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1. INTRODUCTION

Linear wave propagation in hot collisionless plasmas is described

by the linearized Vlasov and Maxwell equations. In uniform media, the

utilization of spatial and temporal transforms of those equations leads

to the consideration of integrals of the type (Hilbert transform)

CO•/ (i)

where g(u) is a functional of the equilibrium velocity distribution

and 5 ) in the initial value problem, represents a Landau or gyro

resonant normalized velocity.

The prominence of Maxwellian velocity distributions has led to

the tabulation of the plasma dispersion function z(|) , defined as

and as the analytic continuation of this for § < 0 . The essential
2 ^

singularities of exp(-u ) at u = ± i °° preclude the computation of (2)

by contour integration using an infinite semicircle and Jordan's lemma.

Thus a closed form for the quadrature defining z(|) does not exist,

and its utilization is awkward.

It is our purpose here to analyze and compare two simple approxi-

mations to z(|) and z'(|) = dz(5)/d| . The first approximation is

based on the utilization of resonance velocity distributions, and is

derived in Section 2. The second approximation is given in Section 3
2

and was proposed by Fried et al . Section ij. compares these two approxi-

mations. Section 5 applies them to Landau and whistler waves, and

Section 6 discusses the results, commenting on the possible improvement

of the Fried et al . approximation.



2. THE RESONANCE DISTRIBUTION APPROXIMATION

The Maxwellian velocity distribution

=777172(at)
F»=—4: v

(3)

y dv FM(V) v
2 - v2 , y<v\ = J dv V v> v* = ve > I dv fM̂ ) = 1 >

_00

3 th
is sometimes approximated by the n -order resonance distribution

,.l2
FRn^ at (2n-2)'.

In terms of the complex v-plane, the essential singularities of

F (v) at v = ± i °° are simulated by two n -order poles at
1/2

v = ± i(2n-3) VQ . These poles tend to v = ± i < » as n - » ° o ^ and ,

as shown in Appendix A, the Maxwellian distribution is retrieved in the

limiting process:

lim FRn(v) = FM(v) . (5)
n -* oo

This result suggests that z(|) might be approximated by

2« (2n-2)' ^ (u2+y2)n(u_§)

(6)
I/?

where y = (n~3/2) and n>2 . The quadrature can now be performed



by contour integration. Closing the path with an infinite semicircle

in the lower complex u-plane, we obtain (| > 0)

00/ du
/ 2 2 \n / -v
(u +yn) (u-?;

2ni
" (n-1)'.

a11'1

u =-iy du
n

1

(u-iyn)n(u-5)

(7)

so that Z,, becomes
Rn

n-1

2n-m-2)'.
»m

(2n-2)'. I—I (n-m-1)'. (§+.y jm+1 (5, > o) •
m=0 'n'

(8)

Integration by parts readily shows that Z (|) = dz(?)/d| can be
P p

obtained from (2) by substituting d[exp(-u )]/du for exp(-u ) .

Approximating the derivative of the Maxwellian by the derivative of the

resonance distribution amounts to term by term differentiation of (8).

The resonance distribution approximation of z'(|) is then

> (̂  (n-1)'.
Rn^j - (2n-2)'.

iin-1

m=l
(n-m)'- (5+iy )M+1

(Si > 0) .

n
(9)

We note that it is sufficient to find an approximation to z(|)

and Z (§) in one of the four quadrants of the f-plane because of the

symmetry properties of z(§) and its derivatives,

Cz(n)(5)3* , (10)

and the knowledge of their analytic continuations into the lower
U

i* -plane,

Z(n)(§) = z(n)(|*)* + 21 « i < 0) ,

(11)



where the Hermite polynomials H (?) satisfy the recurrence relation

Hn (I) = 2? V^) - H^ (§) , HQ(5) = 1 .



3. THE TWO-POLE APPROXIMATION

Instead of approximating the Maxwellian distribution and then
2

computing its Hilbert transform, as done in Section 2, Fried et al.

have approximated Z and Z directly, obtaining for f > 0

2ar

7 = 0.55 +

and

1—1
*+?)

2J_b(b-5) b*(b*

= 0.145 + i 0.86 = t>r + i ̂  . (13)

In the lower half-plane, § < 0 , Equation (ll) is used to analytically

continue Z^, and Z .
r r

Fried et al . have derived this form of Z „(§) by requiring that the

two-pole approximation displayed the symmetry properties and asymptotic

behavior of z(| ) . The imaginary part of I/a was obtained by imposing

the condition z(§=0) = Z (§=0) , and the real part of I/a was chosen,

with an "eyeballing" procedure, to minimize | Z-Z | . In Section 6 we

shall comment on other possible criteria to choose the value of I/a .

The derivation given in Appendix B, or the substitution in (l) of

g(u) by the fp(
u) given below, shows that the form of the (velocity)

distribution fp(u) implicitly utilized in the Fried et al. approxi-

mation of Z(|) is

Ma2+a2)
f(u) = - r ?

