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1, INTRODUCTION

Linear wave propagation in hot collisionless plasmas is described
by the linearized Vlasov and Maxwell equations. In uniform media, the
utilization of spatial and temporal transforms of those equations leads

to the consideration of integrals of the type (Hilbert transform)

©

1(6) = [ w8 gag ag), (1)

where g(u) is a functional of the equilibrium velocity distribution
and §r , in the 1nitial value problem, represents a Landau or gyro
resonant normalized velocity.

The prominence of Maxwellian velocity distributions has led to

1
the tabulation™ of the plasma dispersion function Z(£) , defined as

[o-]

2
1 exp(-u
= — >
Z(g) 1/2 / du u - g <§1 O) > (2)
n -0
and as the analytic continuation of this for §1:E O . The essential

singularities of exp(—u2) at u =% i « preclude the computation of (2)
by contour integration using an infinite semicircle and Jordan's lemma,
Thus a closed form for the quadrature defining z(g) does not exist,

and its utilization is awkward.

It is our purpose here to analyze and compare two simple approxi-
mations to Z(€) and ZI(§) = dz(8)/d€ . The first approximation 1s
based on the utilization of resonance velocity distributions, and is
derived in Section 2. The second approximation is given in Section 3
and was proposed by Fried gz_gi.g Section L4 compares these two approxi-
mations. Section 5 applies them to Landau and whistler waves, and
Section 6 discusses the results, commenting on the possible improvement

of the Fried et al. approximation,



2. THE RESONANCE DISTRIBUTION APPROXIMATION

The Maxwellian velocity distribution

1 v2
FM(V) = '(';)1/2—"9 exp (— —3) ’

2v9
(3)
(vg)M = j/. dv FM(V) Ve = vg B dv fM(v) =1,

)

th
is sometimes” approximated by the n -order resonance distribution

1/2)2"1
¥ (v) _ [2V9(2n-5) ] [Ln-l)'.?g 1
Rn 2n (en-2)" [v2+ (2n_5)v§]n
® (4)
<V2>Rn = VS s / dv FRn(v) =1,

In terms of the complex v-plane, the essential singularities of
FM(V) at v =% i o are simulated by two nth~order poles at
These poles tend to v=%i® 35 n— o , and ,
as shown in Appendix A, the Maxwellian distribution 1s retrieved in the

limiting process:

lim FRn(v) = FM(V) . (5)

n - o«

This result suggests that Z(E) might be approximated by

z, (§) = —= i = (€, > 0)
Rn 2n (2n-2)" J (u2+yi)n(u-§) i

(6)
where y = (n-5/2)1/2 and n>2 . The quadrature can now be performed



by contour integration, Closing the path with an infinite semicircle

in the lower complex u-plane, we obtain ({1 > 0)

3 n-1
/ du - - onl ~ 1im d 1
[ (PePee) Ny e [ (any ) (acg)

(7)
so that ZRn becomes
n-1 ( )m
' v \i2y
z (§) = - (n:l): (2n—m—2?. n € >0) .
Rn (2n-2)" s (n-m-1)" (§+iyn)m+l 1

(8)

Integration by parts readily shows that 2'(E) = dzZ(£)/d€ can be
obtained from (2) by substituting d[exp(-ue)]/du for exp(—u2) .
Approximating the derivative of the Maxwellian by the derivative of the
resonance distribution amounts to term by term differentiation of (8).

The resonance distribution approximation of Z'(§) is then

n

_ (n-1) M (2n-m-1)",

ZRn(g) - (2n-2)! (n-m)"
m=1

m-1
m(12y )

m+1

(g, >0) .
(9)

(E+iy )

We note that 1t 1s sufficient to find an approximation to Z(g)
and z’(g) in one of the four quadrants of the §-plane because of the

symmetry properties of z(g) and its derivatives,
2" (g%) = ()™ 2P (e)T (10)

and the knowledge of their analytic cont;nuations into the lower

g-plane,u
2£(e) - [0 en]" 20 M2 ()P (em( D) (g, <0)

(11)



where the Hermite polynomials Hn(g) satisfy the recurrence relation

/

H (§) =288 ,(§8) -H , (B) ,  Hy(B) =1.



