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1. DIGITAL APPROXIMATION BY POINT BY POINT STATE CCMPARISON

1.1 Introduction

The problem is that of approximating a continuous-data system
by a sampled-data model by comparison.cf the states of the two
systems.

Consider that the continuous-data system as shown in Fig. 1-1

is described by the following time-invariant dynamic eguaticns:

& (t) = Bx () + Bu(t) (1-1)
u(t) = E(0)r(t) - G(0)x (%) (1-2)
- - =
where
x (t) = n x 1 state vector
X
u(t) = m x 1 control vector
r(t) = m x 1 input vector

A =n x n coefficient matrix
B =n x m coefficient matrix

I =mxmidentity matrix

=
—_
(=)
A
i

m x n feedback matrix

()]
~~
(=]
~
il

The initial state is given by EC(O) = X

—0

Substituting Eq. (1-2) into Eq. (1-1) yields

(t) = [A - BG(O)JEC(t) + BE(0)xr(t) (1-3)

X
A

The solution of Eq. (1-3) for t > to is

t
[ e[A—BG(O)](t-T)

e[A--BG(O)](t-tO)x (t) +
< 0 :

§c(t) = ) BE(O)r(T)dT (1-4)

Q



where

(A-BG(0)1] (t-to)

e =) - (o) 1%t - ¢ )7 (1-5) .
520 31 o’

J

f The block diagram of the sampled-data system which is to

I
: approximate the system of Fig. 1-1 is shown in Fig. 1-2. The outputs of

¢ the sample-and~hold devices are a series of step functions with
i

! amplitudes denoted by Es(kT) for kT < t < (kx + 1)T. The notation,
G(T) and E(T), denote the feedback gain and the forwaxd gain of the
sampled-data system, respectively. The dynamic equations for the

sampled-data model are:

£ (t) = Ax_(€) + Bu_(k7) x (0) = x_g (1-6)

u (kT) = E(T)xz(kT) - G(T)x (kT) (1-7)
u x x_(
for kT <t < {(k + 1)T.

The A and B matrices in Eq. (1-6) are identical to those of Eg. (1-1).

Substituting Eq. (1-7) into Egq. (1-6) yields

x_(t) = Ax_(t) + BIE(T)x(kT) - G(T)x_(kT)] (1-8)
=s = s

.8
for kT <t < (k + 1)T.
The solution of Egq. (1-8) with t = (kX + 1)T and to = kT is

Es[(k + 1)T] =|e dtBG(T) §S(kT)

AT _ f‘kﬂ)’r A GTHT-T)
kT

pk+n)T - |
+ f AT 4pp (1) = (kT) (1-9)

kT

el



The problem is to find E(T) and G(T) so thét the states of the
sampled-data model are as close as possible to that of the continuous-
aata system at the sampling instants, for a given input r(t). Further-
more, in order that the solution for E(T) is independent of r(t) it
is necessary to assume that r(T) & r(kT) for kT < t<(k + 1)T.
Therefore, effectively, the input of the continuous-data system of
Fig. 1-1 is assumed to pass through a sample-and-hold device. The
aﬁove assumption would not affect the solution if r(7) has step
functions as its elements. However, if the inputs are other than
steb functions, the approximation is a good one for small sampling
periods.

Now letting t0 = kT and t = (k { 1)T in Eq. (1-4), and

assuming xr(T) = x(kT) over one sampling period, we have

j(k-&-l)T

_ [a-BG(O)IT L[ABG(0)] (kT+T-T)

X, [{k + 1)T] §c(kT) + dTBE (0) x (kT)

kT
(1-10)

KT < t < (k + 1)T.

The responses of Eg. (1-9) and Eq. (1-10) will match at
t=(k+ 1)T £ itrary initi i
.( ) or an arbitrary initial state gc(kT) and an arbitrary

input r(T), if and only if the following two equations are satisfied.

(k+1)T eA[kT+T—T]

o[A-BG(O)]T _ AT _ J atBG(T) (1-11)

kT

and



eA(kT+T-T) e [Aa-BG(0) 1 ( kT>+T-T)

BE(0) r(T) 4t

(k+1)T
J dtBE(T) z (kT) =

J(k+l)T
kT kT

(1-12)

First working with Eq. (1-11), we let A = (k + 1)T - T. Then,

Eq. (1-11) becomes

T a

J[A-BG(O)IT _ AT _ J M DBe(T) (1-13)

0
In principle, the feedback matrix, G(T), of the sampled-data system

can be determined from Eq. (1-13). However, it is subjéct to the

limitations as discussed in the following section.



E (0)

r(t)
——ie
r(t)
e  E(T)

Figure 1-1.

G (0)

A continuocus-data system.

zoh X =

G (T)

Figure 1-2.

Sampled-data system.
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1.2 Closed Form Solutions for G(T)

In order that all n states of the continuous system §c(kT) match
those of the sampled system §s(kT) at the end of each sampling
period it is sufficient that equation (1-13) be satisfied. Equation

(1-13) may be written in the simplified matrix form,

D(T) = - 6(T)G(T) (1-14)
where
D(T) = e[A—BG(O)]T _ eAT (1-15)
T
o(T) = [ ™M Bax (1-16)
| . .

2
Equation (1-14) consists of n scalar equations with mn unknowns.
If the number of unknowns equals the number of eguations, m = n, and
8(T) is nonsingular, then a unique solution of Eq.(1-14) exists and

is given by
-1 v
G(T) = - 6 “(T)D(T) (1-17)

A Special Case for Exact Matching

If the control syétem has more states than controls, n > m, which
is the case in most control systems, Eqg.(1-14) will generally not have
a solution. However, if the rank conditions described in the
following are satisfied, the system of equations in Eq.(1-14) are
consistent and there still is a solution.

Let

G(T) = [9’1: 92, s ey gn] ) (1—18)

D(T) [dl, d ceny dn]A (1-19)

2!



where 95 i=1, ..., n, are m-dimensional vectors and di’ i=l, ...,

n, are ﬁ—dimensional vectors, then if
rank [6] = rank [0, di] ' (1-20)

for all i=1l, ..., n, the system of equations in Eq.(1-14) has at
least one solution. If the above conditions are not satisfied the

equations are inconsistent and no solution exists.

Pagtial Matching of States
| Genérally speaking, the above rank conditions will not be

satisfied and thus for the case where n > m not all of the states
of the continuous and sampled systems can be made tq match at the
end of each sampling pgriod.

Although it is not péésible to match all of the sﬁaﬁes it can
be shown that it is possible to match some of the states or algebraic
sums of the states at each sampiing period. Multiplying both sides

of Eq. (1-14)by a constant m x n matrix H gives,
HD(T) = - HO(T)G(T) : ' : (1-21)

The above equation consists of mn scalar equations and mn
unknowns. If H is chosen such that HO(T) is nonsingular, Eq. (1-21)

may be solved for a solution, G_(T),

G, (T) = - w811 tED(T) (1-22)
It should be noted that the above éolution for G(T) does not satisfy
Eq.(1-14) . The reason is that when Eg. (1-14) is premultiplied by the
matrix H, it reduces the system of n2- equations to a system of mn

equations. Only if EqQ.(1-14) had been multiplied by a nonsingﬁlar



matrix would the new system of equations be equivalent to the
original system. Since H is a m x n matrix, for n > m the
transformation is a singular one, and the solution may not necessarily
satisfy the original set of equations.

To understand the consequeﬁcies of the transformation and the
- physical meaning of the solution of Eq.(1-22), we match Egs. (1-9)

and (1-10) in the following form:

x [(k + 1)T] é (T)x (kT) + 6 (T)E(O)x(kT)
-C C -C Cc -

x [(k+ 1Tl = (¢ (T) - 8 (T)G(T) 1x. (KT) + B(T)E(T)z(kT)
-s 0 ]

where
¢C(T) = e{A—BG(O)]T' ‘(state transition matrix of the
closed-loop continuous-data system) (1-24)
AT . . .
¢0(T) = e (state transition matrix of the
_ open-loop  system) ' (1-25)
T (a-BG(0) 1A | .
ec(T) = J e dAB (1_26)

0

Premultiplying poth sides of Eq.(1-23) by the m x n matrix H gives

Hx [(k + 1)T] Hp (T)x (kT) + HO (T)E(0)x(KT)
- C -C C -

1-27)

For arbitrary gc(kT), §s(kT), and r(kT), the last equation leads to

HO (1) x (kT) = HIQy(T) - 6(T)E(Dx, (kT) | - (1-28)

(1-23)

Hgs[(k + 1)T] = H[¢0(T) - 6(m)G(T)1x_(kT) + HO(T)IE(T)x(kT)
. - —'b -



HO_(T)E(0)z(kT) = HO(T)E(T)x (KT) (1-29)

The significant point is that the solution, Gw(T), of Eq. (1-22)
satisfies Eq. (1-29) for any arbitrary "initial" state gc(kT).
Premultiplying both sides of Egs. (1-9) and (1-10) by H simply
transforms the n-dimensional state vectors 50[(k + 1)T] and

ﬂgs[(k + 1)7] into a new m-dimensional vector, y[(k + 1)T], such that

yl(k + 1)T] =.H_>_{_C[k + 1)T] = H)_{S[(k + 1)T] (1-30)

Note that the new states yi[(k + )T}, i=1, 2, ..., m, are algebraic

sums of the original n state variables; that is,

n .
y.[(k + 1)T] = ) h,.x [(k + 1)T] i=1,2, ...m (1-31)
i R S
j=1
Although the solution, Gw(T), of Eq. (1-22)does not match the n
states of the continuous system, §c[(k + 1)T], to the n states of

the sampled system §s[(k + 1)T)}, at time (k + 1)T, it does match an

algebraic sum of these states.

x((k + DT] = Hx [(k + 1)T] = Hx_[(k + 1)T] (1-32)



.10

1.3 An Exact Solution for Gw‘T)

With the urderstanding of the conditions and limitations as
‘described in the preceding secti&n, we shall derive an‘exact closed-
form solution of the feedback gain Gw(T) which partially matches the
states at the eﬁd of each sampling period as governed by the weighting
matrix H. Starting with Eq. (1-13)

T

o [A-BG(O)]T _ AT _ f & axse(m) (1-33)
(0]
Tet
Jpitl
T © AT -
6(T) = J eAAdAB = E Y B (1-34)
0 j=0 I
then
e[A"‘BG(O) 1T = eAT - 9(T)G(T) (1-35)

Premultiplying by a weighting matrix H which is chosen such that

HO(T) is nomsingular and solving for G(T)

1 [A~-BG(O) 1T
e

G (1) = [He(T)]™ H[e" T - ] (1-36)

A special case of interest is when H = B'. 1In this case HO may
be expressed as a quadratic form
- _
HO(T) = J B'eAAB a - - (1-37)
0

Since

(1-38)
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for A sufficiently small eAA > 0 (i.e. a positive definite matrix).
Thus it can be argued ~that there exists a number & > 0 such that if
T <o .then

eAA> 0 for 0 AXLT

and therefore the quadratic form

T
f B'eA}‘B dx > 0.
0

Then for T < a, HO(T) is nonsingular.
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1.4 G(T) By Series Expansion

"In this secticn we shall derive a Taylor series expansicn for
GﬂT) about T = O.. In general, if this series converges, G(T) can
be approximated by taking a finite number of terms of the series
expansion. |

Let-G(T) be represented by a Tayior series about T = 0; that is
_ C K-1 . .
G(T) = lim GK(T)= lim ;X %T-G(J)(T)TJ - (1-39)
Koo K»o =0 ‘

where

P = e ‘ - (1-40)

J
aT T=0

Substitute G(T) from Eq.(1-39) into Eq. (1-13), we get

T © . .
JIA-BG(O)]T _ AT _ J Mas ) _1_1_ ¢ imrd 1o
0 j:—.o J
Or
5.3 © 5.3 @ i+l © ¢ (mTF
(A - BG(O)]-"T = z AT z A-T B k (1-42)
. j! =0 j! 320 Y(J + 1)! k=0 k!
J=0
The last equation is written
Y ((a-Bc(01’?  alrd A’ T W) Rttt
) 31 - STt T L X! =0 (1-43)
j:o * ° k=0

Now equating the coefficients of TP (p =1 2, ...) to zero, we have

(a - BG(0)1° _a° i A o
pl Pl 42 (@ - 3213 T = (1-44)
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(p-1) (p-2) (T,

In general, it is'possible to express G (T) in terms of G

G(1) (0) (0)

(@3 (T), where G ' (T) = G(0).

(T) ) «ee, (T), G

_Equation (1-44)is written

[(a-BG(0)1° £'+ Po2 ,P3-15.(3) (g . 5P (1)
P! pl (p - D 13! (p - 1)1

(1-45)
j=0

Therefore;

5PV (r) A a-sBe@1® - "F am 3716 () ()

= - : 1-46
(- D!  p! p! P R IR E (1-46)

Then, let H be an m x n matrix such that (HB) is nonsingular; Eq. (1-46)

(p-1)

leads to the solution of G (1),

P22 Ap—j_lBG(j)(T)} (1-47)

G(p 1) (T) = (HB) 1, t&_]_ _Ia - BG(O)]™ _ (p - 1)} 3G~
- p j=o (P~ 301

p=1, 2, «e. . ‘
(p-1)

The following table gives the expressions for G (T) for
p=1, 2, and 3. Then; according to Eg. (1-39),
cm =6 m = co (1-48)
6, =c(o) + 16 (x) )
2
6y = c + 1@ + 6P (1-50)
Tablé' 1-1.

p G(P—l)(T).

1 4 G(0)

2 3 G(0) [A - BG(0) ]

3 |(uB) " tu{- -é-;\BG(O) [A - BG(0)] + %BG(O) [a - BG(0)1°%}
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it is interesting'to»hote that since G(O)(T) and G(l)(T) are

not dependent upon H, the one-term and the two-term series
approximations of G(T), Gl(T) and G2(T), respectively, will attempt

to match all the states of the continuous-data and the sampled-data

I

fsystems. Beyond two terms, the weighting matrix, H, must be used,

rand only certain states and combinations of states are matched,

:depending on the H selected. As more terms are added to the series

approximation, GK(T) will approach the exact solution of Gw(T) of

Eq. (1-36).

7
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1.5 An Exact Solution For E(T)

The solution of E(T) is obtained from Eq. (1-23) .,

O(ME(T) = B_(TE(0) ' (1-51)

Similar to the closed-form solution for G(T) discussed in
Section 1.2, if m = n, and 0(T) is nonsingular, a unique solution of

'Eq.(l—Sl) exists, and is given by
E(T) = e'l(T)ec(T>E(0) (1-52)

When n > m, the solution of the matrix E(T) which corresponds

to the partial matching of states is obtained from Eq. (1-29),
HO (T)E (T) = HGC(T)E (0) A , (1-53)

Therefore,
E_(T) = (6 (7)1t HO_(TVE(0) (1-54)

where it is assumed that HO(T) is nonsingular.



416.‘A

1.6 E(T) By Series Expansion

Similar to the solution of G(T), the matrix E(T) may be

expanded into a Taylor series about T = 0; that is

E(T)=lim EK(T) . (1-55)
K—)OO
where
1 ' o
E (T) = __Z_ ST E ) () | - (1-56)
where
. 3 :
g3 () = LE@O | (1-57)
BTJ . .
T=0

Substituting the series expansion of E(T) into Eq. (1-51), we get

[e+)
om J e mrd -6 (mE© - (1-58)
. j! c
j=0
Or,
«© . j+l © © J+]
) -l.TAJ .T+ TB ] i—f e ) (me* = ) -1-1— [a - BG(0)19 Z—— BE(0) (1-59)
j=0 J J k=0 j=0 i+
The last equation is simplified to
w0 j o (k). k+j+l 5341
A'B E_ (DT _ [A - BG(0)] _
) (G + 1! ) ki | (3 + 1)1 BE(O)] =0  (1-60)
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Equating the coefficients of Tp (p=1, 2, ...) to zero, we have

(A - BG(0) 12718 (0) . AP 1p 00) + Ap-2BE(l)(T)
p! p! (- 1L
| 2273 (2 (1) PR 20%8g P71 () (1-61)
(p -~ 2)!121 ot 1i(p - 1!

¢ 0r,

P2 pP 31,5 03) (g
(p - PII!

[a - Bc(0)1°  BE(0) _

-1
o (p )1

BE(p—l)(T) _
3=0

Now let H be an m X n matrix such that HB is nonsingular, the solution

of‘E(p-l)(T) is given by

P22 P=37150(3) (g,

(1-62)

‘ p-1
- -1 ~ BG(0
g (P l)(T) = ) tu{ [a G(0)1~ "BE(0) —(p - 1)1 2R
: P : e (p - 13!
j=0 . .
p=1, 2, ... . .
The following table gives the expressions for E(p-l)(T) for

p=1, 2, and 3.

