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FURTHER COMMENTS ON THE APPLICATION OF THE METHOD
OF AVERAGING TO THE STUDY OF THE ROTATIONAL MOTIONS

OF A TRIAXIAL'RIGID BODY, PART 3

1. Introduction
#

In [J.R.,1970] , we derived a set of differential equa-

tions, analogous to the Lagrange planetary equations, for use0 " """

in studying the perturbations of the rotational motions of ex-

tended rigid bodies. These differential (variationalj equations

are expressed in terras of the perturbing torques and they are

valid for either conservative or nonconservative torques. In

[A.R.,1971], [F.R.,1972] and [M.R.,1973], these variational

equations were applied to the case of a rapidly spinning tri-

axial body moving in an elliptic orbit, in which the orbital

plane is regressing at a constant rate. The explicit differ-

ential equations obtained in this application were integrated

by the method of averaging (described in [F.R.,19?1]) to develop

secular analytical expressions,which, to first-order in a

small parameter, describe the complete space motions of the

rigid body under the influence of nonresonant gravity-gradient

perturbations.

In this report, the effects of aerodynamic torque on the

rotational motion of an orbiting satellite will be studied, as

another example of the application of the variational equations

derived in [J.R.,1970] and the method of averaging discussed

in [F.R.,1971]. As an artificial satellite moves through the

-*•
References to our earlier reports of June 16, 1970,

February 19, 1971, August 2, 1971, February 21, 1972, and
March 27, 1973 are indicated by [J.R.,1970], [P.R.,1971],
[A.R.,1971],[F.R.,1972]and [M.R.,1973]» respectively.



Earth1s atmosphere* there Is a drag force Introduced by the

interactions of the oncoming molecular flow with the satellite

hull. This drag force, which is one of the most important of

the perturbing forces influencing the rotational motion of the

satellite about its center of mass, brings about secular var-

iations in all of the variables, i.e., ŵ, 9.-, <£ „>&* > <£',h.
H- XI XI

In particular, and unlike the gravity-gradient force, this drag

force brings about secular variations in both the magnitude of

the angular momentum vector ji and the coning angle 9' .

Beletskii f1 ] assumes a plastic or perfectly inelastic

impact of the molecules of the upper atmosphere with the sate-

llite hull and neglects the effects due to the rotation of the

Earth's atmosphere. He further assumes that the linear speed

of the satellite hull with respect to the center of mass is

very small compared to the speed of the center of mass itself.

He then derives a symbolic expression for the aerodynamic tor-

que NA about the center of mass, for a triaxial body with a

general exterior surface. His expression is valid through terms

of first order in the magnitude of the angular velocity of the

rotation of the satellite relative to the atmosphere. His as-

sumptions will be used in this report in deriving an explicit

expression for the aerodynamic torque in terms of a convenient

cylindrical coordinate system. This general expression will

reduce to the expression for a satellite with a surface of

revolution given in [1].



The explicit expression for the torque for a satellite

with an arbitrary shape involves surface integrals whose limits

depend upon the instantaneous surface of attack. Although this

torque expression is analytically intractable for the general

case, it does become manageable if the satellite has a surface

of revolution. For this reason, the considerations here are

restricted to the study of the secular effects of aerodynamic

torque on an orbiting, uniaxial satellite. Beletskii [1] uses
•V-

the same torque expression to study the secular motion of the

angular momentum vector for a rapidly spinning, uniaxial, orbit-

ing body with a surface of revolution by applying the method of

averaging to the Euler1s dynamical equations. In this report,

however, the secular variations of all the six variables which
describe the complete rotational motion of such a body about

its center of mass under the influence of aerodynamic torque

are studied by applying the method of averaging to the varia-

tional equations. Approximate, averaged, first-order, ordinary

differential equations for the six variables are obtained,

which are particularly convenient for numerical computation.

If the problem is further simplified to the case of an uni-

axial body moving in a circular orbit with constant air density,

the approximate, averaged differential equations for the magni-

tude of angular momentum vector and coning angle can be inte-

grated. It is found, as a verification of the results given

There is a misprint in the torque expression for a sate-
llite with a surface of revolution given in [1] [equation (1.3.11
p. 16]. In a private communication, Beletskii agrees that the
correct expression for the torque is given by equation (3.17),
of this report.
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k
in [1], that the magnitude of the angular momentum vecter de-

creases exponentially with time approaching zero as a limiting

value, while the coning angle may either decrease or increase

with time approaching either zero or ir/2 as limiting values*

respectively.

