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DIGITAL PROCESSING OF RADIOGRAPHIC IMAGES

SUMMARY

In the nondestructive testing of metallic structures using radio-
graphs it is sometimes necessary to enhance the images to aid visual
interpretation. The digital computer is a very useful tool for this
purpose, providing a means to the accurate and flexible implementation
of well known filtering techniques and to the development of new tech-
niques.

This report provides a description of . some of the techniques for
image handling and image processing on the computer. Both the frequency
and spatial domain designs and implementations of digital filters are
covered, Examples of digitally processed synthetic test patterns as well
as radiographs are shown to illustrate the techniques. The software
developed implementing the processing algorithms is documented.

It is seen that digital processing enhances the radiographic images
quite noticably, but noise in the radiographs is a limiting factor.
Further work needs to be done in the application of feature-oriented image
enhancement and pattern recognition methods to radiographs.

vii




SECTION I. INTRODUCTION

"A. Radiography and the Digital Computer

The basic problem considered in this report is that of facilitating
the identification of internal flaws in metals by using digital computer
techniques of image enhancement on the radiographs of these metals.

Conventionally, the hidden flaws in metals such as blow holes in
a welded joint and hairline cracks are detected visually by looking at
dense radiographs of the suspected areas under a bright light with a’
magnifying glass. While many of the flaws can be identified in this
manner, some cases arise in which the existence of flaws determined
visually becomes questionable. In such cases it is necessary to enhance
the radiographs by some method to confirm the existence of flaws. A
typical example of such a problem is one in which the beginning of a
crack is visible in the radiograph, but the end of the crack is very thin
and merges into the background of the radiograph so that it is d1ff1cult
to find how far the crack really extends. .

A large variety of techniques exists for image enhancement. These
techniques can be grouped broadly into two classes, viz., optical and
digital. Optical methods consist of preparing transpariences which
represent desired filtering operations and producing images by passing
coherent light (or non-coherent light in some techniques) through the
given picture and the filter transparancies. These methods handle all
points in a given picture at one time and hence are virtually instanta-
neous., They are, however, restricted mainly to linear operations and
their accuracy is limited by the accuracy with which physical filters
(transparencies or apertures) can be made. On the other hand, digital
techniques are very flexible and accurate. They can be used for nonlinear
operations also in a controlled manner. In fact some operations such as
adaptive filtering where the filter characteristics change according to
the data content of the part of the image being processed are impossible
using optical methods exclusively, are extremely cumbersome using electro-
optic methods, but can be performed digitally with comparative ease,

The main disadvantage of digital methods is that they handle the picture
data sequentially and therefore they are slow. But, their accuracy and
flexibility render the digital computer a very useful tool at least

during the technique development stage when one wants to explore various
processes of image enhancement. Many of the techniques so developed can
in fact be implemented optically’ for fast processing on a production basis.

We shall concentrate here on the digital techniques since at the
present stage of learning and developing enhancement methods for radio-
graphic images it is necessary to use digital methods.



B. Definition of Digital Processing of Pictures

1. Picture Function. A "picture" can be mathematically describ-
.. ed by a real function S (x, y) of two real variables x and y which gives

the "gray level" of the picture at the point (%, y). Figure 1.1 shows a

picture whose picture function is given by

S (x, yv) =1 for (0<x< .2, 0<y<.5)
' (x= .5, 0<y<.5)
(.8<xg1, 0<y<.5)
(0<x<1, .5&y<D)
and
S (x,y) =0 elsewhere

2. Noise and Filtering. In the prucess of producing a picture
there are several factors besides the true image itself that contribute
to the final picture function. Some of the factors are Eﬂ '

(a) Random noise in the film

(b) Background of the object surrounding the desired
part of the object

(c) Fluctuations in the light output of the image
scanning system

(d) Electrical noise in the output of the light
sensing device in the scanner

(e) Finite aperture size of the scanner

All the contributions to the picture function other than due to the true
image (or the desirable part of the true image) will be termed noise.

If noise is additive and the "picture function".of noise is v(x, y), then
the actual picture function obtained will be

Sl (x, Y) =S (x, Y) + v(x, y)

When the desired picture function is S (X, y), in general the actual
picture function obtained can be written as

S; (%, ) = £(5 (%, ¥), v (%, y))

The process of improving the quality of the image consists of filtering
out the noise v(x, y) so that S (x, y) can be recovered from S1 (%, W)«

(1.1)

(1.2)



0 2 5 3 T - X T e
FIGURE 1.1a A SAMPLE PICTURE.
S(x,y) (0 Sy <05 |
A 4
1 | | — - 3
. 0 ] K] 1 - ‘
‘ S(x;y) (0.5 <y=<mn ’ ) ' ‘ .
1 " -
0 ‘ . ] o > X

FIGURE 1.1b. THE PICTURE FUNCTION FOR THE PICTURE IN FIGURE la, '



3. Digital Filtering. A digital computer can-be used as an
efficient tool in picture procéssing by using the well known techniques
of digital filtering [2] In order to do this, it"is first necessary to
obtain image data in digital form. This is done by scanning the picture
with a scanning microdensitometer, sampling and digitizing the densito-
meter records, and thereby produc1ng a sequence {Sl * (i, J)} i=1,...,
Mand_]l «eey N where .

Sy % (4, ) =8y Gy, v

and (x,, y.) are the points at.which the picturevfunctlon S (x, y) is
measuréd by the scanner. A digital filter is just a transformation of
the sequence 181 * (1, j)} which produces a new sequence- {Sz * (4, J)}

The sequence §S2 * (i, jM can be converted back to a picture, for example,
on a CRT display unit, . . L oo

The above steps in picture processing are summarized in Figure 1.2,

The philosophy of software development is governed to a great
extent by the hardware available for implementing it. Hence, a brief
description of the facilities which represent the three main blocks of
Figure 1.2 is given in the follow1ng subsection,

C. Description of the Processing Facilities

The hardware used for the digital processing applications dis=-
cussed in this report is described below. The microdensitometer shown in

Figure 1.2 is an Optronics Photoscan P-1000. It is a rotating drum scanner.

whose apertures and scanning intervals can be set to 12.54 , 254 and 504 .
It can be used to quantize densities between O and 2D or O and 3D in equal
steps either as eight bit (0 to 255) or six bit (0 to 63) integers. The
range of densities can be increased beyond 3D by using a neutral density
filter as bias.

The microdensitometer is currently being used on its six bit mode
which is convenient for use on the IBM 7094 (with 7-track tapes and 36
bit words) on which all the digital processing is implemented. The
scanner generates six bit numbers on tape and hence each 36 bit word
corresponds to the densities at six neighboring picture points (pixels)
on a scan line. Since the IBM 7094 is a word oriented machine it is
necessary to unpack each of the 36 bit words generated by the microdensito-
meter into 6 words before performing any arithmetic operations on it,
Also, at present, the IBM 7094 has only tape units and hence all the soft-
ware is geared towards using work tapes (not disk files).

There are tW6“chBiceé for the picture reconstruction unit in
Figure 1.2, viz., a DICOMED 31 storage CRT display unit and an Optronics
Photowrite P-1500. The DICOMED 31 1is a 64 grey level display unit which
converts each 36 bit word on. packed tape .into six neighboring pixels on
a horizontal line on thé screen of a storage CRT, the intensity of the

(1.3)
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pixel being proportional to the corresponding 6 bit number. It generates
one horizontal line per record. The screen capacity is 1024 x 1024 pixels.
It is required that each record on tape should have at least 171 words
(i.e., 1026 pixels). If a record has more than 171 words all but the first
171 words of the record will be ignored. The writing on the screen is
stopped when 1024 records are written or an end of file mark is encounter-
ed on the tape. The Photowrite is a rotating drum device which converts
digital data into a picture on a film. The writing aperture and interval
can be set to 12,54 , 254 and 50p . It can convert either 6 bit and 8 bit
numbers into pixel density on film. It is currently being used in its

6 bit mode to be compatible with the rest of the equipment.

The rest of this report presents the technlques and software which
have been developed for digital image enhancement using the above facilities
and shows examples illustrating the application of these techniques to
radiographic images.

D. Report Outline

This report is presented in two main parts. The first part is
mainly a description of the techniques and the second part is a documenta-
tion of the software developed.

The techniques and software are classified for convenience as Image
Handling and Image Processing. The term Image Handling is used to cover
- such operations as unpacking and packing of the data, geometrical operations
on image data such as transposition of arrays or rotations and translatioms.
The term Image Processing refers to modification of image data arrays
using point or local operations. Section II considers Image Handling
operations for which software was developed, as and when the particular’
operations were found necessary. Section III describes the image process-
ing operations, considering in particular techniques for the design and
implémentation of digital filters both in the spatial frequency domain
and the spatial domain. Section IV presents the results of the process-
ing operations applied to sample radiographs.




