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1. Introduction

This paper is devoted to the problem of existence of periodic

solutions for some nonautonomous neutral functional differential

equations• It is

essentially ^an application of a basic theorem on the Ffedholm

alternative for periodic solutions of some linear neutral equations

recently obtained by one of the authors [2] and of a generalized

Leray-Schauder theory developed by the second one [3, ̂ ]. Although

their proofs are surprisingly simple, the obtained results are

nontrivial extensions to the neutral case of a number of recent

existence theorems for periodic sol\itions of functional differential

equations. In particular, section 3 generalizes some existence

criteria due to one of the authors [5] and a corresponding recent

extension by J. Cronin [6], the example following Theorem .̂1 improves

a condition for existence given by Lopes [lU] for the equation of a

transmission line problem, and Theorem 5.1 generalizes a result due

to R. E. Fennell [7], Lastly, criteria analogous to Theorem 5.2

for the retarded case can be found in [8]. For partly related

results -concerning periodic solutions of neutral functional differ-

ential equations, see [9].

2. Fredholia Alternative for Linear Equations

Let C([a,bj,(R ) be the space of continuous functions from

[a,b] into (R with the topology of uniform convergence. For a

fixed r > 0, let C = C([-r,0~J,(Rn) with norm | cp| = sup |cp(0)|
-rO<D



for ep e C. If x e C([ a-r,cr+5],Rn) for some 5 > 0, let x. e C,
"C

t e [a.a+S] be defined by x (8) = x(t+0), 0 e [-r,0]. Suppose
t-

a> > 0 fixed, A: R X C -»(Rn is continuous, A"(t+a>)cp = A(t)cp for all

(t,cp) e (R X C, A(t)cp is linear in cp and there exists a continuous

function T. [0,°°) -»R, y"(0) = 0, such that

|A(t)cps| < r(s)|cps!, 0 < s < r

for all t e R and all functions cps e C such that cps(0) =0 for

0 e [-r,-s]. Let D: R X C -»Rn be defined by D(t)cp = 9(0) - A(t)cp.

The operator D is said to be stable if the zero solution of the

functional equation D(t)y. =0 is uniformly asymptotically stable!*c

that is, there are constants K, a > 0 such that if y(cp) is the

solution of D(t)y, = 0 with y = cp, then
\i O

|yt(<P)| < Ke'^jcpJ, t > 0, cp e C. (2.1)

Let & = {x e C(R,(Rn): x(t-ko) = x(t), t e R},

= {H e C(R,(Rn): H(0) = 0 and H(t) = at + h(t) for some

O)

^ = CH e C(R
03

a e Rn, he &}. For any he ^, let | h| = sup |h(t)| and for
n CKt<x.

any H e &T, H(t) = at + h(t), a e R, h e ̂  let | H| = | a| + | h| .

Proposition 2.1. If D is stable, then, for any c e R , there is

a unique solution Me of the equation D(t)xi = c in ^ .

Furthermore, M is a continuous linear operator from R' to &.



Proof; Following the proof of Lemma 3.U in [10], there are constants

b > 0, a > 0 and an appropriate equivalent norm in C such that

the solution x(cp c) of D(t)x, = c, x = cp, satisfies |x.(q>, c)| <
" C O " C ~ ~

< I c| b + |cp| exp(-at), t > 0, cp e C, c e Rn. If Tcp = x (cp,c), then

T is a contraction mapping. Thus, if d > 0 is sufficiently large

that | c| b + d exp(-aoo) < d, then T has a unique fixed point such

that |cpj < d. Consequently, there is a solution of the equation in

& . The fact that D is stable implies the uniqueness, linearity

and continuous dependence on c.

Let us rephrase Proposition 2.1 in a different way. Let

LI & -» & be the continuous linear mapping defined by
0) CO *

' Lx(t) = D(t)x. - D(0)x , t e R.t o

Proposition 2.1 implies that

ker L = {x e &: 3 c e Rn with x = Me}

is an n-dimensional subspace of & . Let P: & -» & be a con-

tinuous projection onto ker L.

For the statement of the next proposition, let Q:

be the continuous projection defined by

->

QH(t) = of (roH, t e (R.



Proposition 2.2. If D is stable, then Im L = ker Q and there

is a continuous linear operator K: Im L ->ker P such that K is

a right inverse of L. Thus, L is a Fredholm operator with index 0.