3, THE TWO-POLE APPROXIMATION

Instead of approximating the Maxwellian distribution and then
computing 1ts Hilbert transform, as done in Section 2, Fried et al.

have approximated Z and z’ directly, obtaining for §1 >0

2.(8) = = | 7=y - =75
F - 03 a(a-€) a*(a*+&) |’
r

L /2 (22)
; = 0.55 + 1 > = ar + 1 31 3
and
2/(€) = L [ 1 . 1 ]
F 2Br b(b-§)2 b*(b*+§)2
1 A ~
$=0.45+108 =b +1b . (13)

In the lower half-plane, §1 < 0 , Equation (11) 1s used to analytically
continue ZF and Z; .
Fried et al. have derived this form of ZF(§) by requiring that the
two-pole approximation displayed the symmetry properties and asymptotic
behavior of z(g). The imaginary part of 1/a was obtained by imposing
the condition Z(§=0) = ZF(§=O) , and the real part of 1/a was chosen,
with an "eyeballing" procedure, to minimize IZ-ZFI . In Section 6 we
shall comment on other possible criteria to choose the value of 1/a .,
The derivation given in Appendix B, or the substitution 1in (1) of
g(u) by the fF(u) given below, shows that the form of the (veloc1ty)

distribution fF(u) 1mplicitly utilized in the Fried et al, approxi-

mation of Z(E) is

h(a§+a§) 1

(L21+n)n1/2 l'_(u+ar)2 + af][(u-ar)2 + a?]

t-(u) = . (14)



- Whereas the essential singularities of the Maxwellian at u =% 1 «

)1/2

th
are simulated by two n -order poles at u =z 1(n-5/2 in the

- resonance distribution method, the approximation given by Fried et al.

ies theé use ot a velocity distribution with four single poles located

at u=*a * i a, (or u==*Db + b, in the case of Z/) .
r i r i F



L, COMPARISON OF THE TWO APPROXIMATIONS

The plasma dispersion function Z(§) represents the Hilbert trans-

form of

£,(w) = 75 exp(-u) . (15)

Similarly, the approximations ZF(E) and ZRn(E) are Hilbert trans-
forms of fF(u) given in (14), and

2n-1
(Eyn) [(n—l)'.]2 1

or (22t (2o (16)

fRn(u) =

These normalized velocity distributions are depicted in Fig. 1, with

n=2, for us O . We note that fF is a very good approximation
to fM for small values of u whereas fRn is a better asymptotic
approximation to fM . Because of the type of weighing imposed by the
numerator of the integrand in (2) near u =~ § , we.expect ZF to be

a better approximation to Z than ZRZ .

The actual comparison between Z and z' , and their approximations
z, and Z; with A=F , R2 and R6 , is given in Figs. 2-4 by
representing the complex error A(€) = Zg )(g)— Z( )(E) along three
distinct paths in the first quadrant of the complex E-plane. It is not
necessary to explore the other quadrants of the E-plane because of the
symmetry properties outlined at the end of Section 2.

These figures show that, except for large |§| , when simpler
asymptotic expressions may be used to simulate the plasma dispersion
function and 1ts derivative, the approximations suggested by Fried
EE_EL- are far superior to the approximations based on the resonance
distribution. As the 1llustrations suggest, 1t would be necessary to
go to high values of n to improve on the simulation suggested by
Fried et al. However, since the resonance approximation has n terms
and involves poles of up to the nth—order, 1t 1s clear that its use

for large n becomes awkward and, in the light of the Fried et al.

approximation, unjustified.
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FIG, 1. Comparison of the velocity distributions defined by (3),

(4) for n = 2 , and (1k4) with u = v/21/2v6 >0 .
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5. APPLICATION TO LANDAU AND WHISTLER WAVES

The dispersion relation of electron Landau waves propagating as

exp i(wt—kz) in a Maxwellian plasma is

k% = 2(g) E-%) - (17)

where we have

kv
Tw ’ T 0 t m
p p e

wp 1s the electron plasma frequency; k 1s Boltzmann's constant, and T
and me are the electron temperature and mass,
In Fig. 5 we plot the solutions of this dispersion relation for