SECTION II. IMAGE BANDLING OPERATIONS

In the course of developing techniques and software for radiographic
image processing, it was found necessary to produce software for various
image handling operations. The software, while designed mainly for radio-
graphic image processing, includes in some cases, features which are use-
ful for other purposes also where the inclusion of these features did not
involve much additional labor.

A. Automatic Picture Extraction

The first step one has to go through in processing picture data
after a tape of digital data is generated by the microdensitometer is to
convert the data into a form suitable for handling on the computer. Also,
in the interest of minimizing processing time it is desirable to extract
as small a rectangular array of the digitized data as poss1b1e containing
the region of interest in the picture. Further, as notéd in section I-C
it is necessary to unpack each word of- d1g1t1zed data into. six words
before performing ar1thmet1c operatlons on IBM 7094 '

. Manually, one can dlsplay the data on the, tape from the micro=-
densitometer on the storage CRT screen and superimpose a grid on it and
then determine the coordinate bounds of the reglon of interest relative
to the top left corner of the sereen. . This. is a: useful procedure when the
picture has sufficient contrast .so thatZsome-:features .in the region of
interest can be easily identified from the display on the-screen. However,
in the case of most of the structural radiographs, ‘it has:been found that
when the original digitized version is displayed on the screen the contrast
is so low that it is difficult to identify the region of interest. Hence
the following technique.has been developed to detérmine the region of
interest and extract it’in unpacked form onto a.tape. '.The technique will
be first described and the assumptlons needed and 1ts 11m1tat10ns are
discussed later. : , v

In this technlque, the f1rst step is to- mark the ‘area of interest
by masking the remaining areas of the radiograph- ‘with an opaque material
so that the area of interest is an approximately rectangular window. Then,
the radiograph is digitized so that the masked regions of it are included
in the scan on all sides of the region of interest. Next, each record of
the digitized data is read and examined for points with demsity numbers
less than 63 (i.e.,’ the highest density :number with'6 bit digitization).
The first record which has density numbers less than 63 is noted. Start-
ing with this record the points Aj and B, are determined for the ith
record as shown in Figure 2,1. The point A: is the first point in the
ith record which has density number less than 63 and the point Bj is the
last point in the ith record whose density number is less than 63. Also,
the last record of interest is determine by now finding the first record
all of whose density numbers are equal to 63. 1In the ideal case where
the mask has an exactly rectangular window whose sides are parallel and
perpendicular to the scanning direction, and where all the density numbers

8
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in the region of interest are less than 63, this method will yield the
exact boundary of the region of interest and the pixel numbers of A;

and Bj in the ith record will be constant with respect to i.. If however, it
is known that most of the density numbers in the region of interest

are less than 63 and that there are no long sequences of consecutive
points with density numbers equal to 63 along a scan line at either end

of the region (i.e., no highly dense straight lines in the scanning
direction) then this method will yield the locations of Aj and Bj in

the various records very close to, but not exactly on, the beginning and
end of the boundary of the window in the mask. Further;, margins can be
allowed on all four sides to compensate for the window in the mask not
being exactly a rectangle and for possible skewness in its orientation
with respect to the scanning direction. Then, to ensure that the area
which is finally extracted is within the window marked by the mask, the’
right most location of A; and the left most location of B; are chosen
after allowing the specified vertical -and horizontal margins. Thus the
area to be extracted is determined. After finding the area to be extract-
ed the data tape is rewound and the required part of the data is unpacked
and written on another tape.

' This method works under the following assumptions:

(a)  The region of interest can be isolated using an
approximately rectangular window in a mask.

(b) The skewness in the sides of the mask is limited
such that the right most location of A; is to the
left of the left most location of Bj (after vertical
and horizontal margins are allowed),

(c) The region of interest does not contain long dense
strips in the scanning direction which give density
numbers equal to 63 at either end of the region.

It has been found that in most of the radiographic work dome so far,
the above assumptions are satisfied. A margin of 20 to 30 pixels on all
sides has been used successfully in extracting the region of interest in
several radiographs digitized with a 12,54 scanning interval,

The details of the program APES (Automatic Picture Extraction and
Scaling) which implements the above technique are presented in Part II
of this report. This program includes, as options, linear stretching of
density numbers between 0 and 63 on the basis of the maximum and minimum
density numbers in the region of interest and overriding the automatic
determination of the region to be extracted and extractlng an externally
specified rectangular region.

B. Transposition and 90° Rotations
In many picture processing applications, 'it is necessary to perform
filtering operations in two dimensions. Several two dimensional operations

on pictures lend themselves to implementation as two one dimensional opera-
tions either in tandem or in parallel. Such operations can be referred to

10



as separable operations and are much simpler to implement than general two
dimensional operations which are not separable.

One dimensional operations handle one record of data at a time.
Therefore, a horizontal filtering operation (i.e., along the scanning
direction) on digitized picture data can be performed directly from the
tape generated by the picture extraction software described in section’
II-A. However, to perform vertical filtering (i.e., perpendicular to
the scanning direction) it is necessary to have one point from each of
the records on tape. Therefore to simplify data handling. it is necessary
to transpose (or rotate through 90°) the data array so that pixels along
a straight line perpendicular to the scanning direction will form a record
on tape. Since the data arrays are almost always too large to fit in core,
‘it is necessary to use :a special technique to transpose (or rotate) the
data arrays. This technique is described below.

This technique treats the given matrix A as made up of several
128 x 128 submatrices. If the number of rows or columms of A is not a
multiple of 128, the matrix A is padded at the ends with arbitrary
numbers which are immaterial so that it can be treated as a composite of
128 x 128 submatrices. Denote the 128 x 128 submatrices of A (padded if
necessary) by Ajj, Ajg, oves Agps ceos wees Apls oees App, as shown in
Figure 2.2. Also, let Ay, Ay, ..., A, denote the submatrices of A consist-
ing of the first, second, ..., nth 128 columns of A.

Step 1: The program reads the input matrix A row by row and splits
each row into n parts and writes each part on a work tape. Thus, at the
end of one reading of the input tape, the ith work tape will have the sub-
matrix Ay for i = 1, ..., n where each row of the matrix is written as
one record. The input tape and work tapes are rewound.

Step 2: The submatrix Aj] is read from the first work tape (i.e.,
the first 128 records on the tape) and A{l is written as one logical
record on the output tape. Al2 is read from the second work tape and ATZ
is written as the second logical record on the output tape., Thus, at the
end of this step the output tape will contain mn records, in the order
A?l, A%z, ooy A{n, ceey soey Agl, ooy A$n° The output tape and the work
tapes are rewound,

Step 3: Now, A{, is read from the output tape as one logical record
and written on the first work tape as 128 logical records. Similarly,
A%Z, .v., AT are written on the first work tape. Thus, AT, ..., A;  are
written on %Ee ith work tape for i = 1, ..., m. The work tapes and the
output tape are rewound.

Step 4: Now, note that the first logical record on the ith work
tape is the first row of A¥1. Therefore, the first record is read from
each of the work tapes, and the first row of AT is formed and written on
the output tape as one logical record, remembering to throw away the
arbitrary numbers, if any, in Agl which were used for padding. Thus, all
the N rows of AT are written on the output tape as one logical record each.

11



Figure 2.2,

—~ 411 A " A
A1 Ao . Aon |
= I}l |A2|
T T
A1 Ay Am
T T T
Ay Ay vy
K AT - AT
b 1N 2n 1

The Partitions of the Matrix A and its Transpose

12



The above method needs only a very small modification in order to
generate 900 rotations instead of the transpose of the data array.

First of all, note that if‘@‘denotes the rotation of an M x N
matrix A about its center by 90° in the counterclockwise direction, then
A _ . 7 .
ajj = aj N-it+l for i=1,...,N
i=l,...,M (2.1

th

where Xj j denotes the i YOow, jth column element of the matrix X.

V
Also, if A denotes the rotation of A about its center by 90° in the
clockwise direction, then it follows that

Vv ! ’ .
8ij = aM-j+1,i © for %=i,--~,g (2.2)
J= 3009y .

. Therefore, it is obvious that

A »

i = af-1+1,j (2.3a)
and

Xij== al, M-j+1 (2.3b)

for i=l,...,N and j=1,...,M. Hence, to generate ﬁ\the first step is
modified so that when each row of A is read, the elements are first
reflected about the center of the row and then the record is split into
n parts and written on work tapes. To generate X, the last step is
modified so that each record of AT is reflected about the center of the
record just before writing it on the output tape.

