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1
FURTHER COMMENTS ON THE APPLICATION OF THE METHOD

OF AVERAGINB TO THE STUDY OF THE ROTATIONAL MOTIONS
OF A TRIAXIAL RIGID BODY, PART 3

1. Introduction

In [J.R.,1970]%, we derived a set of differential equa-
tions, analogous to the Lagrangg plap@ta;xﬁgquations, for use
in studying fhe éefturbations.of the rotational motions of ex-
tended rigid bodies. These differential (varliational) equations
are expressed in terms of the perturbing torques and théy are
valid for either conservative or nonconsefvative torques. In
[A.R.,1971], [F.R.,1972] and [M.R.,1973), these variational
equations were applied to the case 6f a rapidly spinning tfi-
.axial body moving in an elliptic orbit, in which the orbital
plane is regressing at a constaht rate. The explicit differ—
ential equations obtalned in this application were iﬁtegrated'
by the method of averaging (described in tF.R.,1971]) to develop
secular analytical-expressions,which, to first-order in a
small parameter, describe the cémplete space motions of tﬁe _

' rigid body under the influence of nonresonant gravity-gradienﬁ
perturbations. | | .
In this report, the effects of aerodynamic torque on the
rotational motion of an orbiting satellite will be studied, as
another.example of the application of the variational equations
derived in [J.R.,1970] and the method of averaging discussed
in [F;R;,1971]. As an artifidial satellite moves through thé

References to our earlier reports of June 16, 1970,
February 19, 1971, August 2, 1971, February 21, 1972, and
March 27, 1973 are indicated by [J.R.,1970}s [F.R.,1971],
[A.R.»1971), [F.R.,1972)and [M.R.,1973), respectively. -
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Earth's étmosphere, there is a drag force introduced by the
interactions of the oncoming molecular flow with the satellite
hull. This drag force, which is one of the most important of
the perturbing forces influencing the rotational motion of the
satellite about its center of mass,vbrinéé-ébéut secular_var-
iations in all of the variables, i.e.,'wH,GH, $ H,e',;t',h;
In particular, and unlike the gravity-gradient force, this drag
force brings about secular variations in both the magnitude of
‘the angular momehtum vector h and the coning angle 6'.
Beletskii [1] assumes a p}astic or perfectly inelastic
Iimpact of the molecules of the upper atmosphere with the sate-
1lite hull and ﬁeglects the effects due to the rotation of the
Earth's atmosphere. He further aésumes that the linear speed
of the satellite hull with respect to the center of mass is
very small compared to the speed of the center of mass itself.
He then derives a symbolic expression for the aerodynamic tor;
.qué N, about the center of mass, for é triaxial body with a
general Exterior surface. His expression is valid through terms
of first'order in the magnitude of the angular veloclty of the
rotation of the satellite relative to the atmosphere. His as-
sumptions will be used in this report in deriving an explicit
expression for the aerodynamic torque in.terms of & éonvenieht
cylindrical coordinate system. This general expression will
reduce to the expression for a satellite with a surface of

revolution given in [1].



The explicit expression for the torque for a satellite
with an'arbitrary shape involves surface.integrals whose limits
depehd upon the instantaneous surface of attack. . Although this
torque expression is analytically intractable for the general
caée, it does become manageable if the satellite has a surface’
of revolution. For this reason, the considerations here are
restricted to the study of the secular effects of aerodynamic
torque on an orbiting, uniaxial,éatéllite. Beletskil [1] uses
the same torque expressioﬂ*to study the secular‘motion.of the
angular momentum vector for a rapidly spinning, uniaxial, orEit—
ing body with a surface of revolution by applying the method of
averaging to.the Euler's dynamical equations. In this report,

however, the secular variations of all the six variables'which
describe the complete rotational motion of such a body about

its center of mass under the ihfluehce of aerodynamic torque
are studied by applying the method of averaging to the varia-
tional equations. Approximate, averaged, first-order, ordinary
differential equations for the six variables are obtained,

which are particularly convenient for numerical computation}'

If the problem is further simplified to the case of an ﬁni-
axial body moving in a circular orbit with éonstaﬁt air density.,
the approximate, averaged differential equations for the magni;
tude of angulaf momentum vector and coning angle can be inte-

grated. It is found, as a verification of the results given

There is a misprint in the torque expression for a sate-
1lite with a surface of revolution given in [1] [equation (1l.3.11
p. 16]. In a private communication, Beletskil agrees that the
correct expression for the torque is given by equation (3.17) >
of this report. :



Figure 2.1
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in [1]; that the magnitude of the aﬁgular momentum vecter de-
creas%s_exponentially with time approaching zero as a 1imitihg
¥alue, while the coning angle may either decrease or increaée
wiﬁﬁ'time approaching either zero or /2 as 1limiting values,

respéétively.