[(u+ar) + a
2][(u-ar) + a

2]



Whereas the essential singularities of the Maxwellian at u = ± i »

are simulated by two n -order poles at u = ± i(n-J/2) in the

resonance distribution method, the approximation given by Fried et al.

^implies the use o± a velocity distribution with four single poles located

at u = ± a ± i a. (or u = ± b ±b. in the case of z') .



k. COMPARISON OF THE TWO APPROXIMATIONS

The plasma dispersion function Z(§) represents the Hilbert trans-

form of

1 2

it

Similarly, the approximations Z.,,(§) and Z_ (?) are Hilbert trans-
' r Kn

forms of fp(u) given in (U4-), and

These normalized velocity distributions are depicted in Fig. 1, with

n = 2 for u > 0 . We note that f is a very good approximation
* r

to f,, for small values of u whereas f is a better asymptotic
M Rn

approximation to f . Because of the type of weighing imposed by the

numerator of the integrand in (2) near u A* £ , we-expect Z to be

a better approximation to Z than Z .

The actual comparison between Z and Z } and their approximations

ZA and z' with A = F , R2 and R6 , is given in Figs. 2-U by
A A ' ('} ( ')
representing the complex error A(|) = Z\ '(!)- z (?) along three

distinct paths in the first quadrant of the complex 5-plane. It is not

necessary to explore the other quadrants of the |-plane because of the

symmetry properties outlined at the end of Section 2.

These figures show that, except for large |§| } when simpler

asymptotic expressions may be used to simulate the plasma dispersion

function and its derivative, the approximations suggested by Fried

et al. are far superior to the approximations based on the resonance

distribution. As the illustrations suggest, it would be necessary to

go to high values of n to improve on the simulation suggested by

Fried et al. However, since the resonance approximation has n terms
th

and involves poles of up to the n -order, it is clear that its use

for large n becomes awkward and, in the light of the Fried et al.

approximation, unjustified.

7



u
FIG. 1. Comparison of the velocity distributions defined by (3)

for n = 2 , and with u = v/21/2va > 0 .
C7
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(zR2-zH

IO(ZR6-Z)

0.5

IO(ZF-Z)
0 Ar
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FIG. IK Errors A(?) = Z - Z and
A

A = F . R2. R6 along | = 0 .' ' r
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5. APPLICATION TO LANDAU AND WHISTLER WAVES

The dispersion relation of electron Landau waves propagating as

exp i(tut-kz) in a Maxwell ian plasma is

(17)

where we have

K-^1* w - — v2K - <D > W - CD > Vt ~ '
P P e

0) is the electron plasma frequency; K is Boltzmann' s constant, and T

and m are the electron temperature and mass.
e

In Fig. 5 we plot the solutions of this dispersion relation for

real frequencies, K = K(W = W ), corresponding to the lowest order root,

and compare them with the curves obtained by substituting Z and Z
F R^

for z' . We use the expressions given in (9) for n = 2 , and (13)

when § > 0 , and

exp(-|2) (A = RZ,F) (l8)

for § < 0 . (in Fig. 5 we have | < 0 .) Due to the difficulties

associated with |§| ~* °° as .W -* 1 , the curves obtained with Z for
e\

W < 1.08 are extrapolations. For reference, the solution of the Bohm

and Gross dispersion relation,

w2 = i + K2 , (19)

is also depicted.

The curves show that the two approximations yield roughly equi-

valent results: Z is more adequate to compute K . whereas Z
F 1 nd.

gives better agreement with K . We note that the resonance approxi-

mation was used for rather large values of |5| thus explaining its

relative success (see Section 4). For applications involving small

||| , the advantages of the Fried et al . approximation become clearer,

as we shall see for the whistler case.

12
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The dispersion relation of electron whistlers propagating as

exp i(cut-kz) along the static magnetic field in an isotropic Maxwellian

plasma is

„ ! + -E_ Z(5) U = —} (20)
WKp VS; \* Kp / ' ^ '

\
where we have

0} V

K _ J E £ W - - W - - P - R - - i -K - o> > w ~ n > p ~ n > P ~ c

Q is the electron cyclotron frequency defined by the static magnetic

field; c is the speed of light in vacuum, and Oi and v were

defined in relation to (ij) .

After choosing W and p } we solve the dispersion relation for

real frequencies, K = K(W = W ) , and plot the results corresponding

to the least damped root of (20) together with the solutions obtained

by substituting Z_ and Z for Z . In Figs. 6-8 we have used
F f\d

W =5 and values of p corresponding to electron temperatures of 1,
P
10 and 100 eV. The approximations used for Z when |. > 0 are Z }

given by (12), and Z , defined by (8) for n = 2 . When ^ < 0 we

have adopted the following analytic continuations

= [zA(5*)] exp(-52) (A = R2,F) .