C. Reflection

In many filtering operations it is necessary to find the convolution
of an array of filter weights with the data array. If the data array is
an M x N matrix A and the filter array is an m x n matrix G, the output
array B is given by
n

m
bijj =2, 2, 8rs Bi.rs j-s (2.4)
r=1 s=1

It is seen that the formula (2.4) gives only a (M-m) x (N-n) array
B if only the points a;; in the array A with subscripts i=1,...,M and j=1,
...,N are.-to be used. in order to get a filtered picture of the same size
as the input picture it is necessary to define ajj outside the given range
i=1,...,M and j=1,...,N.: .The ‘definition of aj; outside the range determines
the values of bjj in equation (2.4) for i=l,...,m and j=1,...,n. Even
though a;; can be defined arbitrarily outside the range of the input array
it has been found experimentally that in most cases the edges of the out-
put picture will appear better if a.. are defined for points outside the

range by reflecting the given pictu%g array in the corresponding edges.
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That is, for example,

aij = az_i,j for 2"M<i<1 (2-53)

and ajj = ai,g-j for 2-N< j<1 (2.5b)
Now, horizontal filtering operations require handling the data

sequentially record by record, each record being generally small enough

to behleld in core. In these cases, the required reflections in vertical

edges can be easily generated in core during computation. But in computa-

tions where reflections of data in the horizontal edges of the picture

are needed, as in two dimensional fast recursive filters discussed in

Section III, it is necessary to generate data files containing the

reflections of the data array in the first and the last records. The

number- of records to be reflected depends upon the number of rows in

the filter array. The method for generating the reflections when the

part of the data array to be reflected does not fit in core is outlined

below. It is assumed that M, records are to be reflected in both the top

and bottom edges of the array and M is the total number of input records.

_ Step 1: The dimensions of a two dimensional array W are specified !
according to the number of words per record in the given data array and
the core capacity, the purpose being to store as many records of data as
possible in core. Suppose the number of rows in W is m. Then the number
of work tapes needed is the highest integer in (M,.-1)/m. This number
is found. The next steps are described in relation to figure 2.3 where
the number of work tapes is assumed to be 2.

Step 2: The first m records of data starting with the second record
(constituting the subarray A, of the input data) are read into core and
transferred to the first work tape. Similarly the subarray A, is trans-
ferred to the second work tape. Now, theremaining (My-2m) records con-
stituting the subarray A3 are read into core and written on the output
file in reverse order (subarray A3). Next the array Ay is read from the
- second work tape and written on the output file in reverse order (array
Aj). Next, Aj is read from the first work tape and written on the output
file in reverse order (array Al). '

Step 3: The input file is now rewound to the beginning of the
file and the first (M-M,.-1) input records are copied onto the output file.

Step 4: The next m records of input constitute the subarray As.
These are read into core and copied onto both the first work tape and the
output file. Similarly, the subarray Ag consisting of m records is copied
onto both the second worktape and the output file. Now, the next (My-2m)
records are read into core and the array Ay is formed. The last record
of input is now copied to the output file and the arrays A7, Ag and Ag
are written in reverse order on the output file as Ay, Ag and A5 respectively.

D. Packing and Centering for Image Reconstruction

After the processing operations are performed on the image data
and the resulting numbers are converted into integers between 0 and 63

14
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(by some type of scaling if necessary), the data must be packed so that
"it is in a form required for the image reconstructlon devices, Also it
is desirdble to arrange the data so that the image when reconstructed is -
properly centered on the screen or £film. Futrther, in many cases where it
is necessary to study the effects of different fllterlng operatlons on
a picture it is useful to display several images on the screen at a time.
Therefore, a program has been developed which will prepare data for multiple
frame display (or multiple frame writing on film). This program can also
enlarge a picture by specified integral factors in vertical and horizontal
directions by repetition of pixels. A brief description of its operation
is given below. ' '

It is assumed that the number of frames to be packed is a composite
number N and its factors, viz., the number of frames in the vertical Ny
and horizontal (N;) directions are specified. Also, the enlargement factors
are assumed to be given., In the case of preparing data for display on the
screen the screen size (in the present set up) is known to be 1024 x 1024
pixels. In the case of preparing data for writing pictures on film it is
assumed that the film width and interval desired between vertical frames
is specified in millimeters and the writing interval (i.e., interval bet-
ween pixels) is specified in microns. The program first computes the
horizontal and vertical margins between frames in terms of number of pixels.
Next, if Ny, >1, the Ny, x Ny frames are packed and written on N, work tapes,
the 1th work tape conta1n1ng the ith set of N_ consecutive pictures,
repeating pixels if enlargement is required and the areas corresponding
to margins being filled with zeros. The ith record to be written on the
output tape is formed by combining the ith records on each of the work tapes,
for i=1,2,3,... .

E. Other Image Handling Operations

There are several other image handling operations which have been
found useful. These operations are very simple to perform and do not warrant
a formal description of techniques. Some of these operations and their
purposes are discussed below. '

1. Translation of Pictures. The term translation here refers to
shifting of picture data by specified amounts in the horizontal and vertical
directions. This is essentially a re-indexing operation and is useful for
registration of two images. It is well known that point by point averaging
of several pictures of an object reduces the random noise content of the
image and hence improves the signal to noise ratio. But in performing the
averaging digitally, it is necessary to align (register) the data so that
the same point on the various pictures of a scene has the same address in
the digitized files of these pictures, Therefore, a program has been
developed for translating the picture data to obtain proper registration
given the amount of shift needed. ‘

2., Reduction of Dimensions of a Picture. When an area of a
picture is digitized with high resolution it is possible that all of the
image cannot be displayed on the screen. Also, it may be desirable, some-
times, to work on an image first with a reduced resolution so that the

16



entire image'can be proceséed quickly and an area of interest can be identi-
fied for further processing. Therefore, a program has been developed for
reducing the dimensions of a given picture data file by given integral

factors either by skipping points or by averaging density numbers over
rectangular blocks of points.

17



SECTION III. IMAGE PROCESSING OPERATIONS

This section presents the mathematical details of the image process-
ing software developed. This section is divided into two main subsections.
The first subsection considers the filter design techniques from either
frequency or spatial domain specifications. The second subsection considers
filter implementation techniques.

A, Filter Design Techniques

In picture processing it is necessary to take into account the
nature of the object whose image is being processed, and also the nature
of the corrupting noise which might be due to various sources such as
fluctuations in the light source and the electrical noise in the output
of the light sensing device in the image scanning system. A useful
technique for describing the nature of the object and the various noises
and modifications introduced by the imaging system is the '"frequency
domain' method which is based on the Fourier Transform. This method
is useful when all the systems and operations under consideration can be
assumed to be linear and spatially invariant and the noise can be assumed
to be stationary. When such assumptions are not valid one has to design
and implement the filtering operations indirectly in the spatial domain.
Both the frequency and spatial domain methods of filter design are dis-
cussed below,

1. Frequency Domain Approach: In this method, as in classical
Control Theory and Network Analysis, the inputs (i.e. the spatial varia-
tions of the intensity of the'light from an object) to the imaging system,
the outputs from the imaging system (i.e. the spatial variations of the
intensities recorded on the film) and the imaging system itself are
described in the Fourier transform domain. In other words, the inputs
and outputs are decomposed into sinusoidal components of varying frequency
amplitude and phase and the imaging system is described by its "Optical
Transfer Function" (OTF) which is the relative amplitude and phase response
of the system to sinusoidal inputs of varying frequency. If the imaging
system is linear, it is well known that the output spectrum (i.e. the
Fourier transform of the output) is just the product of the OTF of the
system and the input spectrum. |3

Also, if the input spectrum is band limited then the output spectrum
is also band limited. Thus, if we are interested in finite resolution (as
is most commonly the case) then the spectrum of the pictures produced by
the imaging system would be band limited. Then, if the picture is digitized
using a sampling rate greater than twice the maximum frequency present,
the spectrum of the digitized picture is the same as that of the original
picture over the frequency range of interest. Therefore, even the digital
components of the image processing system such as the digital filter can
be described using the frequency domain approach, and the output spectrum
of any component is the product of the input spectrum and the transfer
function of the component.
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In order to apply the concepts of frequency domain analysis used in
control theory to the analysis and design of image processing systems, it
is necessary to use a two dimensional Fourier transform instead of the
usual one dimensional Fourier transform since there are two independent
(spatial) variables (x, y) in place of one independent (time) variable t.
For simplicity, the analysis will be carried out using one dimensional
Fourier transform and the analysis can be easily extended to two dimensional
filtering.

a;, Choice of filter transfer function: The first step in design-
ing a digital filter in frequency domain is to obtain the specifications of
the filter. In the frequency domain, specifying a filter consists in giving
the desired range of frequencies that are to be passed unchanged and the
range of frequencies that are to be stopped, attenuated or amplified. For
example, a hairline crack in a metal or a bone is a high frequency phenomenon
compared to the rest of the object and hence if the crack is to be made
prominent the low frequencies must be suppresssed. Thus, a high pass filter
should be used. Some of the other classes of filters are low pass, band
pass and high emphasis.