2. Coordinate Systems

With reference to Figure 2.1> let Ox1y1z1 represent a

body-fixed system whose origin 0 coincides with the center of

ass of the satellite. The rectangular coordinate system
£.•,••

0 X i « y « i z i i ^s obtained by rotating the system Ox'y'z
1 about z'

through the angle /3V in the sense shown. The angle fi is;

determined by the condition that the y"-axis lies in the plane

determined by the z1-axis and the velocity V (translated to 0)

of the center of mass with respect to an inertial frame at geo-

center. The x!l-axis is chosen to form a right-handed system.

Let V , y , k1 and i_'', j1', k1', be the unit vectors along the

x1, yS z1 and x1 ', y1 ', z1 ' axes* respectively. The angle £v

is drawn from the z'-axis to the line determined by V . The
o

cylindrical coordinates p,*f,zl of an arbitrary surface point P

of the body is introduced where ~v is reckoned from the y1-axis

in a counterclockwise direction in the x'y1-plane. The unit

vectors associated, with the cylindrical coordinates p , v, z1

are designated by £ , e , e^ , , respectively.
/° r z



The following relations can be obtained readily

A — o— V ~v

"

I"

k

I" + cc k",
a V

fl~/l " °P V

0

0 k'

(a)

(b) (2.1)

-s

0

(c)

where ^v represents the unit vector along V .

3. Aerodynamic Torque

Assume that the impacts of the air molecules of the

oncoming flow with the surface of the satellite are plastic or

perfect inelastic and neglect the effects due to the rotation

of atmosphere. Beletskii fl] has shown that the aerodynamic

torque N , with respect to the body-fixed system* through
A

terms of first order in the magnitude of the angular velocity

of rotation of the satellite relative to the atmosphere* is

given by



dS

(3.D

+ 1 c /o V f [.(n-cdx r) (e-y x j?)-+(n.e~)-(uJ xr) xr]dS

S*

where c is a coefficient. The quantities p , n, r, and vJ
/ a ~ ~~ —'

represent the atmospheric density, unit outward normal of the

surface element dS of the satellite, the position vector of

the surface element dS and the angular velocity vector of the

satellite's rotation about its center of mass, respectively.

,;g?he domain of the surface integral is indicated by S and it

is defined by the inequality

Io . ni-0 (3.2)

The remainder of this section will be devoted to the

development of an explicit expression for the torque (3.1) in

terms of the cylindrical coordinates p, y > and z1. The unit

outward normal to the surface element dS can be written either

in the component form

H = n e + 1_ n _e + n , gz% (3.3)
r r p * t

or

nz, k« (34)



Using equation (2.1(c))> we can write

v -- p »-«« -i.'v «,
(3-5)

V = P-r»-V - -y -V ' r - - ( b )

where n ,-> = p ^7- .
r I n

Let d>( /° * v » z') ^e ^ne relation which describes the

surface of the satellite. It is found that

V? = ^e^ +!_4> r e^ +4> z , ez, (3.6)

and that

eg.

2
+ ( / , ) ^ +H> ,]-02

a -

' (3.8)

.

9 , z «

Comparing expressions (3.3) and (3.7)* we have

». - 'F ys'2 O
' . 2 a _2 a 2

I •. ̂  T 9. *
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n = (b)

(c)

When referenced to the body-fixed system, the position vector

of the surface element dS has the following form

i' + y1 j1 +

where

r = x1 i' + y1 j1 + z1 k1 (3.10)

x» = -pa , y' = pc^ (3.11)

Using equations (3.5) ,(3.9) »( 3. 10) ,(3.11) and the equations

of transformation (2.1), we can express (3.1) in the more

explicit form

Q.

(3-12)
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where, u) ,, a) » and oo are the eectangular components of
X y' 2

cJ expressed in the Ox 'y ' z 1 system, and

)ne dS

N « =
-.

S

= i ( f ( n z «J t z ' z'

p c
I « V '

J12 = I |f ( nz' - 2' ^
^ (.