Here we find 5 > 0 for W < 1 and § < 0 for W > 1 . For compari-

son, these figures also show the solution of the cold whistler dispersion

relation,

v2 W2
(22)

Because in the region of cyclotron resonance (W ~ l) we have

||| ~ 0 , we expect the results obtained with the resonance method to

be poor approximations of the exact solutions in that domain (see

Section k). Indeed, the curves show that whereas Z yields a good
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approximation, the solutions based on the resonance method yield poor

results that worsen with an increase in the electron temperature. In

particular, we find a discontinuity in the results for lim (w = 1 ± 6)
6-0

which is brought about by the combination of the error Z (?)- z(|) at
Red

§ = 0 } and the adopted analytic continuation (21). This discontinuity is

removed if we utilize (8) both for § > 0 and | < 0 , i.e. if we

analytically continue the algebraic expression (8) disregarding the

characteristics of the function that (8) is trying to simulate. However,

this procedure, although removing the discontinuity, shall bring about

larger errors than the adopted (21) as w(> l) increases.

18



6. DISCUSSION

The results presented in Section 1+, showing the superiority of the

two-pole approximation of the plasma dispersion function with respect

to the resonance approximation, are confirmed by the applications given

in Section 5. It should be noted, however, that the apparent simplicity

of both approximations, equations (8) and (l2), is deceiving. When the
i

problem under consideration requires the utilization of the plasma

dispersion function both in the upper and lower half planes of its

argument (§. > 0 and |. < 0 , as e.g. in the whistler problem for

W < 1 and W > l) it is necessary to utilize the analytic continuation

given by (ll). The algebraic simplicity of the approximations is then

lost.

The criterion adopted by Fried et al. to obtain the two-pole

approximation was described in Section ~$. Accepting the general form

(12) of the approximation, which satisfies the symmetry properties and

asymptotic behavior of z(§) , we are left with the choice of the complex

parameter I/a = a . Imposition of the condition z(§ = 0) = Z (| = 0)

determines a. = rt /2 . But, if instead of minimizing |z -z| by

eyeballing", a is chosen to minimize the square relative error
~ i P P
1 - Ẑ z| d§ over the most critical path , i.e. the real axis (here

taken between | =0 and 4), we find that the optimum value of a is

« 0.69 and not 0.55 as proposed by Fried et al. Also, the condition

Z(5 = 0) = Z_(? = 0) might be discarded when Z_ is not utilized for
r r

small arguments. Then, minimizing the square relative error between

| =0 and 4 for a = 0.69 , we find that the optimum value of a.

is «0.85. Figure 9 depicts the relative errors A = (z-z)/|z| for

Z = Z_ given by (12). and Z = Z where Z-^ is obtained from (12)
F rU rU

by putting a = I/a = 0.69 + * 0.85. we find that Z__ yields smaller
i(J

errors than Z for § > O.k .

'•v
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APPENDIX A

THE MAXWELHAN DISTRIBUTION AS A LIMIT

To demonstrate (5), we use Stirling's formula to write

L(n-l)'.]2 .. 14_ -̂2(n-l) , ._a/2

jj — » oo n *"* °°

and note that

lim <
n -» oo

[2v0(2n-5)
1/2]2n"1

2Jt[v
2K2n-3)v2T

=3 lim
n -• oo

2(n-l) / 2 Tn~

rtve(2n)1/2 \ 2v2 V

(A.I)

Substitution in (1̂ ) yields

lim F (v) = lim
n -, oo

 Rn
 n ̂  a

. (A.2)

2-1

n.

-n

(A.3)
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APPENDIX B

DERIVATION OF f^
F

To obtain f,,(u) we solve the integral equation
1

e 0
. r-t

Denoting the positive frequency part of f-(u) by f
r(u) , that isFv

fp(u) = |^ / ds fF(s) exp isu

0
(B.2)

fp(s) = / du fF(u) exp(-isu) ,

-CO

we can write
00

J

Because f_,(s) is the Fourier transform of f,-,(u) and we expect this
F F

velocity distribution to be real and even (it simulates the Maxwellian

distribution), it follows the f-Cs) will also be real and even.

Combining (l2), (B.2) and (fi.j) we find

ds Vs) exp is 5 ^ > o)
0

(B.10

so that introducing p = - i§ we obtain



-/ ds f_(s) :i > 0)

(B.5)

We retrieve fp(
s) } f°

r s > 0 , by inverting this Laplace

transform:

exp(-ias) exp ia^
1.1 a + 1.1 a*

1/2
= cos (a s) exp a s H — - — — sin (a s) exp•T i i 9 j_ r a.s

(B.6)

(s > 0) .

The desired velocity distribution is then obtained by inverting the

Fourier transform, and recalling that p̂(s) is a real and even function

of s :

[«0

COfc/ds f^s) exp isur

oo

-*/
'•o

ds ip,(s) cos (su)

1 1
P P P P

(u+a ) +a. (u-a ) +ax r7 i v r7 i

2.2it
1/2

u + a u - a
2 2

Noting that 1.1 |a | = it a , we finally have

Ma2 + a2)
r i

(1.21-ht)/72 [(u+ar)
2 + a2][(u-ar)

2
 + a

2]

with

a =
2.2

r 1.21-ht ' i 1.21-ht

(B.T)

(B.8)
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