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FOREWORD

This interim report is submitted in accordance with the

provisions of Exhibit A of Contract NAS8-25183. The study was

performed by personnel in the Aeromechanics Department of

Lockheed's Huntsville Research & Engineering Center. The

NASA-MSFC technical monitor for this contract is Miss B.

Richard, S&E-SSL-T.
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SUMMARY

Current results of an experimental study of increasing phase-

change material thermal diffusivity by means of solid fillers are

reported. Aluminum honeycomb appears to offer the best improve-

ment of any of the fillers investigated to date. Details of the experi-

mental method developed in the present study for rapidly determining

thermal diffusivities with a precision of about 10 percent are also

reported. Further concepts regarding phase change material

thermal diffusivity enhancement and of phase change material

operation are discussed.
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Section 1

INTRODUCTION

The science and technology of phase change material (PCM) thermal

control and heat storage appears to be attracting a widening interest. A

comprehensive bibliography on PCM technology is given in Ref. 1. For

orientation purposes, however, the principle of PCM thermal behavior is

briefly reiterated as follows: A PCM is a material which undergoes a phase

change with a large accompanying liberation or absorption of latent heat.

Ice cubes and water are an example of a simple PCM system. As long as

any ice is present, the temperature of the ice-water mixture remains at

00 C. Heat from the surroundings is absorbed as latent heat of fusion and is

used in melting the ice, without an elevation of temperature. Thus, the

amount of the solid phase is decreased, while the amount of liquid is increased

by an equivalent amount. The reverse process of freezing consists of an

increase in the amount of solid phase, with the heat of fusion being given off

instead of absorbed.

In the case of thermal control, a PCM material (such as water) is

placed between a variable thermal environment and an element which is to

be thermally controlled. By the processes of melting and freezing, an

essentially isothermal control is maintained. Thus the PCM gives a rever-

sible system which can act as either a heat sink or heat source, as required.

The advantages of this type of thermal control are many. No moving

parts are required to maintain thermal control. Such a system could operate

reversibly for indefinite lengths of time. The desired temperature for control

can be picked from a wide selection of melting points offered by a variety

of PCM candidates.

A number of development studies are currently being made across the

country. Simple applications are already in use. Development studies are

I
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in progress for rather sophisticated applications. A number of material

and design questions have been raised by investigators pursuing these studies.

Among the most pressing are:

* Ways to increase thermal diffusivity of non-metallic PCMs
without undue weight or space penalities.

* Limits of the thermal stabilities of the more exotic materials
found to have some potential as PCMs.

· Effects of long-term thermal cycling on PCM stability
and performance.

The present work is concerned with defining and generating the basic data

needed to answer these questions for a broad spectrum of possible applications.

2
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Section 2

PHASE CHANGE MATERIAL SYSTEM
THERMAL DIFFUSIVITY

2.1 FILLERS AS THERMAL DIFFUSIVITY PROMOTERS

As is well known, the thermal diffusivities of most common non-

metallic materials are about 10 orders of magnitude lower than that of

the metals. Liquids have slightly lower values than the corresponding

solid. The obvious way to try to improve the thermal diffusivity of a non-

metallic PCM, therefore, is to pack or fill it with an open structure of

metal. Just what metal, how much, and what structure are questions to

be answered. One consideration is that of weight, especially for space

applications. Others are cost and PCM-metal compatability. With these

considerations in mind, aluminum is the obvious choice. The question of

just what configuration of aluminum filler results in optimum rate of heat

transfer through the liquid, however, is not obvious and thus was investi-

gated experimentally in some previous studies and also in the present

study. Also not obvious is the optimum ratio of PCM to filler. If too

much filler is used, the benefit of the PCM is lost; if not enough, the system

thermal diffusivity will be too low. Again, the answer is to be sought in

experimental determinations.

Although aluminum appears to offer the best combination of properties

as a PCM filler of any of the rest of the metals, it will cause corrosion

problems with some of the salt hydrate type PCMs. It might be possible to

overcome the corrosion problem by judicious additions of additives such as

sodium silicate which forms a protective film around the aluminum, but a

really inert filler would be desirable. One possibility is a ceramic material.

Although most ceramics have lower thermal diffusivities than metals, two

ceramics - Beryllia (BeO) and Alumina (A12 0
3

) - have surprisingly large

3
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values: BeO-0.42 cm 2 /sec, A1203 - 0.08 cm 2 /sec (Al - 0.872 cm2/sec). An

open structure filler of BeO or A1 2 0
3

would thus possibly offer advantages

With some PCM materials.