S

J21
s

c c ) -n ( z« 2 -f c) dS ( d)

wl
 r 1° r ' d v /^v

2 /s c C dSr n

y * ^" /2 /"^ ^ i- * _ ^"^ \— J »
« V r V

s ) -n 0 s c > dS (g)\* c± •—* ... i * "-^
T T O
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S*

= fJ
sc a.- - p e _ s ) + n^z1 -/> c ]dS (i)

0 tr f~> rr ( " X tr Y © V JT

SX

s* I P v v «

= f ( C ( n z« ' Z l < rn } ? S- " i- Z' n- C- 3( ^S ^ C " S*J ,( 2 n />
r

s. c ) - t - n z ' p c cdS (k)^v r e ' »
(3.13)

=<v f n ( s c s -/?a s c ) - n > a ^ S ( J
33

S<

(m)

Equation (3.12) gives the aerodynamic torque N for a

body with a general surface. Even for short periods of time

it is observed that N ia time dependent> principally through
n

$ and B . For longer periods of time V and u) must also bev / v ~~o
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considered to be time dependent vector quantities aa they ap-

pear in N.. The expression N becomes simpler for a body with a

surface of revolution with respect to z'-axis since nv= 0.
o

Moreover* if the semi- cons trained system Ox.'ly" z1 ' is chosen

as the reference system, the simplications

Pi"0'
, , 2 . .

sv c. d v = s c d> = 0

S S* S*

may be introduced and then it is found that

NAlx' = N A l y « = J 1 2 = J 1 3 = J 21= J 31=°

NA12, = 1 5 ( Sv) ey x k (b) (3.15

(Jn = -

-s

(c)

J
22= -1-- -c o 1 f ( n » i - z ' <T_) p's^ ^ n _ , ( z ' % / > sv ) ]dS
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I a I Z1 <T ,0 C,, dS

Vs*

ds

Then expression (3.12) becomes

2 2

/»* B* (n , - z '<f )] dS (f) (3.15)
t 0 z

s"

where

c <> -f W_ s _ -w, c c cot « ) (a)
a ^ y 2 y v 3 a v d y

c )dS (b)

^
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where

i = -V0*" i" +.(-i3<oy,,+ \̂ ZI

(3.18)

Expression.(3.17) is exactly the same_as given in [1]. . . .

The aerodynamic torque (3.1?) can be-analyzed in two sepa-

rate parts. Thefirst part, which arises because the center of

pressure does not coincide with the center of mass of the sate-

llite, will be referred as the restoring torque N,_. The second
~AR

part which introduces damping effects caused by the spin of the

satellite with respect to its center of mass, will be reffered

as the dissipative torque NAD- In the notation just described,

(3.17) can be rewritten in the form

^A = 2ARH-NAD (3.19)

where

(3.20)

= 1 c p „ V I (b)1 c P
2 I-AD 5 . f a o -

Ij.. Approximations of the Aerodynamic Torque

Equation (3.12) gives a description of the aerodynamic

torque fop a body of arbitrary shape. In principle, the torque

is to be .calculated by integrating over the surface of attack

L̂S . It is noted, however,that the integrals which are involved

may be analytically quite intractable since the integration



limits depend upon the surface of attack S . In turn, the sur-

face of attack may depend discontinuously upon the time through

the variables B ,, and <£ , Simplification may be achieved in

certain important special cases, however. For example, in this

report, the perturbation caused by aerodynamic torque will be

analyzed in the special case where the satellite possesses a

surface of revolution and the semi-constrained system is chosen

to be the reference. In what follows, the considerations are

restricted to this special case.

It is indicated by Beletskiifl] that the principal quanti-

tative and qualitative effects of the Aerodynamic torque which

are common for various bodies of the type considered, can be

described by using certain approximate formulas for W^ and I. ,
J

where i= 1,2,3* j=l,2,3,î ., £. These formulas are described

briefly in this section.

(a) Restoring Torque

First of all, attention is concentrated on the restor-

ing torque which is free of the spin of the satellite. Construct

surface S , which is parallel to unit vector e^ and S , which

is perpendicular to e_v, in such a way that if combined with

the surface of attack S , a closed surface in space is formed,

as shown in Figure î .l.