The magnitude of an ideal low pass filter transfer function is shown
in figure 3.la. The transmission in the. pass band is unity and that in the
stop band is zero. There is a discontinuity at the transition between the
bands. Transfer functions can be digitally realized with fewer terms (and
hence yield faster filter implementations) if they are continuous functions
of frequency [2} Also, sometimes, the desired transfer functions might be
such that there is a finite gap between the pass band and stop band which
may be called a "don't care'" band where the transfer function can be
arbitrary. Therefore, it is desirable to approximate an ideal filter by a
continuous transfer function. A simple continuous approximation to the
ideal low pass filter is the nth order Butterworth filter defined by

¢ @ =1+ oy ] % (3.1)

Where n is an integer and w, is the cut off frequency. The accuracy of
the approximation to the ideal filter increases .as n, the "order'" of the
filter increases.

Another type of approximation that can be used when there is a '"don't
care" band is [4]:

G (w) = 0 forlw Z;.O,T (3.2)
1 for |w|s‘wc
o R

where p is a positive integer and[”C’”T] is the "don't care'" band.

l
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The function G (w) given by (3.2) is continuous but does not have a

continuous derivative. The following modification of G (w) assures
continuity of the first derivative for p >2:

G (W) =/0 for |w‘sz
N for |w\5. we
@ p-lw]yP
(@ p-0gy (@r-wp) (p-1) for w, S_iw < W
|-w o)’ '
]l - (lw - wc) ( _1)
@ -0y @ -0 T for wg g lwl< w

where wqy is an arbitrary number such that wg <wy <@rp.
In particular, choosing w; = (wg + wT)/Z we get:
G (W =/0 S forlw]_zw,r

1 for‘w‘g_ we

o g - ]

wp - Y ]forwl <,w|<wT

1 - 2D /lw' We \ P for w, <_‘w|<_ W

TRy

1

The forms of approximating characteristics represented by equations

(3.3)

(3.4)

(3.1), (3.2) and (3.4) are shown in figures 3.1(b), (c) and (d) respectively.

Approximation to a high pass filter transfer function can be obtain-

ed by (1 - G(w)) where G (w) -is an approximation to a low pass filter transfer
function. Approximation to a band pass filter transfer function can be obtain-

ed as a difference between approximations to two low pass filter transfer

functions.

Sometimes it might be desired to compensate for the errors induced
by effects of the imaging system. If the transfer function is known, or

may be estimated or measured and is represented by, say, G (v), then,

the required filter transfer function is H (w) = 1/G (v). For example,
compensation for finite size of the scanning beam can be obtained using a

filter transfer function shown in figure 3.2. [5

Since various picture processing applications need several types of
filter transfer functions -it is desirable to have a general software pack-

age which can approximate any given filter transfer function. Such a

package has ?een developed and is described in the following sections.

Lt
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First of all, the filter input/output relations are described for
the continuous and discrete cases.

b, Filter equations. Consider first the equations for the
continuous case. Let the intensity function input to the filter be given
by S(x). Let the filter transfer function be given by G (w) and let g (x)
be the corresponding impulse response. Then, the output So(x) from the
filter is given by

5,(x) =] g(u) S(x-u)du (3.5)
~®

Now, if‘gzw) and §;(w) are the Fourier transforms of the input and the out-
put of the filter respectively, then it follows that

Sow) = 6W) SW) (3.6)
The corresponding expressions for the discrete case are as follows:
(o]
Son = E 8kSp-k for -w<n<m 3.7
k= .o

where {Sn }, {gn}.and{ son} are samples of the input, filter impulse response
and the output respectively at intervals of Ax.

If the input and the filter impulse response have spectra which are
zero outside the interval -1/(24x) < f < 1/(2A4x), then the expressions
for the Fourier transforms have the form

Sw = z":" S, exp(-jwn Ax) (3.8)
n= =00

W) = ‘\—‘f g, exp(-jwn Ax) /(3.9)
n= - e

in the interval - m/Ax < w<m/Ax and SW) = GW) = 0 elsewhere. The
output spectrum is also band limited and is given by S

S (W) = GW)S W) - g (3.10)

The numerical errors associated with assuming a function to be band limited
and der?ving equations (3.8), (3.9) and (3.10) are discussed by Cooley
et al. |6

The process of designing the digital filter comnsists in choosing the
'weights' g, such that the desired band limited transfer function G(w) is
obtained. However, since the picture data to be filtered is a finite set
of numbers and obviously an infinite summation cannot be computed on a
computer, it is desirable to design filters with a finite set of weights
gk > k=0, ..., L-1. Using this set of weights, the equation (3.7) can
be written as
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L-1 L :
Son = Z gksn-k n = 0, co sy N-1. L . .o (3'11)
k=0 A |

noting that the input and output are also finite sets of numbers.

Now, in order to obtain G(w) exactly, in general, an infinite
sequence of weights gj is necessary. Hence, a finite sequence of weights
will only provide an approximation to G(w). Filters with smaller number
of weights generally result in. faster implementation but higher errors . ..
in approximation. ' There are several techniques in the literature for
obtaining filter weights to approximate given transfer functions. Two
of these methods will be described below. The first of .these can be used
to approximate an arbitrary continuous transfer function G(w). Note .
that discontinuous transfer functions cannot be approximated to arb1trar11y
small errors even with an infinite sequence of filter weights. [ZL,

c. Helm's 4-T's method:[7] (transform-truncate-transform-test);:
Let G(w) be the specified filter transfer function which is zero outside.
the interval : ; :

-/ Ax <w< T/ Ax.

(a) First, a large number N of samples is chosen such that all
the significant features of the frequency response such as the peaks, zeros
and discontinuities are sufficiently accurately represented by the sampled
response and a sequence{G }13 formed such that. ' : :

Gn = G(wn) . } : . ' ’ I : . (3-12)
where
w=_2m . n formn=0, 1, ...,(N/2)-1
Ax N : o S
and Wy= -27 N-n for n = N/2, ..., N-1 ST ‘ _‘ (3.13)
Ax N S T

(b) Now, the IDFT (Inverse Discrete Fourier Transform) of
the sequence (n=0,1,...,N-1) is computed. The IDFT, denoted b
s y
k n} gives the 1mpulse response -corresponding to the frequency response.{Gn}.

(c¢) A number LN is chosen. In the sequence {g'n}, N-L
contiguous values are set equal to zero, g,' and g'N_ being considered
contiguous. The sequence{gn}is obtained by permuting 'n}such that the values
which ~were set to zero appear at the end. That is, g, = 0 for n=L,...,N-1.

(d) The DFT of the sequence {gn}ls computed. Let this DFT
be denoted by{G'n}. The error e in the approximation is defined as a suit-
able function of {Gn - G'n}. For example

e = Max
0 5; n f; N-1

Gn - G' (3.14)
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(e) 1If the error e is not small enough the steps (c) and (d)
are repeated with a larger value of L. If e is smaller than the specified
error then L is decreased and the steps (c) and (d) are repeated. The
new values of L can be obtained either by a successive bisection process
or by a modified Newton-Raphson Method.

This method is illustrated in figure 3.3

d. Programs to implement the 4-T's method: A set of programs
has been developed to implement the method described in the steps (a) through
(e) in the previous subsection. The programs have two options., The first
option is to double the value of L whenever the error e is greater than or
equal to the specified error. -When the value of L exceeds a prespecfied
maximum value L , L is taken equal to L and the impulse response is truncated
"to L terms and written as an output tape. The second option is to use
successive bisection of intervals of L. First the error is found with a
small initial value L; of L (which is less than L ). Next the error is
formed for L = L. Now for the ith iteration the value of L; is given by

Li = (Li-1 + L;)/2 for i >3 (3.15)
where

j = Max {j|j<i-1 and (e;_1 - E) (e - E)< 0} (3.16)
and .

e; is the error during the ith jteration and E is the given error.