2. Coordinate Systems
-With reference to Figure 2.1, let Ox'y'z! represent sa

body-fixed system whose origin O coincides with thé centén of

' itiass of the satellite. The rectangular coordinate system ‘

Ox!'yttz!' is obtained by rotating the system OX'y'z' about z!

through . the angle /Svlin the sense shown. The angle_/—?V is

~determined by the condition that the y''-axis lies in the plane

determined by the z'-axis and the velocity yo (translated to O)
of the centef of mass with respéct to an inertial frame at geo-
center. The x''-axis is chosen to form a right-handed system.
Let i;,‘ii, k' and 1'', j'', k'', Dbe the unit vectors along the
xt, y'y 2' and x'', y'', z'' axes, respectively. The angle STV
1s drawn from the z'-axis to the line determined by Xo' The
cylindrical coordinates /9,732' of an arbitrary surface point.P
of the body is introduced where Y is reckoned from the y'-axis
in a counterclockwise direction in the x'y'-plane.» The unit

vectors assoclated with the cylindrical coordinates f);}f, z!

are designated by e , e gz,, respectively.
r o7
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The following relations can be obtained readily

ey =8 '+ k'', g .= Yo (a)
Voo v Sy VT
[ 100 e s 0 | FogT
= By By =
: (b) (2.1)
! = +9 c 0 '
. By - by 1
_15” o O 1 —J L _k'-
— - - --|
e ] -8 c 0 ] i
- - - O t
e GW 8, l (e)
e, 0 0 1 k'
- '~ - ’ _ - -

where e, represents the unit vector along Xo’

3. Aerodynamic Torque

Assume that the impacts of the air molecules of the
oncoming flow with the surface bf the satellite are plastic or:
-perfect inelastic and neglect the effects due to the rotation
of atmosphere. Beletskii [1] has shown that the aerodynamic
torqﬁe Eﬁ’ with respect to the body-fixed system, through
~terms of first order in the magnitude of the angular veloclty

'of rotation of the satellite relative to the atmosphere, is

given by



Mo yor.e S
S

(_.3.1)

+‘ % P v, y%t(zz-.@x ey x 2)¥+(2°‘2v)-(9.JXi') xr}ds
S

.

where ¢ 1s a coefficlent. The quantities Pa’> B r, and o
represent the atmospheric density, unit outward normal of the
surface element dS of the satellite, the position vector of
the surfaée element dS and the angular veldcity vector of_the
satellite's rotation abbut its center of mass, respectively.
.Phe domain of the surface integral is indicated by S and it-

1s defined by the inequality

> ' B
Y, n=o0 B (3.2

The remaeinder of this section will be devoted to the
development of an explicit expression for the torque (3.1) in
terms of the cylindrical coordinates p, y , and z'. The unit

outward normal to the éurface eiement dS can be written either

in the component form

n=n g +

Lot (3-3)

or

x (3.4

}o]
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+
o
q‘
s
+
s
N
o
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Using equation (2.1(' ¢c)), we can write

nx'="f>¢nsy -l_nb/ c (a)
| (3.5
- - r
‘ny' - [)-d—n* QX“%n“b"’sf""(b)

where n =
P = L%
Let (¢( /> ¥ z!) be the relation which describes the
_surface of the satellite. AIt is found that

Ve - CPf’gf +}f>—q)f e, ¢y e, (3.0

4
8nd that
£=2,0¢ 2 e +(1/(0 )¢, ey +7‘z. 2, (3.7)
[)-I»(J qS ( ) ¢2' 2 ]1/2
+ +cp
£ % 3 K

¢ 2 = . ad) ] d?)‘:' a¢
?(())- 3/ -
(3.8)

¢?= o Q » CPZ' = 2d

'Br. 7 zt

Comparing expressions (3.3) and (3.7)> we have
n_ = 2p Pgiz (&)

. 173
mp P ,,+(F) cp; + ¢2z,]



nb’ - T2 d;b" 1/2 (o)
_ [Ll-(:’ 2 r +( )‘—qj2 +cP2 .
?‘(ﬂ Pl o) (3.9)
ny': _ ‘ P ] _};'_(d
2 o, _2 @2 2 1
“\LP Cf’(‘).z+ (‘o) ¢Y + P Z']

) :
When referenced to the body-fixed system, the position vector

=

of the surface element dS has ‘the following form

r= x"ff + y* i' o+ ozt Xk - (3.10)

/

where

x' = -Fsy ’ y' = (30),_ (3.11)