From equations (3«1) and (3.19), we have



', I-.-

J .



y"

x"

-So

Figure i|..l
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it-
Let S + S, + S be a piecewise smooth orientable surface and

JL O

let u be a vector function of the coordinates (x',y'» z1) which

is continuous and has continuous first partial derivatives with

respect to the coordinates in some domain T" containing

S + S, + S . Using the divergence theorem, we may write

f
u-n dS = V u dT- (i|.2)

S +Sn +S
l o

and, since

(s* ®v*- = (x> ^v*s)i' + (y1 ®v • u) j1 + (2* iv*£)k '

we can write

f' (u- n)r dS = j.1 f V - (x 1 ev)d1- + j.1 f V '( y1 ey)
J >4 /~. T-

+VSo

k'f v '(z1 e;

Since ^e,.. is independent of t^te cooi-dinn-hes x.', y1, arid z1, it

can be shown that

s0

where T is the volume enclosed by the surface S + S + S
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Since the surfaces S and SQ are so constructed that

nx • ev = 0, n0 • £y = -1 (If.5)

the expression for the restoring-aerodynamical torque takes

the form

where r1 is the position vector of an arbitrary surface element

of S with respect to the center of mass of the satellite.

Let O1 be the projection of the center of mass on SQ> r^

be the position vector of O1> and r be the position vector~"~s
of any material point of S with respect to 0' . We have, along

I I
Y* 4- T*—o ^ —s

surface SQ»

and hence

where r is the position vector of the centroid of surface S

with respect to O1 . The vector product e_ x _r will be either

in the positive or negative sense of x'1. The magnitude of

AR ~ £

As shown in Figure lj.,1, r = Z s c , where Z is the
OS O £ *• O
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distance between the Center of mass and the center of pressure*

ZQ = OP. Let the projection of P on S be P1, the centroid of

SQ. Equation (î .,8) can be rewritten in the form

-AH =|

Comparing (4. 10) with expression (3.20(a))> it is found that

For perfect inelastic collisions, it is also true that

c( S"v) = c(n - I y) (i

Note> from equations (3»l6(c)) and 3«l6(d)), that, at an

instant of time at which either T = 0 or £" = it, W = W = 0,

This suggests the approximations

(4-13)

Where f and f are functions of £ . Then equation (3.l6(a))

becomes

c( Fv) = c^ C£ + f 2 - U2+f3) c ] (I

which is a polynomial in c c . We may write (14.. lip in the form
^V

cU) = co + c2 c (
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where
Co = C<W1 c[ / f2> 'a)

(if.16)

= - c(f2+f ) (b)

In general C and Cp depend slowly upon time. A meaningful

simple approximation to ([(..lî.) is obtained by assuming that

both C and C are constants which can be determined either by

using equation (lj.,11) or any alternative method such that

expressions (lj.,15) give reasonable approximation of c( ̂  ) »

If the collisions between the molecules of the oncoming

flow and the surface of the satellite are not perfectly in-

elastic and reflections occur* then equation (i|.12) does not

apply. In this circumstance* the simple approximation

o

c( S v) = C* + C, c { + C c (If. 1?)
U ^ V ^ ^ " V

where C = c fp> C = c W , may be introduced. If however*

the satellite is also symmetric about a plane which is perpen-

dicular to the sxis of symmetry, equation ([(..12) will hold ir-

respective of the reflections of the molecules and equation

(if. 15) will describe the case approximately. For a small angle

of attack* we may even choose

c = CQ + C- + C_ = constant (if. 18)

(b) Dissipative Torque

Next consider the problem of approximating the dissipa-

tive part of the aerodynamic torque given by equation (3-20(b))



19

Approximate' formulas will be assumed for I.., j=l,2,3,i|* £• Re~

.calling the reasoning for equations (ij.,13)* it may be observed

from equation (3V15) that* whenever the factor c. , appears
9.

in an integrand", the integral may be assumed in the form

•SP f*( $ ,r) . Therefore* we may consider that I_ , I and 1^
a y J V . 1 3 i >

are positive quantities for any value of T and that the

principal .parts of these -functions are constants. It is also

noted that when either <£ v» == 0 or it* the difference I . - I

jjf's zero. Thus, the principal parts, of I and I may be approxi-

mated by t he same constant. As to I? and Ij .> they are functions

,pf the f orm s c f .( '$..)••:••• In summary, :&• simple approximate, for
o Y J V

N. ̂. may be obtained by; assuming that~ -• - • • j

X3 = I^=C^ (a)

Jl = °33 .