Table 1_2,

P P (r)
1 ‘ E(0)
1
2 : - 5 G(0)BE(0)
3 (HB)—IH{ ABg(O)B _ BG(O)[A3- BG(0)]B } E(0)

(1-63)
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Notice that, similar to the situation for G(T), if only up to
two terms are used in the series approximation for E(T), the H matrix
is not needed, and all the states of the sampled-data and the continuoqu

data systems are apparently matched.
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1.7 Computer Program for Computation of Truncated Series, GK(T) and EK_(_'_I‘_z

The power series expansions of Gw(T) and Ew(T) are defined in
Egs. (1-36) and (1-54), respectively. An approximation utilizing the

first K termsof the infinite power series can be written as

o |
G (1) = G (T) = 2 ¢Hm L (1-64)
i=0 -
and E(T) 2 E(T) = 2 BT T (1-65)
where
- _ i _ i i-2 _i-j-1_ _(3)
U (yupy hg (A - A= BGONT ;g ] AL BG ‘T)} (1-66)
3j i . (i - j/ljl
j=0
(a~3)
_ i-1 . B2 pimdml )
£ D) () qmy " LB fG(O)] BE(0) - (i-1)! jZO oy E )
(1-67).
!9 - o ' (1-68)
anda &9 = £(0) | | o (1-69)

Equation (1-6#)- (1-87)an be modified for computational efficiency,

Let
(m-1) , ..
(m) _ G (T) "
6T (M =TT (1-70)
' (m-1)
(m) E (T) ‘ '
£ _('r) == D1 . (1-71)
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Zl = —:;l (1-72) .
i
- BG(0)] = LA 'i?G(O)] (1-73)
. 1 .
— A B ‘ )
(AB)i =T +Dr o (1-74)

‘e

then the K-term series approximations of GW(T) and Ew(T) become

i

Kl i) .
G (r) = ) & (mrt (1-75)
K . A _
i=0
K-1 . . . :
and g (m = ) Bt et (1-76)
K
i-0
with
(i) A [ —— 61 () |
&' (m = (5B) " A? - - BG(O)J;;Zz(ABg_j 1 (T)j (1-77)
. (A-BG(0)1. .BE(0) g
(i) _ -1 i-1 _ — (j 1)
£ (1) = (HB) "H 1 | jzz (ABi—j+1 (T)} (1-78)
a1 () = G(0) | (1-79)
and ﬁ(l?(T) = E(0) . (1-80)

Figure 1-3shows the flow chart of the computer program used
for implimenting equations (1-75) - (1-80) Two additional

quantities, TP and NUM, are defined. These determine the values
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of the sampling period T for which the approximations of Gw(T) and

Ew(T) are calculated. With TP and NUM given the sampling period T

-varies from T = TP to T = TP X NUM in NUMiincfements.



startc

\
Define Compute | Compute Comput.e Define Set
: A
A,B,G(0),2(0) o m - . - =
/GO /--"—?'(AB)m= A'B -\:—ua)i L 2 BE(0) >y O = GO sy 172
H,K, NUM, , (m+1)1! o T
TP m=1,2,..,K-|1 | E'= E(0)
Compute Compute Compute | Compute
Set e
i : — ~BG/o i
I =1 a(l) , ﬁ(l) " 4’{5@{"))1_1 P (A G[i l:"“%—-“"g ] _Pii
T ®E _ (A-BG() i it
il
I=I+1
Set Computse Compute Print
e e T3 3 " G (T) - EK(T) - .
Te=Tex I 0] 1 x PG (T - - —>1 =
e EEAICSIR£3 b - 2/\(1) i-f1 Yes

r - 180 Sl R
i i=1 i-1 K

I =1+ 1%

Figure 1-3 Flow Chart for Computation of Series Apprcximations of GQ(T) and Ew(T).

e
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1.8 _Computer Program for Computation of Gw and Ew

The flow diagram for the computer program that calculates G
and Ew is shown in Fig. l-4 The program is a straightforward
implementation of the formulas(l-47) and (1-63) The subroutine
STRMAT is. called to calculate the state transition matrix and the
integral of the state transition matrix over one‘sampling period.

Its flow diagram is shown in Fig. 1-5 These matrices are calculated

by means of the following infinite series.

2 2
AT I AT  A“T _
$(T) = e = o1 + Tl—+ T + . . . » - (1-81)
2 2 3 '
- A IT AT AT
e(tT) = fz e d\ = 11 + Y + 3 + . e . | (1-82)

Let M be the kth partial sum of the ¢ (1) series

K k
A
me JAL » (1-83)
=0 -

and R the remainder matrix

© kK
AT
R= ] | " (1-84)
k=K+1 '

Using the upper bounds established by M. L. Liou [1l] and W. Evérling

[2] the elements, rij' of R may be bounded by

K .
(aAT) [lallT 1

K+l

where e = Lallz | ‘ (1-86)

T K42



- The exror test for terminating the summation of the series (1-81)

that

"us] = %3 (=87

where o = 10-6 and mij are the elements of M. The above inequality
must hold for all i, j except for elements mij that are close to zero.

If

10 ) - (1-88)

>
]

mig] < B

the test(1-87)is bypassed.
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i

Define

A, B, G(O)E(0), H

" Call STRMAT
¢s = exp (AT)
_ T
o, = !¢S(t)dt
6 =6 *B

S S

W3 = ¢s - ¢c
= *

Gw w2 w3

N

= *

Wy =W, * 6
= *

Ew wl E(0)

AC=A-B * G(0)

Call MINV

-1
(66 _]

E

w2 = [Hes]

1y

Figure 1-4

Flow

chart for the calculaﬁion of Gw and Ew.
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¥ _yes

4

. 26

Test < a|w2(i, 3)| |-

No

Yes

No and

N
BNORM = )
21

"N
Y w2, 9
j=1 |

l

€ K + 2

_ ANORM * T

BNORM * ANORM * T

Test = (K+1) (1-€)

ok

Return

e—

K > K MAX

¢;Yes

error

Return

w2(i, j) > B jYes
No L
Figure 1-5 Flow chart for calculation of the state

transition matrix and its integral, STRMAT.
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1.9 _Digital Redesign of the Simplified One-Axis Dynamics of

the Skylab Satellite.

In this section digital redesign with the partiél matching metfod is

- applied to the simplified one-axis dynamics of the Skylab Satellite.
The block diagram of the simplified Skylab Satellite is shown in

Fig. 1-6 .- The constants of the system are given as

I=970,741 Kg - m°

11.8 x 103 n - m/rad

125.9 x 103 n - m/rad/sec

Ko

5

The feedback gains g9, and g, are to be selected so that the
damping ratio of the system is 0.707. For zero steady-state error,‘

9; = 1. The closed-loop transfer function of the system is

Xl(s) K
wc(S)

0

2
Is +K s+K

192°"%

11800
97074152+l25900g25+11800

0.01215
sz+0.l29gzs+0.01215

(1-89)

Therefore, the natural undamped frequency is 0.1l rad/sec, and

g, = 1.205, K;g, = 151,800.

192
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The state equations of the system are

X =%
% =2y
2 I (1-30)
and
u=Ko¥, = 99Ky - 9K %,
= EY, - G, (0)x) - G, (0)x, (1-91)
Then,
0 1} 0
A= | B = (1-92)
0 0 1/970,741]
G(0) = [G;(0) G ,(0)] = [11800 1517800]
E(0) = 11800 :
(1-93)

The block diagram for the continuous model of the Skylab Satellite

is shown in Fig. 1-7
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The present Skylab Satellite system with the feedback gains
of Eq.(1-93) has.an undamped natural frequency of 0.11 radians/sec. and
a damping ratio of 0.707. For this system the exact gains GW’ EW
are computed for T = 1, 2, 3, 4, 5 seconds and H = [0 1] and H = [1 o0].
These gains are listéd in Table 1-3, With H = [0 1] the state.x2

is attempted to be matched and with H é [1 0] the state X, is
aﬁtempted to be matched.

The system is simulated on a digital computer for both values of
H. A sampling period of T = 2 sec is used for the sampled data system.
The gains G(0) and E(0) of Eq.(1-93%re used for the continuous system
and the gains Gw'and E, (from Table 1-3 for T = 2 sec) are used for
the sampled data sysfem.

Figures 1-8 to 1-12show the simulation results for T = 2 sec. and

[O 1] and figures 1-14to 1-19 show the simulation results for '

H =
T=2gsec. and H= {1 0J). Figures 1-8 and 1-l4show the state
trajectories xlc(t) and xls(t) for the two cases of H respectively.

Figures 1-9 and 1-15 show the error (xlc(t) - xls(t)) for the.tyo‘.
cases of H. The remaining figures show the same resulté for the |
state xz'and control u.
‘The simulation results show that
i) the states are more closely matched with H = [0 1] than
with H[1 o] and

ii) a sampling period of T = 2sec. appears to be adequate for

digital redesign of the Skylab Satellite system of Fig. 1-6,
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| Table lf3

T (seconds) H Gwll(T) ‘ GWlZ(T) N EW(T)
1 [0 1] 10901.5 145840 10901.5
2 " 10051.2 139921 10051.2
3. " 9248.45 134071 9248.45
4 " 8492.5 128315 8492.5
5 " 7782.34 122674 7782.34
1 L 0] 11197 147825 11197
2 " 10618.1 143867 10618.1
3 " 10063.1 139937 10063.1
4 " 9531.78 136048 9531.78
5 " 19023.72 132207 9023.72

i

(0)

Also §11 = 11800
Glz(O) = 151,800
G(0) = 11,800



31

b *2
—e Ko i ——l———# .]; X
Is s 1
Kl
-4———-—-—-———-—--
KO

Figure 1-6 Block diagram of a simplified skylab satellite.

Yo 1 K 1 2] L *
D oo L Y
11800 970,741 s S
151,800  lugee ]
11800 e

Figure 1-7 Block diagram of the skylab satellite with
state feedback for damping ratio of 0.707.
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Figure 1-8 State trajectories x c(t) and xls(t) for the simplified
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one axis dynamics of the Skylab Satellite.
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Error, xlc(t) - xls(t), in the state trajectories for the

simplified one axis dynamics of the Skylab Satellite.
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Figure 1-10 State trajectories xzc(t) and x25(t) for the simplified
one axis dynamics of the Skylab Satellite.
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one axis dynamics of the Skylab Satellite.
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Figure 1-16 State trajectories x c(t) and x s(t) for the simplified
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one axis dynamics of the Skylab Satellite.
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2. DIGITAL APPROXIMATION BY POINT-BY—POINT STATE COMPARISON

WITH EXACT MATCHING AT MULTIPLE SAMPLING PERIODS

2.1 Introduction

The problem is that of approximating-a continuous-data system of Fig.é—l
by a sampled-data model of Figi;é;Q jby céhparison of the states of the two
systems. ) |

The continuous-data system is described by the following time-invariant

dynamic- equations:

gc(t) = Azc(t) + Bu(t) - ~ ' . C(2-1)

u(t) = E x(t) - 6.x (t) (2-2).

where gc(t) denotes an n-vector, u(t) and r(t) are mrvectors,'Ec and € are
the gains of the forward and the feedback paths, respectively.
The dynamic equations of the sampled-data model are:

-eaa

x () = Ags(t) + Bu_(t) | ;(2-;)
u (K1) = E(Dx(KT) - 6(Dx (kT) K ‘ : .(é:;B‘

for kT < t < (k + 1)T. The sampled-data system is also of the nth order with
m inputs. The outputs of the sample—and-ﬁold devices are a series of step
functions which are denoted by the vector.gs(kT) for kT < t < (k + 1T,

The objective is to find E(T) and G(T) so that the states of the sampled-

data model are as close as possible to that of the continuous-data system..

It was pointed out in Chapter 1 that exact matching of the states of

the two systems cannot be achieved in general for an n-state and m-input

system, unless n = m and the following matrix is nonsingular. -



8(T) = J e "B ' _ (2-5)

In.this chapter Wwe shall show that for a continuous-data system with n
éﬁétesAand m inputs, the states can be matched exactly, in principle, subject
to approximations, by the states of a sampled-data system every N sampling

instants, where

n/m < N<n/m+1 . . (?:5)
For instance, for a second-order system with one input, it is possible to match
the states of the two systems every é@o sampling instants. On the other hand,
if the sampling period of the sampled-data system, T, has been fixed, it is
necessary only to change the forward gain E(T) and the feedback gain G(T) in
between the sampling instants, at N equal intervals, to obtain exact matching
of states at the sampling iﬁstants. It will also be seen that only the
values of.the states at the sampling instants, kT, k = 1, 2, ..., need to be

fed back to generate the control signals k =1, 2, ...
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r(t) . : X
— Ec X = A§C + Bu
G
c
 Figure 2-1  Block diagram of continuous-data system.
(t) | E(T) IESN I
=® z.o0.h X = ax, + Bu
° + T . . .
. 3

G(T)

B Figure 2-2 Block diagram of sampled-data system.
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2.2 Exact Solutions for the Forward and Feedback Gain Matrices

(Second-order, single-input system)

In this section we shall derive the optimal gains for the exact matchings
of states at multiple sampling instants using a second-order system with a
single input (n = 2, m = 1),

Let us define

o(m) = T " (27
(A-BG )T . S

9.(T) = e S - | (2-8)
T (A-BG )A '

8,(T) = J e ¢ dB (2-9)
0 S

Then, the solution of the state at the sampling instant t = (k + 1)T for the

continuous-data system of Eés. (2-1) and (2-2) is
1 = ' -
zc[(k + 1)T] ¢C(T)§C(kT) + ec(T)Ecr(kT) . (2 lQ)

where it is assumed that r(T) = r(kT) for kT < T<(k + 1)T. This appfoximation
is necessary so that r(T) can be factored out of the integral of GC(T), and
the solution will not be input dépendent.

Similarly, the state of the continuous-data system at t = (k + 2)T is

obtained as

zt[(k + 2)T)

¢, (Mx_[Cc + DT] + 8_(DE_r[(k + 1)T]

¢c(2T)§c(kT)_+ ¢C(T) ec(T)Ecr(kT) + ec(T)Ecr[(k + 1)T] m(gf;l)
For the sampled-data system, the solution of Eq. (2-3) for the time interval
kKT<t< (k+ 1T, k=0,1, 2, ..., is

x [0+ DT] = ¢(Mx (KD + 8(Du, (k1) | (2-12)
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where_gs(kT) denotes the output of the new-order hold for the specific time
interval. For analytical reason we are using the control signal us(kT) in
the derivation instead of expressions involving the input r(T).

For two sampling instants, the gtaté vector at t = (k + 2)T is written
§s[(k + 2)T] = ¢(2T)§s(kT) +;¢Sizh6(T)Es(kT) + O(T)ES[(k-+ 1)T] (?-%3)

where gs[(k + 1)T] denotes the constant output of the zero-order hold for the
time interval kT_ﬁ t < (k+ 1)T. |

Now let us aésume that.the statés of the<éec§nd-order continuous-data
system and thatAdf the sampled-data system can be matched at t = kT and at
t = (k + 2)T, we let B

x (kT) = x_(KkT) (2-14)

and

-C

x [(k+2)T) = x [(k + 2)T) | (2-15).
Then Egs. (2-11) and (2-13) give

¢c(2T)§S(kT) + ¢C(T)BC(T)Ecr(kT) + GC(T)Ecr[(k + 1)T]

= $(2D)x_(kT) + $(D)6(Du_ (k1) + 8(Du, [l + 1)T] (2-16)
Let o
r(1) = [$(16(T) 6(T)] | | 21
p(D) = I H(M6, (21 - 62D | N (ST
. v e
5,(T) = I7(T)¢ _(1)8_(T)BE_ . - (2-18)
5,(T) = T(1)6_(T)BE_ : ~ [ (2-20)

Notice that I'(T) is the "controllability" matrix of the sampled-data system in
Eq. (2-12) Therefore, if the sampled-data system is cohtrollable with the

sampling period T, I'(T) is nonsingular.
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With the matrices defined in Eq. (2-17), (2-18), (2-19), and (2-20),
Eq. (2-16) leads to
u_ (kT) | : .

= P(T)ES(kT) + Sl(T)r(kT) +SZ(T)r[(k + 1)T) (272;)
u [(k + 1)1] o '

—

where k = 2§, J =0, 1, 2, .. .

The last eqﬁafion is also written as
u (kD) = [1 01{P(Dx (KT) + 5, (Dr(kD) + 5,(Drl(k + DT} (2-22)

u [+ DT = [0 11{P(Dx (KT) + 5 (Dr(kT) + 5, (Drl(k + DT} (2-23)

Let

u (KT) = = Gux_(KT) + Eor(kT).+ Forl(k + 1)T] (2-24)

where Go, EO, and FO represent the constant gains which are effective during

the time intervals of 2kT <t < (2k + 1)T, k=0, 1, 2, ... . Comparing -

Eqs. (2-22) and(2-24) , we have

Gy = -[1  0Ip(T) : _(2125)
E, = (1 0]s,(D ' (2-26)
Fy = [1 0]5,(T) ' , “f2f2§?

