
7 3 2 2 1 3 0

Final Report

Covering the Period 18 June 1970 to 1 June 1971

CASE FILE
COPY

RESEARCH IN ADVANCED FORMAL
THEOREM-PROVING TECHNIQUES

By: J. F. RULIFSON

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HEADQUARTERS
600 INDEPENDENCE AVENUE, S.W.
ROOM 607
WASHINGTON, D.C. 20546

Attention: MR. JAMES ALBUS

CONTRACT NASW-2086

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

Final Report

Covering the Period 18 June 1970 to 1 June 1971

June 1971

RESEARCH IN ADVANCED FORMAL
THEOREM-PROVING TECHNIQUES

By: J. F. RULIFSON

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HEADQUARTERS
600 INDEPENDENCE AVENUE, S.W.
ROOM 607
WASHINGTON, D.C. 20546

Attention: MR. JAMES ALBUS

CONTRACT NASW-2086

SRI Project 8721

Approved by:

B. RAPHAEL, Director
Artificial Intelligence Center

BONNAR COX, Executive Director
Information Science and Engineering Division

Copy No. ...TT..

CONTENTS

ABSTRACT iii

I INTRODUCTION 1

II SUMMARY OF RESEARCH 1

A. Theorem-Proving Protocols 2

B. The QA4 Language and Interpreter 2

1. Overview 3

2. Program Organization 4

3. Program Control 5

III ABSTRACTS OF REPORTS 6

1. "QA4 Working Paper" 6

2. "On Program Synthesis and Program Verification" ... 6

3. "Preliminary Specification of the QA4 Language" ... 6

4. "The QA4 Language" 7

5. "A Language for Writing Problem Solving Programs ... 7

6. "QA4 Note: The Context Mechanism" . . . 7

ii

ABSTRACT

This report summarizes the present status of a continuing research
program aimed at the design and implementation of a language for
expressing problem-solving procedures in several areas of artificial
intelligence, including program synthesis, robot planning, and theorem
proving. Notations, concepts, and procedures common to the representa-
tion and solution of many of these problems have been abstracted and
incorporated as features into the language.

This report describes briefly the areas of research covered, and
then presents abstracts of six papers that contain extensive descrip-
tion and technical detail of the work.

iii

Page Intentionally Left Blank

I INTRODUCTION

For two years, Stanford Research Institute has been engaged in the
design of a language, called QA4, for expressing problem-solving pro-
cedures.* We have abstracted notations, concepts, and procedures common
to the representation and solution of many of these problems, and have
incorporated these features into the language. The first version of an
interpreter for this language is nearing completion.

This work was begun as part of a general program of research in
artificial intelligence supported at SRI by NASA and ARPA under Contracts
NAS12-2221, NASW-2164, and NASW-2086. For the past year the work has
been supported primarily by NASA under Contract NASW-2086; this is the
final report for that project. Early in the project its scope was changed
from the development of advanced formal theorem-proving methods, as orig-
inally stated, to the development of new programming formalisms and
associated problem-solving methodologies. These latter goals are now
viewed as prerequisites for the work on theorem-proving methods per se,
and also have use in several other problem domains.

As noted, the effort described here is part of a program that has
been partially supported by several different projects. Additionally,
we anticipate continuing this program at an increased level under new
support. The program is at a mid-point in its development. Preliminary
language design has been completed, and implementation of an interpreter

is nearly completed.

The results from this project are being reported in several technical
publications. This final report consists of a summary of the research
performed, and abstracts of the papers and reports that contain further
details.

II SUMMARY OF RESEARCH

The goals of this project are to

• Explore natural, intuitive methods of theorem-proving and
problem-solving

• Formalize a language for expressing these theorem-proving and
problem-solving techniques and plans

• Design and start the construction of an interpreter for this
language.

C. C. Green and R. A. Yates participated heavily in the original work
in this program. R. J. Waldinger and J. A. Derksen, as well as the
author of this report, have been continual contributors.