Ik = C 3 (d)H 23 i v

where' the C'*-< : are;, constants. Reasonable estimates of these

.constants can be obtained- by averaging the .values of I. at

ss 0 arid
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5» First-Order, Secular Solutions for a Uniaxial Body with a
Surface of Revolution Subjected to Restoring Aerodynamic
Torque

Let the center of mass of the satellite move along an

elliptic orbit about an attracting center at 0. Assume that the

inclination angle 9° of the orbital plane, the semlmajor axis

!i , the eccentricity e and the rate of orbital precession _JL

are constants and let w represent the true anomaly. We can

then write the well-known equation from orbital theory that

VQ = (/Vp*)
1/2 f, f = (1 + e2 4- 2e cw)

1/2 (J.I)

where M, is a constant equal to the product of the sum of the

attracting mass and the satellite's mass with the gravitational
i/ _ _ _

constant and p = a(l - e^) . Let 0 ? ' ^ ' -e ' represent a

rectangular coordinate system in which the 3 ' axis is perpen-

dicular to the orbital plane* positive in the sense shown in

Figure 5'1- 'The positive f1 axis is chosen to coincide with

the half line from 0 through perigee. Then H[ ' is chosen to

complete a right handed coordinate system. The unit vectors

associated with the 0 ~f . ' i£ ' ^"' system are designated by

i - > 1 _ > k _ , respectively.
~5' H' ~S'
It is clear that

i_ = ° i° + sr (a)

ev = - I [BW 1 -(e + cw) J_ (] (c)
f . f \{



*--
X

Figure 5.1
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If the Definitions

c . = c + e c , (a)A (y -eL) (YH"^)
H

are introduced, it can be shown, that

(5-3)

(54)

c)

If the approximate formula '([}.. 17) and the relations (̂ .1)

through (5.i|.) are substituted into the torque equation (3.20(6.)
/

it follows that

k
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V* = f °,
H "'Ve «e.)

H

'H

H

H
'H

(5-6)

H ?H
 6H
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- CA C , SQ CA ^H 6H

- 1 CA S_
2A iW Se'

2
+(- SAC s , s,

A A <? rr (
3 2 v 3 ,

07 c s c ) c^ , ]
A f H % 6H Q

(a)

N =lf c p /* \ C l f ( - s . c
2 ' '

^,
6

- c O

+ C , [ ( - 1 S
1 2

+ 1 S

H 2 2A
C

H 6H
S 3 , C

2A 6 H

H"! f H
ceH 7H

ii o 2
•f s.s s c , c - c-^ 3 , c

A 2A <P > 0 ^ ^ H

- C

^-CAS2AC

<i
O A2A



2k.

3 ' '
2A

(b) (J.6)

2 it 2 2 2 2
!ASPd!> ~ S 9A C wk °Q +S9A3-* CQ ~CAS3^, CA ' SrvtA 2? H 2A ^H eH 2A <^H eH A 2^H eH e«

H H

H

<i

(c)



When the torque expression (5.5) and relations (lj..5) are

substituted into equations (l±,l±)', equations (1̂ .3) give the^

variational equations for the perturbed problem.

As in the analysis presented in [M.R̂ .,_ 1973], it is as-
•

suxned that the precession rate JTL and the aerodynamic torque

-are of the same order of magnitude. Let <c represent the

ratio of the magnitude of aerodynamic torque to the rotational

energy of the orbiting body about its center of mass and define

x ;y, ) , 1=1,2, ...,6
4 if
J K-

where j=l,2, . ..,6, k=l,2, and y.., y represent the fast varia-
f̂r

bles H, v ' » respectively. Then the variational equations (I}.. 3)

take the form /

x± = ^̂ '(x ;yk), 1=1,2, ...,6 (5.8)

It is to be noted that the perturbing functions X± (x.;y ) *i=l»
J rv

2>...»6> are periodic functions of each y,*k=l*2> with period

2-rt' Thus, the new dynamical system given by (5»8)

and, (see [A.R.,19?l,Eqs.( 3«3(b) ) , (3.8) ] and fF.R.,19?2*Eq .

= n ( a) ( 5.9)

' All equations designated (4«ij),i,j, nonnegative integers,
refer to equations given in [F.R.,1972].

When A = B, we have K = 0, q = 0,/3= n/2, v = 0,y= 0,
0(it/2,0) =1̂ (0,6) = 0, JZ = u, and-n.1 = 0.

 r
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y- = u* = cfc = co*"= h (b) (5.9)
2 H A

can be treated by the method of averaging.

A transformation

x. =x + e R ; ' ( x . ; y , ) , 1=1,2,...,6 (5.10)
i 1 1 i J K

to new variables is introduced, so that, for suitable functions

Ri'(*i'yk̂  the fast variables yj£» k=l,2, are eliminated from

the transformed, dynamical system to the first order in € .. .