Proof; The second proof given in [2] of the Fredholm alternative

holds equally well for the equation D(t)x. = H(t). Thus, from [2],

dim ker L = codim Im L. Proposition 2.1 implies dim ker L = n.

For the equation Lx = H to have a solution, it is clearly necessary

that H e ker Q. Since codim ker Q = n, it follows that Im L = ker Q.

The existence of the bounded right inverse follows from [2] or one nay

apply the closed graph theorem to L| (l-P) &.

For the applications, it is necessary to be able to compute

ker L. In some simple cases, this is easily accomplished. For

example, if a(t) = a(t+o}), t e K, is an nxn matrix with

|a(t)| < k < 1 for t e K, then the unique solution Me in <p of

x(t) - a(t)x(t-r) = c (2.2)

is given by

(Me) (t) =
00 k

I + Z Ila(t-jr)
k=0 j=

c. (2.3)

Another case particularly interesting i\i the applications is

when D(t)cp is independent of t. Then ker L = {constant functions

in 9}.



3. Existence Theorems for Nonlinear Equations

With the above notations, let us consider the neutral func-

tional differential equation

=f(t,x) (3.1)

where D is stable and f I (R X C -> (R is co-periodic with respect

to t, continuous and takes bounded sets into bounded sets. If we

define NI & -» & by
CO CO

/

>

t
Nx(t) = / f(s,x )ds, t e IR,

0 S

it is'Clear that finding co-periodic solutions of (3.1) is equivalent

to solving the operator equation Lx = NX in & with L defined

in (2.7). To apply coincidence degree theory to this problem still

requires that N should be compact, i.e. continuous and taking

bounded sets of & into relatively compact sets of & .
CO CO

Proposition 3.1. Under the conditions listed above, N is compact.

Proof; The continuity is obvious. If S > 0 and x e & is such

that I xl < S, then | x | < S for every t e S and thus
"t

| f(s, x )| < T for some T > 0 and every s e E. It then follows
S

easily that



|Nx(t)| < T(l+au>), t 6 R

and

j) - Nx(t2)| < Tjtj-tgl, t^ t2 e (R

and Proposition 3.1 is a consequence of the Arzela-Ascoli theorem.

A direct application of Propositions 2.2̂  3.1 above and of

Theorem 5.l(i) of [3] gives the following

Theorem 3 . 1. If there exists an open bounded set ft C & whose- - . - - Q}

boundary Sfi contains no co-periodic solution of (3.1) and if the

£ -coincidence degree d[(L,N),ft] is not zero, then equation (3.1)

has at least one to-periodic solution in fi.

This result is quite general but requires the solution of

two difficult problems, namely, finding n (it is an a priori bound

problem) and estimating d[(L,N),fl], Theorem 7.2 of [3] reduces this

last question to the study of Brouwer degree of some well-defined

finite- dimensional mapping if the a priori estimate condition is

slightly strengthened. Let g: R x C X [0,1] -» Rn, (t,cp,\) -»g(t,ep,X,)

be co-periodic with respect to t, continuous, taking bounded sets

into bounded sets and such that

g(t,<p,l) = f(t,q>), (t,<p) e (R X C. (3.2)



Let M: Rn -» & be the mapping defined in Proposition 2.1 and

define $'. Rn ->(Rn by

i
= a)"1"/ g(t,(Ma)t,0)dt.

If D(t)cp is independent of t, one can put M = I, the identity

in this definition. Theorem 7.2 of [3] implies the following

Theorem 3.2. Suppose there exists an open "bounded set fl C &

for which the following conditions are satisfied.

1. For each \ e (0,1), the equation

|̂ D(t)xt = Xg(t,xt,X)

has no o-periodic solution on dfl.

2. 5?(a) ̂ 0 for every a e IR such_that Ma belongs to

3. The Brouwer degree d̂ [̂ ,fl,0] is not zero, where

fl = {a e R I Ma belongs to ft].

Then equation (3.1) has at least one to-periodic solution

in ft.

Another useful special case of Theorem 3.1 follows at once

from Theorem 7.3 of [3]. Suppose that the mapping g defined above

verifies (3.2) and the supplementary condition
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g(t,-<p,0) = -g(t,q>,0), (t,q>) €(RXC. (3.3)

Theorem 3.3. Suppose there exists an open bounded set ft C &

symmetric with respect to the origin, containing it and such that

dft contains no o>-periodic solution of each equation

|̂  D(t)xt - g(t,xt,X), X e [0,1]

with g verifying (3.2) and (3.3). Then equation (3.1) has at

least one oo-periodic solution in ft.

