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ABSTRACT

A finite strip compressed between two rough
rigid stamps is considered. The elastostatic
problem is formulated in terms of a singular
integral equation from which the proper stress
singularities at the corners are determined. The
singular integral equation is solved numerically
to determine the stresses along the fixed ends of
the strip. The effect of material properties and
strip geometry on the stress intensity factor is
presented graphically.
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INTRODUCTION

The problem of a finite strip compressed between two rough

rigid stamps has been of considerable interest from both mechanics

and mathematical points of view. In particular, the problem is

very frequently encountered by the experimentalists in rock mechan-

ics, who use the standard crushing test for various rock specimens

It is well known that rocks are nonhomogeneous and contain rela-

tively large voids. However, the experiments [1] have shown that

the failure of a compressed rock specimen initiates at the corners

due to the high stress concentration at these locations. Hence,

a stress analysis, specifically near the ends of the strip, is

essential for a better understanding of the failure mechanism.

For the sake of convenience, a homogeneous and isotropic finite

strip will be analyzed in this paper.

Numerous analytical studies have been devoted to the finite

strip problem but none of the methods provides a solution which

can directly give the correct behavior of stresses near the cor-

ners without presenting convergence difficulties. The best solu-

tion known so far is given by Benthem and Minderhoud [2] who used

the eigenfunction expansion technique to solve a semi-infinite

and finite cylinder problem with remarkable success. The method

is equally well applicable to the finite strip problem; however,

it requires a prior knowledge of the stress singularities by

alternate means.

An integral transform technique has recently been used by

Gupta [3] to solve a semi-infinite strip problem. In this paper,

-2-



the method used in [3] has been extended for a finite strip prob-

lem, where one needs to use the finite integral transforms. The

final integral equation contains a divergent infinite series from

which a singular kernel can be isolated and a singular integral

equation may be obtained. This equation may then be solved numer-

ically by using the Gauss-Jacobi integration technique.

FORMULATION OF THE PROBLEM

Consider a strip of width 2h and length 21 compressed between

two rough rigid stamps. Stamps have to be rough to ensure no

sliding at the ends. The shear modulus and Poisson's ratio of the

strip are y and v respectively. The problem described above can

be recovered by the superposition of a homogeneous (I) and a dis-

turbance (II) problem as shown in Figure 1. Solution of I is

simply given as

axxI(x'y) = "xy1^) = °

ayyI(x'y) = -po
(1)

uj(x.y) = e0x ; eQ = (^) PQ

vj(x.y) = -e]y ; e-, = (^) pQ

where K = 3-4v for plane strain and K = (3-v)/(l+v) for plane

stress.

The disturbance problem II must have the input function as

the displacement in x-direction at y=±L plane, equal to the nega-

tive of that in I. Since the problem is symmetrical about x=0 and

-3-



y=0 planes, it is sufficient to consider one quarter of the medium

only. Hence, the boundary conditions for II are written as

axx(h,y) = axy(h,y) = 0 ,

v(x,0) = 0
• |x|<h

oxv(x,0) = 0 JA,y

(2)

u(x,L) = -

v(x,L) = V
x|<h (3)

where v is an unknown constant determined from the following

equilibrium condition:

h
J a (x.L)dx = 0 . (4)

-h yjf

Note that this problem is a special case of a general problem of

a parallel array of rigid inclusions lying in a strip. The finite

strip problem is recovered when the inclusions extend to the strip

surfaces. Also, in the inclusion problem, the boundary conditions

(3) would be replaced by a set of mixed boundary conditions [3].

The displacement and stress fields for the strip can be

expressed as a superposition of two transform solutions. One is

the solution for a finite strip (|x|<h, |y|<L) with symmetry about

x=0 and y=0 planes, and the other is the infinite strip (|x|<°°,

0<y<L) with x=0 as the plane of symmetry. Expressing the solution

as
oo

u(x,y) = - I {-- [f - ̂ - g ]sinh(a x) + xg cosh(a x)}cosany
n = 0 n

. .