" Using equations (3.5),(3.9),(3.10),(3.11) and the equations
of transformation (2.1), we can express (3.1) in the more

explicit form
N =lcp V. (N 14N "+ N k')
A T35 %P, 0 Vaxr = Aly' 4 Alzt ¥

+3ep Volliny@p + o0y

: (3.12)
3t
+ (lecﬁx, + J22“?y' + JZB“)Z') J

_ 5 o l
+‘(J31¢gx( + 32ooy. + J33cu;') k']



where, uox,, W, and w ‘ are the pectangular components of

' ) ‘sxpressed in the Ox'y'z' system, and

= { (2 - | ‘ )
Ny1xs 58*(2 schﬁV /ocsvcr)ne ds (a
SN, = ' - | )n_ds (b)
ALyt j*(z s5VSFV Fesy®y e |
= _ (e)
“a1z fx(f)sgvcﬂvsf FSSV Ay °y 17 95 °
S
s
- chvcr)-ne(z' + /; c) jds (d)‘
12 - gxi“n’d' i A A AR R
S .
- e n B2 as (e)(3.13)
PCSVCY nE(-’ SYCB/S S’ | e)(3.13

ey
]

13 = fx[n.x(z' 8 SVCIBV - {ocdcvcr )-nez.'/o S, 1as  (£)

J‘21 = f i[(_nz, - z'd‘n)roc.x +'_1___'_ z'na’ 1(z" SJ’V /?V
s¥ o

2 ' _
-locgvsx)-ne(g SX cy}ds | (S)
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Iy = 'f{[(nw - z'o‘n)ﬁ 5 -1 z Dy Cy J(a! 85v8§v
P ;
, 2 2 2
- rcs,vsx)—ne(z e s},)} das

Y23 = f‘*{nvf (2105 Ppy 0850y TR oy 18 (B
S

( h)

- - ! ]
J31..f*2[(nz, za‘n))Oc)+_1§_z n)sy](fsgvcﬂvsr

S

N (9

/J32 = f*{[}(nz. - z’d‘n)()s(y - ;L(b_ z? n, ca, ](@ssvcﬁvs} :
S .
_()SSVSFVC)/) + ng z'lo cJ} das (.lf)
| | | {3.13)
I = - -n_ p* |
33 S x[n(f}sgvc»ﬁvsb’ fssvsﬁvcaf) Yo f ],ds (4
S : .
ne=ssvsﬁv(Fa*nsr+;;nb,c7)
(1)

nysy) + 1, cgv

'ol"‘

+8. ¢ {(p G e, -
iy pyl 0%t

Equation (3.12) gives the aserodynamic torgue _I_QA for a

body with a general surface. Even for short periods of time‘

it 1s .obsérved ‘that _IjA is time dependent, principally through

§  and /9V. For longer perlods of time V _and w must also be
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conslidered to be time dependent vector quantities as they ép- '
pear in N, . The expression yA becomes simpler for a body with a
surface of revolution with respect to z'-axis since n3,= 0.
Moreever, if the semi-constré_iped system Ox''y''z'! 1s chosen

as the reference systemn, the simplications

p-v = 0, W =.wx,’, (3.1
' 2
f;sx dy = f SX ck d‘), ._ J sJ cr dy =0
s”. ' s* _ s%
may be introduced and theﬁ it is found that
NAlX' = NA].Y? = J12 = J13 = _J21 = J31 =0 | (8.)
Npq, _a(gv) &y X k (p) (3.1c
Jiy = - [(2' "+ “ )n +(n.0‘z)[) ]
11 v r % z y

. 2 2 .
-SSVS"(Zl +f sx) G\nf cb,dS o (a)



=1, = ' 4 g
I23 Ih"sgvszcr P oy dSMc?vjxnz'locb’d (e)
S S
;32=12=cgvfz'nzlf>c dS+sSV( [o’“z'(’co,
Sk .- SRR
2 2 .
+‘9 sb/(n -z'd‘)} 4s () (3.15)

' 2
' = =1, = a 3 das
Tag 1 cgvg‘nZ,[DdS+s£V5 nf ¢y (g)

where

W, = ' 2 2
1= (2' n, - ajnfo o ) as (b) |
g% - (3.16)
— ‘ t l
W, = g z Gﬂrf ey as ~{e)
s¥ |
W o= , | |
3 g nz'(} cb/ as | (é) |
s¥ ‘
PThen expression (3.12) becomes
| 2 _ N
EAzé_(laVoc(gv) gvxyw%c(oavo; | (3.17)
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- ) ' _ . N - 3
I-= 1;5 oW F UL IBwy”+ Iu(,dz”)_ln.,.(leuoy“ Il,wz,,)_l_&_

(3.18)
Expression_(3.17) is exactly the same_as given in [1].
The aerodynamic torque (3.17) can be analyzed in two sepa-

rate parts. Thefirst part, which arises because the center of
pressure does not coincide with ﬁhe center of mass of the sate-

1lite, will be referred as the restoring torque EAR' The second

- part which introduces damping effects caused by the spin of the
satellite with respect to its center of mass, will be reffered

as the dissipative torque N,

D 'In the notation just described,
(3.17) can be rewritten in the form

A= Lpt iy | (3.19)
where
N_ =1 ve 3 $) ' )
AR ~ 3 fa o B v &y * K (8)
(3.20)
N-AD=%°.(°aVo; (b)

