plan/Mariner-Mars 1969

Planetary quarantine plan/Mariner-Mars 1971

Planetary quarantine plan/Pioneer program. Pioneer F/G

Planetary quarantine plan Voyager project

Planetary quarantine: principles, methods and problems

Planetary quarantine: provisions for unmanned planetary missions
planetary quarantine/Recent developments in 487
planetary quarantine: Recontamination phase 306
planetary quarantine requirements/Analysis of 1074
planetary quarantine requirements for spacecraft sterilization 261
planetary quarantine requirements/Logarithmic extrapolation of m 118
planetary quarantine requirements/Mariner-Mars 1971 post-launch 541
planetary quarantine requirements of NASA; germicidal activity of 819
planetary quarantine requirements of NASA. Reduction of bacteria 199
planetary quarantine requirements of NASA. Reduction of bacteria 200
planetary quarantine requirements of NASA. Reduction of bacteria 201
planetary quarantine requirements of NASA. Reduction of bacteria 202
planetary quarantine requirements of NASA. Reduction of bacteria 203
planetary quarantine requirements of NASA. Reduction of bacteria 204
planetary quarantine requirements of NASA. Reduction of bacteria 816
planetary quarantine requirements of NASA. Reduction of bacteria 817
planetary quarantine requirements of NASA/Services provided in s 198
planetary quarantine requirements of NASA/Services provided in s 353
planetary quarantine requirements of NASA/Services provided in s 354
planetary quarantine requirements of NASA/Services provided in s 355
planetary quarantine requirements of NASA/Services provided in s 356
planetary quarantine requirements of NASA/Services provided in s 357
planetary quarantine requirements of NASA/Services provided in s 358
planetary quarantine requirements of NASA/Services provided in s 360
planetary quarantine requirements of NASA/Services provided in s 361
planetary quarantine requirements of NASA/Services provided in s 362
planetary quarantine requirements of NASA/Services provided in s 363
planetary quarantine requirements of NASA/Services provided in s 364
planetary quarantine requirements of NASA/Services provided in s 365
planetary quarantine requirements of NASA/Services provided in s 366
planetary quarantine requirements of NASA/Services provided in s 367
planetary quarantine requirements of NASA/Services provided in s 368
planetary quarantine requirements of NASA/Services provided in s 369
planetary quarantine requirements of NASA/Services provided in s 370
planetary quarantine requirements of NASA/Services provided in s 974
planetary quarantine requirements of NASA/Services provided in s 1215
planetary quarantine requirements of NASA/Services provided in s 1216
planetary quarantine requirements of NASA/Services provided in s 1217
planetary quarantine requirements of NASA/Services provided in s 1218
planetary quarantine requirements of NASA/Services provided in s 1219
planetary quarantine requirements of NASA/Services provided in s 1220
planetary quarantine requirements/Planning, evaluation and analysis 51
planetary quarantine requirements/Planning, evaluation and analysis 52
planetary quarantine requirements/Planning, evaluation and analysis 53
planetary quarantine/Scientific publications and presentations 97
planetary quarantine/Scientific publications and presentations 98
planetary quarantine/Scientific publications and presentations 99
planetary quarantine/Spacecraft sterilization and 75
(planetary quarantine)Space hardware assay methodology 1245
(planetary quarantine)Sterilization and quarantine parameters for 236
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilization of space vehicles: Problem of planetary quarantine</td>
<td>1297</td>
</tr>
<tr>
<td>Study of analytical techniques in planetary quarantine</td>
<td>324</td>
</tr>
<tr>
<td>Study of attributes of mated surfaces that are to be sterilized by heating</td>
<td>291</td>
</tr>
<tr>
<td>Technical manuals and planning study in planetary quarantine</td>
<td>713</td>
</tr>
<tr>
<td>Techniques for the prevention of contamination</td>
<td>714</td>
</tr>
<tr>
<td>to biological search strategy/Relationship</td>
<td>235</td>
</tr>
<tr>
<td>violation probabilities/Adaptive allocation</td>
<td>686</td>
</tr>
<tr>
<td>(planetary quarantine) Viruses respond to environmental exposure</td>
<td>182</td>
</tr>
<tr>
<td>planetary research, 1960-1964/Bibliography of lunar and planetary spacecraft</td>
<td>1252</td>
</tr>
<tr>
<td>Decontamination and sterilization of lunar spacecraft to be sterilized by heating</td>
<td>1032</td>
</tr>
<tr>
<td>Design criteria</td>
<td>834</td>
</tr>
<tr>
<td>Development of planetary spacecraft which are to be sterilized by heating/Manufacturing of lunar and planetary spacecraft</td>
<td>241</td>
</tr>
<tr>
<td>Sterilization and quarantine parameters for celestial bodies</td>
<td>399</td>
</tr>
<tr>
<td>planets by nonsterile flight hardware/Contamination of planets</td>
<td>76</td>
</tr>
<tr>
<td>Unsterile spaceflight hardware/Techniques for the prelaunch analysis of contamination</td>
<td>194</td>
</tr>
<tr>
<td>of outer planets/Contamination of Pluto/Flight path and mission strategies to satisfy outer plane policies/Mariner-Mars 1971 planetary quarantine plan</td>
<td>236</td>
</tr>
<tr>
<td>policy/Bibliography on planetary quarantine</td>
<td>1192</td>
</tr>
<tr>
<td>policy for Mars/Biological losses and the quarantine</td>
<td>1140</td>
</tr>
<tr>
<td>Mathematical models for contamination and polymeric materials/Effects of decontamination and sterilization</td>
<td>825</td>
</tr>
<tr>
<td>Effects of simulated Venus atmosphere on polymeric materials/</td>
<td>679</td>
</tr>
<tr>
<td>Sterilization and thermal vacuum effects on polymeric materials/</td>
<td>618</td>
</tr>
<tr>
<td>Sterilization of ethylene oxide - Freon 12 decontaminating sterilization and polymeric products/Effects of</td>
<td>1017</td>
</tr>
<tr>
<td>ethylene oxide - Freon 12 decontaminating sterilization, and polymeric products/Effects of ethylene oxide - Freon 12 decontaminating sterilization</td>
<td>621</td>
</tr>
<tr>
<td>sterilization (polymerization) Problem areas with ethylene oxide sterilization</td>
<td>1015</td>
</tr>
<tr>
<td>Sterilization with gaseous ethylene oxide: A review of polymers for use in sterilized spacecraft</td>
<td>285</td>
</tr>
<tr>
<td>Post-launch recontamination studies</td>
<td>617</td>
</tr>
<tr>
<td>potting compounds and mated surfaces/Investigation of methods for potting compounds and mated surfaces/Investigation of methods for potting compounds and mated surfaces/Investigation of methods for predictions. Appendices, addendum/Study program on the development of predictions. Appendices/Study program on the development of a microbial burden prediction model</td>
<td>658</td>
</tr>
<tr>
<td>Prelaunch analysis of contamination probability/Mariner-Venus '6</td>
<td>744</td>
</tr>
<tr>
<td>(pressure) Evaluation of filters to sterilize liquids and gases</td>
<td>1195</td>
</tr>
<tr>
<td>pressure on water availability related to microbial growth/Effects of pressure/Resistivity of spores to ultraviolet and gamma radiation</td>
<td>1196</td>
</tr>
<tr>
<td>pressurization/Study of aseptic maintenance by pressurization/Study of aseptic maintenance by pressurization/Study of aseptic maintenance by</td>
<td>1199</td>
</tr>
<tr>
<td>Principles, methods and problems (methods and means of sterilization)</td>
<td>1201</td>
</tr>
<tr>
<td></td>
<td>767</td>
</tr>
<tr>
<td></td>
<td>766</td>
</tr>
<tr>
<td></td>
<td>736</td>
</tr>
<tr>
<td></td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>1108</td>
</tr>
<tr>
<td></td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>666</td>
</tr>
<tr>
<td></td>
<td>1230</td>
</tr>
</tbody>
</table>
(probe) Services provided in support of the planetary quarantine
probes/Probability of planetary contamination by space
(probes) Sterilization and decontamination techniques for space
probes/Sterilizing space
probe sterilization/Microbiology of space
probe sterilization/Space
probe. Study of critical sterilization problems on a Mars atmosp
probe surface sampler/Microbiological evaluation of the vacuum
(probe vehicle) Feasibility study of an experiment for determinin
problems in spacecraft sterilization/Special
problems in sterilization of spacecraft/Engineering
(procedure) Apollo and contamination control. McDonnell Douglas'
(procedure) Evaluation of a quantal response model with variable
(procedure) Implication of a chemical contaminant inventory for 1
(procedure) Integrated lethality of sterilization temperature pro
procedures for microbiological examination of space hardware/NAS
procedures for planetary spacecraft which are to be sterilized b
procedures/Laminar air flow for sterility testing
procedures/Sampling and verification in large-scale sterilizatio
program on the development of a mathematical model(s) for micro
program on the development of a mathematical model(s) for micro
program on the development of a mathematical model(s) for micro
program/Planning study for an organic constituents inventory
program scope and definition/NASA
programs information system using the CDC 217 remote console/Use
(propellants) Microbial cell recovery from solid materials
(propylene oxide) Synergistic effects in sonochemical sterilizati
(protection) Development of a laminar airflow biological cabinet
protein denaturation during exposure to sterilization temperatur

Quantitative aspects of shedding of microorganisms by humans
quarantine analysis of a possible Mariner Venus 1972 mission/Prel
quarantine and space vehicle sterilization/Planetary
quarantine constraints/Flight path and mission strategies to sat
quarantine/Environmental microbiology as related to planetary
quarantine/Environmental microbiology as related to planetary
quarantine for lunar programs/Interactive computer information s
quarantine lunar programs information system using the CDC 217 r
quarantine parameters for consideration during the design of pla
quarantine policy for Mars/Biological losses and the
quarantine program/Systems analysis and clean room monitoring fo
quarantine program/Systems analysis and clean room monitoring fo
quarantine program/Systems analysis and clean room monitoring fo
quarantine/Recent developments in planetary
quarantine requirements/Analysis of planetary
quarantine requirements/Logarithmic extrapolation of microbial s

165
quarantine requirements of the National Aeronautics and Space Ad
quarantine requirements of the National Aeronautics and Space Ad
quarantine requirements of the National Aeronautics and Space Ad
quarantine requirements of the National Aeronautics and Space Ad
quarantine risk model/Martian
quarantine/Study of analytical techniques in planetary
quarantine/Training needs in planetary

radiation burden of a typical Mars lander mission/Preliminary an
(radiation) Contamination control: a very old, new field
(radiation) Contamination control handbook
(radiation) Effect of ultraviolet on the survival of bacterial ai
radiation effects for bacterial inactivation/Optimizing thermal
(radiation) Efficiency of sterilization by making use of ethylene
radiation environment/Kinetic analysis of spore inactivation in
(radiation) Feasibility of thermoradiation for sterilization of s
radiation fields from RTGs and scientific experiments on spacecr
(radiation) Gamma irradiation of Bacillus subtilis spores
(radiation) Improved method of spacecraft sterilization
(radiation) Radiation in microbiological laboratories/Use of ultraviolet
radiation in space/Biological effectiveness of solar electromagn
(radiation) Instrumentation and methodology in measurement of via
(radiation) Investigation of a sono-chemical approach in steriliz
(radiation) Investigation of gamma sterilization
(radiation) Investigation of microbial contamination inside irrad
(radiation) Natural environment criteria for the NASA Space Stati
(radiation) 1973 Viking voyage to Mars
radiation on microorganisms/Effects of continuous and interrupte
(radiation) Physical methods of sterilization of microorganisms
(radiation) Practical procedures for microbial decontamination
(radiation) Recent advances in microbiology environmental control
radiation resistance and activation of spores of Clostridium wel
(radiation) Spacecraft preparation and sterilization as state of
(radiation) Space environment criteria guidelines for use in spac
(radiation) Sterilization
(radiation) Sterilization in combined techniques
(radiation) Sterilization literature abstracts
(radiation) Study of the factors influencing sterilization by heat
radiation test laboratory/RTG
radiation while exposed to ultrahigh vacuum or at atmospheric pr
radiative characteristics of viable microorganisms/Thermal
radioisotope thermoelectric generator (RTG) and scientific exper
radioisotope thermoelectric generator/Compatibility and shieldin
radioisotope thermoelectric generator/RTG shield optimization study/Unmanned spacecraft
radioisotope thermoelectric generator/Preliminary analysis of t
radioisotope thermoelectric generators for outer planet missions
radioisotope tracer techniques/Study of the biological cleanabi
ratio statistics -2ln\lambda under a class of local alternatives/Mini
(recontamination)Continuation of the development of a typical Ma
(recontamination)Continuation of the development of a typical Ma
recontamination hazards/Comments of the in-flight
(recontamination)Objectives and technology of spacecraft steriliz
recontamination of spacecraft and the probability of contaminat
Recontamination phase/Planetary quarantine:
(recontamination)Spacecraft sterilization - New engineering and
recontamination studies/Post-launch
recovery from interiors of solids/Microbiological techniques for
recovery from solid materials/Microbial cell
recovery from surfaces/Survey of microbiological techniques for
recovery of microorganisms from solids/Factors influencing the
Recovery of vegetative bacteria from eccofoam FP and diatomaceou
recovery of viable microorganisms from surfaces/Factors influenc
(relative humidity)Adsorption of formaldehyde by various surface
relative humidity and microbial abundance in dry valleys of Sout
(relative humidity)Automatic ethylene oxide decontamination syst
(relative humidity)Beta-propiolactone vapor as a disinfectant
relative humidity; developing dry heat D-values/Dry heat destruc
(relative humidity)Development of parametric data for the establ
relative humidity/Dry heat destruction rates of microorganisms o
(relative humidity)Dry heat destruction rates of microorganisms
(relative humidity)Dry heat on gaseous chemical resistance of Ba
(relative humidity)Effect of bacterial cell moisture on the spor
(relative humidity)Effect of cell moisture on the thermal inacti
(relative humidity)Effects of \(A_w \) on the sporidical activity of e
(relative humidity)Encapsulation, electronics, eccofoam
(relative humidity)Environmental microbiology as related to plan
(relative humidity)Heat destruction patterns
(relative humidity)Kinetics of disinfection
(relative humidity)Microbiological aspects of ethylene oxide ste
(relative humidity)Microbiological aspects of ethylene oxide ste
(relative humidity)Microorganisms removed from contaminated sta
relative humidity on small particle adhesion to surfaces/Study o
(relative humidity)Resistivity of microorganisms to inactivation
(relative humidity)Resistivity of microorganisms to thermal inac
(relative humidity)Sporidical effect of peracetic acid vapor
(relative humidity)Sterilization of interplanetary spacecraft
(relative humidity)Sterilization of spacecraft
(relative humidity)Sterilization with methyl bromide vapor
(relative humidity)Sterilizing techniques with ethylene oxide
(relative humidity)Studies for sterilization of space probe comp
(relative humidity)Studies on ethylene oxide - Freon 12 decontam
(relative humidity)Thermal destruction of microorganisms
(relative humidity)Types of biological indicators used in monito
(relative humidity)Virucidal activity of\(\text{Beta}-\text{propiolactone} \) vapo