C{* - ?Lcoth(£L)}cosh(£y) +
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v(x,y) = I {-1- [f + - g ]cosh(a x) + xg sinh(a x) }si na y
n = 0 n

[?LcothUL)sinhUy) -
o

0 ( x v ) °°'

cr ( x v )

f
o

I C(fn + 2gn)cosh(anx) + anxgnsinh(anx) ]cosany

o

a (x ,y ) °°
I t(fn

 + 9n)s1nh(anx) + anxgncosh(anx)]sinany

oo

- f /(^(OEI^-CLcothCaJJsinhCCy) + ̂ ycosh(?y)]si
o

and «„ - M

it may be seen that this solution identically satisfies the con-

ditions v(x,0) = 0, and avw(x,0) = 0, of (2). The unknowns 4>U)>xy

f and g must be determined by the first two conditions of (2) and

the conditions (3). The first two conditions of (2) may be written

as

fncosh(anh) + anhgnsinh(anh) = Dp

fnsinh(anh) + 9n[sinh(anh) + aphcosh(anh)] =
(6)

where
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and

f

2

- S L c o t h ( 5 L ) } l ( O + I U ) ] s 1 n S h d C

( 7 )

3n

sinhUL)
n = 0

= (-1)
2a sinhUL)

n>0

4n

i4nU) - e
It may be noted that in order to obtain the displacement in x-

direction at y=±L, certain shear stresses must be applied at those

planes. Let this shear stress be the unknown function in the

problem which has to be determined so that (3) is satisfied.

Hence, from (5)

' / *(^sin^x s!nh(5L)<U
o

(9)

The unknown function <}>(£) can be written in terms of the new un-

known G(x) by inverting the integral in (9) to give

+ « « > • - dt (10>

The first condition of (3) can now be expressed as
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7 ( x , L ) = / 4>U)[>coshUy) -dX TT 0

1 im
y+L

(11)

-^ 9n]cosh(anx) + xangnsinh(anx)}

|x|<h . . . . : - - -

Note that displacement derivative is used in (11) instead of dis-

placement in order to maintain a dimensional consistency in (10)

and (11). Equations (6) are now solved simultaneously to obtain

fo = Do

, D [sinh(a h) + a hcosh(a h)] - E a hsinh(a h)
I f __ 11 ___.__!_!_— M M n i \ 11

2" n sinh(2a h) + 2a hn n

1 - Dnsinh(anh) + Encosh(anh)
2 9n sinh(2anh) + 2aflh

where substituting (8) into (7), Dn and E can be expressed as

2a_ 2

(12)

2 2 \ ^ 2 2 2 J

(13)

where

1 , n=0
m = <

2 , n>/l

In order to reduce (11) to an integral equation in 6(x), f

and gn must be substituted from (12) and (13), and equation (10)
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must be used to eliminate <{>(£) • Note that in this symmetric prob-

lem the shear stress 6(x) is an odd function, i.e., G(x) = -G(-x).

Using this property, equation (10) and the relations given in [4],

the first integral in (11) yields a Cauchy kernel as follows:

/G(t)dt / |>coshUy) -
_p o

lim
y+L

(14)

- /G(t)dt -
-h -h o sinhM5L)

/ f^1 dt + /6(t)K1F(t,x)dt
-h t-x -h lh

where

K1F(t,x) = |f coth(j2-[t-x]) - T^- - / - ̂  - sinC(t-x)de (15)
1F 2L ZL t'x o sinh2(U)

Note that K,p(t,x) is a Fredholm kernel and is bounded in

-h <_ (t,x) <_ h. Now substituting <j>(?) from (10) into (13), the

functions Dn and E can be written as

JG(t)dt / sln|lh^tld?
-h o ^L .

h °° « -jr J.T 2aM
n = /G(t)dt /(-!)" - ?

2^ 7 {^- + ?
n
 2}sing(h-t)dCn -h • o (an

Z+^)L Z % +^
n^l (16)

h °° 2a
n = - /G(t)dt /(-!)" - ?

 n ,
n -h o (a^+^)L n

Using the tables of Fourier transforms in [4], the expressions in

(16) can be reduced as

, h
2u(K+l)D = SJ- J6(t)dt = 00

-h

-8-



2y(K+l)Dn = (-1)" £ /G(t)[*£L + an(h-t)]e"
an ^dt

n > 1 (17)
n o h i -an(h-t)