During the next year we plan to extend this research by first finishing
the interpreter, and then testing and refining our formalisms by build-
ing problem-solving programs within the language.

A. Theorem-Proving Protocols

We used protocol analysis as a vehicle to explore problem-solving
methods. Thus the project has entailed the construction and reworking
of hand simulations of a proposed theorem prover. Each simulation
includes a problem statement, relevant definitions and advice, and a
protocol for the solution, all stated within the QA4 language formalisms.

We see the theorem prover, written in the QA4 language, working
at the same level of detail as a human mathematician, and a finished
proof should resemble a proof in a mathematical textbook. A typical
protocol demonstrates the conversion of a recursive program for cal-
culating Fibonacci numbers to an equivalent iterative program. From
the recursive definition, approximately ten rules of inference, and
some constraints on the final program, the protocol presents a hypo-
thetical solution we eventually expect the problem-solver to produce
automatically.

This method of exploration has permitted us to take simultaneously
two points of view. Our protocols could be intuitive and loosely organ-
ized. The notations could be natural and concise. And the inference
rules could be exceptionally high-level for mechanical theorem-proving.
At the same time, by analyzing the plans, we could work out formalisms
that had enough precision to permit their implementation in a program-
ming language. Thus the simulations have provided a focus for the
language development and prompted explorations into theoretical founda-
tions of the problem areas.2 As soon as the interpreter is able to
execute some of the strategies, the solution that has been hand-constructed
in the past will be produced by an interactive program. The method of
introspective problem-solving and simulation, however, will remain a
major technique in future extensions of the project.

B. QA4 Language and Interpreter

A careful analysis of these protocols revealed that a natural,
intuitive language required many formalisms not found in already
existing programming languages. The protocols relied heavily on both
obvious features such as sets and far more subtle capabilities such as
hypothetical reasoning. For the remainder of this Section, we briefly
discuss the new formalisms that were especially designed for the QA4
language. To implement many of these formalisms we were required to
take some totally new approaches to programming language interpretation

*
References are to the publications abstracted in Section III of this
report.

and invent new symbolic-expression manipulation methods. Many of these
inventions are discussed with the formalisms they implement.

1. Overview

Seemingly simple axioms and inference rules normally presented
in a mixed English-logic language in textbooks often become lengthy,
complex formulas when converted to the notation of first-order predicate
calculus . In order to stimulate the intuition of the programmer, as
well as to simplify the specification of the symbol manipulation tasks
performed by problem-solving programs, the QA4 language is more a formal
(but natural to use) mathematical language than a strictly logical lang-
uage. Declarative statements in the language therefore have the conven-
ience of infix-style syntax coupled with such useful extensions of omega-
order calculus as sets, special quantifiers, and extended primitive oper-
ators.3 Additional imperative statements permit a concise notation for
program control and organization.

As expressions are composed, they are converted to a canonical
form so that semantic and pragmatic properties attached to them can be
associated automatically with all equivalent expressions.1'4'5 Composi-
tion takes place whenever a particular data structure is constructed by
a program. For example, the process of interpreting the statement

x - [RED, BLUE, GREEN]

not only assigns X to be a set, but also composes a canonical represen-
tation of the set. The composition process ensures that if the datum
described by the expression (in this case, the set) has ever been pre-
viously constructed, the original value is used and no new equal but
different structure is constructed. This identification of equivalence
is even made between expressions that include bound variables. Thus,
the functions

(LAMBDA(X, Y>,

and

(LAMBDA(U, V>

will both be converted to the same internal canonical form, and infor-
mation known about one is always available to strategies "that may deal
with the other.