. Approximations of the Aerodynamic Torque

Equation (3.12) gives a description of the aerodynamic
torque for a body of arbitrary shape. In principle, the torque
1s to be .calculated by integrating over.thevsurface of attack
S*. It 1s noted, however, that the integra1s which.are involved

may be analytically quite ihtractable since the integration
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limits depénd upon the surface of attack S". 1In turn, the sur-
4 face of attack may depend éiscontinﬁously upon the time through
the vériables B v and & v’ Simplification may be achieved in
certain important specilal casés, however. For example, in this
report, the perturbation caused by aerodynamic torque will be
analyzed in the special case where the satellite possessés a
surféce of revblution and the semi-constrained system is chosen
to be the reference. In what follows, the considerations are‘
restricted to this special case. |

It 1s indicated by Beletskii[l] that the principal quantié
tative andlqualitative effects of'the‘aerodynamic torque which
are common for various bodies of the type considered, can be )
desc#ibed by using‘certain approximate formulas for Wy and Ij;
where 1= 1,2,3; j=1,2,3,L4,5. These formulas are described
briefly in this section.

(a) Restoring Torque

First of all, attention is concentrated on the restor-
ing torque which is free of the spin of the satellite. Construct

surface S, which is parallel to unit vector ey and S, which

is'perpendicular to &y’ in such a way that if combined with

%., a closed surface in space is formed,

the surface of attack S
as shown in‘Figure h.1.

From equations (3.1) and (3.19), we have

=1c Pa V: &y % 5 *(g . gv) r as (4.1)

S
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Let Sx’+ S1 + SO be a piecewlse smooth orientable surface and
let u be a vector functibn of the coordinates (i',y', z') which
is continuous and has éontinuous first partial derivatives with
respect to the coordinates in some domain 7~ containing

x_~ . - . . : - - - - = = - - - -
S+ S1 + So. Using the divergence theorem, we may write

u'n ds = jv- ua® (4.2)
™~

X .
S +Sl+So

and, since

(n*edr = (x' ey -nli' + (y' ey-nli' + (2 $V'£)k' (Le3)

we can write

(u-or ds =i'§ Voxt gpar w2 vy epar
> ™

-~

»#
S +Sl+So

+ l_c'f v (2’ g\})dr
7/

'Since &, 1s independent of tlhe coordinmates x', y', and z!', it

v
can be -shown that

(n-edr as = 1 gy el
x B
S +5¢+ 3,
‘where 7 is the volume enclosed by the surface S + S

1 + S0 .
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Since the surfaces S1 and So are so constriucted that

_r-11 . EV = 0, n, .EV = -1 ()4.5)
the expression for the restoring aserodynamical torque takes

the form

| 2 .
Np=1cp, Vs ey S’ r' ds (14.6)

where r! is the position vector of an arbitrary surface element

of So with respect to the center of mass of the satellite.

Let O' be the projeétion of the center of mass on So, xr,

be the position vector of 0O', and ;; be the position vector

of any material point of S, with respect to 0'. We have, along

surface So’

' t )
£l = 20 + _I'_s (Ll"’?)
and hence
2 '
Np = % cr>a Vo Soley x zos) (L4.8)
where 2;8 is the position vector of the centroid of surface So

with respect to 0'. The vector product e X-E;s will be either

\
in the positive or negative sense of x'', The_magnitude of

Nygp 1s
_ 2 ] Yo ‘ : \
VAR "% cfa Vo S0 Tos?  Tos = -r—'os‘ (L.9)
As shown in Figure l.l, r =7 s » where Z  1s the

08 o~ § v
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distance between the center of mass and the center of pressure,

Z, = OP. Let the projection of P on S: be P'; the centroid of

S,+ Equation (4.8) can be rewritten in the form

=loep, VoS, Zo ey x k' - (4.10)

Comparing (l.10) with expression (3.20(a)), it is found that
o( SV) = ¢ 8 (§)2,(5y) (4.11)
For perfect inelastic collisions, it is also true that
é( SV) = ¢8(n - §V) (14..12)-

Note, from equations (3.16(c)) and 3.16(d)), that, at an
instant of time at which either S’V = 0 or SV =7 W, = w3 = 0.