5

real frequencies, K = K(W = Wr), corresponding to the lowest order root,

/

and compare them with the curves obtained by substituting ZF and Zég

for Z' . We use the expressions given in (9) for n = 2 , and (15)

when §l >0, and

23(8) = [25(69)]" - 12 € exp(-€?)  (a=rmz,E) (18)

for §1 <0 . (In Fig. 5 we have El < 0 .) Due to the difficulties
associated with |§| —~ ® as .W~— 1 , the curves obtained with Z; for
W < 1.08 are extrapolations. For reference, the solution of the Bohm
and Gross dispersion relation,

Wo=1 4+ g K° , (19)

1s also depicted,

The curves show that the two approximations yield roughly equi-
valent results: Zé is more adequate to compute K1 , whereas Zég
gives better agreement with Kr . We note that the resonance approxi-
mation was used for rather large values of |§‘ thus explaining 1its
relative success (see Section h). For applications involving small
|§| , the advantages of the Fried et al. approximation become clearer,

as we shall see for the whistler case.

12
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The dispersion relation of electron whistlers propagating as
exp i(wt—kz) along the static magnetic field in an isotropic Maxwellian

plasma is

KY _ P _ w1
(§) =1+ w5 20 (-5 . (20)
H
where we have
W v
ke w t
Ke=g , W=g , W =g~ , B=q

-

(0 is the electron cyclotron frequency defined by the static magnetic
field; c¢ 1is the speed of light in vacuum, and wb and vt were
defined 1in relation to (17).

After choosing Wp and B , we solve the dispersion relation for
real frequencies, K = K(W = Wr) , and plot the results corresponding
to the least damped root of (20) together with the solutions obtained
by substituting Z, and Z,, for Z . In Figs. 6-8 we have used
wp =5 and values of p corresponding to electron temperatures of 1,
10 and 100 eV, The approximations used for 2Z when §i >0 are ZF s

given by (12), and Z defined by (8) for n = 2 . When E <0 we

R2 ’
have adopted the following analytic continuations

z,(€) = [ZA(§*)]* + 102 exp(-£°) (A = R2,F) . (21)

Here we find §1 >0 for W< 1 and §1 <0 for W>1 , For compari-
son, these figures also show the solution of the cold whistler dispersion

relation,

(W)2=1+m . (22)

Because in the region of cyclotron resonance (W~ 1) we have
|§| ~ 0 , we expect the results obtained with the resonance method to
be poor approximations of the exact solutions in that domain (see

Section L), Indeed, the curves show that whereas ZF yi1elds a good

1k
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approximation, the solutions based on the resonance method yield poor

results that worsen with an increase in the electron temperature., In

particular, we find a discontinuity in the results for 1lim (W =1+ §)
-0

which is brought about by the combination of the error ZR2(§)- zZ(E) at

€ = 0, and the adopted analytic continuation (21). This discontinuity 1s

removed 1f we utilize (8) both for El > 0 and §1 <0 1.e. 1f we

J
analytically codtinue the algebraic expression (8) disregarding the
characteristics of the function that (8) is trying to simulate. However,
this procedure, although removing the discontinuity, shall bring about

larger errors than the adopted (21) as W(> 1) 1increases.

18



6. DISCUSSION

The results presented in Section 4, showing the superiority of the
two-pole approximation of the plasma dispersion function with respect
to the resonance approximation, are confirmed by the applications given
in Section 5, It should be noted, however, that the apparent simplicity
of both approximations, equations (8) and (12), is deceiving. When the
problem under cénsideration requires the utilization of the plasma
dispersion function both 1in the upper and lower half planes of its
argument (§i > 0 and §i < 0, as e.g. 1n the whistler problem for
W<1 and W > 1) 1t is necessary to utilize the analytic continuation
given by (11). The algebraic simplicity of the approximations 1s then
lost,