However, Eq. KQfgﬁz’indicates that us(kT)ﬁis a function of both r(kT)
and r[(k + l)T],.which means that in order to determine the control us(kT)
at t = kT, the input r(t) must be known at the next sampling insfant
t =.(k + 1>T. Tﬁis implies that either the input signal must be known in
advance over each interval [kT, (k + 2)T] or a predictor must be constructed

to predict r[(k + 1)T] on line.



In a similar fashion, Eq. (2-23) is written
u [k + D] == Gx [(k + DT] + Eyxr(kD) + Frl( + DT (2-28)

represent the constant gains for the time interval

where G El’ and F

1’ 1
Qk+ 1T < t<2(kk+ 1T, k=0,1, 2, ...
Substituting Eqs.(2-24) andt(2—125into the last equation,

"we have,
u [G + DT = -6, [6(D) - 6(NE, Jx, (D)

+ [E, - Gle(TfEO]r(kT) +‘FFi—¥ éiéYT5fdjr[(k41jf]“fte}29)

1

Comparing Eqs. (2-17) and (2-23) yields

6, = -[0 1R - 6(MEy1 ™ (2-30);
E, = [0 1]sy(D)+ G,8(T)E, . | - 9?:..3,1_?__
Fpo= [0 115,(D) + 6,0(DF, 1 | (2-32) -

It can be shown that the condition for the matrix [¢(T) - G(T)CO] to
be nonsingular is that the sampled-data system be completely controllable.

- Note fhat the control u [(k + l)T] may be expressed in terms of the state X (xT)

" as in Eq. (2 23) or in terms of the state X, [(k+l)T] as in Eq (2 28) Thus, the

state variable can be sampled either every kT or every 2kT, k = 0, 1, 2, ey fofi

feedback purp0se. A ) g be

T

A simpler solution which does not require the use of a predictor can be

- [ —

obtained if we assume that o o : '
) ' (2-33)

| r[(k + 1)T] = v(kT) = r(3). .
for kT < T < (k + 2)T.  Then Eq..(2-16) becomes”

¢c(2T)§S(kT) + ecgzr)Ecr(kT)

= ¢(2Dx (kT) + ¢(T)8(TIu (kT) + 8(T)u [(k + 1)T] (2-3u5



where

2T (A-BG )A
8 (2T) = J e ¢ ars
(o] 0 .

Therefore, Eq. (2-3%) is written .

ug (kT)
= P(T)gé(kT) + S(T)r(kT)
u [(k + 1T '
1, 2, «.., and

where k = , =0,

T) = E
S(T) ec(ZT).Jc
Equation (2-36) can be written as

ug (kT) = - G (kT) + E r(kT)

'us[(k +.1)T] = - G 1% [(k + l)T] + Eyr(kT)

Comparing Eq. (2 36) with Eq (2- 38) yields

G0 == [1 0]P(T)

E, = [1 0]s(D)

Equation (2-39) is rewritten as

ug [+ DT] = - 6 [6(T) - BTGy x, (1)

+ [E, - G B(T)E Jr(kT) -

1

Thus, comparing Eq. (2 36) with Eq. (2 42) we have

[0 1]1p(T)

]

- 6,[6(T) - B(1)G,]

{0 1]s(T)

- Gle(T)EO + El

51

(2-35)

é(?:?@)

(2-37)

) (2-38)

" (2-39)

(2-10)

(2-41)

(2-142)

;( 2:“}_3_)

(2-uu)
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Solving for G from Eq. (2-u44), we get

1

from Eq. (2-43) and El

6, =- [0 1IP(D6(TD - BTG, 17" | (2-u5)

E, = [0 1]s(T) + GlG(T)EO ' (2-!46')

Therefore, for the second-order s&stem.wiéﬁ single input, if the'states_
can be matched every two sampling periods, the gains G(T) and E(T) must
change twice during each basic period of 2T. - Then, during the subsequegt
sampling periods these gains go-through ﬁhe same sequences repeatedly. 1In

other words, referring to Eq. (2-4),

G(T) = G, 2kT <t < (2k + 1)T (2-147)

0 A

G(T) = G @R+ 1T <t <2(k+ 1T (2;98)

1
k=0,1, 2, ... . In general, if the states of the continuous—-data system
are exactly matched with those of the sampled-data system every NT seconds,
where ‘N is an integer greater than unity, the feedback gain would have to

assume N different values, GO’ Gl’ cens GN—l’ over the basic period,. NT,

with changes cccuring at the sampling instants T. Furthermore,

Gy = Ciean (2-49)
for.k =0, 1, 2, cee - Similar properties may be stated for the forward gain
E(T) of Eq.“.(g_g)

As an alternative to sampling and feeding back the states at every

sampling period T, we can assume that the gain matrices are changed every T

]

but the states are sampled only at t 2kT. Then, in addition to Eq. (2-38)

Eq. (2-39) is written as

»us[(k + 1)T] = - qlzs(kT) + Elr(kT) -(2:50)
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where k = 2j, § = 0, l 2 e The gains G0 and E in Eq. (2 38) are 7

still given by Eqs. (2 40) and (2 41), respectively, but comparing Eq. (2 50)

with Eq. (2-36), we have

61 =~ [0 1]p(T) , ' (2-51)

and

t1)

p= 0 1M (2-52)
It should be noted that feeding Back the-states every T seconds and
feeding back the states every 2T wouid yield the same résponseé for the system
at the sampling instants, although the control signals and the gains for the
two schemes are different. However, using Es(kf) k=0, 2, 4, ...Ameans that
the states may be sampled only half as frequently in the second-order system,
but the gain matrices must be changed during the sampling period. In practice
the choice of either method may depend upon the applicability of the methods.
For iﬁstance, if the sampling period T is fixed a priori, then we may say that
for the second-order system considere& it is possible to match theAstates at
every other sampling instants only, by feeding back the state variables and
changing the gains at each sampling instant.‘ However, in order to match the
states at every sampling instant we can change the forward and fgedback gain
“matriggs once ip between the sampling instants. If we use Eqs.k(QfSl) and
(2752)dfor this purpose no additional samplings of the states are necessary.
Although it may be more convenient to sample the states every N sampling
periods and change the feedback a;d forward gains every sampling period to
match the states every N sampling periods, it should be noted that the system
is o?erating open loop over these N sampling periods. If the states and gains
are changed at the end of every sampling perioa the systém will only be operating

open loop over a single sampling period. This second method requires that the
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states be sampled more frequently but, in general, it should be less

susceptible to noise perturbations and variations of system parémeters.
Another interesting observation.is that the digital point-by-point

state matching problem considered hege is.closely related to the time-

optimal control of sampled-data control systems. For simplicity of illustration,

—_—

we may consider the regulator problem by géttiug r(kT) = 0 for all k. Then,
the optimal control for point-by-point state matching for the second-order

system is obtained from Eq. (2-21)

us(kT)

P(T)gs(kT)
us[(k + 1)T]

(OO (M [6_(21) - (2D Ix (K1) (2-53)
In sampled-data systems theory, it is well known that given a second-

order system with initial state gs(kT),'the optimal control to bring ES(RT)

to the equilibrium state 0 in minimum time is

TR TG TGN IC O - N (2-5%)

Therefore, Eq. (2-47) can be interpreted as the optimal control which brings
the difference of ¢c(2T)§c(kT) and ¢(2T)§S(kT) to zero in minimum time. TFor a
second-order system, if the amplitudes of the controls at various sampling
instants are unconstrained, the mimimum (and maximum) time to achieve state
matching is two. However, if the controls are subject to amplitude constraint,

more sampling periods are required for'matching.



55

2.3 Exact Solutions for the Forward and Feedback Gain Matrices

(General Case)

Now consider that the continuous—dat; system of Eqs.(2fl) and (272)'
has n states and m inputs. Then, if theAsampled—data system of Eqgs. (2-3):
éﬁd (2-4) is controllable for the sampling period T, the states of the tw§
systems may be exactly matched every N sampling instants; where N is given by
Eq. (2-6) .

The states of‘the continuoué-data system evaluated at t = (k + N)T-are

expressed as

x [k + MT] = ¢ (NI)x (kT) + 6 (NT)E r(kT) (2-55)
where '
N(A-BG )T
¢C(NT) = e ¢
NT (A-BG )X e
6 (NT) = J e ¢ am _ (2-56)
¢ 0
and

By recursion, the solution of Eq. (2-16) at (k + N)T is

N-1

5 (G + W] = 6@ (kD) + [ 0L - & = DTIBD, [k + 7] (2-57)
Now equating Eq. (2-55) to Eq. (2-57) and letting Et(kT) = gs(kT), we have

N-1 )

(4,0 = $QD 1% (D) + 8 (WDEX() = [ 6108 - 4 - DOy [(k + D] (5.59)

The last equation can be written as
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u_(kT)
u [(k + 1)T]
[o[(N - 1)TI6(T)  o[(N - 2)TI6(T) . . . ¢(T)9(T) 8(T) ] .
- ‘n X Nm - ‘ , ES[Ek+N-2)T]
— u [(c+ N = DT]
T _ — N x1—
= [6_(NT) - $(ND) ]z (kT) + 8_(NT)E_z(KT) | | | 2-s9)
Let \ | |
I(T) = [4I(N - 1ITIOCT)  ¢[(N - 2)TIB(T) . . . H(T)B(T)  6(D)] (2-60)

which is not a square matrix unless n = Nm. - However, if the sampled-data.
system is completely controliable, P(T) must be of rank n. Let A(T) be an

n X n matrix which is formed by use of n linearly independent columns of T(T).
In general, there may be a nonuniqueness in the selection of A(T) if NM > n and
there are.more than n independent columns in F(T). Now let U represent at

n X 1 vector which contains the elements of the control vector of Eq. (2-59)
that correspond to the columns of A(T) taken from I'(T), which means that B

Nm - n élements of the control vector can be set arbitrarily. Then, Eq. (2-59)

leads to .

=MD, O - 4O Ix G + A7H(TE_(NE £ (kD) (2-61)

The procedure of expressing the elements of U in terms of state feedback in

the form of the following equations is conceptually simple:

>

'.-‘-:‘-s[(k + T = - ngs(kT) + Ej_xz_(k'l’) | (2_v62.? |
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or

u LGk + DT] = - Gux [(k + HT] + Er(kT) _(2-63)
j=0'1’2, lol,N_l.
However, because of the nonuniqueness in the solution general closed form

solutions for the gains are difficult to eibress.

~—

Let us consider the case when n/m is an integer; then N = n/m. In this
case, ['(T) is an n X n square matrix, and the N optimal control vectors, -

gs(kT), ES[(k + 1)T], oee, Es[(k +'N j'l)T], are uniquely determined from

( 3

(k1)

(LC

u [(k+ 1)T]

nx1 . = P(T)ES(kT) + S(T)r (kT) (2-64)
ES[;k + N - 2)T] |
¥ ;Es[(k + N - l)T]J
where | |
(D = I Hm 0 D) - $() (2-55)
s(1) = TH(1)6_(NDIE_ (2-66)

Then the coqtrg}(yector, ESL(k + j)Trl, §=0,1, 2, ..., N —.l; can be
expressed by Eq. (?-???or Eq.hf?-53{ The matricés,,Gj, Ej, Ej’ and Ej,
represent the gain matrices which must change N times during each'sampling period
NT. During subsequent matching periods of NT to 2NT, 2NT to 3NT, ..., etc.,

these gain matrices go through the same N sequences of variations for each

period.

Let us define the m X n matrix I, as

3
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I, = 0 . 1 . 0
j . * . l - .- . l . * . (2 67)
0 ' 0 1 l 0 0 l .
«m(j +1)> <« m > «n - 2m- mj~>
columns columns .. columns 3=0,1,....
then the control vectors of Eq. (2-6%) 'can be written as
ES[(k + J)?] = Ij[P(T)ES(kT) + S(T)x(kT)] (2-68)
Now comparing Eq. (2-62)with Eq. '(?-68), we have
G, = - I,p(T ' (5-69Y
37 LEO - (2-69)
and
E, = I,S(T) - | i
5 j (T) | . - (2-70)

for.j =0,1,2, ..., N~ 1,

which are reiatively simple solutions for the gaip_matricés.

However, if the control vector is defined by Eq.(2f§??, the solution is more
complex.

For j = 0, comparison of Egs. (2—63)and(2—68)\gives

% = = TP (2-71)
By = Lo8(D | 4 - (2-72)

As expected, when the exact matching of states can be accomplished in

one sampling period, the solutions from Eqs.(2-62Yand(2—63)hre-identical.

For j = 1, Eq. (2-63)gives .

u [k + 1T] = - 6, [6(T) - 8(TIG)]x (kT)

+[E; - 6,E )z (kT) : (2-73)
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Comparing Eq. (2-73) with Eq._ﬁ2-68), with J = 1, we have

B ] B -
6, = ~I,P(D) [¢(T) - 8(T)Gy] (2-74)

El = Ils(T) + GlEO - o (2—7?)1

For the general case,

3 |
5 (G + T = T 16D - 8(DO,_ Tx (kD)

j-1
e L4 ) I [¢(T) - 68(T)G

DS 4-1]0(DE__x (kD)

j—LE(kT) ' ' ..(QTZp)

+ 8(T)E

Subétituting Eq. (2-76) 1into Eq.(2-63), we have

: J
u l(k+3)T] = -6, I [6(T) - 8(DG Ix_(kT)

3421 317
G jil jip[¢( ) = 8(T) 16(T) (kT)
- T) - 6(T)G T)E__ r(kT
3 pa1 i=1 - pl=
- Gje(??Ej_lg(kT)-+ Ejg(kr) (ztzj}“

Comparing Eq. (2-77) with Eq. (2-68) the gain matrices are obtained as

|
i

. -1 » o
6y = - IjP(T) {121[¢(T) - B(TZGj_i] } - (2-78)

j=1 J-p

E, = I,5(T) + G I [¢(T) - B(T)G 16(T)E
3 3 b le i=1 ) j-1 p-1

+ 60(ME : (2-79)
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2.4 The General Gamma Matrix

In section 2.3 we considered the case when n = Nm and the system ﬁaé
controllable in N sampling periods. A more general case is when n/m is
not an integer or when n = Nm but the system is not controllable in N |
sampling periods. In both these“cgses N must be chosen such that Nm > n.
The matrix T'(T) given by Eq;(Q-QQ) is then nonsquaré. As mentioned previously
if an integer N can be found such that the system is controllable in N
sampling periods and Nm > n thgn a nonsingular matrix A(T) of dimension n X n

~can be formed by selecting n linearly independent columns of I'(T). Equation

(2-59) 1is then written as

ADU(T) + TOTD) = [6_ () = $O) Jx_ (KT) + 6 (NDIE_£(KT) (2-80)

where HﬂT) is an n-dimensional control vector whose elements correspond to

the n linearly independent columns of I'(T) that were selected to form A(T).

fhe remaining Nm - n columns of I'(T) form the n X (Nm - n) matrix (T,

and the remaining Nm - n controls form the corresponding control vector EKT?T.“_>

Since the controlsjﬁ(T) may be set arbitrarily, let EKT) = 0. Solving Eq. (2-80)

gives ' : : | )
U(T) = P(T)x_(KT) + S(T)r(KT) (2-81)
where |
P(T) = (D16 _(NT) - $(D)]
S(T) = }\'I(T)ec(NT)Ec |

First consider the case when the control is expressed as

~ ’ s

L0+ DT = = G D) + Byr (i) - [

>

j=0, 1,.2, ceey N_lo
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~

It is sufficient to considerigg(t) over the first sampling period since
~ the gains,as and §5 repeat themseivés every sampling period.

In section III we equated the first m columns of U(T) with ES(O) to
find 66 and ﬁO' However here the vector U(T) in Eq. (4-2) may not contain

all the controls for the first sampling period, -Ei(o) i=1,2, ... m

~

Some of these controls are contained ig\tﬁe.g(T) vector and some thelﬁxT) vector.
The ones that are in the:ﬁ(T) veéfor have been set téAzero. In order to

compare the controlg in equations (4-2) and (4-3) it is necessary to add

back to the U(T) vector the controls that have been set to zero. That is, we

form the Nm - vector

(kT)

de”

u [k + DT]

T =| . (2-83)

}%[(k + N - 1)T]‘
by adding back the Nm - n controls that formed the_ﬁ'vector. We also construct
an Nm X n matrix P(T) by inserting rows of zero corresponding to the

additional Nm - n controls. Similarly we construct an Nm X m matrix §(T). Then

BT = B(Dx (KT) + S(T)r(kT)

The control vectors of Eq.(2-83) can then be written as

u [Ck + 3)T] = I [B(Dx_(KT) + S(Dr(kD)] S (2eew)

3

Comparing Eq. (4-3) and Eq. {(2-84) we have

8, = 1LFm : I . _(2-85).

g = 1,3 S o )
for § =0, 1, 2, ..., (N=-1).
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Next we consider the case when the control is expressed as

u l(k+ 3T] = - Gj§s[(k + 3)T] + Egr(kT) o (2-87)

for 3-0,1, 2, ..., (n-1). » o
Equating the control given by Egq. (2f77fand the control given by Eq.(Qf?ﬁz'
gives expressions identical to Eq. (2578) and Eq.(2r7?) except that the matrices
P(T) and S(T) are replaced by P(T) and S(T).