This suggests the approximations

W2=sgvf2($v) ’ (a)
(4.13)
W3=sgvf3( §y | (b)
Where f2 and f3 are functions of ?V. Then equation (3.16(a))
becomes
- 2
o §V) = c[W1 cgv«i- f2 - (f2+f3)- cSV] | (Lo1l)

which is a polynomisl in ¢ g + We may write (4.14) in the form
\Y

S = Cy+ Gy c‘}v (4.15)
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where 4
1 °¢ V+ f2) - (a)

(L.16)
Cp = = o(fy+f,) (b)

In generél'Cd and C, depend slowly upon time. A meaningful
simple approximation to (l.1l) i$ obtained by assuming that

" both Coand C., are constants which can be determined either by

2
using equation (l.11) or any alternative method such that
expressions (u.ls} give reasonable approximation of E(S'V);
If the collisions between the molecules.of the oncoming
flow and the surface of the satellite are not perfectly in-

elastic and reflectlons occur, then equation (4.12) does not

 apply. In this circumstance; the éimple approximation

2

i .
e(Sy) =C. +Cy ¢ + C. ¢ «17)
(oy o 1 éV 2%y (4.17 |
where C; =c f2, Cl =c Wl, may be introduced. If however,

the satellite 1s also symmetric about a plane which is perpen-
dicular to the sxis of symmetry, equation (u.12) will hold ir-
respective of the reflections of the molecules and eduétion
(4.15) will describe the case approximately. For a small anéle

of attack, we may even choose

¢ =C,+ Cp + C2 = constant | (L4+18)

(b) Dissipative Torque

Next consider the problem of approximating the dissipa-

tive part of the aerodynamic torque given by equation (3.20(b)).
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Approximatewformulgs“will*be‘assumed.for Ij’ j=1,2,3,4s,5. Re-
-calling the reasontng;fof”eQuations (4+13) ;5 it may be observed

from equation (3:15) that, whenever the factor ¢  , appears

Y

in ‘gn-integrand, fhe.inxegrél may be assumed in the form

1: I3 ahd IS

78;- fj(éfv). Therefore, we may consider that I
v - _
-a¥e positive quantities for any value of S“V and that the

principal parts of these functions are constants. It is also

‘hoted that when'e;ther.3?V‘;-O or m, the difference I5 - I3_

Is zero. Thus,the~principA1uparté‘df‘IBand I, may be approxi-

5

mated by the same constant. As to I, and Iu; they are functions

2

of the form & s £ j‘:( by V) .« In summary; & simple approximate for
_ v , _ _

N . fiay be obtained by assuming that

Yy
4I3 = 15.= Cll ' (a)
I, = C33 , (b)

. _ (L4.19)

12 ,= C32$ S-V ' ' (C) o

Ih = 0238 5 v (d)

where ‘the Cijzarepconstants.: Reasonable estimates of these
constants can be obtained by averaging the values of Ij at

VSV = 0 and 1‘[/2?
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5. First-Order, Secular Solutions for a Uniaxial Body with a
Surface of Revolution Subjected to Restoring Aerodynamic

Torque

Let the center of mass of the satellite move along an

elliptic orbit about an attracting center at O. Assume that the
‘inclinétion angle'ed of the orbital plane;Afﬁe semimajor_axis

& the eccentricity e and the rate‘of orbital precession'ji
are constants and let w represent the true anomaly. We-can
then write the well-known equation from orbital theory that

/2 f,‘

v, = (/L/p*)1 £f=(1+ e2 + 2e cw)l/2 (5.1)

.where /L is a constant equal to the product.of the sum of tﬁe
~attracting maés and the aatellite's maés wlth the gravitational
constant and p* = a(l - e2). Let 0 f' ' S' represent a
rectangular coordinate systeﬁ in which the g" axis is perpen-
dicular to the orbital plane, positive in the sense shown in
Figure 5.1. ' The positive S' axis i1s chosen to coincide with
the half line from O through perigee. Then ﬁ" 1s chosen to
coﬁplefe a right handed coordinate system. The unit vectors
associated with the O €.' n' A§' system are designated by
1._', i E', k _ , respectively.

§ St
It is clear that

Loy =ogl e, 00 (a)

’ Q ’ - (;02)
i_, =8, 1°+c, 1° ()

QN

(e + o) 4_,) (o)

ey =-1[s,1
v r T

§l



Filgure 5.1
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If the definitiohs

c, c(y} _ep) + e.é(V’H"D) | 8
H ' '
(5.3)
s, = S(V)H'GL) + e S(WH‘“J) (b)
are introduced, it can be shown that
&y % 4’ +e,8 4 geH)i+(-bs 84)H+CAC<PH H)j - ¢,8 Hk ] (a)
o x ;3 = %f(—sAs by Ot C¢'H oyC0r cAseHse.)i
| (5.1)
(sc¢ ,+-cs¢HeHeJJ
-(s c¢ " +°AS¢ 6y el)k] ' | _ (b)
c Sy " eyt k' = 1(5 s¢ ot ¢ Sg1°g 0" SeHce.cA) (e

If the approximate formula (L.17) and the relations (5.1)
- through (5.04) are substituted into the torque equétion (3.20(4).
it follows that

N = Ny 4 |
“aR T SARx = * Nppo d+ Ny, ko (545)




(5.6)
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s+c
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8 c-c + c c)s3
APy Oy “PHS"HQ A2A¢H¢H9 !