Retrieval and decomposition of expressions is accomplished by
template pattern matching.4*5 Decomposition occurs during the process
of assigning arguments to functions. For example, the interpretation
of the statement

[?x, ?Y, ...} - (RED, BLUE, GREEN, YELLOW)

assigns one of the four color words to X and to Y. The triple dots
denote a fragment, and permit the sets on opposite sides of the arrow
to be of different cardinality. Since sets are involved, X and Y may
be assigned the same word or different words. The statement

EXISTS [?X, RED, ...}

will retrieve from the data base all sets that contain the word RED.
X is then assigned some element from one of the retrieved sets. This
form of pattern matching permits programs to be nondeterministic. The
backtracking necessary to interpret the programs is handled automatically
by the interpreter.

The storage mechanism for QA4 expressions is implemented as a
discrimination net.1'4'5 While the theoretical characteristics of this
type of structure are understood, considerable improvements in efficiency
should still be achievable by observing its operation during problem
solutions and making appropriate modifications. The pattern matcher,
which is the last major component to be integrated into the interpreter,
has been designed and is partially implemented.4'5 Many of the heuris-
tics that guide the pattern matcher depend on the specific form of the
patterns. Thus, as the problem-solving programs take form, a continual
effort can be made to improve the internal operation of the pattern
matcher, as well as to incorporate new syntactic features that enhance
the template notation.

2. Program Organization

Problem-solving programs written in QA4 will be organized
around strategies such as

Whenever a sentence follows from previous assertions
by modus ponens, assert that sentence.

Heuristics such as these are easily introduced into a problem-solving
system by using a WHEN statement. The statement directs the interpreter
that whenever any expression that matches this pattern is assigned a
particular property execute this program.

Internally, strategies are expected to accomplish their task
by dividing their assigned problems into appropriate subgoals. Each
subgoal can be specified by a single GOAL statement such as

GOAL PROVE, P(A) & P(B)

Through the use of other QA4 statement forms, the interpreter can be
informed which strategies apply to certain types of goals. As new goals
arise, the interpreter has the responsibility to choose and apply strat-
egies to accomplish the goal.

Thus, the problem-solving programs operate by means of the
interaction between goal-directed strategies.1 The GOAL and WHEN
statements permit independent specifications of these strategies, and
the interpreter permits parallel and distributed-control programming.
Rather than being called by name, GOAL and WHEN programs are activated
by conditions that arise during the course of problem solution.4*5

This programming facility is a major contribution toward flexible,
natural strategy organization.

Another class of statements provide iteration over sets guided
by pattern matching. They permit the concise, elegant representation
of individual strategies. For example, a statement that finds three
boxes that contain green blocks is described simply by the following
QA4 code:

FIND 3, COLLECT $X,

DO GOAL PROVE, BOX(-X);

GOAL PROVE, CONTAINS <$X,H3>;

GOAL PROVE, GREEN($B) END

The portions of the interpreter that handle these program forms
have been designed and are currently being implemented. Care is being
taken to provide flexibility in the interpreter so that changes in the
language can be accommodated easily as they develop during the construc-
tion of the problem-solving system.

3. Program Control

Whenever one is attempting to establish an implication, a
natural method is to assume the antecedent and attempt to establish
the consequent. The task may be to prove a logical implication such as

If Socrates is a man, then he is fallible

or to establish a casual implication such as

If a block is moved,- then its position is changed.

In either case a problem-solving strategy must create a "context," make
hypothetical assumptions, and derive conclusions. When it is finished,
however, it must erase intermediate results, for they depend on the
truth of the antecedent, which may not be true even though the implica-
tion has been established.

As strategies are invoked in a QA4 program, they are assigned
a "context" in which they operate. These running strategies may operate
independently in parallel, or may cooperate in a high degree of synchro-
nization.4'5 The backtracking, side-effects, and communication paths

of these processes are highly controllable.6 Moreover, the control
may be either handled automatically by the interpreter, or manipulated
by the strategies themselves.

These abilities are implemented by means of a generalized
context and process-control scheme. The exploration of various forms
of process interactions in the problem solver should lead to the dis-
covery of those methods that are useful and natural. As the dominant
control forms appear, efficiency in the interpreter can be gained by
refining and tuning the context scheme.