In order to illustrate the matrix manipulations discussed inbthis section
we will consider ;bg'cgse of a third-order system having two inputs.

Equation Eq. (2-59)is written as
)
Mo Ma M M (1,0

A Ao Mg Ayl (@) T e

>\31 ABl 133

A

Ayy| |uy(m |7 (0O - 00Dz, GD) + 6 (NDEXT) (2-89):

Luz(T)J

Since n = 3 and m = 2 the I'(T) matrix is nonsquare. If the first three columns

of T'(T) constitute a nonsingular matrix, we can define A(T) as

A1 Mz Mgs
Ay = |21 P22 o3 (2-89)
Ayp Ay Agg
Also
(T = [ul(O) u, (0) 'ul(T)] . (2-90)

Setting uz(T)'= 0, Eq. (2;88)15 written as

AU = [ (NT) = 6(N) 1x_(KT) + 8_(NT)E _z(kT)  (2-01)



then
uT) =
where
P(T) =
S(T) =

A_l(T)GC(NT)EC

P(T)x_(KT) + S(T)x (KT)

D [ (NT) = 6 (NT)]

(2-92)

052-93)

(2-é§)

By adding a row of zeros to the P(T) and S(T) matrices Eq. (2-92) may be

written for the

rul(kT)

uz(kT)

where

P(T)

| The aj,

andv(2_725, (2-73) respectively.

complete control vector for both sampling periods.

ul[(k + 1)T]

Luz[(k + l)T]J

r

N

3\

P

11
21
Pa

0

= B(Dx_ (kD) + S(Dr(kT)

P

P

P

12

22

32

0

P13

s

P33

0

[N

s

S(T) =

r
511

21

31

\ O

S

S

S

12

22

32

0

\

4

ﬁj and Gj’ Ej gains may then be found by using Egs.

{2-69), (2-70)
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. 2.5 Simulation of Systems

Digital Redesign of the Simplified One-Axis Dynamics of the Skylab Satellite

The dynamic equations of the simplified one-axis model of the skylab

satellite were discussed in detail in Chapter 1.

The state equations for the continuous system are

% = [A - BG_]x(t) + BE_r(t)

where

r(t) = unit step function,
0 1 0
A= B =
0 1 1/970,741
Gc = [11800 151,800]
E = 11800
c

The method of multiple sampling periods discussed in sections é.2“: é;uﬁﬁaé>u§éd
for the digital redesign of the above system. Since the system is>6£m£;e
second order with one control, the responses of the continuous and digital systems
can at best be matched at the end of two sampling periods. For the skylab
example the digital system was coﬁtrollable in two sampling periods so that exact
matching could take place at the end of the second period; The sampling

period was chosen as T = 1 sec and N = 2. Therefore, matching occurs at

t=2,4, 6, ... sec. The feedback gains and the forward gains are

GO = [11185. 147812.]
_Gl = [10639.6 144149.]

Ey = [11185.]

: E1 = [10639.6]
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~

Go and EO are used over the sampliﬁg'periods kT for k=0, 2, 4, ..., and Gl'

and El are used over the sampling pefiods kT for k=1, 3, 5 ... &

The simulation results are shown in Figsfg_uzthrbughéz_ggfor the states
and controls and the errors between the states of the digital gnd c?ntinuous
systems. The matching of the states can best be seen in Fig.:2_7 At the ..

_ LT
end of the first sampling period the error is negative, however, at the end of
the second sampling period the efror is close to zefél
Table 3-1 in the next chapter compares the method of pgrtia}_matchingﬁfo the

method éf multiple sampling periods by giving the maximuﬁ error between the stgtes of
fhe digital and continuous.systems at the end of oné sampling period fbr the

method of partial matching and at the end of two sampling periods for the

method of multiple sampling periods.
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3. DIGITAL APPROXIMATION BY POINT-BY-POINT STATE

COMPARISON WITH HIGHER ORDER HOLDS

3.1-' Introduction
The problem is that of approximating a coutinuous-data system of Tig. Q—l
by a sampled-data model of Fig. 3-2 Dby comparison of the states of thé systems.
The continuous-data system is described by the fcllowing time-invariant
dynamic equations:

_gc(t) = Aéc(t) + Bu(t) ' V(Sf}>
ule) = Ecg(t) - Gc-x-c(t) | (_372),}

where x (t) denotes an n-vector, u(t) and r(t) are m—-vectors, EC and Gc are the
X u xr

gain matrices of the forward and the feedback paths, respectively.
The dynamic equations of the sampled-data system which is to replace the

continuous—data mocdel are
¥ (t) = Ax (£) + Bu (t -
—t( ‘ —s( ) —s( ) (3ﬂ3l

where v (t) is an m-vector and is defined as the output of an (N-1)st-order

u
)
hold, N=1, 2, ... .

It will be shown that it is possible to match all the states of the system
in one sampling pericd if a hold device of sufficiently high order is utilized.
The order of the hold which is necessary to match the states, depends upon the
ratio of the nunbter of states and the number of controls of the system. TFor
the system considered which is of the nth order with m inputs, it is possible

to match all the states at every sampling instant with at least an (N - 1)st-order

hold, where n/m < N < n/m + 1.



v

£(t) _n u(t) ¢ - .
—_— —* B X, T AX + Bu

Figure‘B—l Block diagram of continuous-data system.

4

r(«) E(T) Bs(krfr) | x, (%)

¥

z.0.h.

G(T)

Figure 3-2 Block diagram of sampled-data system.
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Let us'cpnsider, for the timé Being, that an (N - 1l)st-order hold is
adequate for exact matching of stétés at every sampling instant. (The case
when a higher than (N - l)st-order hold is necessary will be discussed later.)
The control input of the sampled-data system with an (N - 1l)st-order hold is

expressed as

N-1
_ _ (t - kT)
Es(t) = [E0 + (t kT)El + ...+ W= D EN_l]gjkT)
N-1 Co
(t - kT)

for kT < t < (k + 1)T, where E are m x m coefficient matrices,

02 Eps oen Eyg

and G G are m x n coefficient matrices.

0> "1 """ GN—l
Let us define the following matrices:

fEO
B

E=|. - (mN x m) (3-5)

o
"

(mN x n) _ (3-6)

N-1

_ N 4

Then, Eq. (3-4) is written

¢ - k)t
(N - 1)!

Es(t) = [Im E (t - kT)Im.E e Im][ggﬁkT)

- Gx (k)] KT < €< (k+ 1T (3-7)
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vhere Im is the iundentity matrix of dimension m x m.

Now let us define the m x mN matrix

Lo (t-kD) = I (£-kDI . -%‘—_E%D,E ] ‘(3;8)_
Equation (3-7) is written as

u (£) = E(t - KDZ(KD) - 6(t - kDx_ (k) (3-9)
where

E(t - kT) = L (t - kDE s O (3-10)

G(t - kT) = LmN(t - kT)G | (3_1-1-)'

KT < t < (k + 1)T.
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3,2 Derivation of the Optimal Gains

The necessary conditions for the exact matching of all the states of the

continuous—data and the discrete-data systems at t = (k + 1)T, k =0, 1, 2, ...

for arbitrary inputs r(t) and initial conditions, §C(kT) = 5s(kT)’ are

given by Eqs. (1-11) and (1-12),
(A-BG )T AT (k)T A(KT+T-T) o
e =e - - e BG(T - kT)dt (3-12)
kT ) -

where Cc denotes the feedback gain matrix of the continuous-data system, and

G(T - kT) is given by Eq. (3-11)

(k+1)T

f (k+l) T (A"‘BGC) (kT+T-T) eA(kT+T_T)

e BE dt = I
c ,

BE(T - kT)dt (3-13)
kT o

kT

where Ec denotes the forward gain matrix of the continuous-data system, and

E(T - kT) is given by Eq. (3-10). Also, in arriving at Eq.(3-13) it has been .

assumed that r(t) = r(kT) for kT <t < (k+1)T.

If we let A= (k + )T - 1, Eqs.(3-12)‘and(3-l35fbecome

. A T ' . .
AT AT j eMBe(T - A)dx (3-14)

e - e
0
T }
A\ ,
GC(T) = fo e BE(T - A)dA (3-15)
where
A= A- BG o (3-1€)
and
T AU
A\ :
GC(T) = foe BEch (g-lj)
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Substituting %q. (3-11) into Eq. (3-1%) we have

A T
AT AT AX
A L A [o e BL (T - VEd) (3-18)

\

Similarly, substituting Eq. (3-10) into Eq. (3-15)gives

YA ‘ ‘
e‘(T) = fo e BLmN(T ~ AEdA : (3-19)

Equation(3-18) represents n2 equations in nmN unknown variables in G,
and Eq. (3-19) represents nm equations in m2N unknown variables in E. From

. 2 . .
the assumption that n/m < N < n/m + 1, there are at least n~ variables in

Eq. (3-18) " and at least nm variables in Eq.(3-19). Thus, it is possible under
certain conditions to solve for G and E from these equations.

If we define

T 1 : »
q (1) = f eA)\B-(T—:—'—)\—)—— dA _ (3-20)

0 ..~_.-

i=0, ..., N - 1, then Egs. (3-18) and (3-19)become

AT AT
e - e = [qy(T) | ql(T) < g (MG N
= Q(D)& (3-21)
6.(T) = Q(DE L (3-22)
Note that
o o
9 (1) = [:e BdA = 6(T) , < (8-23)

The matrix qi(T), i=0,1, ..., N-1, is of dimension n x m, and Q(T) is of

dimension n x Nm.
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The expression for qi(T) in Eq. (3-20) can be simplified when i > 1. Let

= (t - M/ | (3-24)
av = e (3-25)
then
T - A .
av = - 4 1 _)1)g dA (3-26)
A
. Ao .
W=f e ' (3-27)
a

where, in general, a is an arbitrary constant.
Substituting the last four equations into eq. (3-20) and applying

integration by parts, we get

i (A =T T{ (A , i-1 o
q,(T) = LT;_'X)_f e a0 |B +f f e 4o \—T"Hll—)-,—d)\B (3-28)
/ : a A=0 ‘ol’a * :
Or,
' i (0 T (0 A
qi(T) = - %‘f erdO'B + f f eAOdO + f Ao do —(T—(—-‘/}_—;T‘%)\B
" Ja 0l 7a 0
i (0 i (0 T (A i-1
= - %— f e doB + %— f e*doB + f J erdo—(T—(T—_%-— dAB
‘la " Ya 0°-0 +
T (A o SR
(T- A)
= A N, SR B -
fO fO do (i-1)1 dl . (3-29)
Now using Eq.(3T23) , the last equation is written
T i-1 -
- (T - M) }
qi(T) jo 6(2) DT dA | (3-30)
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Thus, Q(T) is given by

- Q(T) =,[q0(T)§ q,(T) f « 0 qN 1(D]

T (T T - 2
= [8(1) . f 6 (A)d. f BO(T = Mdx 2 o . .l f O -7 W
. 0 . 0 o . O A ‘
(3-31)

If 6(A) and eAA are available in ekplicit form, Eqs. (3-30) and (3-31) are
useful for evaluating Q(T). However, if 6()) and eAA have to be calculated
numerically using an infinite series, an alternate form for qi(T) and Q(T) is
more useful. This alternate form is now derived as follows.

The infinite series expression for eAA is written

@ 3
A 2 A;LT (3-32) .
Substituting Eq. (3 32) into Eq. (3 2O)ylelds

e

- 343
J 2 AN (T = 0t B\
0 1.

q, (T) = 520 3!
. _
_ T K‘ T ) .
= 2 5 f (1!3! ‘BdA ~(3-33)
0

In order to carry out the integration in the last equation, for i > 1, we

choose
t _
ve (T~-2A\ /i ©(3-31)
b
dw =‘%T dx ' (3-35)
then
__ -0 ‘ -
dv = 1- ! dX . (3—_36)
! R
w = AT———— (3-37)
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Substituting the last four equations into Eq. (3-33), and carrying out

the integration by parts, we have

o 33+l i A=t @ T 3
A ) (T - A) B+ZAJJ>\

320 (G + 1! il A=0 520

(T - X)i—l

o GFDI G- D! dAB

qi(T) =

§ . JT i (7 - nil

o G+ G- D! dAB »(3-38)

For i > 2, the above process can be repeated with

=.££;;&2E:i (3-39)
(i - ! _
and
Aj+1
W =S o (3-40)
to give
) T ., j+2 i-2 '
_ j A (T - )\)°

Generalizing the above described process, it can be seen that the

expression for qi(T) in Eq. (3-33) needs to be integrated by parts a total

of i times, to yield the result

m =7 A " H
qi 0

0 Jo @w T AP
_ AJTJ+1+1 .
T GFiE D (3-42)

Thus,
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®  ipitl
At
q,(T) = T 1 ~7 B (3-43)
0 sk G+ D _
o Jjt2
W AT -
1, (1) = jZO G+ 21 B (3-44)
T +N
4 (1) = J alrd i
N-1 j=0" (§ + N)! B : ' (.3 _us)
and .
@ L. N-1
(TGO N CL = A S SR S P S (3-46)

30 GHDY oD @+2)! n it T D (GMD! o

where In is the n x n identity matrix.

The above expressions for Q(T) can be readily implemented on a digital
computer.

The desired solutions for G and E are to be obtained from Egs. (3—21)
and(§—22) , respectively. To solve these equafibhs, two cases have to be
considered: |

Case 1. n/m = N.

In this case Q(T) is of dimension n x n and G is also of dimension n x n

If [Q(T)]—l exists, then the desired solutions of Eqs. (3-21) and (3-22) are

¢ = (M1 e - M (3-47)
and }
E= I te (M (3-18)

where E and ec(T) are n X m matrices. Substituting these solutions into

Egs. (3-10) and (3-11) yields the optimal feedback and forward gains
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60 = L (D] M- M)
E) = L (oM™ (@ BERCEL)

where T= t - kT, kT <t < (k + 1)T, 0<T < T.

Case 2. n/m < N < n/m + 1.

In this case Q(T) is of dimension n x Nm, Q.and E_a;g\qf.dimensidns Nﬁ»x n
and Nm x m, respectively. Since Nm > n and Nm > m, Eqs.v(sr?}) and-(3_22) have
more variables then the number of scalar equations.

Let

Nm - n=k ' (3-50)
Then, the number of excess variables in Eqs. (3-21) and_(3-22) ‘are kn and km,
respectively, and the number of columns to be deleted from Q(T) to yield an
n x n matrix is k. If the rank of Q(T) is n, then k dependent columnsléf Q(D)
may be deleted and the corresponding k rows of G and E may be‘chosen arbitrarily.

Let the n x Nm-dimensional Q(T) be written as

Q(T) = [Qn(T) E Qk(T)] S?_s;)

where

n X n nonsingular matrix

Q ()

QD = 0wk macrix
and k is given by Eq. 5(3-50) In general, given Q(T) with rank n, there is a
degree of arbitrariness in the selection of Qn(T) which is nonsingular and is
n X n.

Let gn be the n x n matrix which contains the n rows of G that correspond

to the columns of Qn(T)’ Also is the k x n matrix which contains the remaining

[

rows of G that correspond to the columns of Qk(T). Then, Eq. (3-21) is written
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AT AT AU
En o
= [Q (1) ¢ (D]}... (3-52)
&
Similarly, let En and Ek be the matrices which contain the rows of E that

correspond to the columns of Q (T) and Q (T), respectively; E_ is n x n and E
P - . n k -n —+k

is k x m. Then, Eq. (3-22)is written

8.(D = ADE .
= : . 3-53
[Q_(T) & q ()] (8-53)
Ex
Since the nk elements of gk may be chosen arbitrarily, Eq. (3-52) is written as
AT AT
- - = 3-54
- e M- g (me - o (e (8-51)

Similarly, the mk elements of E,

0.(D ~ Q (ME, = Q (DE | (3-55)

are chosen arbitrarily; thus Eq. (3-53) becomes

Since it is assumed that Qn(T) is nonsingular, gn and En are solved from the

last two equations,

e = [o_ (1M - & - g (mg, ] (3-56)
. | R
E =1 ()] "6 (T) - Q (TIE] - (3-57)

Now using Egs. (3-10) and (3-11) the optimal feedback and forward gain matrices

are written

. G -
GT) = L ()G =1L ("
. G
[ (017 1A - & - g (mg, D L
= Ly - (3-58)

&



(g
LmN(T)E= LmN(T) -

E,

E(f)

[Q, (17 8 (1) - o (DE,]

L]
£

mN(T) E
%k

where T = t - kT, kT <t < (k + 1)T, 0 <1 < T,

78,

(3-59).