' 2 3 2
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When the torque expfession (5.5) and relations jh.g{# are
substituted into equations (l.l) ', equations (4.3) give the.
varigtional equations for the perturbed problem.

Aé in the analysis presented_ip!{M.R,ll973], it is as;
sumed that thé precession rgteﬁfl and- the asrodynamic torque
-are of the same order of magnitude. Let Gzllrepresent the
ratio of the magnitude of aerodynamic. torque to'the rétatibnal

energy of the orbiting body'about‘its center of mass and define

xl"(xj;yk) = 1 X

(X 3y ) sy 1=1,2,... »6 ) (5-’7)
G]. :

1" %k

where j=1,25...56, k=1,2, and yl,‘yz represent the fast vafia-
bles M, v*',respectively. Then the variational equations (l.3) .
“ﬁ:také the form f

Xi = élXi'(xj,’yk), i=l:2:---,6 _ (5408) .

It is tq be noted that the perturbing functions X;'(x :yk),1=1,

25++056, are periodic functions of each yk,k=1,2, witi period
2n. Thus, the new dynamical system given by (5.8)

and, (see [A.R.>1971,Eqs.(3.3(b)),(3.8)] and [F.R.,1972,Eq.
(2.5(e)) 1))

3, = =n | (a) (5.9)

U All equations designated (L.1j),1i,J, nonnegative integers,
refer to equations given in [F.R.,1972]}.

When A = B, we have R = 0, q = 0,8= /2, y° = O,¥= 0,
A(1/2,0) =1 A(0,K) = 0, fg= u/f and 0.0 = O. Y
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Is 2

=a*=;,,H=w*'=h (b) (5.9)

can be treated by the method of. averaging.

_ A transformation

= X Rt!
X X + 61 1 (x

i i ’.yk)’ i=1?'23000’6 (;'lo)

J

to new variables is introduced, so that, for suitable functions

R;'(ij;'yk) the fast variables y , k=1,2, are eliminated from
the transformed dynamical system to the first order in € 1
If relations [F.R.,1971,Eq.(1.13(a))] are used, the transform-

ed (the averaged) variational equations take the form

S, 2 2n . 21 : .
Ry = €.,(1) Xt (R sy )dfl dag» 1=1,2,...56 -
i _1 e f Jﬁ i Ik | H
0. 0
or more simply
2n 2%
[ J /q )
% — 1 X i H ) dﬁ d » 121,2}.oo 6 011)
0 0
The definitions
2n ,
-2
o=x |fa
0
27 . A
ke = 1 5 8 . £aM (6)  (5.12)
1 2% f?}(VHJE) L
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"are introduced for economy of notation. After an integration

over M and <¢H from O to 2% is perfomed, the averaged differ-

ential equations (5.11) take the form

Ve

- {c ,+8,, cOt, ¢ 0 L
60" "go oy Wy

+ _oM {C(’)[k7+eko c(y) o Cer

y Jecot c
2hp~ -w) ©

H

+ %1k ek e (1-36-.)
R c(‘?‘)H'“)) o'

O

c, [ﬁ( klz+ek9 8 )+

2 -1
+(k1hfek10 c(m#H_a)))( ceH ‘>] cot ’

+ C (k +ek

3 [
2 1} 10 Q(YM"“H) SGHCGH 09!} (a) (5.13).

. ’ 1 .
' = - 2 <« -
2] 8 gqy e M { Co(k6+eko S(V H_Q))]se'

C 2 V 2
[2(kh+ek 8

+7% 2 (ﬂyH-cJ))seHce'—(kh+eklc(VfH'C°))SSH Sgr

- | .
+ elk, S(VJH‘“’)- klc(W/H‘od))ceHCOteH cgr]

The variables (‘WH,BH,<?',9',h) will be used to represent

the first order secular part of the variables in the remaind-
er of this section ' ’
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- 1(k +ek_ . 3(1 g
" Gl 5(' 1178 (g-w)' 213 10 (yu-w) Oy

TN IV L DN NE

+ 02[- %(k13'+ek'10 S(WH‘W)) 3

' 2
10 c(]rJH"" ))seHse, Cor

B

{ klu+ek

' 2
1(k k
31310 S(«yH—w))]SBH

2 2

" % ekio(é(\PH-w)‘S(wH-w))CGHSG' °e"} (®) (5.13)
43 .h "0 gy A !
g = K+ . - ghp*§co[k7+ekoc( v —) ]ceHcoteHce,
GH , H
C. 2 2
+_§l_[(k5+ek2 J v, - ceH§1-3 Cor)
.k+k Yoo, +(k_+ek ) (2- 3c. Jeo
.-(_‘3 ek, S(VH‘W') gt Hk ek, C(WH“‘U) 309H Cor
+ ook k | ) ' . 3
+ C,l( 1~2fe 5 (4/ _w) (ﬁc Hc°t6H89'°9'+ SGH cgr)
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+ (k. +ek o
2