Ill ABSTRACTS OF REPORTS

The following reports were all at least partially supported under
this project. Among them, they contain the technical details of the
supported research. Copies of Artificial Intelligence Group Technical
Notes are available from their authors and may also be obtained from
the Publications Department of Stanford Research Institute.

1. J. F. Rulifson, R. J. Waldinger, and J. A. Derksen, "QA4 Working
Paper," Technical Note 42, Artificial Intelligence Group, Stanford
Research Institute, Menlo Park, California (October 1970) .

ABSTRACT

This note begins with an outline of control statements that will be the
framework of the QA4 language. Next, follows a detailed protocol of
the solution of a program-synthesis problem. The protocol uses high-
level inference rules and relies on the intelligent selection and appli-
cation of the rules. Finally, the overall structure of a problem solver
capable of the preceding solution is sketched.

2. Z. Manna and R. J. Waldinger, "On Program Synthesis and Program
Verification," Technical Note 52, Artificial Intelligence Group,
Stanford Research Institute, Menlo Park, California (November 1970);
paper presented at 4th Hawaii International Conference on Systems
Sciences, Honolulu, Hawaii, 12-14 January, 1971.

ABSTRACT

Certain similarities between program verification and program synthesis
are pointed out. The analogy is illustrated using a "bubble-sort"
program.

3. J. F. Rulifson, "Preliminary Specification of the QA4 Language,"
Artificial Intelligence Group Technical Note 50, Stanford Research
Institute, Menlo Park, California (April 1970) .

ABSTRACT

The declarative facet of the QA4 language is an extension of higher-
order logic. Set, bag, and tuple expressions and operations have been
added, and the bound variable occuring in LAMBDA expressions has been
significantly modified. This note describes initial specifications
for the logic-language and briefly discusses an approach to implementation,

4. J. F. Rulifson, R. J. Waldinger, and J. A. Derksen, "The QA4
Language," Artificial Intelligence Group Technical Note 57, Stan-
ford Research Institute, Menlo Park, California (in preparation).

ABSTRACT

This note is a guide to the complete QA4 language. The form and seman-
tics of all logical expressions, primitive operations, patterns, and
control statements is informally presented. Unusual forms and program-
ming methods are illustrated with brief examples. Discussions of needed
design work and further expansion are interspersed throughout the note.

5. J. F. Rulifson, R. J. Waldinger, and J. A. Derksen, "A Language
for Writing Problem Solving Programs," Artificial Intelligence
Group Technical Note 48, Stanford Research Institute, Menlo
Park, California (April 1971); paper to be presented at IFIP
Congress '71, Ljubljana, Yugoslavia 23-28 August, 1971.

ABSTRACT

This paper describes a language for constructing problem-solving programs.
The language can manipulate several data structures, including ordered
and unordered sets. Pattern-matching facilities may be used in various
ways, including the binding of variables. Implicit backtracking facili-
tates the compact representation of search procedures. Expressions are
treated analogously to atoms in LISP. A "context" device is used to
implement variable bindings, to effect conditional proofs, and to solve
the "frame" problem in robot planning.

6. J. F. Rulifson, "QA4 Note: The Context Mechanism," Artificial
Intelligence Group Technical Note 58, Stanford Research Institute,
Menlo Park, California (in preparation).

ABSTRACT

Variable bindings are implemented in the QA4 interpreter with a "context"
mechanism. This method of storing all the changeable properties of
expressions simplifies backtracking and the execution of parallel pro-
cesses. The same facilities, moreover, are made available to the users
as a method of data manipulation in programs dealing with conditional
proofs or robot planning programs confronted with the frame problem.
This note describes the algorithms used to bind variables, illustrates
with extensive examples the operation of these algorithms, and concludes
with a brief discussion of the implementation.