If relations [P,R.,lV7l,Eq.(1.13(a))] are used, the transform-

ed (the averaged) variational equations take the form

0 0

or more simply

2n 2it

1 2lt J J
0 0

The definitions

f

kn = 1 /J fdR (a)
0 j /a

0

=



2it

I pS(Vr9r?'dM

0

(c)

C.K £

= i r A . s. . _ .fan

o
2it

\-£ ;/».••
o

fdfi

(d)

(e)

k5 * A
r 2

I/'a °,
0 H

( f )

k, = 1 p f s , dM6 S ;r* • (yH-6L) (g)

k? = —7 P^r
dM (h)

271

kn =

0

2n

= J
0

(D (5.12)

(J)
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(k)

kn. = JL
11 P-n

S'

-^ I0'2ir I '
dM (m)

0

n ,13
dM (n)

k . = 1 ( f> c
a

3 „ x dM (o)
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are introduced for economy of notation. After an integration

over M and <$>„ from 0 to 2«rc is perforaed, the averaged differ-
H

ential equations (5.11) take the form

yH = - (<Wse° coteH

Cl [k,,+ek cf .. \. lcotn c ,
° 7 o ( - " > ) e '

^ c . , ] C Q (l-3G r t l~L 5 2 -^) ® e

- C_fl(k . +ek 3 )+ l(k +ek c
" 1 2 - 9 (y>-*>). 2 12 8 (

H

2 2
+(k +ek. c x H 2 o -1) ] cot s , c

10 ( o - a > > 9H 6H 9 9

+ C (k +ek c. ) s c. c3 (a)2 i 10 • ( - o>) eH eH e-

9° H

2 2
+ek0 s . ) a. c . , - (k ,+ek n c, , \) sa s_,

^ 2 (Y -a)) 9H
 6 ^ 1 (V -co) QH 9'

H 4*

^+ e(k s. , — k_ c .)c...cotQ cft ( ]

H H

The variables ( ̂ ,Q.̂ , <^S9Sh) will be used to represent

the first order secular part of the variables in the remaind-
er of this section
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Equations (5»13) represent the complete set of equations

for determining the first order secular rotational motions of

a uniaxial body under the influence of the restoring aerodyna-

mic torque. The precession of the orbital plane and the re-

gression of perigee are both considered sinee _Q. and u) mayo
have nonzero values. The above equations suggest that there

are long-term secular changes in the angular momentum vector

ji as well as in the rest 6f the variables. The integrals

k >m=0, .. .,li|.> must be evaluated separately and they are func-
4

tions of both -oJ and oO and the atmospheric density /) .
' H / a

In the following paragraph, the special case of a uniaxial

body moving along a circular orbit will be examined.

In case of a circular orbit, the eccentricity e is zero.

If we further assume that the molecular density of air p is
' cL

a constant, it is found that the nonzero k 's are
m

and the associated equations of motion are

2

VH = -(cQO+seocot o y ) -CU c Pa Vo C CQ U- 30*,) (a)
xl n oh H

se° cv,, • co v _ r
 2 a • , 2 x. . x. Cn [cQ,+c r t (1- 6e_ t n (c)

A se 8h
H
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e1 = o (d)
ii

, Vo C (1- 3c* )cftl (e)
AC 8 8h 1 6H ?

h = 0 - - - • ^

where V = A/p~* •

Equations (£.15) show that there is no secular variation

in h and 6' to the first order, and if comparison is made be-

tween equations (5«15) and the associated averaged equations

for perturbation due togravity-gradient torque given in [2],

it can be seen that they differ only by a constant coefficient.

In the case of ideally inelastic collisions between the air

molecules and the surface of the satellite or if the satellite

is also symmetric about a plane which is perpendicular to the

axis of symmetry, we have C.. = 0. Then it may be concluded

that, in this special case, there is no secular change caused

by the restoring aerodynamical torque.

6. First-Order, Averaged Differential Equations for a Uniaxial
Body with a Surface of Revolution Subjected to Dissipative
Aerodynamic Torque

The dissipative aerodynamic torque and an approximation

to it have been derived in Sections 3 and ij. of this report.