Several types of filters have been designed using these programs. Figures
3.4, 3.5 and 3.6 show the magnitude versus frequency plots of some examples .
of the original transfer functions for low, high and band pass filters
respectively and the approximating transfer functions produced by the above
method. The magnitude characteristics for these filters were assumed to be
derived by a basic low pass characteristic given by equation (3.2). The
maximum permissible error e in the equation (3.14) was assumed to be 0.05
(i.e. maximum gain of approximately -26 db in the stop band and an error of
0.22 db in the pass band). The number N of samples of the frequency response
was taken to be 256, The parameters defining the filters shown in figures
3.4, 3.5, and 3.6 and the values of error for the attempted values of L

are shown in tables 3.1, 3.2 and 3.3 respectively. The first option (doubling
L until error is below the specified value) was used in these cases.
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TABLE 3.1 APPROXIMATIONS TO A LOW PASS FILTER

Pass Band = [O, O.lSwg], Stop Band = [0.25 R O.SOwg] (The pass band and stop
band are joined by a third order polynomial as in equation (3.2))

Filter Length Error
L e

8 "0.3265

16 | 0.1633

32 0.0728

64 0.0285

TABLE 3.2 APPROXIMATIONS TO A HIGH PASS FILIER

Pass Band = [0.25«@, 0.50u ] Stop Band —|:0 0. ISUS] (The pass band and stop
band are joined by a th1rd order polynom1a1 as in equatlon (3.2))

Filter Length . Erroxr
L : e

8 0.3265

16 0.1633

32 0.0728
64 0.0285

TABLE 3.3 APPROXIMATIONS TO A BAND PASS FILTER

Pass Band = [ 0. 10wg, 0.25, ], Stop Band = [o :0.50wg | U [ 0.30wg, 0.5 ]
(The first and second stop bands are connected to the pass band by a 2nd and
3rd order polynomial respectively.

Filter Length Error .’
L e
8 0.3766.
16 0.3000
32 0.1820 .
64 0.0895
128 0.0371 -
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e. Frequency sampling method of design [8]: Helm's 4-T's method

described above first finds the filter impulse response and truncates it

to a desired degree of approximation in order to obtain a short filter.
Another technique for approximating a class of filter transfer functions is
due to Rabiner et al [8] who uses a frequency sampling approach. 1In this
method the resulting impulse response is 'folded' or ‘'aliased' rather than
being truncated. The steps in the design procedure are summarized below.

(a) A set of frequencies is chosen at which the sampled
frequency response is specified. This set consists of a number of points
much smaller than that required for an accurate representation of the
desired frequency response. The values of the transfer function at some
of the frequencies in the above set are left as design parameters. For
example, in the design of an ideal low pass filter the transfer function
at the pass band frequencies is fixed at 1 and at the stop band
frequencies is fixed at 0, but a few frequencies are considered transition
frequencies joining the pass and stop bands and the values of the transfer
function at these frequencies are considered design parameters.

v
ST

(b) The values of the continuous frequency response are obtained

in terms of assumed values of the design parameters by using either an explicit

formula (given by a sampling theorem) or interpolation using fast. Fourier
transform or chirp z-transform algorithm. Here, continuous frequency response
means the response at a number of frequencies which is much larger than the
number of frequency samples chosen in step (a) and adequate to characterize
the necessary features of the desired transfer function.

(c)* Using the interpolated frequency response the values of the
design parameters are readjusted until an error criterion is satisfied.
The error criterion, for example, could be that the maximum of the absolute
value of the difference between the approximating and the desired frequency
responses in a given frequency range be a minimum or in the case of an ideal
low pass filter that the maximum gain in the stop band should be a minimum.

(d) When the error criterion has been satisfied, the final values
of the free parameters are used along with the fixed values of sampled transfer
function which were determined in step (a). -

Rabiner et al have used this method to design a large number
of low pass and band pass filters and wide band differentiators. They have
provided tables in referenceB{}giving design data. These tables give the
band width, total number of frequency samples used, the values of transition
samples and the minimum gain in the stop band achieved for the low pass and
band pass filters. High pass filter frequency samples can be obtained from
these tables by subtracting all the low pass filter samples from 1. The
frequency samples for. band widths not listed in the tables can be obtained
by linear interpolation of the tabulated data. It has been found experi-
mentally [8] that the deviation of the maximum gain in the stop band obtained
by linear interpolation will be less than 6 db from the optimum.
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2, Spatial Domain Approach: The main difference between the
frequency domain approach to filter design and the spatial domain approach
occurs in the way the desired characteristics of the filter are specified.

In cases where the signal and noise spectra are known and are approximately
non-overlapping it is simple to choose a filter transfer function. This

would be a frequency domain approach. On the other hand, in some cases such
as matched filter design it is much simpler to specify the filters directly

in terms of the weights in the spatial domain. Also, nonlinear and spatially
variant filtering operations cannot be specified conveniently in the frequency
domain. This subsection presents two types of filters which are designed
using the spatial domain approach.

a. Matched filters (template matching): Matched filters have
traditionally been used for detection of signals in presence of noise in
communication systems [9-11]. These are derived in communication theory for
the one dimensional case andare optimal in the sense that they maximize
the signal to noise ratio. A derivation of the matched filter for the two
dimensional case which is useful for picture processing is given below
for the sake of completeness. (See reference [12] for a more detailed
discussion). The continuous case is considered first and the corresponding
equations for the discrete case follow easily.

Let f (x,y) be the input signal and let the corrupting
noise be n (x,y). Assume that n (x,y) is additive noise generated by a
wide sense stationary random process which is ergodic in its autocorrela-
tion. Let Ry (T,T) be the auto correlation and SNT (u,v) be the power
spectrum of noise. Let h (x,y) be the impulse response of the filter.

Now, the input to the filter is given by
f (x,y) = fI (x,y) + n (x,y) (3.17)
The output of the filter due to the signal is given by

£, (x,y) = f{ (x,y) * h(x,y) where * denotes convolution. Therefore, the

output signal has instantaneous energy at the point (&,n) given by

£, (§,M)

l .//Fo (u,v)'exp{j(ué+v77)} du dv 2
,ff FI (u,v) H (u,v) exp{ j (ué +v) } du dv

where Fy, F, and H are the Fourier transforms of fy, f; and h respectively.
The power spectrum of the output of the filter due to noise input is given by

S

2 (3.18)

S0 (u,¥) = Sy (u,V) lH (u,v)' (3.19)
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Therefore, the signal to noise ratio of the output is given by
f ﬁ]: (u,v) H (u,v) exp {j( (ué +v77)} du dv‘2

- I / fSNI (u,v) IH (u,v)' 2 g4y dv'

Now, it is well known (see[3] , for example) that the power spectrum S I(u,v)
is non-negative for all u,v. In particular, assume that Syj(u,v) >0 fgr all
u,v. (This is certainly true for the case of white noise input. For a
general treatment of _the case where SNI(u,v) is permitted to be zero for some
values of u,v see[}3] ). Then, using the Cauchy-Schwarz inequality on the
numerator of the right side of equation. (3.20), it follows that

f f'FI (u,v) '2 '/SNI (u,v) dudv f _/.SNI(U’V)' H(u,v)l2 dudv

f / Syt (u,v) 'H(u,\i)‘z dudv
' (3.21)

S
N

(3.20)

S <
N

That is,

% < f f 'FI (u,v)

From (3.20) and (3.22) it is easy to show that the maximum value of the output
signal to noise ratio is achieved if and only if

2
/sy1 (u,v) dudv (3.22)

*
H (u,v) =AF; (u,v) exp (-j (u§+ vn))/Syr (u,v) ‘ (3.23)

which is' the condition for (3.22) to hold with equality, where A is a constant
with respect to u and v and the asterisk denotes .complex conjugation. If the
noise is assumed to be white, then the expression (3.23) reduces to

H (u,v) = A} (u,v) exp (- (u§+vm)) - (3.26)

and the impulse response (i.e. point spread function) of the filter can be
written as ' ' ,

h(x,y) = Afy ( §=x, 7-y) o (3.25)

Therefore, for the particular case of additive white noise in the input, the
output signal to noise ratio at the point (£,7) is maximized if the filter
point spread function "matches" the input signal shifted to the point (§,7)
and reflected point by point in (£,7) to within a multiplicative constant.
In other words, if the location or locations of a particular image pattern
is to be detected in the presence of additive white noise one would just move
a template having that pattern over all points of the given picture and find
the locations at which the maxima of the cross correlation between the given
image and the template occur, Further, if contrast variations within a picture
need to be compensated for, then the maxima of normalized cross correlation
should be examined, '
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The discrete version of the matched filter equations can be
written down immediately. We shall assume here that only the variations
of the picture function over the local average are significant, so that
the template can be assumed to have zero mean. A set of weights {gy g:.-
are chosen with (k,AC)e[LK,K] x [-L,L] so’ that they represent the shape of
the pattern to be detected. The input picture (i.e., the picture to be
filtered) is given by {xi- = {Sij + ni’i where nj; is white noise which
is ergodic in its mean ana variance ana statistically independent of Sij.
Also, nji has zero mean. The normalized cross correlation between g}

and {x is given by

Yij = Ez 8 p ¥itk, j+ £ / ( ”g” 'ile’g ) (3.26)
where , ’
IE I= (kzigﬁ _L)% (3.27a)
and “xij“ = (ELX%-Fk,j-hZ)% (3.27b)
- .