167
(relative humidity) Viruses respond to environmental exposure
requirements/Basis for the sterility
requirements/Analysis of planetary quarantine
requirements/Effect of microbial release probabilities on spacec
(requirements)Engineering guidelines for clean assembly and ster
requirements for Apollo modules/The determination of quantitativ
requirements for *B. cereus* and *B. subtilis* germination/Survival
requirements for space exploration/Sterilization
requirements for the sterilization of spacecraft/NASA
requirements/Logarithmic extrapolation of microbial survivor cur
requirements manual for planetary spacecraft to be sterilized by
requirements/Mariner-Mars 1971 post-launch analysis of complianc
requirements/Model for planetary quarantine
requirements/Multi-stage decision model for mission non-contamin
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
requirements of NASA/Services provided in support of the planeta
(requirements)Operations problem of sterilization
(requirements)Pioneer F/G planetary quarantine plan
(requirements)Planetary quarantine plan, Voyager project
requirements/Planning, evaluation and analytical studies to impl
requirements/Planning, evaluation and analytical studies to impl
requirements/Planning, evaluation and analytical studies to impl
requirements/Potential effects of recent findings on spacecraft
requirements/Rational model for spacecraft sterilization
requirements/Sampling of planetary surface solids for unmanned i
requirements/Spacecraft sterilization
requirements/Spacecraft sterilization and planetary quarantine,
requirements/Spacecraft sterilization - the grand
(requirements)Special problem of encapsulated contaminants
(requirements)Stochastic sterilization model
(requirements)Study of analytical techniques in planetary quaran
resins/Use of sporicides and heat to sterilize
(resistance)Absorption-desorption of water by bacterial spores a
resistance and activation of spores of *Clostridium welchii*/Heat
(resistance)Biological and physical factors in dry heat steriliz

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses respond to environmental exposure</td>
<td>1252</td>
</tr>
<tr>
<td>Basis for the sterility</td>
<td>41</td>
</tr>
<tr>
<td>Analysis of planetary quarantine</td>
<td>1074</td>
</tr>
<tr>
<td>Effect of microbial release probabilities on space</td>
<td>1076</td>
</tr>
<tr>
<td>Engineering guidelines for clean assembly and sterilization</td>
<td>237</td>
</tr>
<tr>
<td>for Apollo modules/The determination of quantitative requirements for B. cereus and B. subtilis germination/Survival</td>
<td>1002</td>
</tr>
<tr>
<td>for space exploration/Sterilization</td>
<td>474</td>
</tr>
<tr>
<td>for the sterilization of spacecraft/NASA</td>
<td>729</td>
</tr>
<tr>
<td>Logarithmic extrapolation of microbial survivor curve</td>
<td>484</td>
</tr>
<tr>
<td>manual for planetary spacecraft to be sterilized by</td>
<td>118</td>
</tr>
<tr>
<td>Mariner-Mars 1971 post-launch analysis of compliance</td>
<td>755</td>
</tr>
<tr>
<td>Model for planetary quarantine</td>
<td>541</td>
</tr>
<tr>
<td>Multi-stage decision model for mission non-contamination</td>
<td>1093</td>
</tr>
<tr>
<td>Operations problem of sterilization</td>
<td>1182</td>
</tr>
<tr>
<td>Pioneer F/G planetary quarantine plan</td>
<td>353</td>
</tr>
<tr>
<td>Planetary quarantine plan, Voyager project</td>
<td>354</td>
</tr>
<tr>
<td>Planning, evaluation and analytical studies to implement</td>
<td>355</td>
</tr>
<tr>
<td>Planning, evaluation and analytical studies to implement</td>
<td>356</td>
</tr>
<tr>
<td>Planning, evaluation and analytical studies to implement</td>
<td>357</td>
</tr>
<tr>
<td>Potential effects of recent findings on spacecraft</td>
<td>358</td>
</tr>
<tr>
<td>Rational model for spacecraft sterilization</td>
<td>359</td>
</tr>
<tr>
<td>Sampling of planetary surface solids for unmanned</td>
<td>360</td>
</tr>
<tr>
<td>spacecraft sterilization</td>
<td>361</td>
</tr>
<tr>
<td>Spacecraft sterilization and planetary quarantine,</td>
<td>362</td>
</tr>
<tr>
<td>Spacecraft sterilization - the grand</td>
<td>363</td>
</tr>
<tr>
<td>Special problem of encapsulated contaminants</td>
<td>364</td>
</tr>
<tr>
<td>Stochastic sterilization model</td>
<td>365</td>
</tr>
<tr>
<td>Study of analytical techniques in planetary quarantine resins/Use of sporicides and heat to sterilize</td>
<td>366</td>
</tr>
<tr>
<td>Absorption-desorption of water by bacterial spores a</td>
<td>367</td>
</tr>
<tr>
<td>resistance and activation of spores of Clostridium welchii/Heat</td>
<td>368</td>
</tr>
<tr>
<td>Biological and physical factors in dry heat sterilization</td>
<td>369</td>
</tr>
<tr>
<td>Resistance</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Ecology and thermal inactivation of microbes in and</td>
<td>23</td>
</tr>
<tr>
<td>(resistance) Ecology and thermal inactivation of microbes in and</td>
<td>25</td>
</tr>
<tr>
<td>(resistance) Ecology and thermal inactivation of microbes in and</td>
<td>26</td>
</tr>
<tr>
<td>(resistance) Ecology and thermal inactivation of microbes in and</td>
<td>981</td>
</tr>
<tr>
<td>(resistance) Ecology and thermal inactivation of microbes in and</td>
<td>982</td>
</tr>
<tr>
<td>(resistance) Effect of a simulated Martian environment on certain</td>
<td>69</td>
</tr>
<tr>
<td>(resistance) Effect of cell moisture on the thermal inactivation</td>
<td>552</td>
</tr>
<tr>
<td>(resistance) Effects of continuous and interrupted radiation on m</td>
<td>91</td>
</tr>
<tr>
<td>(resistance) Environmental microbiology as related to planetary q</td>
<td>88</td>
</tr>
<tr>
<td>(resistance) Microbiological aspects of ethylene oxide steriliz</td>
<td>639</td>
</tr>
<tr>
<td>resistance of Bacillus subtilis var. niger</td>
<td>31</td>
</tr>
<tr>
<td>Influence of spore mo</td>
<td>798</td>
</tr>
<tr>
<td>Resistance of Bacillus subtilis var. niger spores included withi</td>
<td>1306</td>
</tr>
<tr>
<td>resistance of microorganisms to ultraviolet r</td>
<td>931</td>
</tr>
<tr>
<td>resistance of spores of Bacillus subtilis var. niger on Kapton a</td>
<td>145</td>
</tr>
<tr>
<td>(resistance) Status report on D, z, and A_ν value investigations</td>
<td>28</td>
</tr>
<tr>
<td>(resistance) Stochastic sterilization model</td>
<td>1081</td>
</tr>
<tr>
<td>resistance studies/Reproducibility of results in dry heat</td>
<td>784</td>
</tr>
<tr>
<td>(resistance) Thermal death of Bacillus subtilis var. niger spores</td>
<td>871</td>
</tr>
<tr>
<td>(resistance) Thermal destruction of microorganisms</td>
<td>396</td>
</tr>
<tr>
<td>resistance to ethylene oxide/Age of Bacillus subtilis spores and</td>
<td>84</td>
</tr>
<tr>
<td>resistance to ethylene oxide/Microbial</td>
<td>403</td>
</tr>
<tr>
<td>(resistance) Types of biological indicators used in monitoring st</td>
<td>781</td>
</tr>
<tr>
<td>(resistivity) Environmental microbiology as related to planetary</td>
<td>87</td>
</tr>
<tr>
<td>resistivity of microorganisms to inactivation by dry heat/The</td>
<td>1102</td>
</tr>
<tr>
<td>resistivity of microorganisms to thermal inactivation by dry hea</td>
<td>1103</td>
</tr>
<tr>
<td>Resistivity of spores to ultraviolet and gamma radiation while e</td>
<td>1108</td>
</tr>
<tr>
<td>(restraints) Planetary quarantine provisions for unmanned planet</td>
<td>811</td>
</tr>
<tr>
<td>rickettsiae by heat/Bibliography on inactivation of viruses and</td>
<td>1260</td>
</tr>
<tr>
<td>Rodac plates/Deposition of nutrients to surfaces by</td>
<td>63</td>
</tr>
<tr>
<td>Rodac plates/Improved method for pouring</td>
<td>146</td>
</tr>
</tbody>
</table>

(SADL) Biological monitoring of capsule mechanical training model | 1163 |
(SADL) Effect of environment on biological burden during spacecraft | 1164 |
Sterilization Assembly Development Laboratory (SADL) facility de | 990 |
SADL facility/Sterilization assembly and development laboratory | 706 |
SADL/Microbial cleanliness at JPL's EASL and | 867 |
SADL/Microbiological aspects of sterilization assembly developme | 868 |
(SADL) Quality assurance monitoring of microbiological aspects of | 413 |
SADL test and operations. Summary/EASL-sampler/Microbiological evaluation | 989 |
of the vacuum probe surface sampler/Novel multi-slit large volume air | 879 |
(sampler) Techniques for the limitation of biological loading of sampler | 150 |
/Vacuum probe samples assayed by the NASA standard procedure/The effect of | 730 |
sample test/Asymptotic efficiency of two nonparametric competito | 1281 |
(sampling) Analysis of methods for growth detection in the search | 764 |
Analytical basis for assaying buried biological contam
Sampling and verification in large-scale sterilization procedure
Approach to computerized bacterial identification
Approximations to the Bayes estimate for a quantal ass
Bayesian analysis for an exponential surveillance mode
Biodetection grinder
Biostatistics and space exploration: microbiology and
Comparative evaluation of methods for the search for 1
Computerized bacterial identification system as applic
Decontamination of enclosed spaces with Beta-propiolac
sampling: Development and application/Method for microbial surfa
sampling device/Development of an ultrasonic/vacuum
dsampling device/Development of an ultrasonic/vacuum
distribution-free test for parallelism
ethylene oxide - Freon 12 decontamination procedure B.
evaluation of filters to sterilize liquids and gases
Improved method for pouring Rodac plates
Improved model of the vacuum probe
Improved sonication method for removal of microorganis
sampling in sterile rooms/Control and
Laboratory for monitoring bacterial contamination of s
Life in the clouds
Microbial contamination detected on the Apollo 9 space
Microbiological analysis of snow and ice from the Anta
Microbiological barrier techniques
Microbiological flora of the Gemini IX spacecraft befo
Microbiological investigation of selected spacecraft p
Microbiological methods of testing the atmosphere
Microbiological survey of environmentally controlled a
Microbiology of surgery suites
Microbiology quality activities for a planetary missio
Monitoring airborne particulate contamination
NASA standard procedures for the microbiological exámi
Sampling of planetary surface solids for unmanned in situ geolo
sampling of surfaces/Microbiological
sampling of surfaces/Vacuum probe; new approach to the microbiol
sampling on surfaces: Agar spray/Improved technique for microbio
sampling program for anchored interplanetary monitoring platform
Quality assurance requirements manual for planetary sp
sampling rate monitoring system/Development of an increased
Reduction of microbial dissemination and germicidal ac
Reduction of microbial dissemination and germicidal ac
Reduction of microbial shedding from humans
sampling requirements for Apollo modules/Determination of quanti
Research on microbiological sterilization problems
Soil microbial and ecological investigations in the An
Soil moisture, relative humidity and microbial abundan
Spacecraft monitoring method and procedures