GHSQ'CBI
k4 -w) S(w ) )]klo eHcH o1 %o } (@)
_Qé‘é)cel"'é_&%j__[ (k +ek1 s -w)]
2
k9s( H-w)) SGHCG' (k12+ek ’;‘/H o) seHse.
2 WH w),) (.2" BCBH) . 09'
_ 2 2 , )
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Equations (5.13). represent the complete set of equainns
for deterﬁining the first order secular rotationai motions of
a uniaxial body under the influénce'of the restoring aerodyna-
mic torque. ' The precession of the orbital plane and the re-
‘pression of perigee are both considered éiﬁéé_ﬁi and &J&ihay
" have nonzeré values. The above equations suggest that fhere
are long-term secular changes in the angular momentum vector
h as well as in the rest &f the variables. The integrals
km,m=01...,1u, must be evaluated separately and they are func-
tions of bOth.“}H apd N énd the atmospheric denéity f’é’ .

. In the following paragraph, the special case of a uniaxial
body moving along a circular brbit will be examined.

In case of a circular orbit, the eccentricity e is zero.
If we fﬁrther assume that the molecular density of air k)a is

a constant, it is found that the nonzero km's are

'lfo=f’a’k3=k5=k8=klo=%fa (5.1h)

and the associated equations of motion are
' 2

V.. = -(cgot+s,,cot

g° eHC VJH)‘Q-‘- ¢ Paﬁ VO Clce (1" 30;.) (a)

H

. , L4

GH =-8_8, 0 ‘ , (b) (5.15)

8° 8y
" Sgo © v 2
. o ° 2 2
¢ =h+ © V/H_Q, - cfa o C_[e,,+c, (1- 6cd,)} (e)
H % 8 8h 178" ey ©

H
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é' =0 | : | (d)
. . 2 .
é,' = - h (CzBleg, + °La Vo ¢ 1(1- 3c )c (e) (5.15)
A Cc 8h i
P -0 - S

where v: = MpX .

Equations (5.15) show that there is no secular variation
in h and ' to the first order,'and if comparison is made be-
fween equations (5,15) and the'associatéd averaged equations
for perturbation_due tograrity-gradient torque given in [2],
it'éan b§ seen that they differ only by a constant coeffiqient.
In the cése of ideally inelastic collisions between the air
molecules and the surface of the satellite or if the satellite
is also syﬁmetric about a plane which is perpendicular to tﬁé ‘

axis of symmetry, we have C, = O. Then it may be concluded

1
that, in this special case, there 1s no secular change caused.

by the restoring serodynamicdl torque.
6. First-Order, _Averaged Differential Equétions for a Uniaxlal

Body with a Surface of Revolution Subjected to Dissipative
Aerodynamic Torque

The dissipative aerodynamic torque and an approx1mation
to it have been derived in Sections 3 and h of this report.
Suppose that the body possesses a surface of revolution with
respéct to the z'-axls and take the semi-constrained system

as the reference system. We can write
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EAD = %C/Davo[-clluax,,+(-Clluiy,,+023 SS'VUJZ") Elt

' - W 1
+(Cyp SS.vu)y.| C33 %, k' ] - (6.1)
If thée eqmations of transformation (2.1) are used, expression

(5.1) becomes

R - _ : ~- '
EAD_%'CFaVO[( 11 %% = C23 5v vaz) 1

+(-C., w2, + 023

11 Syt (6.2)

sgvc ;vaz') g'

) k!

- ' " - C w
038 S p Wxt F O30 Cp Wy 7 O33 P

The equations of transformation [A.R.»1971,Eq.(L.3(a)) ]
can be used to transform (6.2) from the body-fixed system to .
the angular momentum syatem. The trigonometric functions offv
and lﬁV can be expressed in terms:of_the angles ¢/H,e >0 ,gﬁH
» @' .through equations (5.4(a)) and identities

sSvalev=i * (gy x k') (a)
| (6.3)
_ r - 41 1 b
S;Vsﬂvh i X(_e,VX_Ig) (b)
If then relations [A. R.,1971 Eqs.(l. 3(a)) (Lhh(a))ls (5. 3) and
(5. u) are used, it is found that



ch(cngceHc " Co -seHc¢,se, -84 Hcvequ} )] (a)

The cofnponents of _’3 in the body-fixed system are

hxl = h¢ S(P_lsel' (a)
hy.'=nc¢.se, (b)  (6.5)
h,y = h cg, (c)

It follows that, for a uniaxial body,

,wx' =% §¢'se' (a)
wy‘ = % CCP 'Se| (b) (6.6)
W, =% Cor (c)

Since hX' = AQ)X|, hy' = Awy') h.z| - sz| .