4 s _
Now, the expected value of yiji is maximum when Bi+k, j* £ Agkeffor

K= X,...,K and £= -L,...,I. Further, due to the assumptions on the
noise, the actual values of y;; will be approximately equal to the expected
value for sufficiently large values of K and L and is given by

(3.28)"

viy ~ gl ' | (3.29)
ef =+ o] 2%

noting that ”ni ” is approximately constant with respect to i and j and
denoting it by ﬂn" « Thus, if one knows the statistics of noise, one can
use equation (3.29) to obtain a threshold on the normalized cross correla-
tion to decide whether the template matches at a particular location.

In recent years, the application of matched filtering for optical

character recognition and image pattern recognition has become very common

1, 12, 14, 15 ]. Unlike other image enhancement techniques matched filter-
ing does not, in general, produce an output image which looks like the
pattern being enhanced. Instead, it produces a “correlogram" from which
only the locations of template match can be determined. One can then
reconstruct the desired image using the corrélogram and the template.

In some cases, however, the correlogram itself (appropriately thresholded)
is a reasonable representation of the desired image. A particular case
where this is true is when -lines of a specified width in a particulbr
direction are to be enhanced. ' '
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b. Density Manipulations: Even though all filtering operations
described so far are in fact manipulations of the densities in the input
picture to get an output picture, we shall specialize the term density
manipulations to mean point operations (in contrast with local operations)
where the output due to a particular picture point depends on the density
at the point only (and not on the densities at some of the neighboring
points also). Such operations are sometimes useful for image enhancement
and are much faster than local operations.

(1) Table look up method: When the input data consists of only
a small set of integer values compared to the total number of data points
the density transformation can be implemented by defining it as a table.
When the input data is read the output is found by merely looking up the
table. This is a very fast method since no arithmetic operations are
involved. Examples of this method are (i) contrast stretching by subtract-
ing the minimum density number from the density number at a point and
linearly rescaling the density numbers over the available range (0 to 63)
(ii) modifying the distribution of densities by remapping of demsities, say,
to yield a linear distribution curve.

(2) Linear and non-linear scaling: More often than not, when image
data is filtered, the resulting set of numbers are both positive and negative
and are in floating point format (particularly in high pass and band pass
filtering). Therefore, in order to be able to display the filtered image
it is necessary to convert the numbers to integers between 0 and 63. In
order to obtain as much contrast as possible in the displayed image we set
the smallest number in the array to be 0 and the largest to be 63 and rescale
the data using a monotonic and non-decreasing function. The monotonic
function could be either linear or nonlinear (square law, logarithmic,
exponential, etc.) depending on whether contrast stretch should be uniform
over the density range or whether contrasts in some density ranges are to
be emphasised to a greater extent than in others. Sometimes it might be
desirable to set all data below a certain value to 63 and scale the data
in between according to a monotonic scaling function,

A program "SCALE" has been designed to take all these possibilities
into account. This program handles the input-output operations, computes
output using an externally specified scaling function, réunds off the computed
values to integers, truncates the resulting set of integers (if necessary)
to lie between O and 63 and, as an option, computes,the maximum, minimum and
mean of the input file which can be used in the scaling function. This
program can handle several input files on tape at a time without having to
rewind thetape several times, (The input tapes. will be rewound only once
if the option to compute maxima, minima and means is used).

An example of a function which can be used as an external function
in the routine SCALE is given below:

// P
yij = o3+, {(x ‘03)/ (0'4'0‘)} (3.30)
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where 0] is a bias. parameter,a9 >0 is the contrast factor, &3 is the back-
ground to be subtracted and O, can be taken as

) | (3.31)

oy = Max (! Max %3 Min xij
the maximum and minimum being over ij taking on all values within the domain
of data.

B, Filter Implementation Techniques

A general approach to linear shift invariant filter implementation
would be to store the two dimensional filter (elither the impulse response
or the frequency response) in core and find the convolution of the data with
the filter by bringing into core the appropriate sections of data. This is
the approach taken in most installations where special purpose hardware is
available for computing convolutions and disk files are available for inter-
mediate storage and retrieval of data. However, on a tape based system it
is simpler to do filtering in one dimension so that the data from tape may
be read, filtered and written on output tape sequentially, one record (i.e.
one picture line) at a time. Two dimensional filtering may then be per-
formed as a two pass procedure. This restricts the class of filters which
can be implemented to 'separable' filters whose two dimensional transfer
function H(u,v) can be written as a product Hj(u)Hy(v) or as a sum
Hj(u) + Ho(v). The two pass procedures for the product and sum type separable
filters are shown in figures 3.7 and 3.8 respectively.

There are several methods of implementation of one dimensional digital
filters. These can be broadly classified as nonrecursive and recursive
implementations. Both the implementations are discussed below.

1. Nonrecursive Implementations: The output of a one dimensional

linear filter is expressed in nonrecursive realizations by the formula

L-1

yi = z: 8 X {k (3.32)
k=0
The values of Y in (3.32) can be computed directly by multiplying

the terms of {g and{ x.}term by term and adding them. This would involve L
multiplications and (L-1) additions for every point of output, The number
of arithmetic operations can be reduced considerably in the case of a filter
whose length is much shorter than the length of an input data record by using
the Fast Fourier Transform (FFT) algorithm. A method which uses the FFT is
due to Stockham [16] and Helms El7 and is called the "select-saving'" method.
The steps in this method are summarized below: '

(a) A number L' is chosen where L'>L. The choice of an optimum
L' is governed by the radix of the FFT algorithm which determines the total
number of arithmetic operations required.

(b) The sequence {g }is appended with L'-L zeros at the end.
Denote the new sequence by {g' . Also let the first L' terms of the sequence
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{.x }be denoted by { x }

(c¢) The Discrete Fourier Transformé (DFT's) of {gf} and{ ;l}
are computed using FFT, :

(d) The IDFT {z }of the product of the DFT's above is computed.

_ (e) It can be shown that due to the cyclic nature of the DFT
only the values z for m = L-1, L,..., L'~1 are the valid values of convolution,
Therefore only those values are retained.

€3) Now,{ E'}is redefined by discarding its first L'-I#1 values,
reducing the subscripts of the remaining L-1 values by L'-L#+1l and appending
the next L'-I#1 values of the sequence ?x }to be original L-1 values of{x }.

(g) The steps (a) through (f) are repeated until all the values
of {x } have been used.

The number of arithmetic operations required for computing the
convolution for N points is approximately 3K additions and 2K multiplications
where

K = 2NL'(log, L')/(L'-1+1) (3.33)

This shows for long filters it is advantageous to use the select-saving method
and the advantage over direct convolutions increases as the length of the
filter increases., Now, the number of output values obtained with the select-
saving method is equal to (N-L+1l) when filtering a record of length N with

a filter with L weights. The output obtained .is given by the equations

Yo = ¥o8L-1 * X189 F .-t %X 4 8

YN-L = *N-18L-1 ¥ ¥y 180" -o0 t *w-180 (3.34)

However, it is desirable to obtain an output array consisting of the
same number of values as the input array so that the filtered picture and
the original picture have the same size. To do-this, it is necessary to
append the input array suitably with (L-1) extra components (which may
be chosen either zero or some other numbers, essentially to make the filtered
picture look reasonable even at the edges). Also it is convenient to store
the filter weights generated by the 4-T's method (Section III A.l.c) approxi=
mating the desired transfer function of the filter to within a known linear
phase difference, i.e., to within a known shift in the spatial domain. In
order to take these factors into account, two new arrays x, and yﬁ are
defined as shown below and select-saving method ‘is used with x' and g as
input and y' as output. ‘
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Define the sequence h = h,., ..., th-l as the set of weights
giving the desired approximationsto the filter transfer function found
by Helm's 4-T's method, where hy = ... = h(i#Nj-L-1) = 0. Then, these
weights are stored by writing i, L and the L "consecutive' non-zero
Weights{ g} given by

80 = hitN,-L

81 = byt -L+1

8r.i-1 = PNp-1

(3.35)
8L-i = ho
8r-i+1 = by
Br-1 = B
The output will be free from shift if
yo = ...+hix_1 + hgxg + hN1-1 X+ ...
. (3.36)
Yk = ...+h1xki1 + hoxk + th-lxk+1 ...
) -1 T oeee P RRg P BeXg TR ¥t e
where x, are to be suitably defined for k # [0, N-l] .
Now, the filter output due -to -input {xﬁ} using select-saving method
is given by
Yk = Xk 8p_q +-*L%1 B gt oee T Xy 18, (3.37)
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for k=0,1, ..., N-1,

Comparing (3.35), (3.36) and (3.37), it follows that the output in
(3.36) is obtained if

x! =

0 S X (4D
. To be defined
x' = x
i-2 -1
x' = x
i-1 0
' =
X *1
) (3.38)
' =
*ieN-2 -1
x' = X
- TiHN-1 N
o ~ To be defined
x! = X
ML-2 (ML-2) -(i-1)

and
¥ =y for k=0, 1, ..., N-1

:* The program which implements the above ‘nonrecursive filtering
technique provides for three types of definition for xi when kf [0, N-1 ]:

(1) periodic repitition with period N, i.e., x.1 = xy.7,
XN = X, etc.
(ii) reflection about end poiﬁts, i.e., X.1 = Xq, Xy = Xy.2s ete.