170
<table>
<thead>
<tr>
<th>Sampling/Sterilization with ethylene oxide gas mixtures</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling/Stochastic approach to bioburden estimation and prediction</td>
<td>1004</td>
</tr>
<tr>
<td>Sampling/Study of contamination sensors</td>
<td>38</td>
</tr>
<tr>
<td>Sampling/Study program on the development of mathematical model sampling surfaces for microbiological contamination/Statistical systems analysis and clean room monitoring for planetary sampling/Sampling with an agar spray technique/Development and test of flexible film coupon sampling technique/Development and test of flexible film coupon sampling with an agar spray technique/Surface sampling technique/Development and test of flexible film coupon sampling technique/Development and test of flexible film coupon sampling with an agar spray technique/Surface</td>
<td>631</td>
</tr>
<tr>
<td>Sensitivity of bacteriological detection techniques to low level shedding by human beings/Microorganism</td>
<td>876</td>
</tr>
<tr>
<td>Shedding in clean rooms/Reduction of microbiological shedding of microorganisms by humans/Quantitative aspects of simulated extraterrestrial space ecology/Exposure of microorganisms to simulated hard landings/Microbial release from solids after simulated hard landings/Release of microorganisms from solids after simulated Jupiter atmosphere/Terrestrial organisms survive in simulated lunar surface conditions/Survival of bacterial spores simulated Martian conditions/Bacteria under simulated Martian conditions/Multiplication of certain soil microorganisms simulated Martian dust clouds/Effect of ultraviolet on the survi simulated Martian environment. Germination and growth of bacteria simulated Martian environment/Microorganisms under simulated Martian environment/Moisture and oxygen requirements simulated Martian environment/Response of microorganisms to simulated Martian environments/Biological contamination of Mars simulated Martian environments/Biological contamination of Mars simulated Martian environments/Studies with microorganisms and particles simulated Martian environment/Study of microorganisms under a simulated Martian environment/Survival of microorganisms in a simulated meteoroid impact/Microbial survival after simulated planetary environments/Biochemical activities of terrestrial organisms simulated space conditions. Survival of microorganisms under simulated space environments on the viability of microorganisms simulated space/Study of viability of microorganisms in simulated space/Study of viability of microorganisms in simulated space vacuum on bacterial cells/Effects of simulated space vehicle components/Dry heat destruction of spore simulated Venus atmosphere on polymeric materials/Effects of (simulation)Analytical basis for planetary quarantine (simulation)Atmospheric contaminants in spacecraft (simulation)ATP assay of terrestrial soils - a test of an exobio (simulation)Bacterial growth in agar subjected to freezing and thawing (simulation)Behavior of certain soil microorganisms in the "artificial" Martian environment (simulation)Biological losses and the quarantine policy for Mars (simulation)Biostatistics and space exploration: Microbiology and biostatistics (simulation)Biostatistics and space exploration: Microbiology and biostatistics (simulation)Biostatistics and space exploration: Microbiology and biostatistics (simulation)Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1105</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>398</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>850</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>648</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>560</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1301</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>579</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>472</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1009</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>522</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>474</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>524</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>866</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1082</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>525</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>522</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>436</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>848</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>158</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>155</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1106</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1109</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1110</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>153</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>31</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>618</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1075</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>803</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>739</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>166</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>661</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>1140</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>216</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>217</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>218</td>
</tr>
<tr>
<td>Biostatistics and space exploration: Microbiology and biostatistics</td>
<td>219</td>
</tr>
</tbody>
</table>
soil algal crusts: scanning electron and optical microscope stud
soil bacteria exposed to various temperature and to three years
(soil)Characterization of bacterial populations by means of fact
(soil)Desert microflora
(soil)Dry heat destruction rates of microorganisms on surfaces
(soil)Dry heat inactivation kinetics of naturally occurring spor
soil environment/Bacterial response to the
soil exposed to five years of continuous very high vacuum/Surviv
soil from Antarctica: organic analysis/Sterile
(soil)Life in extraterrestrial environments
(soil)Life in extraterrestrial environments
Soil microbial and ecological investigations in the Antarctic in
soil microbial incubation and gas composition/Antarctic dry vall
(soil)Microbiological analysis of snow and ice from the Antarcti
soil microorganisms in the "artificial Mars" chamber/Behavior of
(soil)Microorganism study: bacterial isolants from harsh environ
soil microorganisms under simulated Martian conditions/Multiplic
soil mineral particles/Dry heat survival of Bacillus subtilis va
soil moisture, relative humidity and microbial abundance in dry
soil of desert regions/Abundance of microflora in
soil organisms/Combined effects of ultrahigh vacuum and temperat
soils and environments/Ability of microorganisms to establish ec
soil science in space exploration/Role of
(soil)Services provided in support of the planetary quarantine r
(soil)Services provided in support of the planetary quarantine r
(soil)Services provided in support of the planetary quarantine r
soils from Antarctic dry valleys/Growth of bacteria in
(soil)Study of the dry heat resistance of naturally occurring or
(soil)Systematic description of bacterial isolants from rigorous
sonic and ultrasonic waves/Sterilizing effects of high intensity
sonication method for removal of microorganisms from surfaces/An
sonic disseminator technique/Production of low concentration par
sono-chemical approach in sterilization problems/An investigatio
sono-chemical sterilization/Synergistic effects in
Space age microbiology
Space: a kinetic comparison/Microbial sterilization in ultra-hig
space at orbital altitudes during Gemini satellite experiments/S
space/Biological effectiveness of solar electromagnetic radiatio
space biology/Gnotobiotics in relation to
(space capsule)Determination of quantitative microbial sampling
(space capsule)Microbiological flora of the Gemini IX spacecraft
(space capsule)Voyager effort focused on sterilization
space components/Laboratory for monitoring bacterial contaminati
space conditions/Survival of microorganisms under simulated

173
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of microbial release probabilities</td>
<td>325</td>
</tr>
<tr>
<td>Analytical basis for assaying buried biological cont</td>
<td>644</td>
</tr>
<tr>
<td>spacecraft and the probability of contamination of a planet/Anal</td>
<td></td>
</tr>
<tr>
<td>Apollo and contamination control. McDonnel Douglas'</td>
<td>668</td>
</tr>
<tr>
<td>Apollo and contamination control. NASA's role</td>
<td>1223</td>
</tr>
<tr>
<td>Application of bench tests in development of heat st</td>
<td>1249</td>
</tr>
<tr>
<td>Approach to computerized bacterial identification</td>
<td>275</td>
</tr>
<tr>
<td>(assembly areas)Ability of microorganisms to establish</td>
<td>470</td>
</tr>
<tr>
<td>spacecraft assembly/Class 100 clean room program</td>
<td>734</td>
</tr>
<tr>
<td>spacecraft assembly/Compatibility of sterilization and contamina</td>
<td>309</td>
</tr>
<tr>
<td>spacecraft assembly/Effect of environment on biological burden d</td>
<td>1164</td>
</tr>
<tr>
<td>spacecraft assembly facility operations/Microbiological monitori</td>
<td>190</td>
</tr>
<tr>
<td>spacecraft assembly facility operations/Microbiological monitori</td>
<td>191</td>
</tr>
<tr>
<td>spacecraft assembly facility operations/Microbiological monitori</td>
<td>1166</td>
</tr>
<tr>
<td>spacecraft/Assembly/sterilizer - facility for the sterilization</td>
<td>240</td>
</tr>
<tr>
<td>spacecraft/Atmospheric contaminants in</td>
<td>803</td>
</tr>
<tr>
<td>spacecraft/Bacteriology of clean rooms</td>
<td>776</td>
</tr>
<tr>
<td>spacecraft: Basic policy relating to lunar and planetary contami</td>
<td>810</td>
</tr>
<tr>
<td>spacecraft before and after flight/Microbiological flora of the</td>
<td>568</td>
</tr>
<tr>
<td>spacecraft before sterilization/Techniques for the limitation of</td>
<td>730</td>
</tr>
<tr>
<td>(Biological losses and the quarantine policy for Mars)</td>
<td>1140</td>
</tr>
<tr>
<td>spacecraft/Biostatistics and space exploration: Microbiology an</td>
<td>216</td>
</tr>
<tr>
<td>spacecraft/Biostatistics and space exploration: Microbiology an</td>
<td>218</td>
</tr>
<tr>
<td>spacecraft/Capsule system advanced development sterilization pr</td>
<td>538</td>
</tr>
<tr>
<td>spacecraft/Chances of retrieval of viable microorganisms deposi</td>
<td>1178</td>
</tr>
<tr>
<td>spacecraft/Clean assembly and sterilization laboratory</td>
<td>206</td>
</tr>
<tr>
<td>spacecraft cleaning and decontamination techniques</td>
<td>1086</td>
</tr>
<tr>
<td>spacecraft/Clean room complex for microbial contamination contr</td>
<td>237</td>
</tr>
<tr>
<td>spacecraft/Clean room facilities for assembly, Explorer XXXV</td>
<td>673</td>
</tr>
<tr>
<td>spacecraft/Clean room in space technology</td>
<td>793</td>
</tr>
<tr>
<td>spacecraft/Clean room technology</td>
<td>1222</td>
</tr>
<tr>
<td>spacecraft/Comparative levels of microbial contamination in clea</td>
<td>1189</td>
</tr>
<tr>
<td>spacecraft/Compatibility of Centaur/Surveyor materials with Fre</td>
<td>1298</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry into the Jovian</td>
<td>1154</td>
</tr>
<tr>
<td>spacecraft components are subjected during manufacture/Detection</td>
<td>378</td>
</tr>
<tr>
<td>spacecraft components/Conference on hazard of planetary contamin</td>
<td>1133</td>
</tr>
<tr>
<td>spacecraft components/Effect of current cleaning procedures on s</td>
<td>754</td>
</tr>
<tr>
<td>spacecraft components/Effect of current cleaning procedures on s</td>
<td>1147</td>
</tr>
<tr>
<td>spacecraft components/Microbial contaminants in the interiors of</td>
<td>855</td>
</tr>
<tr>
<td>spacecraft components/Microscopic method of particulate contami</td>
<td>977</td>
</tr>
<tr>
<td>spacecraft components/Progressive biological monitoring on luna</td>
<td>849</td>
</tr>
<tr>
<td>spacecraft components/Research on microbiological sterilization</td>
<td>197</td>
</tr>
<tr>
<td>spacecraft components/Thermal death studies on microbial spores</td>
<td>654</td>
</tr>
<tr>
<td>Spacecraft components survivability during entry into the Martia</td>
<td>1155</td>
</tr>
<tr>
<td>Spacecraft containing a radioisotope thermoelectric generator/Co</td>
<td>46</td>
</tr>
<tr>
<td>Spacecraft/Contamination control and sterilization in space pro</td>
<td>779</td>
</tr>
<tr>
<td>spacecraft/Contamination control handbook</td>
<td>823</td>
</tr>
<tr>
<td>spacecraft/Contamination of Mars</td>
<td>437</td>
</tr>
</tbody>
</table>

174
spacecraft parts and materials/Microbiological investigation of spacecraft
(spacecraft)Planetary quarantine: principles, methods and proced 50
(spacecraft)Planetary quarantine progress 824
(spacecraft)Planetary quarantine provisions for unmanned planeta 811
Spacecraft polymeric material interactions during decontaminatio 1016
spacecraft polymeric materials/Effect of decontamination and ste 679
spacecraft polymeric materials/Sterilization and thermal-vacuum 1017
spacecraft polymeric products/Effects of decontamination steril 1015
spacecraft/Polymers for use in sterilized 658
Spacecraft preparation and sterilization as state of the art 44
(spacecraft)Problems in sterilization of unmanned space vehicles 1230
(spacecraft)Procedures for the microbiological examination of sp 352
(spacecraft)Progressive biological monitoring on lunar orbiters 849
spacecraft (Project Zip)/Noncontaminating separation systems for 669
(spacecraft)Quality assurance monitoring of microbiological aspe 413
spacecraft/Quantitative and qualitative microbiological profiles 973
(spacecraft)Recent developments in planetary quarantine 487
spacecraft/Relative frequency distribution of D125C values for 90
(spacecraft)Release of microbial contamination from fractured so 880
(spacecraft)Research study to definitize a bio-isolation suit sy 417
(spacecraft)RTG radiation test laboratory 179
(spacecraft)RTG shield optimization study/Unmanned 1148
(spacecraft)Special problem of encapsulated contaminants 133
(spacecraft)Sterile access studies in the Pilot Assembly Sterili 344
(spacecraft)Sterilizable electronic packaging, connectors, wires 389
(spacecraft)Sterilizable inertial sensors: high performance acce 498
(spacecraft)Sterilizable liquid propulsion system 705
Spacecraft sterilization 45
Spacecraft sterilization 563
spacecraft sterilization/Analytical techniques in planetary quar 1062
spacecraft. Sterilization and bioassay/Technology feasibility 735
Spacecraft sterilization and contamination of Mars 1031
Spacecraft sterilization and planetary quarantine 75
Spacecraft sterilization and planetary quarantine, background of 390
Spacecraft sterilization and the prevention of planetary contami 488
spacecraft sterilization/An engineer looks at 842
(spacecraft)Sterilization assembly development laboratory facili 990
spacecraft sterilization/Biological and engineering aspects of 701
Spacecraft sterilization by destructive heating 1156
(spacecraft)Sterilization compatibility of growth media for extr 858
(spacecraft sterilization)Contamination control 1224
spacecraft sterilization/Development and application of a system 319
spacecraft sterilization/Development of concepts for improved 1095
(spacecraft)Sterilization-environmental testing of initiators 74
spacecraft sterilization/Evaluation of current technology in 261
spacecraft sterilization/Evaluation of new penetrating sporicide 4
Spacecraft sterilization - grand requirements 843
spacecraft sterilization/Handbook of biological aspects of 655
Spacecraft sterilization. Thermal considerations

Thermal death of *Bacillus subtilis* var 871

Spacecraft sterilization training manual

Sterilizing unmanned spacecraft structures

Thermal sterilization of spacecraft

Study of analytical techniques in planetary quarantine

Study of the probability of depositing viable organisms

Study program on the development of mathematical models

Study program on the development of mathematical models

Survival of microorganisms on covered stainless steel spacecraft system

Biological decontamination of a spacecraft system

Surveyor spacecraft system

Technical manuals and planning study in planetary quarantine

Sterilizing for sterile insertion and repair of spacecraft system

Terminal sterilization process calculation for spacecraft tests

JPL develops double vacuum chamber for spacecraft thermal math modeling terminal sterilization cycle

JPL develops double vacuum chamber for spacecraft thermal math modeling terminal sterilization cycle

Thermoradiation as a means of bacterial sterilization spacecraft to be sterilized by heating

Biological handbook for spacecraft to be sterilized by heating

Design criteria for typical spacecraft to be sterilized by heating

Development of quality assurance criteria spacecraft to be sterilized by heating

Feasibility of thermoradiation spacecraft which are to be sterilized by heating

Manufacturing a spacecraft using Cobalt 60

Biological handbook for spacecraft using ethylene oxide

Partially annotated bibliography of sporicides and heat to sterilize resins

User's manual for the planetary quarantine lunar inf

User's manual for planetary quarantine lunar program

Space environment

Natural environment criteria guidelines for use in space vehicle design

Effect of ultraviolet radiation upon microorganisms

Space environment/Effect of ultraviolet radiation upon microorganisms/Effects of space environments on the viability of microorganisms

Potentially harmful effects of space experiments

Microbiology and sterilization/Biostatistics

Role of soil science in space exploration

Sterilization requirements for spaceflight hardware/Engineering guidelines for clean assembly

Microbial cleanliness at JPL's EASL and SA spacecraft hardware

Planetary quarantine. Techniques for the preparation of spacecraft for further rocket and balloon borne exposure experiments