In general, if there are no amplitude constraints on the control inputs,

we may set the elements of G, and E, arbitrarily to zero. Then, Eqs. (3-58)

- —+k %
and (3-59) become
(

(it - M
G(t) = LmN('r)
| 9
( -1
o e r e |G@IT®
E(t) =
mN L 0

(3-60)

(3-61)
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Example.” of Digital Redesign with the Method of Point by Point State

Comparison by use of Higher-Order Holds.

In this chapter the simplified one-axis dynamics of the Skylab Satellite -
System is digitally redesignediby tﬁé ﬁoiﬁf;sy-point method4ﬁéiﬁg highéf
than zero-order holds. The optimal gain matrices G(t) and E(t1) are

tomputed, and the system responéééuggéwéimﬁigféd with unit;step inéufs.‘

This system has been simulated earlier and its system and
control matrices are

0 1 0 ' o

A= , B = (3-62)
0 0 S S— o
{970,741

The continuous system gains are

G, = [11800 151,800], E_ = [11800] (3-63)

Since n = 2 and m = 1 a first-order hold should be adequate to match
the states at every sampling instant. The feedback and forward gains of

the digital system are defined by use of Eqs. (3-#) and(3-9),

G(t - kT) = G, + (t - kT)G, (3-64)
- = E, + (£ - kI
E(t - kT) = Ey + {t - kI)E; o
kT <t < (k + 1T . (3-85)
Thus /
.. Gy . E, : T
=T =7 (3-66)
1 1 '

¢ 7 (3-87)
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and from Eq. (2-23)

E?
T 2 B
AA 1
= B = A= —— -
q4p(D = ¥(D Jo e BdA = 995741 (3-68)
0 T )
Also, from Eq. (2-30)
o P
ol
T . c | -
q, (T) = Jo qp(M)dA = 570,741 .2 ; (3¢§g)
—2_4
Using Eq. (2-31), we have f .
o 1
| 2 6 S
1 R
= = ————— 3-70
I T -
L 2 )
(6 -2 :
Thus, — —_
TZ T ——
[Q(T)]'1 = 970,741 (3-71)
2 6 :
T3 .T2

The solutions for G and E are obtained from Egqs. (2-47) and (2-u8),

respectively;

-1, AT AT
G = [QM17 A - AT
6 -2 ]
2 T A o
= 970,741 AT - ATy - | (3-72)
-12 6 : -
IR




E = [am] e (D

6 =2
2 T
= 970,741 8 (T)
-12 6 ¢
a—y
For T = 2, we have
[ 11752 151758] (GO
G = =
-1700.7 -11837 tcl
11752 E
Thus,
6y = [11752 151758]
G = [-1700.7 -11837]
E, = [11752]
E, = [-1700.7]

The optimal

G(t - kT)

fl

1

E(t - kT)

kT <t < (k + 1)T

|

[11752 - 1700.7 (t -

k

T)

[11752 - 1700.7 (t - KT)]

81

(3-73)

(3-74)

(3-75)

(3-76)

gains are obtained from Egs. (3-64) and :(3-68)

151758 - 11837 (t - kT)] ... ...
(3-77)



. 82

The continuous and digital data systems are simulated on a digital"

A computér. A unit-step input -is applied in both cases and a sampling period

of T = 2 sec. is used for the sémpled—data Fystem. The results of the
simulation are shown in Figs; 373wthroughv3-8 These include the

state trajectories, control trajectories and the errors in the state and control
trajectories.

Comparing these simulation results with those of the partial

matching method of Chapter 1, it can be seen that the

error between the states and the controls of.the continuous and séﬁéied-

data systems is lower with fhis method. Theoretically, the

errors should be zero at each sampling period but due to the numerical
processes of simulation a small amount of error is still present. Table 3-1
shows the maximum errors at the sampling instants aﬁd in between-th; sampling

instants for the exact as well as the partial matching cases.
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Table 3.1.

Comparison of errors between the states of the continuous and

digital systems for the Simplified Skylab Satellite

Maximum Error at the Sampling Instants

Maximum error at points
within sampling instants

Method of
Error in Xl Error in X2 ‘Error in Xl Error in X2
Digital Redesign
Time of Time of Time of |i Time of
Error Error Error Exrror
Occurence Occurence Occurence Occurence

. . -3 =4 -3 ' =4
Partial Matching 6.12%10 t = 7T -3.28%x10 t = 13T |}6.12x10 15.5 sec. [}9.35%10 . 1 sec.
u=[0 1], '
T = 2 sec

. . -2 -3 -3 -3
Partial Matching 1.41X10 t = 9T -1.66%10 t = 3T -1.41x10 17.5 sec. {|-1.65x10 6.
H=[1 0], '
T = 2 sec
Method of High -3 -4 3 -4
Order Hold, 5.3x10° t = 9T 5x%10 t = 4T 5.3x10° 18. sec. |j5x10 6.5
T = 2 sec. .
N=2
Method of Multiple| |, »co 1073 | ¢ _or ll1.308x107% | t = 4T [l1.269x1073 |18.5 sec. || -2.92x107% 1.
Sampling Periods _
T=1. sec.,
N =2

68
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4, DIGITAL REDESIGN OF THE CONTROL

OF THE WOBBLE DYNAMICS OF THE SPINNING SKYLAB

4,1 Introduction

This report presents the results of the digital redesign of the control of
a spinning Skylab space station. The dynamics of the spinning_Skylab are first
described. Only the wobble dynamics are considered however. The optimal
feedback gains and the forward gains of the digital control are determiﬁed By
use of the following point-by-point methods:

a. Partial matching of states

b. Exact matching at multiple sampling periods

c. Exacﬁ matching with higher-order holds

The simulation of the spinning Skylab system was carried out using the
partial matching method and the multiple éampling period method. In practice,
" since the digital control as derived from the pérfial ﬁatching method is the
easiest one to implement, and the simulation results are quite good, it is the

recommended solution.
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4.2 Modeling of the Spinning Skylab

A detailed description of the spinning Skylab space station can be found

in the literature [3,4']. A simplified model for the spinning Skylab vehicle

is shown in Figuré 4-1 The variables of the system are indicated on the diagram.

The mission of”é ;ﬁinning Skylab makes it necessary to point the 3-axis
at the sun rather than to passively stabilize the steady-state rotation of the
vehicle about its 3-axis. This will place the solar panels, wﬁich are lying
in the 1-2 plane of the vehicle, normal to the impinging rays of the sun,
making maximum use of solar energy. The control torques may be provided by
three control moment gyros (CMG's).

The dynamic equations of the system are expressed in vector form:

MZ +DZ+Kz=-v , (4-1)

where the dots represent derivatives with respect to T = Qt.
= ]

The control vector is given by

= ; t
velvy v v3 V4 Vs Yl
T T T
1 2 3
= [ 3 —3 0 — 0 0] ' © (4=3)
1.9 9 o)



3-axis

" Figure y4-1 A éimplified model of the spinning Skylab.
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(4-1)

(1-5)

(4-6)




Figure-u-Q

State diagram

for the wobble dynamics of the

spinning Skylab.

. %6
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If the value of I', is neglected, and & = P3/P2 = 0, the wobble motion is

3
separated from the spin velocity motion. In other words, the differential equations
represented by Eq. (4-1) are now divided into two sets of uncoupled equations.

Wobble Dynamics

§) - vqiy = (L4 KD, = Kby = vyHy = -V (4-7)

1+, . 14K, |

%, 02 v A KD T K TR (% = v (4-8)
. [y . 2 _

“¥ibp FYqHg Hrphghg T vgdy ty g F Dy = vy (4-9)

Spin Velocity Model

$5 + ¥y = 2vqH, = v, | (4-10)
5.+ il + A, - 20, + o2u = -

$3 T Hy T BHy T fHy T Oy = 7Y (4-11)
B+ 28+ 20, +Ap, + (02 - Dy, = -v, :

Hy 37 fHp T A 2 Hy = Y (4-12)

In this study only the wobble dynamics will be considered.
In order to obtain the state equations of the wobble dynamics, a state
diagram is constructed in Figure 4-2 using Eqs. (4-7),(4-8) , and (4-9)

Applying Mason's gain formula to the state diagram of Figure -2 we have



[EY I \
¢ 0 0 0 | 1 0 0 ¢,
: ! |
) 0 0 0 : 0 1 0 ¢2
. )
My 0 0 0 : 0 0 1 My
I é--—~1 —————————————
‘ [ -
3 Kty 0 Y193 g 1+ Y184 ;
1 1—Yl l_.Yl : l—yl l-yl 1
- Ler- 5
$, 0 K, 0 (1-K,) 0 0 6,
[
2 I
" 1+K1 . Y1 (c3+1) | o 1+K1 A3 u
3 1—Y1 l-yl | l-yl l—yl 3
L P, L P, \ J
r 0 3
0
0
L I 2 - _ L (4-13)
1-v, :
0
._.__1_
\l—‘Yl /.

where it has been assumed that v, =.v3 =V, = Vg =V = 0.
The physical characteristics of the spinning skylab are given below:
I, = 1.25 x 10% Kg-m?
I, =6.90 x 106 kg—m2
I,=17.10 x lO6 kg—m2
I, =0
' =23.3m.
', =-1.53m

m = 227 kg

- 96
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k. = k. = 146 N/m

17 K3
ky = 7.4 x 10% N/m
PR _ 1/2_
d; = dy =0.04 (kym™"" = 7,28
o 1/2
a, = 0.04 (emt? = 164
Q =0.6s "
I. -1 :
R, = 21 3. 0.16
1
I, -1
a3 1 _
K, = —%5 = 0.8478
2mI'§
Y, = —— = 0,19717
1571
1
2mI'§
Y. = = 0.03471
37771
1 .
d;
Al = Tnﬁ: 0.0534
d
2
A, = === 1.20
dq
Ay =—2=0 =0.053%
k
oi = ——% = 1.787
mf? ;
k X
c% = —2-905.53
2 2
mf)

2 _ 2

Substituting the values of these parameters into Eq.(4-13) , we have



0 0

0 0

0 0
0.0463 0

0 -0.8478
L1.0462 0

—— — —

1 0
0 1
0 0
0 1.0462
-0.1522- 0
0 1.0462

-0.01313

0

-0.06657

J \

-1.245
\

98

-1.245} v

(4-14)
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4.3 Optimal Control Laws for the Continuous-Data Controllers

A total of three control laws were provided by NASA which represent the

solution of the control of the wobble dynamics of the spinning Skjlab vehicle

by continuous—data controllers. These control laws are described as follows:

Control LawiNo. 1.

T

where

1=

e

e

Then

ap +

[T,

Bu

(4-15)
1 ] - B
T,] ~ (4-16)
t
0] (u-17).
vy + 0] (4-18)
0
0
(4-19)
0
O\
0 - ) -
(4-20)
O)
0 0 Q 0
0 E%-+ - 0 of ¢ | (4-21)
-1 -0 0 0
all other a,, = 0
ij
ali other Bi =0

5"

Ty = )b, + Byywy = (a) + 8,06, - 8,69 (4-22)



(a)

In terms

(b)

Linear case A: § = -1.27, € = 5.9

Then
2 6
a12 = 119 €= 2.655x 10"
B =TI Q8 = - 0.9525 x lO6
11 1
Thus
6 ' 62
T, = 2.0835 x 10 ¢, + 0.5715 x 10 ¢
1 2 1
Tl .
vy =3 = 4.63¢2 + l.27_¢l
I.Q
1
of state feedback, v, = -G(0)x,
(o_ )
¢1
¢2

v, = [0 4,63 0 1.27 0 0] u

Linear caseB: 6§ = -1, € =" 2,

6
alz = Ilﬁge = 0.9 x 10
B. =1.06=-0.75 x 10°
11" 5
Thus 5
T. = 0.45 x 10%¢. + 0.45 x 10%%
1 1 . 2
T,

v, = ——==¢ + ¢
1 1193 1 2

(4-23)

(4-2u)

(4-25)

(4-26)

(4-27)

(4-28)

. 100
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Control Law No. 2 (Linear Quadratic Law)

101

(4-29)

The optimal control as obtained by the linear quadratic law is

vy = [1.263

-0.777

-0.172

2.768

-1.792

-0.095]

(4-30)
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4.4 Digital Redesign and Simulation

The digital redesign of the control for thw wobble dynamics of the
spinning Skylab vehicle is performed by three different Poifrt-by-point methods:

a. Par;iél matching of states |

b. Exact matching at multiple sampling periods

c. Exact matching at higher order holds.

In each case the feedback and forward gains are determined for the various
control laws. The imulation is pe;formed using the method of partial
matéhing and the method of multiple sampling periods.

From Eq. (4-14) the state equations of the system are

- Ax+Bu . ‘ (4-31)
with  x=1(6, ¢, Wy & b, n,l'
Lr=v
(0 0 o t 1 0 0 )
0 0 0 : 0 1 0
0 0 o | 0 0 1
A= | ————— e, — e — e —— - —
0.0463 0 -0.43881 0.  1.0462 -,01313
0 0 : -.1522 0 0
|1.0462 0 -3.22} o 1.0462  -.06657)
B = [0 0 0 -1.245 0  -1.245]"

The control vector u for the continuous system is
u =Er-Gx : (4-32)
—c c c—c
where the feedback and forward gains of the continuous system for the three

control laws are
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Control Law lA

G [0 4.63 0 1.27 0 0]

[

E = lQ
c

Control Law 1B

Gc = [0 1. 0 1. 0 0]

E = 1.
c

Control Law 2

Gc = [1.263 -0.777 -0.172 2.768 =1.792 -0.095]

E = l.
c
The results obtained by performing the digital redesign of this system with the
three different methods are described below.
a. Partial Matching of States.
The method of partial matching was used on control law 2 with a
sampling period of T = 1 and a weighting matrix

H=[1 1 1 1 1 1}

The sampled-data gains are:

G (1) = ~-.286054 T =1
G (2) = .0711766

G (3) = .161217

G, (4) = -.946105

-6 (5) = -.113347

6 (6) = .121896

E (1) = .246084 ‘

The continuous and sampled-data systems were simulated and the results
are shown in Figure4-3?through 4-9 | The states and controls, and
the errors between the continuous and sampled states and controls

are shown. The results show that for T =.l the point~by-point method of

partial matching yields an acceptable redesign.



Time Feedback Gains from States Forward Gain
Interval % %, Xq X, Xs %g r

.0 -4.92398 -801.398 55.8475 -826.826 . -283.221 9.22254 536.725

.5 -14.5192 -594.385 153.307 -549.619 -706.054 -1.40256 546.516
1.0 -13.3919 -867.241 17.1915 -1058.39 37.3406 74.8695 876.569
1.5 4034243‘ .—619.488 68.0836 -342.295 -929.208 -51.2130 291.Q12
2.0 35.3183 -859.229 85.9373 -1008.44 -64.9085 22.6930 .597.738
2.5 .156333 —624.771. 83.1258 —662.564 | -514.69? 22.8996 516.595

Table 4-1 Forward gain ESXlO“3 and Feedback gains GleO_3 for the sixth

order model of the wobble dynamics of the Spinning Skylab.
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b, Exact Matching by Mﬁlfiple Sampling Periods.

The method of Multiple Sampling Periods was used on contfol law 1B
for T = 0.5. That is the gains are changed every 0.5 seconds and alll
the states are to be matched every 6 x 0.6 = 3 seconds. The sampled- -
data gains are given in Table 4-1 for GS and ES. The continuous and
sampled systems were simulated and the statés, controls, and the érrors
between the states and controls of the séﬁpled and continuous systems
are shown in Figures 4-10 to 4-16. The states of the two systems are

reasonably well matched considering the size of the sampling period.

c. Exact Matching with Higher-Order Holds.

This method for digital redesign has been described in Chapter 3.
With n/m = 6, it appears that a Sth-order hold is adeaquate. Thus,
N = 6 is used and the coefficients of the various terms of the gain
matrices are calculated with T = 0,2, Table  4-2 lists the gains for control
law 1A.

The simulation has not been performed with this method of digital
redesign, but it is expected that the results will be similar to those

obtained by the method of multiple sampling periods.



Table u-2

' Feedback and Forward Gains for the

wobble dynamics of the Spinning Skylab,

Control Law 1A. Method of Higher-Order Holds,
. Feedback Gains:
Coefficients Feedback from States Forward Scale
of X = e e " - Gains Factor
1 2 3 4 5 5
1 .29116 -464.55 -.2666 -127.72 2.3438 -.08154 100.56 XlO-2
t - kT -.57297 110.953 - [1.0845 3.4844 -10.7695 [.17682 -2.75 -
(t - kT)2 ‘ 2
R T ,41414 -3,52 -,45875 -1.36 4.29 -.13752 1.05 X10
(t - x1)3 4
37 |--18961 12.1888 2446 .7616 -2.3768 07324 4—.5888 XlQ
(t - x1)* ' 5
T .48 -6.922 -.68544 ~2.2682 6.8147 ~.2046 1.6947 X10
(t - k1)° - | ~ 6
—*—?ﬁ———-— -.5382 " ]9.699 . 88064 3.0556 -8.966 .26099 -2.2364 X10

90T .