The criterion adopted by Fried et al. to obtain the two-pole
approximation was described in Section 3., Accepting the general form
(12) of the approximation, which satisfies the symmetry properties and
asymptotic behavior of Z(§) , we are left with the choice of the complex
parameter 1/a = a . Imposition of the condition z(§ = 0) = ZF(§ = 0)

determines Qi = n1/2/2 . But, if instead of minimizing ‘ZF-Zl by

A~

"eyeballing", a_ 1is chosen to minimize the square relative error
/]1 - ZF/ZI2 d§ over the most critical pathe, i.e. the real axis (here
taken between §r = 0 and 4), we find that the optimum value of Er 1s
~ 0,69 and not 0,55 as proposed by Fried et al, Also, the condition

z(§ = 0) = ZF(E = 0) might be discarded when Zp 1is not utilized for
small arguments, Then, minimizing the square relative error between

§r =0 and L for Qr = 0.69 , we find that the optimum value of 51

is &~ 0.85. PFigure 9 depicts the relative errors A = (2—Z)/|Z| for

72 = Z, given by (12), and Z = Zpo » Where Z.. 1s obtained from (12)
by putting a = 1/a = 0,69 + 1 0,85, We find that Zpo Yields smaller

errors than 2Z_ for §r > 0.4 .

F

19
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APPENDIX A
THE MAXWELLIAN DISTRIBUTION AS A LIMIT

To demonstrate (5), we use Stirling's formula to write
Lim [(n-1 .9 ~ 1lim 2 2(n-1) (nn)1/2 (a.1)
2n_2 - 4
n = n = «

and note that

2n-1
[gve(en—B)l/ej 52(n-1) o "
. v 1
lim 5 > = lim VE 1 + 5 < (A.2)
n-—" ® 2n[v +(2n—5)v9] n-—o® nve(en) 2v9
Substitution in (L) yields
1 F_(v) = 1 — 1 (14 XE—-l ‘“_ F (v) (A.3)
m Fp (v) = im 1/5 > a = Flv) . 3
n- ® n-o|(2x) 2 2vy

22



APPENDIX B
DERIVATION OF fF(u)

To obtain fF(u) we solve the integral equation

/ £ (u)
Z = d
Denoting the positive frequency part of fF(u) by f;(u) , that is7
f+(u) =L ds 1 (s) exp 1su (u_s 0)
F T 2n F 1 ?
0
(B.2)
fF(s) = j/. du fF(u) exp(—isu) s
we can write
£(u) +
z,(§) = du ——— = 1 2r £.(€) (8, >0) . (B.3)

Because %F(s) 1s the Fourier transform of fF(u) and we expect thais
velocity distribution to be real and even (1t simulates the Maxwellian
distrlbution), 1t follows the fF(s) will also be real and even,

Combining (12), (B.2) and (B.3) we find

+ i 1 1 -
2ﬁfF(§) 1A [a(E—aj * a*(§+a*)] =,/ ds fF(s) exp 1s § (gl >0),
0
(B.k4)
so that introducing p = - i we obtain

25



[oo]

l.la%b+1a) * 1.1a*%p-1a*):=j[ ds I;(s) exp(-ps) (b, =8, >0)
0
(B.5)

We retrieve %F(s) , for s >0 by 1inverting this Laplace

2

transform:
- _ exp(-1as) | exp ia*s
i(s) =7 v T1 a7
(B.6)
n1/2
= >
cos (ars) exp a s + 7T sin (ars) exp a_s (s >0) .

The desired velocity distribution 1s then obtained by inverting the

Fourier transform, and recalling that TF(S) is a real and even function

of s :
e} oo
f_(u) = L ds T (s) exp 1su = 1 ds T _(s) cos (su)
F en F 14 F
- © 0
la|
1 1 1
= + (B.7)
on 2 2 2 2
(u+ar) +as (u—ar) +a?
. 1 u+a i u-a
1/2 2 2 2 2]°
2.2x (u+ar) + a] (u-ar) + a)
Noting that 1.1 |a1| = n1/2 ar , we finally have
u(a2 + 32) 1
fp(u) = ——73 5 o 5 2
(1.214% )% [(u+ar) + al:”:(u—ar) + al]
with (B.8)
1
a2 -l
r 1.21+4x ? i~ 1.214w

2L
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