(iii) zero outside the given range, i.e., X1 = 0, Xy~ 0, etec.

This filter..implementation was tested by filtering a square wave record
consisting of 256 points using a high pass filter. The input record consisted
of four consecutivervalues of 22 followed by four values of 18 and so on.

The high pass filter:used is shown in figure 3.5. The original data and the
filtered data are shown in figures 3.9, 3.10, and 3.11 respectively for the
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three methods of appending the edges mentioned above.

The DFT (256 point) of the original data shown in Figures 3.9, 3.10
and 3.11 is given by

5120; X, = —-236 __ = x* X =256 =x*

4 ’ =X
X 32 l-exp(jn/4) 224 96 1l-exp(j37/4) 160

0

and
0 for all other n € [0, 255] .

X,

Now, the values of the filter transfer function corresponding to nonzero
values of the input spectrum are given by (see Figure 3.5).

* *
= . = =0 =G =1
Go = 05 G35 = €pp, 7 03 96 = €140
Therefore, the DFT of the output is given by
Y. = Y* = 256

96 ~ "160 T - exp (i37/%)
and Y, = 0 for all other n€[0, 255].

'~ Taking the IDFT of {Yn }, it is seen that

= . = - 1

The values of Yy, derived above are correct for all ne¢ [O, 255] under the
assumption that the sequence{xn } is periodic with period 256. This can be
seen in Figure 3.9 which corresponds to making the data periodic with period
256, : 2

=1

. = - 1 .
H Yz ET:?;F=§ sY3

However, in Figures 3.10, and 3.11, the values of ' y, derived above
are valid only in the middle regions where the 'edge' effects are absent.
Note that the edge effect is more pronounced in Figure 3.11 than in Figure
3.10. This happens because introducing zeros at the ends of the data
sequence causes large jumps at the ends while reflecting the data about the
ends does not produce such severe jumps.

This nonrecursive filter implementation was also used on a test
pattern made up of density variations along & record according to square
waves at various frequencies., The pictures of the test pattern before and
after filtering are shown in figures 3.12, 3.13, 3.14 and 3.15. The low,
high and band pass filters used in these pictures are the ones shown in
figures 3.4, 3.5 and 3.6 respectively. Note that the filtering is only one
dimensional. The low pass filter has a smoothing effect which worsens the
contrast of the original picture and the high pass filter produces contrast
enhancement, The band pass filter enhances the contrast, but not as
effectively as the high pass filter, since the highest of the frequencies
which contribute to the sharpness of the edges have been filtered out.

Note that in the high and band pass filtered pictures long horizontal edges
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Figure 3.12 A Test Pattern Generated with Square Waves
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Figure 3.13 Low Pass Filtered Test Pattern
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are missing since they are of zero frequency in the direction in which
‘filtering is carried out.

Also note the absence of the vertical lines corresponding to the
highest frequency in the low and band pass filtered pictures (the top and
bottom 1/16ths of the pictures).

Figure 3.16 shows the effect of band emphasis filtering on the test
pattern of Figure 3.12, The filter transfer function used is the same as
in Figure 3.6 except that the stop band gain is changed to 0.12 from 0. 1In
this figure the vertical edges are enhanced and the horizontal edges are also
preserved.

2, Recursive Implementations: The basic difference between
nonrecursive and recursive implementations is that in recursive implementations
the output computed at any stage is dependent on at least one of the previously
computed values of the output. That is, the equation giving the output is of
the form. :

M-1 L-1
2N Vi3 =20 8 Xy (3.38)
j=0 k=0

where hy =1 (with no loss of generality) and there exists at least one j
such that 1 < j ¢ M-1 and h; = 0. '

It has been shown by Rabiner and Schafer [18] that narrow band filters
designed by the frequency sampling techniques (section III.A.l.€) can be
implemented recursively faster than the fast convolution method.

In this section we describe another class of filters which lend them-
selves to very fast recursive implementations even in two dimensions and
also show how they can be used to generate matched filters.

a. Spatial and frequency domain characterization of the
filters: First of all, consider the one-dimensional filter which replaces
every pixel density by the average of the densities of 2L + 1 neighboring
pixels including the pixel itself.” That is, if x; is the input sequence
and yj 1s the output sequence, then

L
i = (kgL X4k ) /(2L + 1) (3.39)

Thus, the filter weights are g; where

Il

g; = /(2L + 1) for i€ [-L, L]

=0 for i¢ [-L, 1] (3.40)
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Figure 3.16 Band Emphasis Filtered Test Pattern



This filter is a linear phase filter whose modulation transfer function

is shown in Figure 3.17 for L=3. It can be seen from Figure 3.17 that the
'major lobe' is at the low frequency end and the first zero is at 1/(2L#1)
times the sampling frequency. Thus the filter is, in effect, a low pass
filter, even though it is not a good approximation to an ideal low pass
filter.

Now, from the above low pass filter it is easy to obtain a high
pass filter by subtracting the output of the low pass filter from the
input. That is, the average density of (2L + 1) neighboring pixels is
subtracted from each pixel density. If hj are the weights of this
filter, we can write

hy = 0; - 1/(2L+ 1) for je [-L, L]
= 0 for i¢ [-L, L] (3.41)
where
0; = 1l fori=0 and 6i =0 for i # O,

The modulation transfer function of this filter is shown in Figure 3.18 for
L = 20,

In general, the filter transfer function is derived from the filter
weights by employing the discrete Fourier transforms such that the (complex)
transfer function is

L
G W) = § L 81 exp(-3idk ) (3.42)

where 4 is the sampling interval in the original domain and wg is the sampl-
ing interval in the transform (frequency) domain. The zero frequency
behavior of the filter is given by G(wy) evaluated for k = 0. Ideally, a
low pass filter has unit transmission at zero frequency while the high
pass filter has zero transmission at this frequency. Thus general comnstraints
on the filter weights are

L
j=7 Bi = 1 for a low pass filter (3.43)
L
. %; g; = 0 for a high pass filter (3.44)
1=-

and these constraints are seen to be satisfied by the filter weights of
Equations (3.40) and (3.41).
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FIGL. LP FILTER WITH L=3
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‘Figure 3.17 Low Pass Filter with L=3
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FIG2. HP FILTER WITH L=20
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Figure 3.18 High Pass Filter with L=20
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In discussing the design of the class of filters based upon constant
weight low pass and high pass elements, it is convenient to represent the
filter function graphically in terms of the signs of the weights. This
representation is shown in Figure 3.19 for the basic low pass and high pass
filter functions, and it will be employed extensively in the remainder of
this discussion. Filter sample values may be assumed to be zero if no sign
is associated with the sample. It should be obvious from Figure 3.19 that
similarity of sign does not imply equality of weight, but the value of weight
to be associated with a given sign can generally be evaluated simply.