2y(K+l)En =-(-!)" f- /G(t)[£^Ua (h-t)]e
 n dt

- h

Using (12), (14) and (17), equation (11) can be expressed in terms

of the unknown G(t) and a constant g which cannot be evaluated by

the prescribed boundary conditions. This constant must be deter-

mined by using the equilibrium condition (4). The final singular

integral equation may be written as

)^ + K1F(t.x) + K(t,x)]dt = < + - K 7TP()(1-X) (18)

|x|<h
where

g being an unknown constant (see (11)). From (5) it may be shown

that the constants g and v(x,L) = v are related by

Lg0 (20)

oo -a (h-t)
K(t,x) = f I e n k(t,x,o_)

L n = l n

k(t'X'an^ = sinh(2an
2h)+2anh [cosh(anx) {[̂ 1+ an(h-t)][anhcosh(anh)

+ ̂ - sinh(anh)]+ [^ +an(h-t) ][anhsinh(anh) + ̂  cosh(anh)]}
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It should be noted that the infinite series appearing in the

kernel K(t,x) is a divergent series and becomes infinite for t+h,

x-*±h. This divergent series can be reduced to a convergent

infinite sum by separating the singular part of the series. This

singular part of the series is obtained by taking the asymptotic

value of the function kn(t,x,an) as n-*•<». Let

K (t.x) = f I e ̂  kjt.x.o ) - f kjt.x.0) (22)
u n = 0

where Ks(t,x) is the singular part of the kernel K(t,x). From

(21) it follows that

kjt.x.aj = e ̂  [cosh(anx){4an
2h(h-t) +2an[hK+ (h-t)(K-2)]

+ (K-l)2} - 2xansinh(anx){K + 2an(h-t)}] (23)

and

k (t.x.O) = (K-l)1

Using the following result [5]

00 m -an (2h- t ) (cosh(a x

n=0 n [s inh(anx

_ 1 dm F 1
2 dtm - f(2h-t-x

1 - e L

the singular kernel K s ( t , x ) now

K.( t ,x) = -fr- | { ( K - 1 ) 2 + 2[h<
O C- \—

r 1

- f (2h-t-x)
1 - e L

)| dm « -a n (2h - t ) Jcosh (a n x ) '

)j dtm n=0 \s inh(a n x) .

+ ^ C>k\
) - f (2h-t+x)

1 - e L

becomes
2

Mh-t)(<-2)]^+ 4h(h-t)^}

, 1 ]

i _ e - [ ( 2 h - t + x ) J
 (25)

2
 ir 1 1

d t d t 2 J L - f (2h-t-x) - f (2h-t+x)
1 - e - e
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Note that the second term in (22) does not have any contribution

in (25) since G(t) is an odd function of t and

h
/ G(t) k^t.x.Ojdt = U-ir / G(t)dt = 0

-h -h
(.26)

In order to analyze the behavior of the unknown function G(t)

near the end points, the dominant part of the equation consisting

of the Cauchy kernel and the singular kernel Ks(t,x) must be con-

sidered. For the purpose of analysis, it is convenient to express

the kernel Ks(t,x) in terms of a generalized Cauchy kernel and a •

Fredholm kernel, i.e., expressing

1 - e

and
+ 0(2h-t+x)

1 - e U

K (t,x) can be written as

Ks(t,x) = Kls(t,x) + K3F(t,x)

where

Kls(t,x) = -y {< - 3 + 12(h-x)-r— - 4(h-x) —«-} ?h_tis ^ dx dx^ ^h-t x

+ | {<2 -3 -12(h+x-)4- - 4(h+x)2 -̂p} 2h
]
t+x (28)^ dx dx^ ^h-t+x

The dominant part of the singular integral equation (18) is now

written as

u1
Kls(t,x)]dt =

 K+" p0(l-X) - A(x) (29)

|x|<h
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where A(x) is a bounded function containing all the terms coming

from the Fredholm kernels, i.e.,

h
A(x) = /6(t)[K1F(t,x) +K(t,x) - Ks(t,x) +K3F(t,x)]dt (30)

The unknown function G(t) is assumed to have integrable singular-

ities at t=±h and, following [6], may be expressed as
*>

",t|<h" (31)

_ (t-h)a(t+h)
a

where Re(a) < 1 and H(t) satisfies a Holder condition in the closed

interval |t|<_h. The general procedure for determining a from the

dominant part of the singular integral equation (29) has been

treated in detail in [7]. Also, the left hand side of (29) is

identical to that obtained in [3] where the corresponding equation

is analyzed to determine the power of the stress singularity a.