Let us note that (3.3) will always be satisfied if

g(t,cp,0) is linear with respect to cp. Also, Theorems 3.1, 3.2

and 3.3 are respective generalizations of Theorems 2, 3 and 4 of

[5] which all correspond to the case of retarded functional differ-

ential equations, i.e. Dcp = <p(0), and ft an open ball. Also, an

extension to the neutral case of Theorem 1 of [6] is easily obtained

by a suitable choice of ft and the properties of coincidence

degree.

k. An Application

Let us consider the neutral equation

N
"x(t) - Z Akx(t-r) = grad V[x(t)] + e(t)

JV*" _L



where. V: (Rn ->R is of class, ^, e e &, T e [-r.O)
CO xC

(k = 1.2 ... N) and the n x n constant matrices A. are suchK.

that

N
Z JAj = 1 - a, a> 0. (4.2)
k=l k

Let e be the mean value of e.

Theorem 4.1. If there exists R > 0 such that

-1 ̂e + oo / grad V[x(t)]dt ̂  0 for every x e ̂  satisfying

inf |x(t)| > R and if the Brouwer degree d̂ ["e + grad V, B(0,R),0]
t€R *

is not zero, then equation (4.1) has at least one to-periodic solution.

Proof: Let | •) and (•,•) respectively denote the Euclidean norm

and the inner product in . IRn. It is well known [ 10] that condition
N

(4.2) implies that the operator DI 9 ->cp(0) - £ A,q>(-T ) is
k=l k k

stable and the right hand side of (4.1) clearly takes bounded sets

into bounded sets. Let us consider the family of equations

A r N i
fr x(t) - ZA x(t-T ) =X grad V[x(t)] + Xe(t),
dtL k=l .1 (4.5)

X e (0,1).

If x is any o>-periodic solution of (4.3) for some X e (0, l) then
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x(t) must have a continuous first derivative (see [I1*-]) and

co N
of1 / <i(t) - S V<(t-T ), x(t))dt =

0 k=l * K

- C O C D

/ (grad V[x(t)], x(t)}dt + ko / (e(t), x(t) >dt,
0 0

which implies, using Schwarz inequality and (̂ .2),

1/2
•j p ilioopdt

0

-1 °* 2 \ -1
0 3 / | x(t) I dt ) < a TJ

2 —"I 2
with -r\ =03 / |e(t)| dt. Then, for every t, V e [0,03], we have

0

On the other hand, every o>-periodic solution of (k.3) verifies the

equation

1
e + co / grad V[x(t)]dt = 0

0

and hence there must exist some a e [0,a>] for which |x(a)| < R.

Taking t1 = a in (̂ A) we obtain

for every o>-periodic solution of (̂ .3). The result then follows
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from Theorem 3.2 by taking for P- the open ball of center 0 and

radius S in &.co

As an application of Theorem 4.1, let us consider the

special case of a scalar equation with one delay,

^ [x(t) + ax(t-r)] = p(x) + e(t)

where | a| < 1, e £ & and p(x) is a given function of x. This

equation arises in a transmission line problem with a shunt across

the line (see [13], [1̂ ]). Then, if p is any continuous function

such that |p(x)| -»*> if j xj -»» and p(x)p(-x) < 0 for all x

with | x| sufficiently large, there will exist one co-periodic

solution. Using Liapunov functions, Lopes [14] has obtained the

existence of an co-periodic solution of this special equation for

| a| < 1/2 and xp(x) -»+*> as | xj ->».

5. Neutral Functional Differential Equations with
Quasibounded Nonlinearities.

We shall consider in this section co-periodic equations of

the form

fr D(t)x = b(t,xj + f(t,x ) (5.1)
U . O I / O O

where D satisfies the conditions in section 2, b: (R x C -»(R ,

(t,cp) -»b(t,ep) is linear with respect to cp and continuous,
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f: R x C -»R is continuous, takes bounded sets into bounded sets

and is such that

lim sup (M'fCVP)!) = inf (sup M't^cp)!) = 0 (5.2)
|cp|>P

uniformly in t e IR.