States xlc(t), xls(t) (XlO“s)
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" Spinning Skylab Satellite. Digital redesign by the point by point

method of partial matching.
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States ch(t), xzs(t)
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Figure 4-u4 State trajectories x2c(t) and xzs(t) for the 6th order model

of the Spinning Skylab Satellite. Digital redesign by'the

point by point method of partial matching.
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States x3c(t), x3s(t) (X10—3)'
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Figure y_5 State trajectories x3c(t) and x3s(t) for the 6th order model ‘

of the Spinning Skylab Satellite. Digital redesign by the -

point by point method of partial matching.
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States x, (), x, (£) (X10™)
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Figure u—é.i State trajeCtorles:x4c(t) and'xas(t) for the 6th order model

of the Spinning Skylab Satellite. Digital redesign by the

point by point mcthod of partial matching.
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Fig. y-7 State trajectories xsc(t) and xss(t) for the 6th order model of the .
B Spinning Skylab Satellite. Digital redesign by the point by point

method of partial matching.
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States gzc(t), xzs(t) (X;O )

. Figure Q;ll State trajectdriesﬁxzc(t) and xzs(t) for the 6th order model of the

Spinning Skylab Satellite. Digital redesign by the method of exact

matching at multiple sampling periods.

LUC_; 2

o

mA

=

™

I

™

-

2 ' | ' T ' l . ' T & l ' -
Q.00 4yg.aoo 80.00 - - 120.00 . 160.00 200.00 240.00 280.00

- SIT

x0Ty



(x1073)

States x3c(t)’ st(t)
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Figure 4-12 State trajectories X3c(t) and x3s(ﬁ) for the 6th order model of
~ the Spinning Skylab Satellite. Digital redesign by the method of

exact matching at multiple sampling periods.
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States x6c(t), x6s(t) (X10—3)
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5. OPTIMAL REGULATION OF THE TWELFTH-ORDER SPINNING SKYLAB

RO SV

5.1 Introduction

This report considers the calculation of the optimal feedback
gains and simulations of the closed-loop system of the twelfth-order

spinning skylab. The linear quadratic law KﬁQﬁf-method is used feor

the optimal design of the skylab system.

It has been determined that the overall skylab system is
uncontrollable with only one input to one of the wobble axes. An
additicnal input to one of the spin axes has been found necessary’
to provide controliability of the system.

The optimal feedback gains have been obtained by feeding back
eleven of the states, with two different weighting matrices for Q.

Simulation results are presented for the twelfth-order syscen
using the optimal gains as obtained from the design of the sixth-
order wobble dynamics, as well as using the optimal gains designed
with the eleventh-order model. The eleventh~crder model was used by
deleting the stgte ¢3 which is the cummulative deviation of the
position of the spin axis. Since it is of intevest only to regulate
$3 about its zero reference, the state ¢3 is not necessary in the

optimal design.
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5.2 Modeling of the Twelfth-Order Spinning Skylab
The dynamic equations of the'spinning skylab épéce station are expressed

in vector form:

M+ Dz +Kg=-v

(5-1)
where the dots represent derivatives with respect to T = {it
. L : . . . A
2=100p 0 03 M M Myl = | (5-2)
The control vector is given by
. .
X.=~IY1 Vo Vg3 Y, Vs v6]
‘T T T .
= [ =3 5 0o - — 0 0] (5-3)
I8 I8 197 : ‘



1
0 1+Kl
1K,
_Yl 0
0 0
0 -£
£ 0
( 0~ =(14K,)
l+K1 0
0 0
0 0
-2£ 0
0 -2
-, 0
LK,
O REy)
. 2
_Yl 0
0 0
0 3
- E 0

[

0

Rl

ks-u)

(5-5) -
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. We shall consider the wobble motioh together with the spin leocity motion
so that Eq.f(é'li-represents-a twelfth-order system.

| In order to obtain the state equations of the overall system, a stéte
diagram is constructed as shown‘in_Figureé(S-i) The state equations are

"7 determined from Figure(5-1)by use of Mason's gain fornula. We have

(5 { N L1 o Y(o ) 1)
¢, 0 0 . . . . 01 0 . ... 00 [0
¢2 0 0 . . . . 0 0 1 3 . . 0 ¢2 0
h i
¢3 . . . . . <1 . . . ¢3 0
ul . . . . ‘0 - . . . . . ul 0
Hy 1] 0 . . . . 0 0 0 . . . 1 0 u2 0
y |
Hg 0 0 . '« . . 010 o . . . 1| {3 0
i - - :" + Y1
3, %, 0
{
I
b3 1 | . ¢4 0
-M K =M D .
H1 i wt lo
. i .
i, M, Edl
(13 " .
Lu3J S
) \ J \ J L J




where

K=

72

92

11,2

78.

88

81,8

2g2
10,2

12,2

98

10,8

12,8

20,9

11,9

12,9 o
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gy d )
AN
0
0
. (5-8)
4, S
0 4(1‘Y1)d1
0 —Eyldl
J
a a )
75 76
ags %86
%95 %96 |
%10,5 210,6 (5-9)
11,5 %11,6
#12,5 #12,6
. . "
37,11 %7,12
38,11 88,12
%o |
L S lis-10). -
Cf10,11 %10,12 :
Sf1,01 0 %1,12
412,11 12,12
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4 =. 1 o | ;(511)
Foievase) - - | a
1 . |
d, = 5 ' (5-12)
1-v, - E%y,c w
3 1
¢ = (1-K)/(L+K) | o 1(5-13)
. = -K.d -y d + £y d
71 1% ~ 1% 1%
aj =0
a;3=0
ag, =0
a,. =-fy.d 02
75 = 75¥1%9, ‘
2
376 = Y¥19104
agy = 0

[
|

2, '
g2 = (1 = Y)Kyd, +.8y,dye
ag, =0

| | 5
g4 = (1 = Y3)ckyyd, + &y dyeoy

0
[

a,. =0

a,, =0

"Y38Kydy = Eyqdy
a. =0

894 = “& Y1Y3¢d, = ¥4dy00
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10,1

310,2 = EKyd, + &4,

10,3~ 0
30,4 = EZY1°d2 + d2°i
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0,6 = °

11,1 7 Ky 84y Fvp8d) - - y))Ed

all,Z =0 .
21,30
31,4 =0

2 2
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FiguréS-l

State diagram of the 12th-order skylab.
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15.3 A Controllability of the Skylab System

Given a linear time-invariant system

:ks-lu)

[ e

= Ax + Bu

where x 1s n-dimensional, and u is m-dimensional. A common method
of checking the controllability of the system is to see if the
following rank condition is satisfied:

2 : n*lB]

Rank [B. AB A“B . .. A =1 Y

For the skylab system with one input, V. = Tl/Ilﬂz, the above

1
matrix is square and thus the rank condition can be checked by
calculating the determinant of the matrix. Using the numerical values
of the system parameters given in ~Chapter 4, section 4.2 i

of this report, ‘the determinant of the matrix of

Eq. (5-15)is found to be 4.46 x 1018. Therefore, it would appear
that‘éﬁé—éystem is completely controllable. _However, due to the
numerical difficulties encountered in calculating the Riccati gains
as well as in shifting the closed-~loop eigenvalues, it was decided
to perform an alternate check on the controllability of the system.
An alternate test on the controllability can be made by performing

the similafity transformation

x=Py '(5-16)

on qu(S—lu) where P is an-n X n nonsingular matrix. The nevw system

of state equations are written

y=Ag+Tu - 1(5_17)
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where
=T (5-18)
and
I=p'B | (5-19)
For A with r pairs of distinct complex eigenvalues and n - 2r

distinct real eigenvalues, A is written

A = diag. [sl 8, .« S A2r+1 o . AnJ (5-20)
where
o, wi] |
51 7 ‘ ' f(5-21)
- O.J i
1 1

with Oi x jwi, i=1,2, ... r, denoéing the ith-pair of complex
eigenvalues; and Xi, i.=2r+l, ... ., n denotes the n-2r real
eigenvalues.

For complete controllability, the rows of I' which correspond
to the distinct real eigenvalues must n;t contain all zeros, and at
least one of the two rows which corresponds to the rows of Si for
i=1,2, ..., T, does not contain all zeros. |

For the eleventh-order system, the eigenvalues of A are given
in Table 5—;.

The T matrix which corresponds to the same order as these

eigenvalues is obtained as



-8.16 x 10
1.67 x 10
-9.32 x 10
2.99 x 10
-1.32 x 10
i e (5-22)
-1.76 x 10 e
1.54 x 10
1.97 x 10
-3.19

-2.79 x 10736

Since the last element of T is practically zero, the systém,
is uncontrollable. In fact, the s;ate which corresponds to the
eigenvalue at the origin, s = 0, is the uncontrollable one. This
explains tHe difficulty in attempting to move this eigenvalue into
the left-half plane. This alternate controllability test also shows
the interesting fact thét in practice, when there are very largé
and very small parameter values in a large-scale system, the control-
lability check using Eq._(S—}i}may be unreliable, due to the repeated
products of very large and very small numbers.

When the control V4 = T3/I3Q2 is used in addition to the control

Vl’ carrying out the similarity transformation, we have



(8.2 x 1072 1.2 x
1.7 x 1073 -7 x
9.3 x 1071 1.2 x
3 x 1072 3 x
-3
-1.3 % 10 1.03
r= |9.0x1072 -2 x
1.8 x 1071 2.9 x
1.5 x 10710 3.6 x
-3
1.9 x 10 1.6 x
-3.2 1.2 x
(~2.8 x 1071 9.9 x
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5(5-23)

Now since all the elements of the last row of ' are not zero,

and not all rows which correspond to the complex eigenvalues are

zero, the system is completely controllable.
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:5.4. The Eigenvector Method of Calculating Riccati Gains

Consider the matrix quadratic equation.

~KA- AR+ KSK - Q=0 R i(s-zg)
where the coefficient matrices A, S, and Q are given n x n matrices. The
solution K is also an n x n matrix.
It will be shown later tha&s-ggbossesses.maﬁy solutions one of which is
positive definité, one negative definite and the rest indefinite. We will be
concerned with the positive definite solution which is denoted by K+.

let us form the 2n x 2n matrix

A - |
M= | o . g (5-25)
-s A |
and denote the 2n elgenvalues of M by Xi’ i=1, .... 2n and the 2n eigenvectors

of M by ai, i=1l.... 2n. Partitioning the eigenvectors we have

b o
a .= |==E-| | (5-26)

¢y

where a:L is a 2n vector, bi is an n vector and c, is an n vector.
i
The following properties which are proven in?[S] form the basis for the
computation of K.

i) If Ai is an eigenvalue of M, there is an eigenvalue Aj of M such that

A -AI 1,5 =1,2,...,2n o - (5-27)"
where the'asterik denotes comﬁlexvConjugaté._

.ii) M-M Héé no pureiy imaginary éigénvalues.
iii) If fhe coefficientvmatriceé A, S and Q are real,-eigénvalues

off of the real axis appear in conjugate_paifs
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. The elgenvectors corresponding to the above eigenvalues

also appear in conjugate pairs.

a, = a,
i h|
iv) The n eigenvalues of M with negative real parts correspond to

the eigenvalues of (A - SK+).

v) If a -» 8 are the eigenvectors corresponding to the n

l, az’

eigenvalues with negative real parts, then

+ ‘ _ -1 : '
L K- [b, b, .. bl leg ey vnv ] . (5-28)
“vi) Every solution of F(K) = 0 is the form
K+ [b, b, ... b ]Jlc, ¢, ... ¢ ]--1 | i (5;29)
St T2 "mt1 72 7" Ta L

If.the inverse exists, where the eigenvectors correspond to .any
n eigenvalues of M.

vii) Any linear combinations'of thevvectors bl’ b2, ey bn can be usgd
in(5-28)'and (5-29)without affecting the resuit if the same
linéa;-transform;tion is applied to the vectors cl? c2, ceosy cn.

The computer algorithm then consists of thé following steps?

i) Form the M matrix froﬁ-A, S, and Q.

i1) ‘Calculate the eigenvalues and eigenvectors of M. A University of
Illinois subroutine using tﬂe QR 'iteratipn techniqﬁe is used
- for this calculation.

iii) Using a sifting routinegseparé;e out the n eigenvectors of M
correspon&ing to the eigenvalues with_negative real parts. Form .
areal 2n x n matrix; D,.from thesekeigénvectors. For cbmplex -

paifs one column of D consists of the real part of the eigen-

vector and one column consists of the imaginary part.
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. iv) V'Sgparate the D matrix'into two n xn matfices, B and C, as
shown inf(5:2é5
v) The solutioﬁ is given as
k" = BcL | | (5-30)
- Note that the eigenvectors ay either appéar gs purely real or in conjugaﬁe
pairs. Therefore it is always possible to take linear combinations of a; Fo_
form the real matrix D. To see this let E be the 2n x n matri# cénsisting |
of the n eigenvectors of M corresponding to eigenvalues with négative real
parts. Let the n x n matrix G be the complex linear transformatioﬁ on E which
results in the matrix D. |
B
EG=D= |-~—-
C
For example let the first column of ﬁ be a real eigenvector and the next

two columns consist of a complex pair of eigenvectors. The G matrix would then

be of the form

1 0 o ......

' -1 1

0 E 'é'j . . . o . -
G= l ln.

0 3-33

If we partition E into -two n_k n‘matrices-El and_Ezlit can be seen that the

final solution, K+, does not depend on the transformation G.

E E. ¢  [B
EG = ——-]-'— G = —-]-'———] = -
E, E, GJ C
+ -1 -1 _ -1
K' = BC~ = EG6(E,G) " = EE,
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‘5.5 Numerical Results

The eigenvalues of'the uncontrolled eleventh order open loop
system are shown in Tablegs—l » Note here that in all cases the
coupling parameter betweeg the spin and wobble dynamics in nonzero
P3 = 1.56. By investigating the eigenvectors associated with these

eigenvalues, it can be seen that major contributions of the zero
eigenvalue is to the state ¢3 . Therefore the use of a control law
which cannot shift this zero eigenvalue will result in a steady

state error in ¢3

The eigenvalues of the eleventh order closed loop system using

. control law 2 given in Chapter 4, Eq. (u4-16)
are shown in Téble 5-1. Since this is a linear quadratic control law
for the regulation of-the wobble dynamics of the Spinning Skylab, it
might be expected that it will not adequately control the spin
dynamics. This is indicated in Table:5-1 'by the continued presence
of the zero eigenvalue. By examining the eigenvectors corresponding
to the closed loop eigenvalues we may again see that‘the major
contribution of the zero eigenvalue is to the sfate. éB'

Since it is shown in the last section that the zero eigenvalue
mode is uncontrollable from the input Vl’ the additional input-V4
is used when calculating the optimal Riccati gains for the eleventh

order system. The Riccati gains are calculated for the following

two cases of weighting matrices:

Case 1 R=1I, Q=1

Case 2 R=1I, 0= diagonal {10 10 1 1 1 10

10 1 1 1 1]



The ferdback gains for these two cases are shown in Table§-2 The
closed loop eigenvalues for case 1 and case 2 are shown in Table 5-1

In both cases the zero eigenvalue has been shifted into the left half

plane resulting in an asymptotically stable eleventh order system.



THE

EIGENVALUES OF THE OPEN AND CLOSED LOOP SYSTEMS

Table PS—lX

‘

for the eleventh order skylab.

Open Loop Control Law 2 Case 1 Case 2
A Matrix (LQL design of
wobble dynamics)
| -0.603 * j30.15 -.604 = 330.15 -0.604 £ j30.15 -0.604 * j30.15
-.0328 * j1.76 -.048 * j1.68 -0.369 £ j1.56 ~-0.159 £ jl.64
-.0276 * j1.36 -.0277 * j1.36 -0.52 £ jl.24 ~0.516 * j1l.24
0.0 % jl.0 -.078 * j0.92 -0.080 * j0.938 -0.077 £ jO0.92
-.00056 £ §0.29 -2.53 -0.974 = j0.653 -3.82
6.0 -0.611 -1.01 | ~-1.06
0.0~ | -1.01
-1 The eigenvalues of the open and closed loop

'



CASE 1 CASE 2
States
Control Vl Control V4 Control V1 Control V4
1 -.0513 -.043 -2.67 ~.0054
2 .030 ~.053 2.15 ~.09
3 -.009 .930 .041 .930
4 -.094 -1.82 .077 -1.83
5 -1.29 .052 | -1.28 .0254
6 -1.78 -.016 -4.4 -.0176
7 .828 -.058 3.27 .175
8 .023 -1.0 -.001 -1.0
9 .034 .918 .015 0.919
10 .0021 .0043 .0338 .0043
11 -.46 .0082 .155 .01
Table;:;T. The optimal Feedback Gains for

the eleventh order Skylab.

vt
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i 5,6 _Simulation

The 12th order model for the Spinning Skylab is simulated with
the following two feedback gains
a.
-.051 .03 0 -.009 =-.094 -1.29 -1.78 .828 .023 .034 .002

¢ |_.043 -.053 0 .930 -1.82 .052 =-.016 =-.058 -1.0 .918 .004

This gain is obtained by solving the Riccati equation for the
eleventh order system with two control inputs and with the weighting

matrices Q = [I] and R = [1], (see Case 1 in Table 5-2),

b.