Hence a is the first root of the following transcendental equa-

tion [3]:

2KCOSira - (<2+l) + 4(a-l)2 = 0 (32)

Note that this equation depends only on the Poisson's ratio of the

finite strip and yields a real value of a for any material Qxv<0.5.

SOLUTION OF THE INTEGRAL EQUATION

Without any loss of generality, the integral equation (29)

can be normalized with respect to h by using the transformation:

G(t) = G(hx) = O(T) (33)

Hence (26) can be expressed as
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J *tT)t̂ j + hKs(hT,hy) + hK, F(tiT,hy) + hKF(hT,hy)]dT

. (3-<)(<*1) ,PO(I.X) f |y|<1 (34)

where

KF(hr,hy) = £ I e n [k(hT,hy,a ) - kjhr.hy.a )]
n = l

and (31) becomes

*(T)=JlTJ_ (35)

(1-T2)"

where a is given by (32). Equation (34) can now be solved by

using Gauss-Jacobi Integration formula. This technique has been

described in [7] and has been used in [3]. Since the unknown <{>(T)

represents the shear stress at the end of the strip, it must be

unbounded and should have integrable singularity, i.e., 0<Re(a)<l.

Hence the index of the singular integral equation (34) is +1 and

it must be solved subject to the condition (26). A set of N*N

simultaneous algebraic equations are obtained.

N
.1 V(TJ)C:Fr:yT + MKs(hTj,hy1)+ K1F(hTj,hyi)+ hKp(hTj .hy,. )}
J "~ I J I

" (K+1^(3"K) *P0(1-X)- (36)

I A.^T.) = 0
j = l

where from [7] T. and y. are given as the roots of the following
J I

equations:

P("a'"a) ^) - 0 , (J=1,...,N)
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and A.'s are the corresponding weighting constants [7]. <M T • ) areJ J
computed by solving (36) numerically and the shear stress a (x,L)xy
can then be expressed as

oxvCx,L) = G(x) = , |x|<h (37)Ay ,, p u
(h2-x2)

Since X is an unknown constant in .equatio.n_(_36) (see (1,9) and

(20)), the numerical solution of this equation yields „ )?', \ .P0U-A;

X in turn is determined from the equilibrium condition (4).

NORMAL STRESS AND STRESS INTENSITY FACTOR

After having solved for the shear stress in the disturbance

problem, the remaining stress and strain fields can be computed

from the corresponding equation in (5). An important quantity of

interest is the normal stress at the ends of the strip. Also,

this normal stress will be used to determine the unknown constant

X. Starting from the fourth equation in (5) and using (12), (10),

(16) and (14), the normal stress a (x,L) can be expressed as
J J

+ K4p(t,x)]dt , |x|<h (38)

where

co -a (h-t)
K4F(t,x) = £ l-e [k^t.x.a ) - klco(t,s,a )]
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- s i n h ( a h ) ] + [^ + a ( h - t ) ] [a h s i n h ( a h ) - 2 c o s h ( a h ) ] }

- x a s i n h ( a x ) { s i n h ( a h ) [ a ( h - t ) ]

+ cosh(anh)[
j^- + an(h-t)]M

:, (t,x,a ) = e n cosh(a x){l - [K +2a (h-t)] (3 - 2a I
I ^^ I» I II •11 11

- 2anxsinh(anx){K + 2ap(h-t)}J ( 3 9 )

K ft x} = —N9e v U ' X / 9121 2[Kh - 1
'dt dt^ -f(2h-t-x)

1 - e L

1

1

-e^(

1

T<- e

d d2 1

2h- t+x) . " dt dt2 -f(
1 - e L

1

2h-t+x)
_

2h- t -x )

K r(t,x) = ̂{̂ r coth(Jf-[t-x]) - ̂
( L C L . £. |_ L ~ j

Using the solution of (36) in (38), the unknown constant A can now

be computed from (4). This enables the determination of the shear

and normal stresses at the 'fixed end from the corresponding

equations.