Through the combined use of [A.R.,1971,Eq.(L.3(a))], (6.4)

and (6.6), equation (6.2) can now be expressed in the form
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I y_ADr; + NADy d+w, & ' (6.7)

where

N~.= 1 ¢ V Cyq lls,c, +c,8, c ). (a)
ADX™ 3= fe 0235 8" 09 Cog%er

NADyz-%c/)a {1[ Cll 75,0 + 3(8138?51.16' ce.

+ °A(‘°4>H GHSG'%+ %o s3]

C
- [ 723 5,8 3, ~C.8.. ¢
.é.[ ._._3 A.CPH car _ 336! o

by
+ 9_2‘3 c (84 84 0;3, - e ée cg,)]g (b) (6.8)
r & g% PH “H |
N _ =1cp Vhll[-c,. s -E;_(ss or
Dz” 3 [Da o'y E 11 Te! ¢y O
tc,l-cg o 8, cZ +a8, s )]
- 1 ?_2_3 s, 8 8 cz + C 02
T 7 A CPH et o 33 “et
C 2 ' 2 N
+ ‘23 ¢ (s ¢, -~ C 8., €.,) c)
23 ¢pl8g Sgr %1 = O Ca. %ot % 3} -

It is to be noted that the dissipative torque -]‘\IAD is a
contiinuous« function of the slow variables X5 i=1l,...56, and

the fast varisbles W and 75 and it is also a periodic function
H ,
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of each of M and ¢ H with a period of 2g. If the torque ex-
pression (6.7) énd relations (5.5) are substituted into
[F.R.»1972,Eqs.(L4.l4) 1, [F.R.,1972,Eqs.(L.3) ] gives the varia-
tional equations for the perturbed problem; Again, the equa-
tions. of transformation (5 10) are introduced and the variables
Y28y Pyr9'sp 'sh are used to represent their first order
secular parts. The assoclated equations for the secular motions
(5.11) under the influence of dissipative aerodynamic torque

become

yjH = - ceo+seocoteHc Y H)—Q,

C 1/2 2 . 2 »
- S a tg_%_) % CyokpSgr Cgr + 1 C, k8(1 cgr) eyl ()
g
GH—- Seo S'IVH_{L | ) (609)
+0Pa¥=/“ vz, kg[ L sg, - (1- ,)]cec, ()
2 VoW S22 8 T 2 " 0
b =b+ ¥ 5
H A s6 .
H
c P 1/2 2 . -
- a{%% kB[-% C32 ?6!06'+ %(1- ce,)ce,]coteH ()



‘C 2 c 2
+ kg (_&g Sg1 - f%} cgr) SGH 8g1] (d)
CPt = - %(l— %) Cot R | .(e) (6,9)
Q =1lhe H 1/2[- k(11 so. 4 E;; e2 )
5 /oa§p )' 83~ o ¢ o
C C 2 :
- kg(_%g + _%}) seH.se, Cor] | | ()

It may be seen from equations (6.9) that all six variables
have secular, long-term variations due to the presence of the

dissipative aserodynamic torque, EAD' The terms which involve

ko are more important than those cohtaining k8 and k9 since

kg and kg are smaller quantities than kg
The problem associated with a circular orbit and constant
air density can be obtained readily by letting e = 0 and/oa =

constant, so that k. =k =0, k¥ = « The differential
? 8 9 * Yo f’a ©

equations for this case are

#IH = -(cgo + 850C0tg € ) L. (a)

(6.10)

= " 850 sz{SL (b)

@D
]
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o s S R o ) .
$ =h+_o YH 4 D (c)

H "7 S ' ’

H

‘l = CP V - C C | » . ‘

8t = _ 2.9 (-ﬁ_%l +.é%;)sefﬁcer - . . (a) (6.10)
<4 o_ _ -
p' = _% (1 %) Cor (e)

h = - c/"azvo ( Cil Se +E_3; c:,).h (£)

Equations (6.10(d)) and (6.10(f)) can be integrated'Qi—'
rectly. It is found, from (6.10), that

Not

tane; = tany, e (6.11)
Yo
and from (6.10(f)), that
’ e \' c c
h = h, exp é- Pa “or(C11 + “33)¢
2 A C
°11
2N A
iitang, re~2No b
+ n 0 (6.12)
| 33
2N C
(L+ tana,eZN°t) °
\ 8!

- where

N, = 2Pa "o (%33 - S11) (6.13)
| 2 C A -. S
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and e; and ho are the initial values of @' and h, respectively.
From equations (6.11) and (6.12), it can be seen that,
under the influence of dissiIpative aerodynamic torque, the
magnitude of the angular momentum vector decreases éxponentigl-
the x'-axis and the angular mbmentum vector may either de-
crease or increase with time, approaching either zero or n/2
as & limiting value, respectively, depending on whether N  1is
negative or positive. If C11 and 033 are of the same order of
magnitude, equation (6.11) indicates that the body will event-
ually spin about the.akis of the maximum moment of inertia.-
In case 6é is zero, ' will remain zero and hence 8' is a

constant of mojpion.
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