Further rocket and balloon borne exposure experiments/Surface analysis

Space hardware assay methodology
(space hardware) Effect of airflow velocity on biocontamination	1240
(space hardware) Environmental microbiology as related to planeta	783
space hardware/Methodology of measuring internal contamination i	441
space hardware/Microbiological assay of	349
space hardware: NASA's current edition/Procedures for the microb	352
space hardware/NASA standard procedures for the microbiological	806
space hardware/Review of naturally occurring interior microbial	1243
(space hardware) Services provided in support of the planetary qu	368
space hardware/Standard procedures for the microbiological exami	728
space hardware/Sterilization of	892
space Possibility of the spreading of viable germs in outer	383
(space probe) Biostatistics and space exploration: Microbiology a	217
(space probe) Comparative studies of conceptual design and qualif	999
space probe components/Sterilization of	142
space probe components/Sterilization of	649
space probe components/Studies for sterilization of	650
space probe components/Studies for sterilization of	653
(space probe) Estimation of planetary contamination probabilities	1072
(space probe) Planetary probe-origin of atmosphere of Venus	797
space probes/Dry heat sterilization: Its development and applica	144
space probes/Probability of planetary contamination by	244
space probes/Sterilizing	490
Space probe sterilization	813
space probe sterilization/Microbiology of	438
(space program) Biological losses and the quarantine policy for M	1140
(space program) Potential effects of recent findings on spacecraf	1079
space programs/Contamination control and sterilization in	823
space research/Contributions of microbiological safety to	906
space research/General review of chemical sterilization in	851
space/Study of viability of microorganisms in simulated	1110
space suit/Evaluation of leakage of microbial contamination from	817
space suits/Services provided in support of the planetary quaran	204
space suits/Services provided in support of the planetary quaran	816
space suits/Services provided in support of the planetary quaran	817
space/Survival of microorganisms in	703
space technology/Clean room in	793
(space vehicle) Adaptive allocation of planetary quarantine viola	182
space vehicle components/Dry heat destruction of spores in simul	31
space vehicle components/Ecology and thermal inactivation of mic	13
space vehicle components/Ecology and thermal inactivation of mic	14
space vehicle components/Ecology and thermal inactivation of mic	15
space vehicle components/Ecology and thermal inactivation of mic	16
space vehicle components/Ecology and thermal inactivation of mic	17
space vehicle components/Ecology and thermal inactivation of mic	18
space vehicle components/Ecology and thermal inactivation of mic	19
space vehicle components/Ecology and thermal inactivation of mic	20
space vehicle components/Ecology and thermal inactivation of mic	21
space vehicle components/Ecology and thermal inactivation of mic	22
space vehicle components/Ecology and thermal inactivation of mic	23
space vehicle components/Ecology and thermal inactivation of mic 24
space vehicle components/Ecology and thermal inactivation of mic 25
space vehicle components/Ecology and thermal inactivation of mic 26
space vehicle components/Ecology and thermal inactivation of mic 174
space vehicle components/Ecology and thermal inactivation of mic 175
space vehicle components/Ecology and thermal inactivation of mic 981
space vehicle components/Ecology and thermal inactivation of mic 982
space vehicle components/Ecology and thermal inactivation of mic 983
space vehicle components/Ecology and thermal inactivation of mic 984
space vehicle components/Ecology and thermal inactivation of mic 985
space vehicle components/Ecology and thermal inactivation of mic 986
space vehicle components/Ecology and thermal inactivation of mic 987
space vehicle components/Ecology and thermal inactivation of mic 988
space vehicle components/Ecology and thermal inactivation of mic 992
(space vehicle) Contributions of microbiological safety to space 906
(space vehicle) Engineering problems in capsule sterilization 740
(space vehicle) Estimation of planetary contamination probabilities 327
(space vehicle) Investigation of a sono-chemical approach in sterilization 922
(space vehicle) New concepts on sterilization. Alternatives to reprocessing space vehicles. Engineering examination/Sterilization of unmanne 592
(space vehicle) Spacecraft sterilization procedures in the USSR. 743
(space vehicle) Space vehicles: problem of mutual contamination/Sterilization of space vehicles/Sterilization and decontamination techniques for space vehicles 1297
space vehicle sterilization/Application of thermal modeling to space vehicle sterilization/Planetary quarantine and 234
Space vehicle sterilization problem 272
space vehicles to prevent extraterrestrial biological contamination 247
space with terrestrial life/Discussion of a possible contamination scenario 152
Spearman estimation for a simple exponential model 255
specifications/Review of heat specifications/Review of heat 1253
1254
(spore) Adsorption of formaldehyde by various surfaces during gas sterilization 122
(spore) Analytical method for calculating heat sterilization time 263
spore and staphylococcal populations/Synergism in ethylene oxide sterilization 860
(spore) Bacteriology of "clean rooms" 768
(spore) Bacteriology of clean rooms 776
(spore) Beta-propiolactone vapor as a disinfectant 550
(spore) Biological and physical factors in dry heat sterilization 140
(spore) Biological-chemical indicator for ethylene oxide sterilization 127
spore/Biophysical analysis of the 748
(spore) Biostatistics and space exploration: Microbiology and space exploration 216
(spore) Biostatistics and space exploration: Microbiology and space exploration 218
(spore) Comparison of microbial contamination levels on Barbac an 929
spore contamination located between mated surfaces and on exterior 930
(spore) Continuation of development of typical Mars landing capsule 47
(spore) Continuation of development of typical Mars landing capsule 48
spore control procedure/Limitations of initiation of germination 432
Design of thermal destruction apparatus

Spore destruction/ Mathematical basis for a diffusion model of microorganisms

Detection of low levels of microbial contamination on surfaces

Development of parametric data for the establishment of a mathematical model of a diffusion model

Discussion of possible contamination of space with terrestrial microorganisms

Dry heat destruction rates for microorganisms on open surfaces

Ecology and thermal inactivation of microorganisms in and on inanimate objects

Effect of environment on biological burden during spacecraft operation

Effect of ultra-high vacuum on Bacillus subtilis var. niger

Effect of various gas atmospheres on destruction of microorganisms

Effects of continuous and interrupted radiation on microorganisms

Environmental microbiology as related to planetary quarantine

Environmental microbiology as related to planetary quarantine

Ethylene oxide gaseous sterilization. Influence of method

Evaluation of new penetrating sporicide potentially useful

Evaluation of quantal response model with estimated concentration

Evaluation of quantal response model with variable concentration

Experiment to determine the effects of solid and liquid radiation on spore-forming vs. nonspore-forming bacteria to diurnal freezing

Germicidal activity of ethylene oxide/Reduction of microbial spore germination by alcohol/Reversible inhibition of spore germination

Heat destruction patterns

Hot air sterilization at 200°C

Spore inactivation in a composite heat and gamma radiation environment

Investigation of a sono-chemical approach in sterilization

Investigation of a gamma sterilization method

Investigation of methods for the sterilization of potting compost

Investigations into diffusion model of dry heat sterilization

Investigations of methods for sterilization of potting compost

Spore isolates from the Mariner-Mars 1969 spacecraft/Relative frequency

Kinetics of disinfection

Kinetics of thermal death of bacteria

Life in extraterrestrial environments

Low temperature growth characteristics of clostridia

Methyl bromide as an aid to ethylene oxide sterilization

Microbial release from solids after simulated hard landing

Microbial resistance to ethylene oxide
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiological aspects of ethylene oxide sterilization</td>
<td>640</td>
</tr>
<tr>
<td>Microbiological assay of space hardware</td>
<td>349</td>
</tr>
<tr>
<td>Spore moisture content on the dry heat resistance of Bacillus subtilis</td>
<td>31</td>
</tr>
<tr>
<td>Natural selection of microorganisms in extreme environments</td>
<td>5</td>
</tr>
<tr>
<td>Observations regarding factors important in dry heat sterilization of Bacillus subtilis</td>
<td>691</td>
</tr>
<tr>
<td>Observations on bacterial thermal death time curves</td>
<td>891</td>
</tr>
<tr>
<td>Spore populations/Dry heat inactivation kinetics of naturally occurring spores</td>
<td>871</td>
</tr>
<tr>
<td>Possibility of using hydrogen peroxide mixed with a detergent</td>
<td>89</td>
</tr>
<tr>
<td>Preliminary sublimation studies</td>
<td>1231</td>
</tr>
<tr>
<td>Probability of planetary contamination by space probes</td>
<td>1207</td>
</tr>
<tr>
<td>Procedures for microbiological examination of space hardware</td>
<td>244</td>
</tr>
<tr>
<td>Progressive biological monitoring on lunar orbiters</td>
<td>352</td>
</tr>
<tr>
<td>Properties of heat-resistant and heat-sensitive strains of Bacillus subtilis</td>
<td>849</td>
</tr>
<tr>
<td>Quality assurance monitoring of microbiological aspects of Bacillus subtilis</td>
<td>1264</td>
</tr>
<tr>
<td>Spore recoveries from diatomaceous earth pellets used as a proteogen</td>
<td>128</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>413</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>944</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>818</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>819</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>820</td>
</tr>
<tr>
<td>Release of microbial contamination from fractured solids</td>
<td>821</td>
</tr>
<tr>
<td>Reproducibility of results in dry heat resistance studies</td>
<td>880</td>
</tr>
<tr>
<td>Resistance of microorganisms to high vacuums</td>
<td>784</td>
</tr>
<tr>
<td>Survival of terrestrial microorganisms in space</td>
<td>55</td>
</tr>
<tr>
<td>Resistivity of microorganisms to thermal inactivation by dry heat</td>
<td>1102</td>
</tr>
<tr>
<td>Resistivity of microorganisms to thermal inactivation by gamma and x-rays upon dry bacteria</td>
<td>1103</td>
</tr>
<tr>
<td>Review of naturally occurring interior microbial contaminants and its relation to dry heat resistance</td>
<td>1243</td>
</tr>
<tr>
<td>Adsorption-desorption effects of ultrahigh vacuum a spore</td>
<td>1023</td>
</tr>
<tr>
<td>spores and soil organisms/Combined effects of ultrahigh vacuum a spores and some considerations for the sterilization of spacecraft</td>
<td>251</td>
</tr>
<tr>
<td>spores and their resistance to ethylene oxide/The age of Bacillus subtilis</td>
<td>654</td>
</tr>
<tr>
<td>spores at ultrahigh temperatures/Heat injury of Bacillus subtilis</td>
<td>84</td>
</tr>
<tr>
<td>spores by dry heat/Measurement of the destruction of bacterial spores</td>
<td>303</td>
</tr>
<tr>
<td>Effect of cell moisture on the thermal inactivation rate</td>
<td>178</td>
</tr>
<tr>
<td>Effect of dry heat upon bacterial</td>
<td>1128</td>
</tr>
<tr>
<td>Effect of gamma and x-rays upon dry bacterial</td>
<td>931</td>
</tr>
<tr>
<td>Effect of temperature and gas velocity on the dry heat dehydration of bacterial</td>
<td>932</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>396</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>355</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>356</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>357</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>360</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>361</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>362</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>363</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>364</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>366</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>367</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>370</td>
</tr>
</tbody>
</table>
Services provided in support of the planetary quarantine

spores/Gamma irradiation of *B. subtilis*

spores in atmospheres of different water contents/Heat resistance

spores included within water-soluble crystals/Dry heat on gaseous

spores in hygroscopic environments/Ethylene oxide sterilization

spores in simulated space vehicle components/Dry heat destruction

spores/Kinetics of heat activation and of thermal death of bacteria

spores located between mated surfaces/Effect of humidity, locati

spores located between mated surfaces/Effect of humidity, locati

spores/Observations regarding the sterilizing effect of ethylene

spores occluded in water-insoluble crystals to three sterilizati

spores of *Bacillus subtilis* var. *niger* hermetically sealed in va

spores of *Bacillus subtilis* var. *niger*/Method for obtaining free

spores of *Bacillus subtilis* var. *niger* on Kapton and Teflon film

spores of *Bacillus subtilis* var. *niger*/Rapid heat treatment of b

spores of *Clostridium welchii*/Heat and radiation resistance and

spores on mated surfaces/Dry heat resistance of *B. subtilis* var.