The behavior of a vv(x,L) near the corner points t->±h can be
*/ */

determined by considering the dominant part of the equation (38),

which can be written as
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(K+l)oyy(x,L) - 1 / 6(t)[|fi+ {-(3K+5)

- 4(h-x)2 } TI +

(41)

Using (-31) and relations from [6] and [3], "the dominant part of

the normal stress becomes

O- (x,L) = - 1 - [(K-l)(cos7ra+ 1) - 2
yy (2h)asinTra

(42)
(h+x)a (h-x)a

Defining the stress intensity factors as [3]

K1 = lim /2" (h-x)a a (x,L)

(43)
K2 = lim /2 (h+x)

a axy(x,L.)

and using (31) and (41), K-j and K2 are expressed in terms of the

unknown function H(x) as:

K, = ^ H(h) [(K-l)(coSTm+l) - 2(ic+l)(a-l)+ 4(a-1)2]
1 («+l)(2h)asinTra

(44)
II / U \

Ko = 1

(2h)a

NUMERICAL RESULTS AND DISCUSSION

The total solution of the finite strip problem shown in

Figure 1 is now obtained by summing the two problems I and II

Hence,
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ayyT(x'L) = ayyI(x'L) + ayy(x'L) = " po + ayy(x'L)

axy
T(x,L) = oxy

l(x,l) + axy(x,L) = °xy(x.L)
(45)

Note that equations (18) and (38) depend only on the Poisson's

ratio of the strip. If the Poisson's ratio of the strip is zero,

the disturbance problem ceases to exist and the total problem as

shown in Figure 1 becomes identical to the hoirvogeneous problem I.

The same conclusion can also be arrived at by putting K=3 in

equation (17). Thus, for v=0

o"xy
T(x,y) = axy

!(x,y) = 0

ayyT(x'y) = ayyI(x'y) = "po

(46)

The effect of the disturbance problem increases as the Poisson's

ratio of the strip increases (to a maximum value 0.5). These

effects are presented in detail in [3] for a semi-infinite strip

problem, hence, w i l l not be repeated here. In this study, since

the effect of the strip size on the disturbance problem is of

primary importance, the results are presented only for one value

of the Poisson's ratio v - 0.3. Figures 2 and 3 show the varia-

tions of shear and normal stresses, respectively, along the fixed

end of the strip for various values of strip length to width

ratios. For a value jj- = 10, the results are identical to those

obtained for a semi-infinite strip [3]. Figures 2 and 3 show

that the effect of the disturbance problem decreases with a de-

crease in the length of the strip. This implies that the effect

of the decrease in strip length on the edge stress field is simi-

lar to that of reducing the Poisson's ratio. The two effects are
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not identical, however, since the power a of stress singularity

decreases when Poisson's ratio is decreased and it remains un-

changed when the strip length is reduced.

The variation of the stress intensity factor Kp (as in (44))

with respect to the strip length is given in Figure 4. As

expected, the stress intensity factor decreases with the reduction

in the strip length. In limit, it would go to zero for J: -»• 0 and

would tend to that of a semi-infinite strip for j- » 1 . A similar

trend is predicted by Benthem and Miriderhoud [2] for a finite

cylinder problem. As is seen from (44), the stress intensity

factor KI depends on Kp, and their ratio Kp/K, is only a function

of the Poisson's ratio of the strip. From (44)

^2 B (K+I) simra (47)
Kl [(K-l)(coS7ra + 1) - 2(K+l)(a-l) + 4(a-l)

2]

The power a of stress singularity in (47) is related to the

Poisson's ratio via equation (32).

This ratio Kg/K-, is not affected by the size of the strip.

Figure 5 shows a variation of Kp/K, with respect to v. The result

is quite significant for this finite strip compression problem.

If the rigid stamps are rough enough so that the coefficient of

friction, f, between the stamps and strip surfaces, is greater

than Kp/K,, the contact condition may be assumed to be that of.

perfect adhesion, i.e., no sli d i n g would occur and the solution

given in this paper would be v a l i d . If f < Kp/K,, the problem

becomes that of a finite strip compressed between two rigid stamps

with friction. Figure 5 shows that in a crushing test, to
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determine whether the end condition is that of perfect adhesion

or sliding, as a first approximation one may assume that K^/K-, = v.

The above comments and the results shown by Figure 5 were included

in [3]; however, they must be repeated here since they are even

more relevant to the physical problem considered in this paper.
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Figure 2. Shear Stress vs. the Strip Length
for the Finite Strip, v = 0.3
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