The basic low pass filter of Equation (3.40) can be used to produce
a band pass filter using two approaches. One approach is to have two low pass
filters g! and g as in Equation (3.40) of lengths (2K + 1) and (2L + 1)
respectlveiy where K<L and to subtract the output of the second from that
of the first. This, in effect, produces a filter whose weights are

1 1

b= ®ExT “me1  for te[K K]
= - ._._._1_.._ i - - | -
T for 1 e[ L, L] [ K, K]
= 0 ‘ for id[-L, L] (3.45)

The modulation transfer function corresponding to the weights in
Equation (3.45) is shown in Figure 3.20 for K = 3 and L = 20,

Another approach for generating a band pass filter is to use a low
pass filter (or Equation (3.40)) and a high pass filter (of Equation (3.41))
in tandem. Then, the modulation transfer function of the band pass filter
will be the product of those of the low and high pass filters. The filter
weights in this case are obtained by

o0
hy =k_zw gh' 1 ok for all i (3.46)
where {g-} are the low pass filter weights given by (3.40) with K instead of
L and{h are the high pass filter weights of Equation (3.41) and K< L. It
is easy to see that

= 1 - 1 el -
byt mrT | mwr ot el K]

= - “21—41'-7 for i€ [-K-1, -I+K |y [®1, L-K]

= EE%'T <1 - %ﬁﬂl) for i€[-L-K, -I#K-1][L-KF1,1+K ]

= 0 for i¢ [-L-K, I+K] (3.47)

The modulation transfer function of this type of band pass filter is
shown in Figure 3.21 for K= 3 and L = 20,
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FIG4. BP FILTER WITH LP AND HP IN TANDEM
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Figure 3.21 Band Pass Filter with Low Pass and High Pass
Filters in Tandem
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b. Filter realizations:

(1) Z - Transform representation of filter functions: A
convenient way to obtain the recursive realization of a filter in general
is to examine the Z-transform of its impulse response. If the impulse
response (represented numerically by the filter weights) of a filter is
given by the sequence {gl} ‘then the Z-transform G(Z) is given by (see [19]
for example)

Q
6(z) =2 g;z-i (3.48)

i==®
which is defined for all Z if {gi} has only a finite number of nonzero ele-
ments.

Now, the Z-transform of the output {yi} is related to the Z-transform
of the input {xi} by

Y(Z) = ¢(2) X (2) _— (3.49)

Therefore, from Equation (3. 40), the 1nput/output relatlonshlp for the low
pass filter can be written as

L ~(L+1)
- 1 (z_ -27° ) X(Z
¥(2) (2L + 1) (1 - z-D Q) « (3.50)

The realization of this as a first order recursive filter is shown in Figure
3.22. Here Z-1 denotes unit delay. The Z-transform of the impulse response
of the high pass filter of Equation (3.41) is given by

B(2) =1- 7+ D 170 (3.51)

The recursive realization corresponding to Equation (3.51) is shown in Figure
.3.23. Here, LP(L) denotes the low pass filter shown in Figure 3.22.

It is easy to see that the band pass filters defined by Equations
(3.45) and (3.47) can be realized as shown in Figures 3.24 and 3.25 respectively.
Also, recursive realizations can be readily derived for some two dimensional
low, high-and band pass filters from the basic low pass filter realization
in Figure 3.22.

(2) Two dimensional filters: Two general types of two-,
dimensional filters are realizable by a 'two pass' procedure, as discussed
in the beginning of Section III-B: (i) YSum" filters whose transfer func-
tion can be written as a sum of two functions each being a function of a
single frequency variable; (ii) "Product" filter whose transfer function can
be written as a product of two functions each being a function of a single
frequency variable. "Sum" filters can be implemented by filtering the input
separately in the horizontal and vertical directions and then adding the
outputs, "Product®™ filters can be implemented by filtering the input in one
direction and then filtering the result in the perpendicular direction.

Some of these two-dimensional filters are discussed below.
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FIGURE 3.23 RECURSIVE REALIZATION OF THE HIGHPASS FILTER OF EQUATION (3.41)
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FIGURE 3.24 RECURSIVE REALIZATION OF THE BANDPASS FILTER OF EQUATION (3.45)
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FIG. 3.25 RECURSIVE REALIZATION OF THE BAND PASS FILTER OF EQUATION (3.47)

1
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FIG. 3.26: RECURSIVE REALIZATION OF A 2 DIMENSIONAL LOW PASS FILTER (MOVING
AVERAGE GENERATOR)
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FIG. 3.27 ALTERNATE REPRESENTATION OF 2 DIMENSIONAL LOW PASS FILTER
IN FIGURE 3.26
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Suppose, for example, that it is necessary to implement a filter
whose output corresponding to a given point in a picture is the average
density of a (2L1+1) x (2Ly+1) rectangle centered about the given point.
Then, denoting basic low pass filters in the horizontal and vertical
directions by LPj(.) and LP,(.) respectively, the above filter can be
realized as shown in Figure 3.26. Of course, there is a difference in
the operations of LPj(.) and LP3(.) in that LP;(.) handles points within
a record (it operates along rows of the picture array) while LP5(.)
handles points from several records (it operates down colummns of the
picture array), Table 3.4 shows the realizations of a number of two-
dimensional filters using the basic low pass filter of Figure 3.22. The
table also shows the nature of the point spread function of each filter,
represented by the signs of the weights. In the implementation of the
filter shown in Figure  3.26, for example, the tape-to-core and core-to-
tape transfers and tape rewinds can be minimized by having the data to be
filtered on two tapes and reading the appropriate records from each tape
and then operating LPl(;) on them. These operations are represented in
Figure 3.27. Here Zz-l is a unit delay in the vertical direction. Thus,
when the ith record is being filtered, the (i + L2)th and (i - Ly -1)St
records are read, each from a different tape, and their difference is
added to the (i - 1)St record of y' which is held in core. LPj(L1) is
then operated on y'.

(3) Practical aspects of filter implementation: The manner
of implementing the recursive realization of the filters summarized in Table
3.4 is dependent entirely on the medium available for storage of the image
data. If sufficient core storage is available to store the entire image
array, the entire filter functions may be implemented as algorithms.

More realistically, the image array is stored on drum, disk or tape,
and to avoid excessive data seeking, the algorithms are modified slightly
and the image data records are restructured to facilitate processing.

The Z~transform variable may be identified with the forward shift
operator E associated with finite-difference equations. A filter operator
ZlL may thus be interpreted as a forward shift of a data sequence by L sample
intervals, and Z-L may similarly be interpreted as a backward shift by L
sample intervals (or correspondingly a delay of L units). When a data
sequence is stored in its entirety in core, a forward shift with respect
to a specific sample may be realized almost instantaneously, but this is
not feasible when the required data sequence is held within records stored
sequentially on tape. The forward shift operation is then implemented
physically by duplicating the data records on tape and advancing the
supplementary tape by the appropriate shift interval.

It is found in general that the number of arithmetic operations is
reduced if the vertical filtering is done first. The number of tape rewinds
is minimized by having the data on several tape units, The number of tape
units on which input data is to be present depends on the number of input
records needed simultaneously to form one record of output.
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Also, the edges of the picture should be augmented properly in order

to avoid unpleasant edge effects. This can be done by defining the data
outside the domain of the picture arbitrarily (See Section III-B.1). It

has been found from previous experience that good visual effects are obtained

by defining the data outside the domain to be the reflection of the data in

the nearest edge. The reflections of data needed while filtering each record

(i.e., horizontal filtering) can be generated in core. But the reflections

needed for vertical filtering have to be stored on tape. The number of

records which should Be reflected at the top (and bottom) of the picture is

K where (2K + 1) is the maximum anticipated vertical filter length. In fact,

it is convenient to handle the records if a tape is prepared with the

reflection at the top appearing first, the data records themselves appearing

next and the reflection at the bottom appearing at the end.

In Table 3.4, the number of tape units on which input data should be

supplied and also the number of tape units on which data and reflections
should be supplied are shown for each of the filters,

C. Extension to matched filter implementation: We shall now

present a simple extension of the recursive filters discussed above to some
particular cases of matched filters. We shall restrict ourselves to cases
where only the variations of density over the local average are of interest.

We can therefore choose the weights gk}cin equation (3.26) such that

2 g =0
g Kt

(this condition is satisfied by filters which are not low pass at least in

one dimension). Also, equation (3.26) is now modified to

K L , -
)IEEDD gy £ (Xp¥k, ¥ £ ~%1)
_ k==K {£=.1
2 - 2
kz’:[_ Bk L EZ (Xitk, 7+ £ =%44)
where

-— - 1 . .

1] (K+ 1) (2L + 1) Ee ik, 7 £

Now, from (3.52) it follows that the numerator of (3.53) is

>
g Z X. . z
k i+k, j¥
k=-K {=-L &
Also, from (3.54), it is easy to see that

2
Y Gup,pr et X T Y Fiek, g (D (L)%
) K L
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Further, note that‘Zi gz‘e is a constant over all i,j and hence
if linear scaling will be used for displaying data (as is most often the
case) this factor can be omitted from the expression (3.53) for Yije

Therefore, the recursive filters described above can be used to
generate ylj with the modlflcatlon shown in Figure 3.28. Note that in all
the filtersishown in Table 3.4, LPy(L,) appears either explicitly or
implicitly and that in some cases the tandem combination LPo(L )LPl(Ll) on
x in Figure 3.28 can be eliminated. Also, no additional input/output
operations are involved in the computation of the matched filter output
given by (3.53) compared with the computation of only the numerator of (3.53)
as is done in the case of the filters in table 3.4. Thus we have an
efficient implementation of matched filters which can be used for detection
of shapes resembling the point sp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>