Let us recall that a mapping FI X -»Y between normed spaces
•I

is quasi-bounded if the number H F@ = lim sup I xl ~ I Fxl is finite,
I I I I I I 7
|X| ôo

in vAiich case it is called the quasinorm of F [12]. We shall use

in this section a mapping theorem of Granas for compact quasibounded

perturbations of the identity [12] and a special case of its generaliza-

tion in the frame of coincidence degree theory

Proposition 5.1. If f satisfies the Conditions above, then the
t

mapping N: ̂  -> ̂  defined by Nx(t) = / f(s,xg)ds, t e (R, _is

compact, quasibounded and !1 N̂  = 0.

Proof; The compactness follows from Proposition 3.1. Now, if

G > 0, it follows from (5.1) and the fact that f takes bounded •

sets into bounded sets that there exist r(e) > 0 such that, for

every (t,cp) e R x C,

|f(t,cp)| <e|cp| + r.
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Hence, for every x e }

, CD t 0)
|Nx| = lew"-1 / f(s,x )ds| + sup |/ [f(f ,x ,) - CD"-1" / f(s,x )ds]dt'|

0 S te[0,o>] 0 X 0 S

| + r(e)]

which clearly implies |) N§ =0.

Now we can prove the following

Theorem 5.1. With D, b and f as above, suppose the linear

equation

|£ D(t)xt = b(t,xt) (5.3)

has no nontrivial co-periodic solution. Then equation (5.1) has at

least one CD-periodic solution.

Proof. The result is equivalent to solving the equation Lx - Bx = NX
t

in & with B: 5s -» & defined by Bx(t) = / b(s,x )ds, t e K,C D C D C D J \ / J \ J s / > )

and L,N as above. From Proposition 3.1 we know that B is a

compact mapping and L being a continuous Fredholm mapping of index

zero, the same is true for L - B [11]. As L - B is one-to-one by

our assumption on (5.3) it will necessarily be onto and such that
__ i

(L-B) : £& -» & is continuous. The proof of Theorem 5.1 is then
CD CD

equivalent to the fixed point problem x = (L-B) Wx in ^ with



I
(L-B) w clearly compact, quasibounded and of quasinorm zero. The

result then follows from Granas1 theorem. »

An interesting problem is now to try to drop the assumption

about the nonexistence of nontrivial co-periodic solutions for (5-3).

. It is clear from the Fredholm alternative that conditions upon f

will then be needed. We consider here the simplest case, i.e.

b(t,cp) = 0. Let us define &\ Rn -»(Rn by J*"(a) = co"1 / f(t, (Ma)t)dt.
0

If D(t)cp is independent of t, take M = I, the identity., in the

definition of .̂

Theorem 5.2. Let D and f be as above and suppose there exists

u > 0 such that | (Me) (t) | > u| c| for every t € (R and every
co

c e (R . If there exists R > 0 such that / f(s,x )ds =/ 0 fog

every x e ̂  verifying inf |x(t)| > RI and if dj J*,n 0] is
"

not zero, where fl = {a e (Rn: Ma e B(0,R)} and R = n~ JMJR-, then

the equation

(5.U)

has at least one a>-periodic solution.

Proof. We will use Propositions 3.1 and 5.1 above, and Theorem .̂

of [U], The proof will be complete if we show the existence of

a > 0 and R > 0 such that every co-periodic solution x of (5.
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satisfies the inequality

|Px| <o|(l-P)x| + R. (5.5)

Oi

If x is any o>periodic solution of (5.^), then / f(s, x )ds = 0
0 S

and hence there will exist a e [0,0)] such that |x(0)j < R .

Therefore, if c e R is such that Px = Me, we have

n| c| < | (Me) (a) | < R1 + | (l-P)x(a)! < RI + | (l-P)x) ,

which implies

Px| <

and (5.5) holds with a = n'MJ and R = i-.

Let us remark that if D(t)cp is independent of t, ker L

is the subspace of & of constant functions and the positive

number ^ involved above always exists and can be taken equal to

one. Hence, a simple example for Theorem 5.2 is given by the scalar

equation

[x(t) - ax(t-r)] = g(xt) + e(t) - (5.6)

where a e (-1,1), e e & has mean value zero, g: C ->(R is
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continuous, quasibounded with quasinorm zero, takes bounded sets

into bounded sets and is such that, for some R > 0, either

g(cp)cp(0) > 0 or g(cp)cp(8) < 0, for every 0 e [-r,0] and every

cp € C such that inf |cp(0)| > R. It is the case, for example,
[-r,0]

for the equation

x(t-r)
^r [x(t) + ax(t-r)] = b ^ + e(t)
dt |x(t-r)|

if | a| < 1, b ̂  0, e 6
-j /o

has mean value zero and y/| y| ' is

extended by 0 at y = 0.