spores on surfaces: effect of humidity in an open system/Dry heat

spores on test surfaces/Electrostatic deposition device to depos

spores/Probit method to interpret thermal inactivation of bacteri

spores/Studies on trace elements in the sporulation of bacteria

spores/Studies with a simulated Martian environment. Germination

(spore)/Status report on D, z, and Aₜ value investigations

(spore)/Sterilization of electronic components of spacecraft

(spore)/Sterilizing action of gaseous ethylene oxide. Effect of

(spore)/Sterilizing action of gaseous ethylene oxide. Sterilizati

(spore)/Sterilizing effects of high intensity airborne sonic an

(spore)/Study of aseptic maintenance by pressurization

spores under several temperature and humidity conditions/Surviv

spores under several temperature and humidity conditions/Surviv

spores under several temperature and humidity conditions/Surviv

spores under some simulated lunar surface conditions/Survival of

(spore)/Survival of microorganisms in space

spores with gaseous ethylene oxide/Influence of various pretreat

(spore)/Synergistic effects in sonochemical sterilization

(spore)/Techniques for the limitation of biological loading of sp

spore test piece for the control of ethylene oxide sterilization

(spore)/Thermal destruction of microorganisms

(spore)/Use of ethylene oxide: a partially annotated bibliography

(spore)/Vacuum probe: new approach to the microbiological samplin

sporicidal activity of *Beta*-propiolactone vapor/Effect of bacteri

Sporicidal activity of ethylene oxide

sporicidal activity of ethylene oxide gas/Effect of dimethyl sul

sporicidal activity of ethylene oxide/Microbiological aspects of

sporicidal activity of ethylene oxide/Microbiological aspects of
Sporicidal activity of formaldehyde/Effect of relative humidity 553
Sporicidal activity of peracetic acid and Beta-propiolactone at 615
Sporicidal effect of peracetic acid vapor 956
Sporicidal activity of sodium hypochlorite at subzero temperature 616
Sporicidal activity of ethylene oxide/Effect of A_w on the 636
sporicide potentially useful in spacecraft sterilization/Evaluat 4
sporicides and heat to sterilize resins/Use of 948
(sporecid)Sterile access studies in pilot assembly sterilizer s 344
sporulation mutations induced by heat in Bacillus subtilis 840
sporulation of bacteria and the germination of bacterial spores/ 1118
stainless steel initially contaminated by handling and by aerial 947
standards/Critique of current spacecraft sterilization 1063
Standards for clean rooms and work stations for the microbially 814
standards of sterility/Value of agreed 528
staphylococcal populations/Synergism in ethylene oxide-methyl br 860
Staphylococcus epidermidis population/Comparison of methyl bromi 853
statistics/Certain uncorrelated nonparametric test 557
(statistics)Estimation for a one-parameter exponential model 226
(statistics)Estimation for a one-parameter exponential model 227
(statistics)Method for fitting linear combinations of exponentia 214
(statistics)Rank tests for randomized blocks when the alternativ 559
(statistics)Simultaneous nonlinear estimation 66
(statistics)Spearman estimation for a simple exponential model 255
statistics -2lnλ_n under a class of local alternatives. Minimum a 681
sterilant gases/Compatibility of Centaur/Surveyor materials with 1289
sterilants in terrestrial and extraterrestrial environments/Effi 1024
sterile assembly techniques/Experimental study of 499
sterile assembly techniques/Experimental study of 599
sterile assembly techniques/Experimental study of 717
sterile assembly techniques/Experimental study of 719
Sterile insertion - aerospace application of gnotobiotic technol 1022
sterile insertion and repair of spacecraft/Techniques for 1188
sterile insertion engineering model hardware/Development of mech 277
sterile insertion/Feasibility study of liquid 1165
sterile insertion/Liquid 1160
sterile insertion repair technique/Develop and test of a 1020
sterile insertion system. Quality assurance/Mechanical 278
sterile insertion techniques/Design feasibility study of 39
sterile insertion techniques for spacecraft/Investigation of the 1152
Sterilising properties of ethylene oxide 901
(sterility)Dry heat resistance of spores of Bacillus subtilis va 145
sterility requirement/Basis for the 41
sterility test medium for materials exposed to gaseous ethylene 284
sterility/Value of agreed standards of 528
sterilizable components for planetary quarantine/Definition of r 208
sterilizable impact resistant cell development/Heat 79
sterilizable insertion/Feasibility study of liquid 1165
sterilizable multiplier phototubes/Improved 300
Sterilizable photomultiplier tubes 299
sterilizable piece parts/Matrix test of sterilizable piece parts/Matrix test of sterilizable piece parts/Matrix test of sterilizable planetary landing capsules/Visual monitoring during Sterilizability of scientific payloads for planetary exploration Sterilization (sterilization)Absorption and desorption of ethylene oxide sterilization agents/Resistance of B. subtilis var. niger spores sterilization. Alternatives to reduce the problems from terminal (sterilization)Analysis of planetary quarantine requirements sterilization/Analytical techniques in planetary quarantine and sterilization and assembly of spacecraft/The assembly/sterilizer sterilization and bioassay/Technology feasibility spacecraft sterilization and contamination control with application to spac sterilization and contamination of Mars/Spacecraft sterilization and decontamination techniques for space vehicles sterilization and detoxification/Paraformaldehyde for surface sterilization and ethylene oxide decontamination environments/En sterilization and planetary quarantine/Spacecraft Sterilization and quarantine parameters for consideration during sterilization and storage compatibility study of growth media fo sterilization and the prevention of planetary contamination/Spac sterilization and thermal vacuum effects on spacecraft polymeric sterilization and thermal vacuum exposures/Spacecraft polymeric sterilization and thermal vacuum on spacecraft polymeric product sterilization/An engineer looks at spacecraft sterilization: a partially annotated bibliography/Use of ethylen Sterilization, Appendix C (with 8 nomogram enclosures)/Comparati (sterilization)Application of bench tests in development of heat sterilization/Application of thermal modeling to space vehicle Sterilization assembly and development laboratory routine cleani sterilization assembly development laboratories EASL and SADL/Mi sterilization assembly development laboratory/Biological monitor sterilization assembly development laboratory/Quality assurance (sterilization)Assembly/sterilizer facility feasibility program (sterilization)Assembly/sterilizer facility feasibility program sterilization as state of the art/Spacecraft preparation and sterilization at 200°/Hot air sterilization/Bacterial spore test piece for the control of ethy (sterilization)Bactericidal activity of ethylene oxide and methy (sterilization)Bacteriology of clean rooms sterilization/Biological and engineering aspects of spacecraft sterilization/Biological-chemical indicator for ethylene oxide (sterilization)Biological contamination control sterilization/Biostatistics and space exploration: Microbiology sterilization/Biostatistics and space exploration: Microbiology sterilization/Biostatistics and space exploration: Microbiology sterilization/Biostatistics and space exploration: Microbiology
sterilization/Biostatistics and space exploration: Microbiology
sterilization/Methods for spacecraft
sterilization/Methyl bromide as an aid to ethylene oxide
sterilization/Microbial contamination control after terminal sterilization/Microbial contamination in a clean room when occu
(sterilization)Microbial contamination in clean rooms sterilization/Microbial control in assembly areas needed for spa sterilization. Microbial resistance to ethylene oxide/Microbiol
(sterilization)Microbiological assay of space hardware (sterilization)Microbiological barrier techniques sterilization/Microbiological contamination control in spacecraf
(sterilization)Microbiological evaluation of a large volume air sterilization/Microbiologic filters - liquid and gas (sterilization)Microbiological quality activities for a planetary m sterilization/Microorganisms on Mars sterilization/sterilization model/A stochastic sterilization modeling/Dry heat (sterilization)National Aeronautics and Space Administration pos sterilization - New engineering and sanitation technology/Spacec (sterilization)1973 Viking voyage to Mars sterilization/Objectives and technology of spacecraft sterilization/Objectives and technology of spacecraft sterilization/Observations regarding factors important in dry he (sterilization)Observations regarding the sterilizing effect of sterilization of activated carbon/Heat Sterilization of electronic components of spacecraft Sterilization of instruments and materials with Beta-propiolacto Sterilization of interplanetary spacecraft Sterilization of interplanetary vehicles sterilization of large interplanetary structures/Experimental he sterilization of liquid by filtration/Certification of probabil sterilization of lunar and planetary spacecraft/Decontamination Sterilization of lunar and planetary space vehicles Sterilization of Mars spacecraft sterilization of microorganisms/Analysis of vacuum effects in th sterilization of microorganisms at 105°/Study of dry heat sterilization of microorganisms/Physical methods of sterilization of microorganisms/Rational model for thermal sterilization of microorganisms/Role of DNA in wet heat sterilization of microorganisms/Role of water activity in the dr
Sterilization of planetary capsules/Test environments associated 625
sterilization of potting compounds and mated surfaces/Investigat 1195
sterilization of potting compounds and mated surfaces/Investigat 1196
sterilization of potting compounds and mated surfaces/Investigat 1199
sterilization of potting compounds and mated surfaces/Investigat 1201
Sterilization of spacecraft 580
Sterilization of spacecraft 899
sterilization of spacecraft components/Effect of current cleanin 754
sterilization of spacecraft components/Effect of current cleanin 1147
sterilization of spacecraft components/Thermal death studies on 654
sterilization of spacecraft/Engineering problems in 741
sterilization of spacecraft/Modern methods and means of 1228
sterilization of spacecraft/NASA requirements for the 484
sterilization of spacecraft/polymeric materials/Effects of decon 679
sterilization of spacecraft /preliminary report/Feasibility of 994
sterilization of spacecraft /Principles, methods and problems [m 1230
sterilization of spacecraft/Proceedings of meeting on problems a 812
sterilization of spacecraft structures/Thermal 1177
sterilization of spacecraft using Cobalt 60/Feasibility of therm 597
sterilization of spaceflight hardware/Engineering guidelines for 237
Sterilization of space hardware 892
Sterilization of space probe components 142
Sterilization of space probe components 649
sterilization of space probe components/Studies for 650
sterilization of space probe components/Studies for 653
sterilization of space probe components/Studies for 717
Sterilization of space vehicles: problem of mutual contamination 1297
sterilization of space vehicles to prevent extraterrestrial biol 247
sterilization of spores in hygroscopic environments/Ethylene oxi 854
Sterilization of suspensions of Serratia marcescens and spores o 837
sterilization of unmanned lunar and planetary missions/Examinati 590
Sterilization of unmanned planetary and lunar space vehicles. En 592
sterilization of unmanned space vehicles/Problems in 591
sterilization of very dry spore and staphylococcal populations/S 860
sterilization of Voyager capsule/Plan for 626
sterilization on separation, entry, descent and landing phases o 1134
sterilization/Operations problem of 588
sterilization operations/Scale-up of heat 265
sterilization/Optimization of oven-heating profiles in spacecraft 331
sterilization parameters/Studies of spacecraft 1255
(sterilization)Peracetic acid aerosols 444
(sterilization)Planetary quarantine analysis 434
sterilization/Planetary quarantine and space vehicle 234
(sterilization)Planetary quarantine plan, Voyager project 1159
(sterilization)Planetary quarantine: principles, methods and pro 486
sterilization/Planning, evaluation and analytical studies in pla 322
sterilization/Planning, evaluation and analytical studies in pla 333
sterilization/Planning, evaluation and analytical studies in spa 334
(sterilization)Polymers for use in sterilized spacecraft 658
Possibility of using hydrogen peroxide mixed with sterilization procedures for sterilization problems on a Mars atmospheric entry probe/A study on microbial examination of spacecraft. Meeting on sterilization of spacecraft/Proceedings of the conference on spacecraft sterilization/Procedures for microbiological examination of spacecraft. Meeting on sterilization of spacecraft/Procedures for the microbiological examination of spacecraft sterilization processes/Types of biological indicators used in sterilization sterilization process parameters/Determination of terminal sterilization process times/Recommendations for determination of sterilization program/Capsule system advanced development sterilization program/Filter applications for spacecraft sterilization/Proper use of biological indicators in sterilization rates and protective influences/Ethylene oxide sterilization/Recent developments in planetary quarantine sterilization reference booklet sterilization/reliability effects/Integrated test program for spacecraft sterilization requirements/Effect of microbial release probability sterilization requirements for space exploration sterilization requirements/Potential effects of recent findings sterilization requirements/Rational model for spacecraft sterilization requirements/Spacecraft sterilization requirements/Spacecraft sterilization and planetary sterilization/Role and responsibility of NASA in relation to spacecraft. Selected bibliography from the literature retrieval sterilization/Spacecraft Spacecraft cleaning and decontamination technique (sterilization)Spacecraft component survivability during entry investigation into sterilization sterilization/Space probe (sterilization)Special problem of encapsulated contaminants
sterilization/Special problems in spacecraft 209
sterilization: Specific examples/Spacecraft 844
sterilization standards/Critique of spacecraft 1063
sterilization/Status review of technology developments for space 259
sterilization/Status review of technology developments for space 260
(sterilization) Sterilizable electronic packaging, connectors, wi 389
sterilization studies/Ethylene oxide 991
sterilization. Studies of sterilization techniques 1286
(sterilization) Study of analytical techniques in planetary quara 324
(sterilization) Study of aseptic maintenance by pressurization 666
(sterilization) Study of dry heat resistance of naturally occurri 410
sterilization/Study of effectiveness of thermoradiation 997
sterilization study/Valve bioload reduction and 596
Sterilization supporting activities 1142
Sterilization supporting activities 1161
Sterilization supporting activities 1162
sterilization/Survey of certain nonthermal methods of decontamin 1104
(sterilization) Survival of microorganisms in space 699
sterilization/Synergistic characteristics of thermoradiation 1116
sterilization/Synergistic effects in sonochemical 95
(sterilization) Synergistic effects of ethylene oxide and other a 628
(sterilization) Systems analysis and clean room monitoring for pl 1044
(sterilization) Systems analysis and clean room monitoring for pl 1045
(sterilization) Systems analysis and clean room monitoring for pl 1046
Sterilization techniques 586
sterilization, techniques and equipment/Spacecraft 845
sterilization/Techniques for the limitation of biological loadin 730
sterilization techniques in spacecraft/Importance of 482
sterilization techniques on thermal control surfaces/Study of th 78
sterilization temperature profiles/Integrated lethality of 239
sterilization temperatures/Prevention of protein denaturation du 185
sterilization. Thermal considerations/Spacecraft 400
(sterilization) Thermal death of Bacillus subtilis var. niger spo 871
sterilization/Thermoradiation as a means of bacterial 995
sterilization times/Analytical method for calculating heat 263
(sterilization) Traditional concepts for contamination control 914
sterilization training manual/Spacecraft 979
(sterilization) Ultraclean technology 491
(sterilization) Use of laminar flow for environmental control 1271
sterilization/Voyager effort focused on 1258
sterilization with ethylene oxide/Elimination of toxicity from p 1025
Sterilization with ethylene oxide gas mixtures 100
sterilization with ethylene oxide/Simple improvised chambers for 1084
Sterilization with gaseous ethylene oxide: Review of chemical an 313
Sterilization with methyl bromide vapor 614
sterilization without special equipment/Ethylene oxide 1289
sterilized by heating. Biological handbook for engineers/Procedu 657
sterilized by heating/Development of quality assurance requireme 399
sterilize interior surfaces of confined spaces/Penetration by ga 856