GC = [-1.263 .777 0- 0 O .172 =-2.78 1.792 0 0 O .095]

This gain is obtained by applying the linear quadratic law (1QL)
method to the 6th order wobble dynamics of the Spinning Skylab.

In both simulations the initial states are

x()=100 01 0 0 0 0 O0 0 .01 0 O 0]

Figuresi5—2 through 5-9 show the state and control trajectories for

case a and Figures 5;10 thrbugh %g-lﬁshow the state trajectories for
case b. o S

As can be seen from the simulation results, in case a all the
states are regulated about the zero reference except Xq which undergoes
a cbnstant shift in its steady state magnitude. In case b all states,
except Xq and Xy, are regulated about the zero reference; Xq undergoes

a constant shift in its steady state magnitude and X4 continually

increases.
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State x (t) (x103)

03 0 ~009 ~094 ~1.29 1,78 .828 .023 .,034

‘model for the Spinning Skylab Satellite.

— " (-.051 002 ~,46Y

G =

¢ -.043 ~0653 0 .93 -1.82 ,052 -~.,016 -.058 -1. .918 .004 .008
x(0) = [.01 .01 0 0 0 0 0 O 01 0 0 0]t
1
. 1 1 | ! ] ' | 1 T ! | T ! .
0.00 40. 00 80.00 120.00 160.00 200.00 240.00 280.00
Figure 5-2 ' State trajectory xl(t) of the 12th order T(x10~
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State x,(£) (X107)

12.38

- -.051 .03 0 -.009 =-.094 -1.29 -1.78 .828 .023 .034 .002 -.46
C = .
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Figure 5-3 State trajectory xz(t) of the 12th order

model for the Spinning Skylab Satellite.
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State x,(e) (107)

Figure 5‘“'.State trajectory XB(t) of the 12th order model for

Spinning Skylab Satellite
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State xa(t)(x10-3)

f

p|q 9sed Suipadaid

e

-=.051 .03 0 -.009 -.094 -1.29 -1.78 .828

.023  .034  .002
G =
¢ -.043 -.053 0 .93 -1.82  .052 -.016 -.058 -1. .918  .00¢&
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Figure 5-5 State trajectory x4(t) of the 12th order

model for the Spinning Skylab Satellite..
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State x6(t) (x10-3)

2.78

i -.051 .03 0 =-.009 -.094 -1.29 -1.78 .828 .023 .034
G =
% ¢ -.043 -.053 0 .93 -1.8] .052 -.016 -.058 -1. .918
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Figure 5-7° State trajectory x6(t) of the 12th order

model for the Spinning-Skylab Satellite.
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Control ul(tl (Xloq3l

— : -.051 .03 0 -.009 -.094 ~1.29 -1.78 .828 .023 .034
G =
¢ |-.043 -.053 0 .93 -1.82 .052  -.016 ~.058 -1. 918
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Figure 5-8 Control trajectory ul(t) of the 12th order

model for the Spinning Skylab Satellite.
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Control u, (£ @10_:31

11.97

-.051 .03 0 -.009 -.094 -1.29 -1.78 .828

Figure 5-9 Control trajectory uz(t) of the 12th order

model for the Spinning Skylab Satellite.
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State x () (3;1053).

-
o G, = [-1.263 .777 0. 0. 0. .172 -2.768 1.752 0 0

.095 ]
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5-10 ' State trajectory xl(t) of the'12th order model for

the Spinning Skylab Satellite
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state x,(t) (x107)
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Figure 5-11  State trajectory Xz(t) of the 12th order

model for the Spinning Skylab Satellite.
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State x3(t)'(xloﬁ3)
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Figure 5-12 trajectory x3(t) of the 12th order

for the Spinning Skylab Satellite,
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State x4(tf (x10_3)'
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Figure 5-13 State trajectory x,(t) of the 12th order chld”l)

model for the Spinning Skylab Satellite.
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State Xs ) (x,'LOH3)_
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Figure ¢ 5-14 State trajectory xs(£) of the 12th order T(Xlonl) :

model for the Spinning Skylab Satellite.



State x6(t) (x10_3l
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Figure 5-15 ° State trajectc:y x,(t) of the 12th order 1(x10“3‘5

model for the Spinning Skylab Satellite.
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6. DIGITAL REDESIGN OF THE 11th ORDER MODEL OF THE SPINNING SKYLAB

-

The design of the continuous system for the 1llth order model of the
Spinning Skylab was performed by use of the LQL method. The feedback
gain matrix G for Q = I, R = I was found to be (seeChapter 5, Table

5-2). [

-.513 .302 -.009 -.094 -1.29 -1.783 .828 .0229 .034 .0021 -.457
G = '

cv -.043 -.053 .93 -1.82 -,0515 —.616 -.058 -1.0 .918 .0d43 .0082
The digital redesign of this system is pérformed by use of the point by
point method of partial matching. The weighting matrix H is chosen as
1 10 0 1 1 1 0 0 0 1

"o 6 o0 1 1 0O O o0 1 1 1 o
and the feedback gains for the digital system are determined for two
different sampling periods, f = ,2 and T = .8. The choice of H was
made such that matching is obtained for the sum of the states of the
wobble dynamics as well as the sum of the statés of the spin dynamics

+
i

for each sampling instant (; See Chapter 1, Section 1.)
for a discussion on how H should be chosen). With T = .2 the feedback
gain matrix of the sampled data system is

-.442 .183 -.011 ~.0495 ~.777 --1.41 .450 .0178 .019 .031 ~-.434

.043 -.025 .696 -1.53 -.013 -.063 -.014 -.875 .85 015 .004

with T = .8 we have

.332 .095 ~-.0045 .0055 .128 .775 .21 .006 -.0057 .0017 ~.22

¥ |-.032 .026 =-.0015 =-.66 =-.125 -.137 .066 -.51 .548 -.009 =-.025)

The simulation of the 12th order model of the Spinning Skylab is performed
with each of the above gains. Figureséﬁ-l through 6-14 show the results

with T = 0.2, These figures show the state, control and errors in state
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and control trajectories. Figures‘6-15?through'6-22fshow the

results for T = 0.8.

It is apparent that the point by point state comparison method of

partial matching yields acceptable redesign with T = .2 as well as T = .8.



States xlc(t), xls(t) (XlOiB) |
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Figure 6—11 State trajectories xlc(t).and xls(t) for the 12th order model of the Spinning Skylab

Satellite. Digital redesign by the point by point method of partial matching.
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Figure‘ 6-2 FError in state trajectorics, xlc(t) - xls(t), for the 12th order

model of the Spinning Skylab Satellite. Digital redesipgn by the

point by point mcthod of partial matching.
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6-3 State trajectories X2c(t) and Xzs(t) for the 12th order
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Error in states, xzc(t) - xzs(t), (X10 )
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Figure fs-u Error in state trajectories, X2c(t) - XZs(t)’ for the 12th order

model of the Spinning Skylab Satellite. Digital redesign by the point
by point method of partial matching.
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States x3é(t), xss(t)
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Figure's—s State trajectories x3c(t) and x35(t) for the 12th order model

of the Spinhing Skylab Satellite. Digital Redesign by the

point by point method of partial matching.
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Error in states, x3c(t) - x3s(t), (X10 M)
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Figure 6-6 Error in state trajectofiéé; x3c(t) —'XBS(t) for the 12th order 1
7 model of the Spinning Skylab Satellite. Digital redesign by the ‘ T(X10 );

point by point method of partial matching.



States x&c(t)’ xés(t) (X10-3)
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Figure ! 6-7 State trajectories X4c(t) and X4s(t) for the 12th order model
of the Spinning Skylab Sate’lite. Digital Redesign by the point
by point method of partial matching.
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Figure . 6-9 State trajectories xsc(t) and XSS(t) for the 12th order model of
the Spinning Skylab Satellite. Digital Redesign by the point by

point method of partial matching.
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Exror in state trajectories, xsc(t) - xSs(t)’ for the 12th order
‘model of the Spinning Skylab Satellite. Digital redesign by the
point by point method of partial matching.
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States x6c(t), x6s(t) (xX10 ™)
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Figuref6—ll State trajectories x6c(t) and xﬁs(p) for the 12th order model
of the Spinning Skylab Satellite. Digital redesign by the point

by point method of partial matching.

280.00



_ -3
Error in s;ates, x6c(t) - xes(t), (x10 )

j -
o
Dl- 1 I ‘1 l T I ) I T I ] T ] l GD o
0.ao 140.00 80.00 120.00 1§U.GU 200.00 240. 00 280. »
a . . 1 N
Lo : -1 :H
Figure :6-12 Error in state trajectories, x6c(t) - xés(t)’ for the 12th order T(X10 7) |

model of the Spinning Skylab Satellite. Digital redesign by the

point by point method of partial matching.
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Controls ulc(t), uls(t) (x10 )

of the Spinning Skylab Satellite. Digital Redesign by the point
by point method of partial matching.
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Figure 6-13  Control trajectories ulc(t) and uls(t) for the 12th order model T(X10 )
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Figure 6-14 Control trajectories u, (t) and u, () for the 12th order model T(X10 )
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by point method of partial matching.
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FigurefG—l7 State trajectories x3c(t) and x3s(t) for the 12th order model

of the Spinning Skylab Satellite. Digital Redesign by the point
by point method of partial matching.
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of the Spinning Skylab Satellite. Digital Redesign by the

point by point method of partial matching.
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7. ANALYSIS OF THE ATTITUDE DYNAMICS OF A

LARGE SPACE TELESCOPE (LST) MODEL

Introduction

The problem considered in this report is the determination of the conditi

of limit cycle in the Large Space Telescope (LST) using Control Moment Gyros

(CMG's). Due to the on-board digital control system, the dynamlcs of the LST

are represented by the sampled—data system of Flgure 7-1

A suitable model of the CMG is considered to be a combination of a nonlin

element and a linear element [6].; The 51mp11f1ed 1nput—output relationship of

the nonlinear element is shown in Figure 7-2.

data systems is the discrete describing function method [7]-E The stability

One established method of predicting limit cycles in nonlinear sampied-

study of the LST system with k = 0 for the nonllnearlty in Flgure 7-2 can be

readily predicted [12]. | This report is concerned with -the derlvatlon

of the discrete describing function when k # 0 in Figure lmzL

Specific system models have been considered by NASA, and these are listed

below:
Case I. (First-order CMG, perfect attitude rate sensor)
H(s) = 1 - perfect attitude rate sensor
w, g , .
G(s) = S+ first-order CMG (-1
Case fI. (Second-order CMG, perfect attitude rate sensor)

H(s) = 1 perfect attitude rate sensor

Ks
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on

ear

T

!

G(s) = R ' ) (7-2)

s +gls+g0
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Case III. (First-order CMG, first-order attitude rate gyro)

w

H(s) = gfa— imperfect attitude rate sensor . A_(7-3) :
o ) S

w
c

S+Luc o ' (7-4) /

G(s) =

Case IV. ‘(Second~order CMG, first-order rate gyro)

w . N P e e e o :
o - s A | _(7-5)

G(s) = e - (7-6)
2 . ’ T
s +gls+g0

List of System Parameters

T = 1.356 x lO5 Nms

4.6843 x 10° N

K, =
Kl = 1.1153 x lO6 Nms
gy = Kg = 10° (rad/s)?
8 = 141.4 rad/s

w, = 70.7 rad/s

wg = 30 rad/s

For the purpose of stability analysis, the system shown in Figure 7—lban

be represented by the equivalent system of Figure 7-3 | The two systems are

equivalent in the sense that the characteristic equations are identical. The

equivalent transfer function of the system shown in Figure 7-3 is given by
KO+K1H(s)s R
G (s) = —F——G(s) : (7-7).

e 2 ;
Is . -



Thus, for the four cases listed previously,

(K. s+K )w
Case I. G (s) = 1 0"c .
Is (s+wc) (7-8)
(K. s+K )K S
Case II. G () = ———0 G (7-9)
e Is (sz+g s+g )
. . 1 "0
KS+KU)+K(US ———
Case III. Ge(s) =0 _0Og 1l¢g 4 _ (7-10)
w, R
Is (s+wc)(s+wg)
, K.s+K . w +K.w g . , :
Case IV. G_(s) = 0 Og lg K, (7-11)

2
Is (s +gls+go)(s+wg)

7.2 ! The Discrete Describing Function (DDF)
The discrete describing function may be used to determine the condition
of sustained oscillation in a nonlinear sampled-data system of Figure 7-3 It
is assumed that the reference input x(t) is zero, and the actuating sigﬁéi—e(t)
is sinusoidal with period Tc = nT, where n = 2, 3, 4, ..., and T is the sampling
period in seconds. This assumptioﬁ is justified, since, in practice, Ge(s) has
the characteristics of a low-pass filter.

From the analytical standpoint, an equivalent system of Figure7-4 is used

'

to replace the block diagram of Figure_?-a ; In Figure 7-4 fthe zero-order hold
(zoh) and the nonlinearity are transposed. This does_not ;ffect the éystem
behavior if the nonlinear element is amplitudé dependent only. However, the
nonlinearity must be redefined to act on the strength of imfulses.

The closed-loop transfer function of the system of Figure7-4 is

(7-12) ¢

6(z) - N(z)G(z)
X(z)  1+N(z)G(z)
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zoh _).E.(.E.).m. N £ (x) Ge(s)
Figure 7—35
: G(s)
=== == — — -
e vk | h(t) |
e B - ‘m zoh Ge(s) T
L L T |

Figure 7-4
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where

1_e-Ts
G(z) = 8 |~—— Ge(s)

s

(1~ z—l)Z[Ge(s)/sJ | ?,_(7'13).

and N(z) is defined as the DDF; i.e.,

N(2) = v(z) /5() ! - (-1’

As in the conventional describing function technique, self-sustained
oscillation occurs in the system when the following equation is satisfie@imw

1+ N(z)G(z) = 0 | (7-15):
or | »

6(z) =1/N(z) 1 (7-16)

The derivation of the DDF of a nonlinear element is based on the assuﬁption
that the input to N is a sinusoidally amplitude—modulated'impulse train. The
output of N is also a train of impulses, but with the strengths of the impulses

determined by the nonlinear characteristics.

Let the input to the sampler be

e(t) = E cos (wct +¢) ) ' - (7-17)

The z-transform of the last equation is

Ez[(z- cos wcT) cos ¢ - sin wcT sin ¢] ' S - -

E(z) = (7-18)

z - 2z cos wcT + 1

The period of the self-sustained oscillations is designated by Tc’ where
T = Zﬂ/wc = NT s : ’ (7-19);
and N=2, 3, 4, ... . In addition to the characterization of the oscillations

by Tc, we need to classify the response with respectbto the waveform of h(t)
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-which is the output of the zoh. Since é(t) is a sinusoid, it.can be shown that
for all Tc = NT, N = even integers, the number of positive relay correétion§
is equal to that of the negative relay corrections during one period Tc. This
number of correction is designated by A = (i,.j), where i is the number of
positive relay corrections, and j is-the number of negative relay corrections,
during each period Tc' For TC = 2T, it is apparent that A can only be (1,1).
For TC = 4T, A = (1,1), or (2,2). TFor Nv= odd integérs, the number of
positive and negati&e relay corrections ﬁay differ by one. Therefore, in the
representation for A, i and j may notvbe equal.

"For a given period Té, the loci of -~ E%ET form regions in the magnitude

versus phase domain, each for one possible A or Ai These regions are

j.
defined as the critical regions for the specific nonlinearity, Tc’ and A. The
symbols, - %— and - %- are used to indicate the boundaries of the
max min

éritical region. The condition of self-sustained oscillation in the system of
rFigure 7-4éis determined with the graphical procedure described as follows:
1. élot G(z) in the gain-phase (db-degrees) coordinates for .
'I'c = 2T, 3T, 4T, ... using T as a parameter on the loci.
2. Superpose on the G(z) plot the family of critical regions of

1 .
= N(Z) for TC = ZT, 3T, 4T, se e o

3. If the portion of the G(z) locus for some Tc falls within the
critical region Qf the same TC, then'there exists a set of
E, ¢, A, such that Eq.(7-;6)'is satisfied. Consequently,
self-sustained oscillations cﬂéracterized by the A4, E, ¢, and Tc
will occur for the range of T which corresponds to the portion of

G(z) found inside the critical region.
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4, The sampling periods‘T along the portion of G(z) locus outside the
critical region of the same Tc and some A correspond to operations.
which will not give rise to self-sustained oscillations of the
prgscribed mode.