To apply Theorem 5.2 to a scalar equation of the form

- a(t)x(t-r)] = g(xj + e(t)

with g and e as above and a e &, the crucial point is to

prove the existence of |a > 0 sxich that | (Me) (t)| > u| c| for

every t e E - and every c e R. The following propositions give

answers to this-problem. For the sake of brevity, we shall say

that the operator M associated with the scalar equation

x(t) - a(t)x(t-r) = c has property n if there exists n > 0

such that | (Mc)(t)| > n| c| for every t e R and every c e R.

Proposition 5.2. If |a(t)| < k for all t e R and k e [0,1/2),

then M has property n.
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Proof. From the relation

(Me) (t) - a(t) (Me) (t-r) = c

one obtains easily | Mc| < (l-k) | c| and hence

(Me) (t)| > | c| - kj (Me) (t-r)| > | c| (l-2k) (l-k)'1

for every t e (R and every c e E.

The following example will show that Proposition 5.2 is

the "best possible without supplementary assumptions on the

oscillatory character of a(t) . Let CD = p, p a positive integer,

r = 1 and a(t) fee a p-periodic continuous function such that

|a(t)| < k < 1, tee, a(o) = -k, a(m) = k (m = 1,2, t . .,p-l) .

Then, if x(t) is the solution of x(t) - a(t)x(t-l) = 1, property

H clearly will not hold if we exhibit one t e [0,p] such that

x(t) = 0. Using formula (2.3) and the form of a(t) we have

x(0) = 1 -

T i /l-̂  1.P/l-k
p

= x- k(Î T- k <wT~ "•

= 1 - k(̂ )(l-kp+k2p-...) = 1 - k(l-kp)(l-k)'1(l+kP)"1
j-~ K.

= r(k).
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It is easy to show that T (k) is strictly positive in [0,1/2) and

is strictly negative in a neighborhood of 1. Thus, x(0) = 0 for

some k e [-5, l) and this zero is arbitrary close to 7, if we take

p sufficiently large , as follows at once from the form of r(k) .

It is, however, possible to improve the condition upon k

when a(t) has a constant sign as follows from

Proposition 5.1. If ja(t)| < k < l and a(t) has constant sign,

then M has property ^.

Proof. Let us first consider the case where 0 < a(t) < k for every

t e E. Then M has property \JL because

= |l+a(t)+a(t)a(t-r) + ...| | c| > | c| .

Now suppose that -k < a(t) < 0 for every t e E. It is clear that

the unique en-periodic solution x of x(t) - a(t)x(t-r) = c is the

limit of the sequence (xm(t)} of co-periodic functions defined by

x°(t) = c, xnH"1(t) = c + a(t)xm(t-r), m = 0,1,2,... .

1 2 1
If c > 0, then x (t) = [l+a(t)]c > (l-k)c > 0, x (t) = c + a(t)x (t-r)

= (l-k+k2')c > 0, and if xm(t) > [ l-k+k2+.. . + (-l)mkm]c > 0,
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then xmfl(t) = c + a(t)xm(t-r) > c{l-k[ 1-kf. • . + (-l)\m]} =
O *n_L T TV\Tli. T

= [ 1-k+k +... + (-1) K ]c > O. Hence, by induction and passing

to the limit, we have | (Mc)(t)| > (l+k) | c| . Finally, suppose

that c < 0. Then,

c < x1(t) = c + a(t)c < (l-k)c < 0

and hence

c < x2(t) = c + a(t)x1(t-r) < (l-k)c < 0.

If we suppose that c < xm"1(t) < (l-k)c < 0, then 0 < a(t)xm~1(t-r)

< -ck and hence

0 > (l-k)c > xm(t) = c + a C ^ x - C t ) > c.

By induction and passing to the limit we have 0 > (l-k)c

> (Me) (t) > c and hence | (Mc)(t)j > (l-k)|c|, which achieves the

proof.

Corollary 5.1. If a is a constant verifying 0 < | a| < 1 then,

for every b e 9> such that | b(t)| < min(| a| ,| l-a| ), t e (R, the

mapping M associated with x(t) - [a+b(t) ]x(t-r) = c has

properxy n.
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