192
Sterilizing techniques with ethylene oxide
Sterilizing unmanned spacecraft
stochastic model describing bacterial aerosol concentrations in stratosphere/Microbiological exploration of the subzero temperatures/Sporicidal activity of sodium hypochlorite surface conditions/Survival of bacterial spores under some simul (surface contamination)Bacterial spore test piece for the contro (surface contamination)Contamination control training course out (surface contamination)Continuation of development of typical Ma (surface contamination)Continuation of development of typical Ma (surface contamination)Decontamination of enclosed spaces with B (surface contamination)Effect of environment on biological burde (surface contamination)Evaluation of alcohol sporulation method (surface contamination)Instrumentation and methodology in measur (surface contamination)Investigation of spacecraft materials tha (surface contamination)Laboratory for monitoring bacterial conta (surface contamination)Limitations of thioglycolate broth as a s (surface contamination)Microbial resistance to ethylene oxide (surface contamination)Microorganisms removed from contaminated (surface contamination)Microscopic method of particulate contami (surface contamination)New concepts on sterilization. Alternativ (surface contamination)Penetrability and effect of ethylene oxid (surface contamination)Peracetic acid aerosols (surface contamination)Possibility of using hydrogen peroxide mi (surface contamination)Present day usage of clean rooms in medic (surface contamination)Quantitative and qualitative microbiologi (surface contamination)Recovery of known numbers of microorganis surface contamination. Recurring problem/Biological and chemical (surface contamination)Services provided in support of the plane (surface contamination)Sterilization and decontamination techniq
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival of microorganisms in space</td>
<td>699</td>
</tr>
<tr>
<td>Survival of microorganisms in space</td>
<td>703</td>
</tr>
<tr>
<td>Survival of microorganisms in space. Further rocket and balloon-</td>
<td>569</td>
</tr>
<tr>
<td>Survival of microorganisms on covered stainless steel initially</td>
<td>947</td>
</tr>
<tr>
<td>Survival of microorganisms under simulated space conditions</td>
<td>155</td>
</tr>
<tr>
<td>Survival of selected microorganisms in high ultraviolet flux</td>
<td>747</td>
</tr>
<tr>
<td>Survival of terrestrial microorganisms in simulated Martian envi</td>
<td>1082</td>
</tr>
<tr>
<td>(survival)Survival of terrestrial organisms under Martian conditions/Possi</td>
<td>684</td>
</tr>
<tr>
<td>(survival)Response of viruses to environmental exposure</td>
<td>1251</td>
</tr>
<tr>
<td>(survival)Research and development in environmental microbiology</td>
<td>1250</td>
</tr>
<tr>
<td>(survival)Survive in simulated Jupiter atmosphere/Terrestrial organisms</td>
<td>648</td>
</tr>
<tr>
<td>(survival)Survivor curves for planetary quarantine requirements/Logarithmi</td>
<td>118</td>
</tr>
<tr>
<td>(swab-rinse)Services provided in support of the planetary quaran</td>
<td>1220</td>
</tr>
<tr>
<td>(swab-rinse technique)Services provided in support of the planet</td>
<td>369</td>
</tr>
<tr>
<td>Synergism in ethylene oxide-methyl bromide sterilization of very</td>
<td>860</td>
</tr>
<tr>
<td>(systems analysis)Contamination control</td>
<td>192</td>
</tr>
<tr>
<td>Systems approach to contamination control</td>
<td>1184</td>
</tr>
<tr>
<td>(technique)Abundance of microflora in soils of desert regions</td>
<td>160</td>
</tr>
<tr>
<td>(technique)AEC/NASA symposium on contamination control; current</td>
<td>1060</td>
</tr>
<tr>
<td>(technique)Analysis of methods for growth detection in the searc</td>
<td>764</td>
</tr>
<tr>
<td>(technique)Antarctic dry valley soil microbial incubation and ga</td>
<td>164</td>
</tr>
<tr>
<td>(technique)Apollo and contamination control. Boeing's role</td>
<td>196</td>
</tr>
<tr>
<td>(technique)Bacteriology of clean rooms</td>
<td>776</td>
</tr>
<tr>
<td>(technique)Biological decontamination of a spacecraft system</td>
<td>671</td>
</tr>
<tr>
<td>(technique)Checklist of good contamination control practices fro</td>
<td>57</td>
</tr>
<tr>
<td>(technique)Class 100 clean room program, preparation and initial</td>
<td>731</td>
</tr>
<tr>
<td>(technique)Clean room personnel</td>
<td>43</td>
</tr>
<tr>
<td>(technique)Contamination control</td>
<td>192</td>
</tr>
<tr>
<td>(technique)Control of microbiological hazards in the laboratory</td>
<td>907</td>
</tr>
<tr>
<td>(technique)Critique of current spacecraft sterilization standard</td>
<td>1063</td>
</tr>
<tr>
<td>(technique)Description of the model assembly sterilization for t</td>
<td>401</td>
</tr>
<tr>
<td>(technique)Design and development of a bio-isolator suit system</td>
<td>574</td>
</tr>
<tr>
<td>(technique)Detection of bacteria and viruses in liquids</td>
<td>785</td>
</tr>
<tr>
<td>(technique)Detection of low levels of microbial contamination on</td>
<td>429</td>
</tr>
<tr>
<td>technique/Development and test of flexible film coupon strips fo</td>
<td>3</td>
</tr>
<tr>
<td>(technique)Ecology and thermal inactivation of microbes in and o</td>
<td>175</td>
</tr>
<tr>
<td>(technique)Ecology and thermal inactivation of microbes in and o</td>
<td>984</td>
</tr>
<tr>
<td>(technique)Evaluation of filters to sterilize liquids and gases</td>
<td>307</td>
</tr>
<tr>
<td>(technique)Feasibility of thermoradiation for sterilization of s</td>
<td>994</td>
</tr>
<tr>
<td>technique for bioassay of spacecraft/Development of new and impr</td>
<td>1304</td>
</tr>
<tr>
<td>technique for microbiology sampling on surfaces: Agar spray/An i</td>
<td>862</td>
</tr>
<tr>
<td>technique for space vehicles/Sterilization and decontamination</td>
<td>232</td>
</tr>
<tr>
<td>(technique)Handbook of biological aspects of spacecraft steriliz</td>
<td>655</td>
</tr>
<tr>
<td>(technique)Improved sonication method for removal of microorganis</td>
<td>861</td>
</tr>
<tr>
<td>(technique)Investigation of a sono-chemical approach in steriliz</td>
<td>923</td>
</tr>
</tbody>
</table>

195
<table>
<thead>
<tr>
<th>Technique</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation of a sono-chemical approach in sterilization</td>
<td>924</td>
</tr>
<tr>
<td>Laminar flow for the neurosurgical operating room.</td>
<td>56</td>
</tr>
<tr>
<td>Limitations of initiation of germination of bacterial microorganisms</td>
<td>432</td>
</tr>
<tr>
<td>Method for microbial surface sampling: Development and application</td>
<td>630</td>
</tr>
<tr>
<td>Method for obtaining free bacterial spores of Bacillus</td>
<td>957</td>
</tr>
<tr>
<td>Microbial cell recovery from solid materials</td>
<td>301</td>
</tr>
<tr>
<td>Microbiological exploration of the stratosphere</td>
<td>876</td>
</tr>
<tr>
<td>Microbiological investigation of selected spacecraft</td>
<td>50</td>
</tr>
<tr>
<td>Microbiological sampling of surfaces</td>
<td>380</td>
</tr>
<tr>
<td>NASA standard procedures for the microbiological examination</td>
<td>806</td>
</tr>
<tr>
<td>Practical procedures for microbial decontamination</td>
<td>916</td>
</tr>
<tr>
<td>Preparation and assay of T4 bacteriophage</td>
<td>1190</td>
</tr>
<tr>
<td>Procedure manual for planetary spacecraft to be sterilized</td>
<td>657</td>
</tr>
<tr>
<td>Production of low concentration particulate aerosols</td>
<td>298</td>
</tr>
<tr>
<td>Properties of heat-resistant and heat-sensitive strains</td>
<td>1264</td>
</tr>
<tr>
<td>Proper use of biological indicators in sterilization</td>
<td>128</td>
</tr>
<tr>
<td>Rapid identification of microorganisms by continuous monitoring program</td>
<td>573</td>
</tr>
<tr>
<td>Recoveries in planetary quarantine</td>
<td>487</td>
</tr>
<tr>
<td>Recovery of known numbers of microorganisms from surfaces</td>
<td>280</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>820</td>
</tr>
<tr>
<td>Reduction of microbial shedding from humans</td>
<td>1001</td>
</tr>
<tr>
<td>Release of microorganisms from solid materials</td>
<td>451</td>
</tr>
<tr>
<td>Review of naturally occurring interior microbial contamination</td>
<td>1243</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>356</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>361</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>1218</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>1220</td>
</tr>
<tr>
<td>Simultaneous estimation by partial totals for compartments</td>
<td>65</td>
</tr>
<tr>
<td>Skin carriage of bacteria in the human</td>
<td>1209</td>
</tr>
<tr>
<td>Spacecraft sterilization - grand requirements</td>
<td>843</td>
</tr>
<tr>
<td>Spacecraft sterilization: Specific examples</td>
<td>844</td>
</tr>
<tr>
<td>Sterilization assembly development laboratory (SADL)</td>
<td>990</td>
</tr>
<tr>
<td>Sterilization of interplanetary vehicles</td>
<td>902</td>
</tr>
<tr>
<td>Stochastic sterilization model</td>
<td>1081</td>
</tr>
<tr>
<td>Studies on ethylene oxide-Freon 12 decontamination</td>
<td>621</td>
</tr>
<tr>
<td>Surface sampling with an agar spray</td>
<td>575</td>
</tr>
<tr>
<td>Synergistic characteristics of thermoradiation sterilization</td>
<td>1116</td>
</tr>
<tr>
<td>Systems approach to contamination control</td>
<td>1184</td>
</tr>
<tr>
<td>Testing a sterilizable liquid propulsion system</td>
<td>634</td>
</tr>
<tr>
<td>Thermal destruction of microorganisms</td>
<td>896</td>
</tr>
<tr>
<td>Traditional concepts for contamination control</td>
<td>914</td>
</tr>
<tr>
<td>Use of laminar airflow in microbiology</td>
<td>381</td>
</tr>
<tr>
<td>Vacuum probe for removing organisms for counting</td>
<td>795</td>
</tr>
<tr>
<td>Visual monitoring as an assay</td>
<td>292</td>
</tr>
<tr>
<td>Techniques associated with the decontamination and sterilization</td>
<td>812</td>
</tr>
<tr>
<td>Experimental study of sterile assembly</td>
<td>599</td>
</tr>
<tr>
<td>Techniques for planetary quarantine/Assay</td>
<td>345</td>
</tr>
<tr>
<td>Techniques for recovery from interiors of solids/Microbiological investigation</td>
<td>737</td>
</tr>
<tr>
<td>Techniques for recovery from surfaces/Survey of microbiological investigation</td>
<td>1234</td>
</tr>
</tbody>
</table>
Techniques for space vehicles/Sterilization and decontamination

Techniques for sterile insertion and repair of spacecraft

Techniques for the limitation of biological loading of spacecraft

Techniques for the prevention of contamination of the planets by techniques in planetary quarantine and spacecraft sterilization

Techniques in planetary quarantine/Study of analytical techniques in planetary quarantine/Study of analytical techniques in spacecraft/Importance of sterilization

Techniques/Microbiological barrier

Techniques/Spacecraft cleaning and decontamination

Techniques to low levels of contamination/Sensitivity of bacteria

(technology) Advances in large-volume air sampling

(technology) Analytical basis for assaying buried biological content

(technology) Apollo and contamination control. Rocketdyne's role

(technology) ATP assay of terrestrial soils - a test of exobiological

(technology) Avionics clean room

(technology) Biological monitoring of capsule mechanical training

(technology) Capsule system advanced development sterilization program

(technology) Clean assembly and sterilization laboratory

(technology) Clean room in space

(technology) Comparative evaluation of methods for search for life

(technology) Contamination control and sterilization in space program

(technology) Contamination control handbook

(technology) Continuation of development of typical Mars landing

(technology) Design requirements for laminar airflow clean rooms

(technology) Development and application of system model for spacecraft

(technology) Discussion of possible contamination of space with terrestrial biological materials

(technology) Ecology and thermal inactivation of microbes in and on spacecraft systems