The typical procedure of derivihg the critical region for the nonlinearity:

of Figuré 772 for k # 0 is described in the following section for TC = 3T, or
N = 3, for all possible combinations of A. The procedure for generating the

gain-phase plots of G(z) is described in a later section.

7.3 . Derivation of the Critical Regions

In this section, the sample derivation of the critical regions for the
nonlinearity of Figure 7-2 for k # 0 and for N = 3 is described. All the
possible A values A = (1,0), (1,1), (1,2) are considered.

The input to the sampler, e(t), is .assumed tolbe a sinusoid as described
bj Eq.‘7;l7?) and is repeated here,

e(t) = E cos (Wt + ¢) L(7-20)_;

The z-transform of e(t) is
Ez[(z - cos wCT) cos ¢ -~ sin QCT sin ¢]
E(z) = - (7-21)
z = 2z cos wcT + 1 ‘ - T
The period of self-sustained oscillationms, Tc is given by
v =2 _Nr | (7-22)
c w e

c
2m
For N = 3, Tc = 3T and wc =37

ju T . : v e
¢ e jam/3

Then 2z = e = -0.5 + jO.866



and Eq. (7-21) becomes

Ez[(2z+.5) cos ¢ - .866 sin @]
22 +z+1

E(z) =

191

(7-24)

The waveform for e(t) is shown in Figure 7-5/for ¢ = 0. Figure 7.6 shows the

corresponding waveforms of v*(t) for A= (1, 0), (1, 1) and (1, 2).

For A= (1, 0):

The z-transform of v*(t) is

3,7 -6

v(z) M + k(E.cos ¢ -D J[1 + z o+ 2z o+ oo

3

[M + k(E cos ¢ -D)] (z3 )
' z -1

il

The restrictions on E fo¥ this mode to éxist are
-30 < ¢ <0° E cos ¢ > D
E cos (60 + ¢p)< D
0 < ¢ < 30° Ecos ¢ >D
; E cos (60 - ¢) <D

which lead to the following upper and lower bouﬁds on E

D D

m307< ¢ <0 Epin = cos¢ i Epax = cos (60+¢)
0<¢ <30° ° E, = E o= —D
- min  cos¢ > max cos(60-¢)
For A = (1,1):
The z transform of v*(t) is
23
V(z) = [M + k(E cosp - D)][—_B— 1.
z -1

- M+ k (E cos (60 + ¢) - D)) [5"—]
. Z

(71-28)

i



e(t)

v*(t) i T

Figure 7.5 ?

A

4T 5T
: : :
3T t
A= (1, 0) , - 30° < ¢ < 30°
v*(t) ‘i T 27 ? 4T 5T
1 . : [l
T [
A= (1, 1) -60°<¢<0
vk(t) T 27T 4T st

o

|
L 3T

A= (1, 2), =30°<¢ < 30°

Figure 7-6
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with the following restrictions on E:

-30° < ¢ <0 E cos (60 + ¢) > D
E cos (60 - ¢) <D
-60° < ¢ <=30° E cos ¢ > D
E cos (120 + ¢) XD L(7:29)

The corresponding bounds on E are

-30° < ¢ <0 E, = D
' min cos (60+ ¢)
E = D
maxX 0 (60-9)
. ‘
-60 < ¢ < -30° E. = D .
min cos ¢ )
= D o
T Cos(120+9) . (7-30)
For A = (1,2):
The z-transform of v*(t) is
,3
V(z) = [M+k (E cos ¢ - D)] [ 3 -]
z =1
2
- [M+ k (E cos (60 - ¢) - D)] [ 3Z ]
z -1
- [M+k (E cos (60 +¢) - D)] [ —55——] (7-31)

z7-1 e
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with the restrictions on E being
-30°<¢ <0 E cos (60 - ¢) > D

0< ¢ <30° E cos (60 + ¢) > D ' ' . (7-32)

and the corresponding bounds on E being

-30°<¢<0  E, = D
m cos (60-¢)
E = m N
max
0<9¢ <30° E. =_0D

mn cos (60+0¢) o
= o ‘ : (7-33) |
max . :

Using E(z) from Eq..(7-2u)pnd V(z) from Egs. (7-25),(7-28?and (7-31) f

are as follows:

. 1
the expressions for N(z)

For A = (1,0),
_ 1 _ _E(z) _ -E(z-1)((z+.5) cosd - .866 sin ¢) ey
N(z) V(z) zz[M + k(E cos $-D)] T oo

For A = (l,l),

R -E(z-1) ((z+.5) cosp - .866 sin @) e
22 (WK (E cos ¢- D)] - [MHK(E cos (60+4) -D)] (7-35)

For A = (1,2),

= ' -E(z-1) ((z+.5) cosd - .866 sin ¢)

2° [W(E cos ¢-D)] - z[M+k (E cos (60-9) -D)] - [MHk (E cos (60+$)-D)]

(7-38)



e pm— ey e

With z = -0.5 + j0.866, Eqs. (7 34) (7 35) “and (7-36) can be written as

I S l.SE £120+¢ .(%;3;;
N(Z). (bm + cE) + j(dm + fE) | (73

where m = M - kD, and the coefficients b, ¢, d, £ are defined in the following
table.

Table 7-1

A 1, 0 1, 1 1, 2

b 0.5 1.5 0

¢ | 0.5k cosd k(0.5 cos¢ +cos(60+9){k(0.5 cos¢-0.5 cos(60—¢)+cos(60+¢))

d 0.866 .866 ‘ ' 0.

£ 10.866k cosd | 0.866k cosd 0.866k (cosd + cos (60-0))

The critical region for each A is the area enclosed by the - E%ZT locus
in the gain-phase plane, as E and ¢ are varied over their admissible ranges
(defined by Eqs. (7~ 27) (7 30) or (7 33) for that A).

The procedure used to generate a critical region is as follows:

1. Choose a value of ¢ in the.admissible range.

2. Using this ¢ in Eq. (7- 37) ‘determine the extremums of the
magnitude and phase of - —-(z) as a function of E, with E
restricted to its admissible range.

3. Plot these extremums in the gain-phase plane and repeat the
procedure for all possible ¢'s. The region génerated by this

plot will be the critical ¢ region. Figures 7-14,7- 15 and 7 16 'é

show the critical regions for N = 3, A = (1, 0), (1, 1) and (1, 2),

respectively, for several values of M, k, and D.
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It should be noted thaﬁ the extremums necessary in step 2
above can in fact be easily obtained by use of the upper and lower bounds of
E [Eqgs. (7'57),(7;30)'aﬁd (7'33)1. Also, the extreme magnitude and extreme
phase occur simultaneously. This result is now proved by use of the expression
in Eq, (7-37) .,

The magnitude of —-%, as it is defined in Eq. (7-37) 1is

1 : L
1 2.258 12 | O
-5l = 3 - 5 : : _&j-38) ,
(bmtcE)” + (dmtfE) J d
: 2 2 ,
Since it is easier to work with “ﬁ] , the extremums of |- ﬁ’ (which are
also the extremums of l— %}) will be determined.
2 2 B
let F = l— %} = 2.25 £ . (7-39)

(bm + cE)2+(dm + fE)2

If F has any extremums, they must satisfy the following necessary condition:

F _ o= 45mE[(b2+d2)m + (bet+df)E]
o8 [(bm+cE)2 + (dm+fE)2]2 (7-40)
which gives
E=0
or
2, .2 o
- _ (b"™+d )m .
E be+df _Qz-ﬁ;)“w;

In the above results, E=0 répresents a minimum, while E = —(b2+d2)m/

(bc+df) represents a maximum. Let this latter value of E be denoted as Ex'
1 2
With E = E_, the value of F = l- —w is
X N
_ 2.25@%+a%) | T

F 3 !
(cd-bf)? (7-42) _

X
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For the admissible ranges of ¢, it is seen that the following propexrties
of the coefficients are true for all three values of A:

b>0

£>0 _ | (7-43);
Using Eq. (7-41)

EX <0 if m>0 (M > kD)

E >0 if m<O0 (M<KkD) ' . (7-44) -

X . -
By éhysical considerations, the upper and lower bounds of E, which also define
the admissible ranges of E, are always positive. Thus Ex < 0 is only one of
academic importance,

Figures 7-7 and 7-8 show the typical behavior of F, with positive and

negative values of m, respectively. The asymptotic values of F, as E > + ©,

are described by

® c2+f2 : - -
Also, it can be shown that Fx-i F, for all values of b, ¢, d, f.
With N = 3 and any A, it can be shown that Ex is less than the upper and lower

bounds of E. Thus, for the admissible ranges of ¢, F, and, consequently,

sy |-

N

are always monotonic in E. The maximum and minimum values of are,
therefore, obtained by use of (i) the allowable maximum and minimum values of E,

respectively, if m < 0, or (ii) the allowable minimum and maximum values of E,

respectively, if m > 0.
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The phase of - % from Eq. (7-37¥is

2|

-1 (dm+fE

~ 1
6=1-% burcE) (7-u6)

-120° + ¢ - tan

Let g = g::ig and Y = tan_lg-,xthen, at constant ¢, the maximum and minimum of the

phase of —-%'or 8 is determined by the minimum and maximum, respectively, of Y.
For Y in the range +90°, this 1s determined by minimum and maximum of g.
Thus, O has only one extremum, and this is when

gy e l(7-97)_“ﬂ
Figures 7;95Fhrough a-léshow several typical plots of g withm > 0 and m < 0.
With N ; 3 and any A, it can be shown that Ey is less than the upper and lower
bounds of E. Thus, for the admissible ranges of ¢, 6 is monotonic in E. The

maximum and minimum values of the phase of - l-are,‘therefore, also obtained

N
by use of the maximum and minimum values of E. The roles of maximum and minimum
can be reversed, depending on the sign of m and the sign of q% --f).

The above results can be extended to all the cases for N > 3, if the
corresponding expressions are appropriately modified. The number of modes and the
ranges of ¢ will of course be different for different N.

The expressions for - 1/N(z) for N = 2 through N = 8 have been derived and

i .

are tabulated in Tables :7-2 ?hroughf 7'8)

The critical regions for N = 2 through N = 8 are drawn in Figures 7-13I

through 7-37, for several combinations of k, M, and D.

-
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Examination of these critical fegions leads to the following conclusions:
(1) Unlike the critical regions for relay with dead zone (k=0),

the critical regions for the noﬁlinearity in Figure i—2 cannot

be normalized in amplitude with respect to D/M.

(2) The critical regions bounded by the loci of - ﬁ’ and - l{
min max

are symmetrical about the -180-degree axis. The maximum span
of the horizontal width of these regiéns is given by 21TT/Tc =
21/N for N = all even integers > 4, and 1TT/Tc = /N, for N =
odd integers > 3. When N increases the critical regions
become narrower, and finally approach to a straight line
along the -180-degree axis wheﬁ N =,

(3) Since the objective of a great majority of system design
problems is to arrive at a stable systém, for a given system
whose transfer function G(z) is plotted in the magnitude |
versus phase plot, it is necessary and sufficient.that for a
given sampling period T none of the G(z) points coincides
with the corresponding critical regions.

In general, for a quick check on stability, rectangular regions bounded
by the widths given in item (2) may be used as a necessary condition for
stability. However, it should be noted that the nonlinear system witﬁ k40
haé'less chance of going into self-sustained oscillations than the case when
k = 0.

The loci for G(z) for the four cases of the LST system model are plotted
in Figures 7-ééithrough‘m7-4;for N = 2 through 8. The transfer functions for
theée models are tabulated below. In all these cases, the expressions for Geks)
are given. ' Then G(é) = Gho(s)Ge(s)vis expanded by partial fraction expansion into

the following form:



G(s) = (1 -e'TS){-—-

where
-Ts

l-e
Gols) =

The z=-transform of G(s) is written

b c

) 1 1

(7-49)

dl )

G(z) = z[G(s)] = (lf 1y z( —5 gl'+ e

s+c

2
a3T (z+1) a2T a,

+ s-:-dI

J

= (2z-1) + + +
[ 2(2—1)3 (z—l)2

" Case I.

(Rys+ K9)00  581.5023 (s+4.2)

Is (s+wc)' 32(5 + 70.7)

Ge(S) =

Case II.

(Kys + Ko)Ko 59949 (s44. 2)

G(S):b =
€ Is (sz+gls+go). sz(sz+14l.4s+104)

Case III.

(K. + K.w)s + Kw
Ge(s) =0 A 0=,

Is (s+w;)(s+wg)

Cc

_ 19887.4(s+3.6842)
62 (s24+100. 78+2121)

Case 1IV.
(K, + Klwg)s + Ky
-Ge(s) = 2 KG
Is“ (s +gls+go)(s+wg)

_ 281.2928 x 1o4g5+3 6842)
62 (834171 482414242543 x 10 )

(7-50)

_(7-53) .



CASE ay a, a, bl c, dl b c d
I | 34.544678 @ 7.7363138 | -0.10942453 | 0.10942453 0 0 +70.7 0 0
. 0.0564239 | 0.0564239 +70.7 | 470.7
11 34.544586 | 7.7364483 | -0.11284781 0 0
co -30.0017102{ +30.0017102 -§70.7 | +§70.7 ‘
III 34.544632 . 7.7363682 | -0.3835905 | 0.47625273 | -0.0926622 0 +30 +70.7 0
( ~0.0123846 | -0.01238466 +70.7 | +70.7
v 34.544629 © 7.736475 | -0.38701315 | 0.41178255 +30
' ' -j0.0202611 | +j0.0202611 ~370.7 | +370.7

. %02
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Table 7-2 |
N=2
1 . _Ecosg
NE) = M+R(Ecos¢-D)

- D o
EM‘"_W me—°°

Table 7-3

N=3 |
J - -E (2")[(Z+°-5>CDS¢- 0.866 sin ¢]

e azz(M-kD+kFcosd) + bz (M-kD+REcos(s0-4)
| + ¢ (M-RD+RE cos (60+))

A & |bjec & : Eonn E e
(L,o)l Vv | o Fo -30<¢ <0 D/cos ¢ D/cos (0+$)
o<d<3d | D/cos ¢ D/cos(s0-#)
Gl 1 Lo | o | 73sese | Dfcos(sory) | Dfcos(so-4)
-60°<¢=-36| D/cos ¢ D/cos(120+d)

(1,2)0 + { -1 ¢ -] -30<¢p<o | D/cos(60-9) 0O

0<d=<30"| D/cos(60+¢) o0




Table 7-4

—E(z cos¢ ~simo)
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N@) 4 (mM-RD+RE cosg) +b(M-RD-REsind)

A /8 b ¢ | Emm Ema.x
(0,0 | o ~45<¢p <0 D/co.s b D/esim
osg<45° D/cos ¢ D/sing
(2.2 1 | |[THSé=o | Df-sm ¢ o0
~a0%c ¢<-45°] D/cosg .60




Table 7-5 ¢

| _ —E(z-)(2*2zcos 4+ D[ (2 -cos 2mp) cos§ =52 siné ]

N ‘az?(M-RD+REcos$) +bz3(M-RD+RE cos(br2m))
+ ¢ 2"(M-l@+k5 cos(b -7)5)

+dz (M-kfl)-r RE cos(p + 7/5)
+ e(M-kRD+REcos(¢ - 27s)

o |albleld]e] o E min Emax
(o) 11 tolololo eose D/ cos ¢ J>/~C‘>5(4’>’“”//°>
0L 1D/ s g D/cos(¢-/e)
L lololilo s S9<o D/COS@’*%;) D/eos (¢« e
|| T [oes | Yeostor
0,21 Lol lafol B SC° | Yeos(e-ms) | Peos(s -2
osCPsTg. D/cos(¢+7r/s) D/cos(c,i-zvr/s)
(2,2) 1 {1 |-1]t]o E <SP0 | Leos(fr 2y cos (¢-2mfs)
~I<osr -3’/;05(4_7/5) D/cos(p+3s)
(3,21 |1 -l'-li WT%S(RD :D/C'>5(¢"2”/5) oo
° ~<¢s77% P/ cos(d+ars) o




Table 7-6
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N=6
1 _ _E[(Z—D.S)Cosqs—D.gé’ésf‘nqu(z-f-l)
N(z) a(M-RD+RE cos¢)z2 + b (M-RD+RE cos(s0+ )2
| | + ¢ (M-RD +RE cos(60-9))
alafb|e b E E
-30<d=<o D/ D
(,1) {1 ol o So<os0 /cos g [eos(pre))
Os¢s3of’ D/(05¢ _'D/cos(¢—60)
e | l . -30< ¢<0 D/cos(¢+60) ZD/cos(ng-éo)
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