Suppose that the body possesses a surface of revolution with

respect to the z'-axis and take the semi-constrained system

as the reference system. We can write



If the equations of transformation (2.1) are used, expression

( 6.1) becomes

N = 1 cp V [(-Cnn <^> , - C0_ s . s
 1

-AD ' a ° X 23 ^

+ C 2 3 ^ " *

The equations of transformation [A.R. ,l<-/7l*Eq .(i|.3( a) ) ]

can be used to transform (6.2) from the body-fixed system to

the angular momentum system. The trigonometric functions

and & can be expressed in terms of the angles # / » & >Q >
i" .

61 , cp* through equations (%.!+(&)) and identities

„ >H L H ' H

s r c A = i1 • (ev x k
1) (a)

' V P V ~ "

o xi. — J- ^v v w»» •**• *»•

V P V V

(6.3)

(b)

If then relations [A.R.,197l,Eqs.(ij..3( a)), ( \.\( a)) ], (5.3) and

(5-̂ ) are used, it is found that
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Sr C = 1 [ S A ( - C , S . , - S . C

fr-V f V f A ^H 4> ^H

The components of Ji in tlie body-fixed system are

hx' = h ^ s ^ ' S 9 « (a)

hy l = 1 1 0 ^ ,se, (b) (6.5)

It follows that* for a uniaxial body,

|

(6'6)

since hx, = A co>xl , h , = A CA-> , , h, =C tu , .
V V ^*

Through the combined use of [A.R.,19?l»Eq.( [(..3( a) ) ], (6.[j.)

and (6.6), equation (6.2) can now be expressed in the form



where

NADx= i V ° S C + » * ' < a )

2

H._ = 1 c /> 0 V r t hJ l f -C . . s x ,c + _32(s A s , s , cao 1 1 " < 1. _ 0 r t . . , _ A , , .
ADy /ao 11 P G1 " A <^ e1 8'

C f A ^H 6 33

r 2 c 2

ADz~ -5 G(&° IT 11 S6' ~ ~S- ASS^ ̂ e1 C&*

»' +°33 V

(6'e)

It is to be noted that the disslpative torque N is a

continuous function of the alow variables x.ji=l> . . .,6> and

the fast variables M and cb and it is also a periodic function
7 H
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of each of M and 4 u with a period of 2u. If the torque ex-
•Tl

pression (6.7) and relations (5«5) are substituted into

[F. R., 1972, Eqs. (1|. Ij.) ], [F.R., 1972, Eqs. (4.3) ] gives the varia-

tlonal equations for the perturbed problem. Again, the equa-

tions, of transformation (5»10) are introduced and the variables

y ,6 ,ij& ,8',̂  ',h are used to represent their first order

secular parts. The associated equations for the secular motions

(5»H) under the influence of dissipative aerodynamic torque

become

c 0 i u \ l / ^ n r b - 2 i r v M 2 ^ i r ^

(6-9)

4 = h + 3e
H A 8

9H

1/2
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2

- o*,) sQ a ] (d)
Q C b H B

It may be seen from equations (6.9) that all six variables

have secular* long-term variations due to the presence of the

dlssipative aerodynamic torque, N • The terms which involve

k are more important than those containing k0 and k0 since0 o 7
kg and kg are smaller quantities than k^.

The problem associated with a circular orbit and constant

air density can be obtained readily by letting e = 0 and £> =

constant, so that kn ~ k^ = 0, k = p . The differential
8 9 0 f a

equations for this case are

H e°
(6.10)
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'8.H

(c)

9'. =
2.

.+.33)s.- .re
(d) (6.10)

- h (1- A) c
A C e

(e)

h = -
A

Equations (6.10(d)) and (6.10(f)) can be integrated di-

rectly. It is found, from (6.10), that

= tanQ, e

and from (6.10(f)), that

(6.11)

h = h exp <°a Vor(Cll + C33) t
2 A C

+ n

Cll
2»oA n

2M C

where

N. =
A

(6.12)

(6.13)



and 6' and hQ are the initial values of 6
1 and h, respectively,

Prom equations (6.11) and (6.12)> it can be seen that*

under the influence of disslpative aerodynamic torque, the

magnitude of the angular momentum vector decreases exponential-

ly, approaching zera in the limit. However, the angle between

the x1-axis and the angular momentum vector may either de-

crease or increase with time, approaching either zero or ir/2

as a limiting value, respectively, depending on whether N0 is

negative or positive. If C-... and C_ are of the same order of

magnitude, equation (6.11) indicates that the body will event-

ually spin about the axis of the maximum moment of inertia.

In case 9' is zero, 6' will remain zero and hence 9' is a
o

constant of mojjion.
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