(technology) Environmental microbiology as related to planetary quarantine

(technology) Ethylene oxide sterilization, current review of principles

(technology) Evaluation of alcohol sporulation method

(technology) Experimental heat chamber for sterilization of large objects

(technology) Experimental heat chamber for sterilization of large objects

(technology) Experimental heat chamber for sterilization of large objects

(technology) Feasibility of liquid sterile insertion

Technology feasibility spacecraft. Sterilization and bioassay

Technology feasibility spacecraft thermal math modeling terminal

Technology feasibility spacecraft thermal math modeling terminal

(technology) 5 year forecast for contamination control

(technology) Heat sterilizable battery development

(technology) Heat sterilizable impact resistant cell development

(technology) HEPA, LAF environmental control at Riker laboratories

(technology) Immediate and future challenges to contamination control
<table>
<thead>
<tr>
<th>Technology</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved method for pouring Rodac plates</td>
<td>146</td>
</tr>
<tr>
<td>Improved model of the vacuum probe</td>
<td>796</td>
</tr>
<tr>
<td>Interactions between radiation fields from RTGs and</td>
<td>780</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of pottin</td>
<td>1201</td>
</tr>
<tr>
<td>Microbiological flora of the Gemini IX spacecraft</td>
<td>568</td>
</tr>
<tr>
<td>Microbiological methods of testing the atmosphere</td>
<td>1233</td>
</tr>
<tr>
<td>Microbiological studies conducted in a vertical laminar downflow clean rooms</td>
<td>722</td>
</tr>
<tr>
<td>Monitoring of laminar downflow clean rooms</td>
<td>1269</td>
</tr>
<tr>
<td>Paraformaldehyde for surface sterilization and detox</td>
<td>1172</td>
</tr>
<tr>
<td>Principles and applications of laminar-flow devices</td>
<td>727</td>
</tr>
<tr>
<td>Procedures for microbiological examination of space</td>
<td>352</td>
</tr>
<tr>
<td>Quality assurance monitoring of microbiological aspects</td>
<td>413</td>
</tr>
<tr>
<td>Quality assurance requirements manual for planetary</td>
<td>755</td>
</tr>
<tr>
<td>Reduction of microbial dissemination</td>
<td>821</td>
</tr>
<tr>
<td>Research and advanced development</td>
<td>606</td>
</tr>
<tr>
<td>RTG radiation test laboratory</td>
<td>179</td>
</tr>
<tr>
<td>Services provided in support of planetary quarantine</td>
<td>360</td>
</tr>
<tr>
<td>Spacecraft sterilization</td>
<td>45</td>
</tr>
<tr>
<td>Sterile access studies in pilot assembly sterilization</td>
<td>344</td>
</tr>
<tr>
<td>Sterilization</td>
<td>281</td>
</tr>
<tr>
<td>Study of application of laminar flow ventilation to</td>
<td>392</td>
</tr>
<tr>
<td>Study program on development of mathematical model</td>
<td>760</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for plane</td>
<td>1044</td>
</tr>
<tr>
<td>Systems analysis and clean room monitoring for plane</td>
<td>1046</td>
</tr>
<tr>
<td>Unmanned spacecraft RTG shield optimization study</td>
<td>1148</td>
</tr>
<tr>
<td>Teflon film at high temperatures/Dry heat resistance of spores</td>
<td>145</td>
</tr>
<tr>
<td>Absorption and desorption of ethylene oxide</td>
<td>499</td>
</tr>
<tr>
<td>Temperature and humidity conditions/Survival of microbial spores</td>
<td>1125</td>
</tr>
<tr>
<td>Temperature and humidity conditions/Survival of microbial spores</td>
<td>1126</td>
</tr>
<tr>
<td>Temperature and humidity conditions/Survival of microbial spores</td>
<td>1246</td>
</tr>
<tr>
<td>Automatic ethylene oxide decontamination system</td>
<td>1097</td>
</tr>
<tr>
<td>Cryobiologist's conjecture of planetary life</td>
<td>1061</td>
</tr>
<tr>
<td>Defining Mars' atmosphere - goal for the early mission</td>
<td>1088</td>
</tr>
<tr>
<td>Dry heat destruction rates for microorganisms on op</td>
<td>884</td>
</tr>
<tr>
<td>Environmental microbiology as related to planetary</td>
<td>86</td>
</tr>
<tr>
<td>Ethylene oxide sterilization current review of prin</td>
<td>637</td>
</tr>
<tr>
<td>Temperature growth characteristics of clostridia/Low</td>
<td>1014</td>
</tr>
<tr>
<td>Temperature in assessing microbial contamination on flat surface</td>
<td>1241</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of pottin</td>
<td>1199</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of pottin</td>
<td>1201</td>
</tr>
<tr>
<td>Literature review of the compatibility of commercia</td>
<td>1026</td>
</tr>
<tr>
<td>Matrix test of sterilizable piece-parts</td>
<td>757</td>
</tr>
<tr>
<td>Temperature on Mars and Venus/Exospheric</td>
<td>555</td>
</tr>
<tr>
<td>Temperature on the viability of some spores and soil organisms/C</td>
<td>251</td>
</tr>
<tr>
<td>Planetary probe-origin of atmosphere of Venus</td>
<td>797</td>
</tr>
<tr>
<td>Preliminary sublimation studies</td>
<td>1207</td>
</tr>
<tr>
<td>Temperature profiles/Integrated lethality of sterilization</td>
<td>239</td>
</tr>
<tr>
<td>Temperature relationships/Sterilizing action of gaseous ethylene</td>
<td>900</td>
</tr>
<tr>
<td>Research study to definitize a bioisolator suit sys</td>
<td>420</td>
</tr>
</tbody>
</table>
Search for life on Mars - where we stand today
Soil moisture, relative humidity, and microbial abu
Spacecraft component survivability during entry int
Supposed role of microbiological aerosol stabilizer
Surface environment and possible biology of Mars
Survival of microorganisms under simulated space co
Water on Venus?

temperatures/Dry heat resistance of spores of *Bacillus subtilis*
temperatures/Heat injury of *Bacillus subtilis* spores at ultrahig
temperatures in transient conduction heat flow/The relationship
temperatures/Prevention of protein denaturation during exposure
temperature/Soil studies - Desert microflora. Desert soil algae
temperatures/Sporicidal activity of peracetic acid and *Beta-prop*
temperatures/Sporicidal activity of sodium hypochlorite at subze
temperatures/Survival of cocci after exposure to ultrahigh vacuu
temperatures/Thermal inactivation characteristics of *Bacillus su*
terminal sterilization chamber for interplanetary payload/Concep
terminal sterilization cycle for a possible Mars capsule/Determi
terminal sterilization cycle/Technology feasibility spacecraft t
Terminal sterilization process calculation for spacecraft
terminal sterilization process parameters/Determination of
(terrestrial contaminants)Relationship of planetary quarantine t
terrestrial microorganisms in simulated Martian environments/Bio
terrestrial microorganisms in simulated Martian environments/Bio
thawing/Response of spore-forming vs. nonspore-forming bacteria
thermal and radiation effects for bacterial inactivation
Thermal considerations/Spacecraft sterilization
thermal control surfaces/Study of the effect of JPL sterilizatio
thermal death of *Bacillus subtilis* var. *niger* spores on selected
thermal death of bacteria/Kinetics of
thermal death of bacterial spores/Kinetics of heat activation an
Thermal death studies on microbial spores and some consideration
thermal death time curves/Observations on bacterial
thermal destruction apparatus/Design of
Thermal destruction of microorganisms
Thermal destruction studies/Dry heat destruction rates of *E. sub*
thermal inactivation by dry heat/Resistivity of microorganisms t
Thermal inactivation characteristics of *Bacillus subtilis* at ult
thermal inactivation/Instrument for study of microbial
thermal inactivation of bacterial spores/Probit method to interp
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space
thermal inactivation of microbes in and on interplanetary space	21
thermal inactivation of microbes in and on interplanetary space	22
thermal inactivation of microbes in and on interplanetary space	23
thermal inactivation of microbes in and on interplanetary space	24
thermal inactivation of microbes in and on interplanetary space	25
thermal inactivation of microbes in and on interplanetary space	26
thermal inactivation of microbes in and on interplanetary space	174
thermal inactivation of microbes in and on interplanetary space	175
thermal inactivation of microbes in and on interplanetary space	981
thermal inactivation of microbes in and on interplanetary space	982
thermal inactivation of microbes in and on interplanetary space	983
thermal inactivation of microbes in and on interplanetary space	984
thermal inactivation of microbes in and on interplanetary space	985
thermal inactivation of microbes in and on interplanetary space	986
thermal inactivation of microbes in and on interplanetary space	987
thermal inactivation of microbes in and on interplanetary space	988
thermal inactivation of microbes in and on interplanetary space	992
thermal inactivation rate of bacterial spores/Effect of cell moi	552
thermal kill of viable organisms during Mars atmospheric entry/S	157
thermal math modeling terminal sterilization cycle/Technology fe	571
thermal math modeling terminal sterilization cycle/Technology fe	572
thermal modeling to space vehicle sterilization/Application of	537
thermal radiative characteristics of viable microorganisms	680
(thermal resistance)Feasibility study for combined method of ste	250
Thermal resistance of microorganisms to dry heat: Design of appa	893
(thermal)Sterilization compatibility of growth media for extrate	858
(thermal sterilization)Effects of decontamination and sterilizat	679
thermal sterilization of microorganisms/Rational model for	114
thermal vacuum effects on spacecraft polymeric materials/Sterili	1017
thermal vacuum exposures/Spacecraft polymeric material interacti	1016
thermal vacuum on spacecraft polymeric products	1015
Thermodradiation as a means of bacterial sterilization	995
(thermorradiation)Development of two closely controlled humidity	407
thermorradiation for sterilization of spacecraft - preliminary re	994
thermorradiation inactivation of dry Bacillus subtilis var. niger	296
(thermorradiation)Services provided in support of the planetary q	368
thermorradiation sterilization of spacecraft using Cobalt 60/Feas	597
thermorradiation sterilization/Study of the effectiveness of	997
thermorradiation sterilization/Synergistic characteristics of	1116
time and temperature in assessing microbial contamination on fla	1241
(tolerance)Dry heat resistance of spores of Bacillus subtilis va	145
(tolerance)Effect of a high vacuum on microorganisms	578
(tolerance)Heat and radiation resistance and activation of spore	1013
(tolerance)Microbial survival in deep space environment	1101
(tolerance)Potential effects of recent findings on spacecraft st	1079
(tolerance)Resistance of microorganisms to high vacuum	55
(tolerance)Resistance of microorganisms to inactivation by dry	1102
(tolerance)Sterilization of spacecraft	580
(tolerance)Studies of spacecraft sterilization parameters	1255
(tolerance) Surveyor sterilization. Further compatibility studies	1283
(toxicity) Problem areas with ethylene oxide sterilization	285
Training needs in planetary quarantine	440
(training) Short courses on basic environmental microbiology	443

(ultraclean room) Use of laminar flow for environmental control	1271
ultrahigh temperatures/Heat injury of *Bacillus subtilis* spores at	303
ultrahigh temperatures/Thermal inactivation characteristics of *Ba*	304
ultrahigh vacuum and microorganisms	581
ultrahigh vacuum and outer space: kinetic comparison/Microbial st	117
ultrahigh vacuum at different temperatures/Survival of cocci afte	1111
(ultrahigh vacuum) Continuation of development of typical Mars lan	47
(ultrahigh vacuum) High vacuum sterilization conversion	660
ultrahigh vacuum on *Bacillus subtilis* var. niger/Effect of	794
ultrahigh vacuum or at atmospheric pressure/Resistivity of spores	1108
(ultrahigh vacuum) Study of viability of microorganisms in simulat	1110
ultrahigh vacuum/Viability of microorganisms in	147
Ultrasonic cleaning: A bibliography	839
ultrasonic energy in assessing microbial contamination on surface	975
ultrasonic/Vacuum sampling device/Development of an	189
ultrasonic/Vacuum sampling device/Development of an	1085
ultrasonic waves/Sterilizing effects of high intensity airborne s	928
ultrasonics/Assessment of microbial contamination on surfaces of	967
(ultrasonics) Development of concepts for improved spacecraft ster	1095
ultrasonics for removing viable microorganisms from surfaces/Feas	969
(ultrasonics) Improved sonication method for removal of microorgan	861
(ultrasonics) Investigation of a sono-chemical approach in sterili	923
(ultrasonics) Investigation of a sono-chemical approach in steril	924
(ultrasonics) Investigation of a sono-chemical approach in steril	925
(ultrasonics) Investigation of a sono-chemical approach in steril	926
(ultrasonics) Investigation of a sono-chemical approach in steril	927
(ultrasonics) Planetary quarantine presentation	602
(ultrasonics) Services provided in support of the planetary quaran	1215
(ultrasonics) Services provided in support of the planetary quaran	1217
(ultrasonics) Services provided in support of the planetary quaran	1218
(ultrasonics) Services provided in support of the planetary quaran	1219
(ultrasonics) Services provided in support of the planetary quaran	1220
(ultrasonics) Study of the biological cleanability of surfaces usi	416
ultraviolet and gamma radiation while exposed to ultrahigh vacuum	1108
ultraviolet flux/Survival of selected microorganisms in high	747
(ultraviolet irradiation) Comparative evaluation of methods for se	576
(ultraviolet light) Effect of simulated Martian environment on cer	69
ultraviolet light on death of microorganisms/Effects of high inte	188
(ultraviolet light) Search for life on Mars - where we stand today	562
(ultraviolet light) Thermal radiative characteristics of viable mi	680
(ultraviolet light) Ultrahigh vacuum and microorganisms	581
ultraviolet on the survival of bacteria airborne in simulated Mar	472
vacuum effects in the sterilization of microorganisms/Analysis of
(vacuum)Ethylene oxide-Freon 12 decontamination procedure: Reacti
vacuum/Inactivation and division delay of E. coli B/r by combined
vacuum on Bacillus subtilis var. niger/Effect of ultra-high
vacuum on bacterial cells/Effects of simulated space
vacuum on microorganisms/Effect of a high
vacuum on viability of microorganisms/Effect of ultrahigh
vacuum or at atmospheric pressure/Resistivity of spores to ultrav
(vacuum)Preliminary sublimation studies
Vacuum probe for removing microorganisms for counting
vacuum probe/Improved model of the
vacuum probe: new approach to microbiological sampling of surface
Vacuum probe sampler
(vacuum probe)Services provided in support of the planetary quara
vacuum probe surface sampler/Laboratory evaluation of the plastic
vacuum probe surface samples/Testing and fabrication of plastic
(vacuum probe)Techniques for the limitation of biological loading
vacuum/Survival of Antarctic desert soil bacteria exposed to vari
(vacuum)Survival of bacterial spores under some simulated lunar s
vacuum/Survival of microorganisms in desert soil exposed to five
(vacuum)Survival of microorganisms under simulated space conditio
(vacuum)Unmanned spacecraft RTG shield optimization study
vacuum/Viability of microorganisms in ultra-high
value investigations/Status report on D, z, and A_w
Value of agreed standards of sterility
vapor/Effect of bacterial cell moisture on the sporicidal activit
vapor/Sporicidal effect of peracetic acid
vegetative bacteria from eccofoam FP and diatomaceous earth/Recov
Vegetative life on Venus? Or investigations with algae which grow
vehicle components/Dry heat destruction of spores in simulated sp
vehicle components/Ecology and thermal inactivation of microbes i
Venus atmosphere on polymeric materials/Effects of simulated
Venus atmosphere/Simulation of the
Venus/Atmospheres of Mars and
(Venus)Estimation of planetary contamination probabilities due to
Venus/Exospheric temperatures on Mars and
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus exploration/Spacecraft-sterilization issue may effect pace</td>
<td>37</td>
</tr>
<tr>
<td>Venus/Ice caps on</td>
<td>689</td>
</tr>
<tr>
<td>Venus 1972 mission/Preliminary quarantine analysis of a possible</td>
<td>233</td>
</tr>
<tr>
<td>(Venus) Planetary quarantine and space vehicle sterilization</td>
<td>234</td>
</tr>
<tr>
<td>Venus/Problems posed by the planet</td>
<td>836</td>
</tr>
<tr>
<td>(Venus) Status review of technology developments for spacecraft st</td>
<td>260</td>
</tr>
<tr>
<td>(Venus) The space environment</td>
<td>387</td>
</tr>
<tr>
<td>(viability) Absorption-desorption of water by bacterial spores and</td>
<td>1023</td>
</tr>
<tr>
<td>(viability) Advances in large-volume air sampling</td>
<td>255</td>
</tr>
<tr>
<td>(viability) Analysis of microbial release probabilities</td>
<td>325</td>
</tr>
<tr>
<td>(viability) Analytical basis for assaying buried biological contam</td>
<td>644</td>
</tr>
<tr>
<td>(viability) Analytical basis for estimation of planetary contamina</td>
<td>326</td>
</tr>
<tr>
<td>(viability) Bacterial response to soil environment</td>
<td>96</td>
</tr>
<tr>
<td>(viability) Bayesian analysis for an exponential surveillance mode</td>
<td>883</td>
</tr>
<tr>
<td>(viability) Behavior of certain soil microorganisms in the "artifi</td>
<td>661</td>
</tr>
<tr>
<td>(viability) Biological effectiveness of solar electromagnetic radi</td>
<td>702</td>
</tr>
<tr>
<td>(viability) Biological evaluation of the biodetection grinder</td>
<td>1090</td>
</tr>
<tr>
<td>(viability) Biological losses and the quarantine policy for Mars</td>
<td>1140</td>
</tr>
<tr>
<td>(viability) Biostatistics and space exploration: microbiology and</td>
<td>219</td>
</tr>
<tr>
<td>(viability) Characterization of bacterial populations by means of</td>
<td>1153</td>
</tr>
<tr>
<td>(viability) Comparison of microbial contamination levels among hos</td>
<td>377</td>
</tr>
<tr>
<td>(viability) Continuation of development of typical Mars landing ca</td>
<td>47</td>
</tr>
<tr>
<td>(viability) Cryobiologist's conjecture of planetary life</td>
<td>1061</td>
</tr>
<tr>
<td>(viability) Design of thermal destruction apparatus</td>
<td>894</td>
</tr>
<tr>
<td>(viability) Die-off of microbial contamination</td>
<td>1236</td>
</tr>
<tr>
<td>(viability) Dry heat destruction rates of microorganisms on surfac</td>
<td>895</td>
</tr>
<tr>
<td>(viability) Dry heat destruction rates of microorganisms on surfac</td>
<td>1239</td>
</tr>
<tr>
<td>(viability) Dry heat resistance of spores of Bacillus subtilis var</td>
<td>145</td>
</tr>
<tr>
<td>(viability) Effect of a high vacuum on microorganisms</td>
<td>578</td>
</tr>
<tr>
<td>(viability) Effect of diurnal freeze-thawing on survival and growt</td>
<td>1302</td>
</tr>
<tr>
<td>(viability) Effect of low numbers of microorganisms on samples ass</td>
<td>1091</td>
</tr>
<tr>
<td>(viability) Effect of temperature and gas velocity on the dry heat</td>
<td>396</td>
</tr>
<tr>
<td>(viability) Effect of ultra-high vacuum on Bacillus subtilis var.</td>
<td>794</td>
</tr>
<tr>
<td>(viability) Effect of ultraviolet radiation upon microorganisms an</td>
<td>382</td>
</tr>
<tr>
<td>(viability) Effect of various gas atmospheres on destruction of mi</td>
<td>897</td>
</tr>
<tr>
<td>(viability) Effects of aeolian erosion on microbial release from s</td>
<td>450</td>
</tr>
<tr>
<td>(viability) Effects of high intensity visible and ultraviolet ligh</td>
<td>188</td>
</tr>
<tr>
<td>(viability) Effects of hyperoxia upon microorganisms. Membrane cul</td>
<td>134</td>
</tr>
<tr>
<td>(viability) Environmental microbiology as related to planetary qua</td>
<td>86</td>
</tr>
<tr>
<td>(viability) Environmental microbiology as related to planetary qua</td>
<td>87</td>
</tr>
<tr>
<td>(viability) Environmental microbiology as related to planetary qua</td>
<td>887</td>
</tr>
<tr>
<td>(viability) Estimation of particulate loads on components of devic</td>
<td>273</td>
</tr>
<tr>
<td>(viability) Evaluation of microbiological filters for liquids and</td>
<td>585</td>
</tr>
<tr>
<td>(viability) Evaluation of quantal response model with estimated co</td>
<td>228</td>
</tr>
<tr>
<td>(viability) Evaluation of quantal response model with variable con</td>
<td>223</td>
</tr>
<tr>
<td>(viability) Germicidal activity of ethylene oxide</td>
<td>822</td>
</tr>
<tr>
<td>(viability) Growth of bacteria in soils from Antarctic dry valley</td>
<td>168</td>
</tr>
<tr>
<td>(viability) Heat and radiation resistance and activation of spores</td>
<td>1013</td>
</tr>
<tr>
<td>(viability) Influence of various pretreatments [carrier, desiccati</td>
<td>283</td>
</tr>
</tbody>
</table>
Relative frequency distribution of D_{125C} values for sp
Release of microbial contamination from fractured soil
Research and development in environmental microbiology
Resistivity of microorganisms to thermal inactivation
Response of spore-forming vs. nonspore-forming bacteria
Response of viruses to environmental exposure
Search for life on Mars - where we stand today
Services provided in support of the planetary quarantine
Soil studies - Desert microflora. Desert soil algae
Spacecraft component survivability during entry into Mars
Sterilization
Sterilizing action of gaseous ethylene oxide. The effect
Sterilizing action of gaseous ethylene oxide. The effect of high intensity airborne sonic a
Sterilizing effects of high intensity airborne sonic a
Stochastic sterilization model
Studies on trace elements in the sporulation of bacteria
Studies with microorganisms and plants under simulated
Study of aseptic maintenance by pressurization
Surface sampling with an agar spray technique
Thermal destruction of microorganisms
Types of biological indicators used in monitoring ster
viable and nonviable contamination/Instrumentation and methodology
Biodetection grinder
viable contamination by a class 100 laminar flow clean room/Evaluation
viable germs in outer space/ Possibility of the spreading of viable microorganisms deposited on the moon by unmanned lunar pro
viable microorganisms Development of quality assurance requirem
viable microorganisms from solid material after a hard impact
viable microorganisms from surfaces/Factors influencing the recovery
viable microorganisms from surfaces/Feasibility of using ultrason
viable microorganisms in nitrogen gas/Enumeration of viable organisms
viable microorganisms/Thermal radiative characteristics of viable organism penetration of bio-barrier meteoroid holes/Flight
viable organisms in a lunar sample/Search for viable organisms on Mars during the Mariner 1964 mission/Study of (Viking mission)Planetary quarantine: Recontamination phase
(Viking '75) Implications of change in probability of microbial growth... 329
(Viking '75) Life detection systems... 683
(Viking '75) Planning, evaluation, and analytical studies in plane... 333
(Viking '75) Quarantine document system operations manual... 337
Virucidal activity of Beta-propiolactone vapor. Effect on the eti... 254
Virucidal properties of dimethyl sulfoxide... 184
(virus) Survival of microorganisms in space... 500
(virus) Virucidal activity of Beta-propiolactone vapor. Effect of B... 253
viruses and rickettsiae by heat/Bibliography on inactivation of... 1260
viruses to environmental exposure/Response of... 1251
Visual monitoring during assembly of sterilizable planetary landi... 412
Voyager capsule flight equipment type approval and flight accepta... 1146
Voyager capsule/Plan for sterilization of... 479
(Voyager) Contamination and sterilization... 1258
Voyager effort focused on sterilization... 846
(Voyager) Experiment to determine the effects of solid and liquid... 1181
(Voyager) Flight capsule contamination probability from viable org... 183
Voyager planetary quarantine model 1973 mission... 1159
Voyager project/Planetary quarantine plan... 1257
(Voyager) Spacecraft-sterilization issue may effect pace of Mars a... 37
(Voyager) Sterilization and quarantine parameters for consideratio... 236
Voyager sterilization criteria set/Severe... 765
(Voyager) Study program on the development of a mathematical model... 36
Voyager will visit Mars/Spacecraft sterilization. Immaculate... 120
water activity in the dry heat sterilization of microorganisms/Ro... 521
water availability related to microbial growth/Effect of reduced... 430
water/Dry heat destruction rates of B. subtilis var. niger in a c... 25
(water) Ecology and thermal inactivation of microbes in and on int... 26
(water) Ecology and thermal inactivation of microbes in and on int... 153
(water) Effects of simulated space vacuum on bacterial cells... 690
Water on Venus? (water) Resistivity of microorganisms to inactivation by dry heat... 1102
(water) Search for life on Mars - where we stand today... 562
(water-soluble crystals) Dry heat on gaseous chemical resistance of... 798
(water) Surface environment and possible biology of Mars... 1029
(wet heat) Physical methods of sterilization of microorganisms... 980
Wet heat sterilization of microorganisms/On the role of DNA in... 119
Wilcoxon's two sample test/Asymptotic efficiency of two nonparame... 556
x-rays upon dry bacterial spores/Effect of gamma and... 932

207
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>z, and A₀ value investigations/Status report on D,</td>
<td>28</td>
</tr>
<tr>
<td>(z value)Dry heat resistance of spores of Bacillus subtilis var.</td>
<td>145</td>
</tr>
<tr>
<td>(z value)Ecology and thermal inactivation of microbes in and on</td>
<td>22</td>
</tr>
<tr>
<td>(z value)Ecology and thermal inactivation of microbes in and on</td>
<td>24</td>
</tr>
<tr>
<td>(z value)Influence of spore moisture content on the dry heat resi</td>
<td>31</td>
</tr>
<tr>
<td>(z values)Heat and radiation resistance and activation of spores</td>
<td>1013</td>
</tr>
</tbody>
</table>
CORPORATE SOURCES

An alphabetical list of NASA centers, NASA contractors, and other sources of the material cited in this bibliography.

American Association for Contamination Control
6 Beacon Street
Boston, Massachusetts 02108

American Association for the Advancement of Science
1515 Massachusetts Avenue, N.W.
Washington, D.C. 20005

American Hospital Association
840 North Lake Shore Drive
Chicago, Illinois 60611

American Institute of Aeronautics and Astronautics
(Technical Information Service of)
750 Third Avenue
New York, N.Y. 10017

American Institute of Biological Sciences
3900 Wisconsin Avenue, N.W.
Washington, D.C. 20016

American Microscopical Society
Michigan State University
East Lansing, Michigan 48823

American Pharmaceutical Association
2215 Constitution Avenue, N.W.
Washington, D.C. 20037

American Public Health Association
1740 Broadway
New York, N.Y. 10019

American Society for Microbiology
1913 Eye Street, N.W.
Washington, D.C. 20006

American Society for Quality Control
161 West Wisconsin Avenue
Milwaukee, Wisconsin 53203
Ames Research Center
National Aeronautics and Space Administration
Moffet Field, California 94035

Avco Corporation
Lowell Industrial Park
Lowell, Massachusetts 01851

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201

Becton, Dickinson and Company
Research Center
P.O. Box 12016
Research Triangle Park
North Carolina 27709

Bell Aerospace Company
Textron Inc.
Sunnyvale, California 94088

The Bionetics Corporation
18 Research Road
Hampton, Virginia 23366

Biospherics, Incorporated
4928 Wyaconda Road
Rockville, Maryland 20852

The Boeing Company
P.O. Box 3999
Seattle, Washington 98124

Aero Space Medical Division
Air Force Systems Command
Brooks Air Force Base
Texas 78235

University of California
Berkeley, California 94704

Cambridge Research Laboratories
United States Air Force
L.G. Hanscom Field, Massachusetts 01730

Center for Disease Control
Public Health Service
U.S. Department of Health, Education and Welfare
1600 Clifton Road, N.E.
Atlanta, Georgia 30333
Institute of Environmental Sciences
940 East Northwest Highway
Mount Pleasant, Illinois 60056

Instrument Society of America
530 William Penn Place
Pittsburgh, Pa. 15219

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91103

Joint Publications Research Service
1000 North Glebe Road
Arlington, Virginia 22201

Langley Research Center
National Aeronautics and Space Administration
Langley Station
Hampton, Virginia 23365

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio 44135

Library of Congress
Aerospace Technology Division
Washington, D.C. 20540

Litton Industries
360 North Crescent Drive
Beverly Hills, California 90210

Lockheed Missiles and Space Company
Sunnyvale, California 94088

Manufacturing Chemists Association, Inc.
1825 Connecticut Avenue, N.W.
Washington, D.C. 20009

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

Martin Marietta Corporation
Denver, Colorado 80201

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Mayo Clinic
Department of Microbiology
Rochester, Minnesota 55901

McDonnell-Douglas Astronautics Company
St. Louis, Missouri 63166

Michigan State University
Agricultural Experimental Station
East Lansing, Michigan 48823

University of Minnesota
Space Science Center
School of Public Health
Minneapolis, Minnesota 55455

National Academy of Sciences
National Research Council
2101 Constitution Avenue, N.W.
Washington, D.C. 20037

National Aeronautics and Space Administration
400 Maryland Avenue, S.W.
Washington, D.C. 20546

NASA Pasadena Office
4800 Oak Grove Drive
Pasadena, California 91103

National Cancer Institute
9000 Rockville Pike
Bethesda, Maryland 20014

National Canners Association
Washington Research Laboratory
1133 20th Street, N.W.
Washington, D.C. 20036

National Institutes of Health
9000 Rockville Pike
Bethesda, Maryland 20014

National Research Corporation
70 Memorial Drive
Cambridge, Massachusetts 02142

The New York Academy of Sciences
2 East 63rd Street
New York, N.Y. 10021
North American Rockwell Corporation
Technical Information Division
12214 Lakewood Boulevard
Downey, California 90241

North Dakota State University
Fargo, North Dakota 58102

Northrop Corporate Laboratories
Hawthorne, California 90250

Office of Naval Research
Naval Biomedical Research Laboratory
Oakland, California 94625

Oregon State University
Corvallis, Oregon 97331

Philco-Ford Corporation
Aerospace and Defense Systems Operations
Ford Road
Newport Beach, California 92663

St. John's University
Grand Central and Utopia Parkway
Jamaica, New York 11432

Sandia Laboratories
Sandia Corporation
Albuquerque, New Mexico 87115

Stanford Research Institute
Menlo Park, California 94025

Syracuse University
Syracuse, New York 13210

Texas Instruments, Inc
13500 North Central Expressway
Dallas, Texas 75222

U.S. Army Biological Laboratories
Fort Detrick
Frederick, Maryland 21701

Wallops Station
National Aeronautics and Space Administration
Wallops Island, Virginia 23337

Wilmot Castle Company
Rochester, New York 14602