Another possibility is pyrolytic graphite, a material characterized by

extremely anisotropic physical properties. The difference in thermal diffusi-

vity in the A and C directions is amazing: A direction - 10 cm /sec, C

direction - 0.04 cm /sec. An open structure pyrolytic graphite filler con-

structed so that the PCM is in contact with the C direction and the A direction

facing the heat flux input as in the following sketch, would be highly desirable.

PCM

Graphite Filler
Longitudinal in

1 .LnfiA Direction

Pyrolytic graphite has other desirable properties as a PCM filler.

very inert to most chemicals and highly resistant to thermal shock.

It is

The succeeding section reports results of experimental investigations

designed to answer some of the questions just discussed. In brief, the experi-

mental work consisted of varying PCM system thermal diffusivity by varying

4
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the filler amount, material composition, and physical structure. Measure-

rnents of thermal diffusivity of various PCM - filler systems were accomplished

by means of a specially developed experimental apparatus.

2.2 DEVELOPMENT RESEARCH ON PCM/FILLER SYSTEMS
CONDUCTED DURING PRESENT STUDY

2.2.1 Development of Experimental Method for Determining Thermal
Diffusivitie s

To be able to assess various ways of increasing PCM system thermal

diffusivities, it was first necessary to develop a simple experimental apparatus

in which the thermal diffusivities of pure and filled PCMs could be easily

determined. A number of concepts were tried, with the experimental appara-

tus shown in Fig. 1 being finally selected as meeting the requirements of

the present study.

The basis of the present method depends on maintaining a constant rate

of temperature rise at the upper copper plate and on perfectly insulated

side walls on the test cell. A constant heating rate is accomplished by

feeding the output of the control thermocouple to a linear temperature pro-

grammer. The linear temperature programmer used in the present study

is part of a Fisher Differential Thermal Analyzer (DTA) Model 316 unit.

The programmer varies the current to the infrared lamp according to the

control thermocouple input. The heating rate of the copper plate is thus

maintained at a constant set value. With this experimental setup, the thermal

diffusivity of a PCM system is determined from a knowledge of the constant

heating rate, the constant temperature gradient through the PCM, and the

height of the test cell. The equation relating these quantities is:

3h2
2AT

where a is the thermal diffusivity (cm2 /sec), 1 the constant heating rate

(°C sec- ), h the cell height (cm) and AT the constant temperature difference

between the top and bottom of the cell containing the test material.

5
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Aluminum foil
cove ring

Control Thermocouple:
Output to linear

temperature l -
programmer

Indicating
Thermocouples

Tygon tubing
inlet for filling
cell with PCM

Aluminum foil attached to
cylinder with Mylar tape

Aluminum foil

- Plexiglas Cylinder
Wrapped on Outside
With Insulation

Details of Test Cell Construction

Fig. 1 - Experimental Apparatus for Determination of Thermal
Diffusivitie s

6
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The test cell consists of a Plexiglas cylinder approximately one centi-

meter in height and 2.5 cm in diameter. Each end of the cylinder is covered with

aluminum foil 0.0025 cm thick. A section of Tygon tubing inserted into a small

inlet drilled into the cylinder serves for filling the cell with PCMmaterial and

as an overflow for expansion of material being heated. A hypodermic syringe

proves to be a satisfactory tool for injecting material into the test cell. The wall

of the cylindrical cell is wrapped with cotton string which is a convenient insula-

ting material. The walls of the test cell are further insulated with polystyrene.

The test cell is coated on top and bottom with heat-conducting silicone jelly.

Heating from the top is employed to avoid convection.

It may be mentioned that the concept of measuring thermal diffusivities

in the manner described is not original. The basic equation appears in Ref. 2

with regard to interpreting DTA data, however, and not as a method of meas-

uring thermal diffusivity. In Ref. 3, explicit use is made of the same approach

and equation for measuring the thermal diffusivity of polymer melts. The

originality of the present work consists of adapting the method for rapid eval-

uations of a large number of composite material systems. The ease and low

cost of the present method are also not to be overlooked. The accuracy and

precision of the method for a one component PCM system can be ascertained

from the following data:

Thermal Diffusivity Values
Substance 2/sec x 10-3

Observed Literature

Water 0.18 1.35 (Ref. 4)
0.31
0.72
1.28

avg. 0.62 + 0.38

Glycerine 0.43 0.86 (Ref. 5)
0.63

avg. 0.53 + 0.10

As can be seen, the accuracy and precision leave much to be desired. Also, in

the case of composite systems, that is, PCM plus solid filler, further error

arises from the positioning of the indicating thermocouples. If one thermocouple

7
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happens to sit or be placed just over the metal filler, it will register a signif-

icantly higher temperature than if it were placed directly over the PCM. The

increase in data scatter when rigid fillers are used is evident from the following

thermal diffusivity data for lithium nitrate trihydrate alone and with various

fillers. The given PCM/filler ratios are by weight as shown in Table 1. Although

the data for PCM plus filler is generally less precise than when no fillers are

used, a definite trend is discernible. Rigid fillers increase PCM system thermal

diffusivity more than the same amount of filler in powder form. Also a filler such

as aluminum honeycomb which provides the heat input with a directional path

appears to improve PCM system thermal diffusivity more than a filler such as

aluminum gauze which allows heat to accumulate. Further research is indicated,

however, before the latter conclusion can be accepted as fully valid. Possibly the

honeycomb provides less resistance to heat passage because the cross section of

metal is larger in the case of the honeycomb.

In an attempt to increase the precision and accuracy of the method, further

sources of determinate error were sought and identified. For one, temperature

differences between the top and bottom of the cell never were observed to come

to constant values. Instead, the behavior shown in the following table with water

as the test liquid was usually observed.

f(AT) Af(AT)

5.8
12.7 6.9
19.4 6.7
25.0 5.6
29.8 4.8
33.8 4.0
37.2 3.4
40.4 2.2
43.1 2.7
45.5 2.4
48.0 2.5
49.9 1.9
51.7 1.8
53.3 1.6
54.5 1.2
55.7 1.2
57.0 1.3
58.1 1.1

8
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Table 1

MEASURED VALUES OF THERMAL DIFFUSIVITY
OF VARIOUS PCM-FILLER SYSTEMS

PCM System

LiNO3· 3H20 with

no filler

LiNO
3
· 3HzO + Aluminum

powder
agent

+ surface-active

8/1 PCM/Filler Ratio

LiNO
3

3H20 + Aluminum

gauze

8/1 PCM/Filler Ratio

LiNO
3
· 3H 2 0 + Aluminum

honeycomb

8/1 PCM/Filler Ratio

LiNO
3

3H20 + Alumina

(Al
2

0
3

) foam

8/1 PCM/Filler Ratio

LiNO
3

3H20 + Alumina

(Al 2 0
3

) powder

8/1 PCM/Filler Ratio

Thermal Diffusivity

cm 2 /sec x 103

1.80
1.20
1.40
0.87
0.18
1.80

avg. 1.2 + 0.5

avg.

0.62
0.24

0.43 + 0.19

0.62
2.0
3.0

avg. 1.9 + 0.9

1.1
3.2
2.5
4.2

avg. 2.8 + 1.0

3.2
1.9
1.0

avg. 2.0 + 0.7

1.0
2.8
0.24

avg. 1.3 + 0.9

9
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The symbol (AT) represents the difference in scale readings of the

thermocouples at the top and bottom of the cell, which can be converted into

millivolts and subsequently to degrees centigrade. The differences are taken

at one minute intervals. The term Af(AT) represents the respective differences

of f(AT). The meaning of the apparently constant difference between successive

f(AT) values after about 15 minutes is not altogether clear at the moment. An

attainment of a constant rate of heat leakage rise is one possibility. Another

is that the thermal diffusivity is a function of temperature. Development of

the present method into a highly precise andaccurate method for determining

thermal diffusivities will require further research of the posed possibilities.

Considerable improvement in the precision of observed thermal diffusivity

values was immediately noted, however, if a value of f(AT) is taken at the

time when Af(AT) becomes constant. For example, in the preceding table

this value is 54.5. Thermal diffusivity values from data treated in this

manner are shown in the following table for various systems.

Thermal Diffusivity
Substance

cm /sec x 10
- 3

Water 1.48
1.20

avg. 1.34 + 0.14

(reported value of 1.35 (Ref. 4)

LiNO
3
· 3H20 + Aluminum 5.2

4.3
gauze 4.3

8/1 parts by weight avg. 4.6 + 0.4

(by previous method, 1.9 + 0.9)

Myristic Acid

Solid 2.44
1.87
1.84

avg. 2.05 + 0.26

Liquid 1.33

Ac etamide

Solid 38.2

10
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The precision of the method, it can be seen, has been increased to

approximately 10% by the described data treatment.

2.3 HEAT PIPES IN CONJUNCTION WITH PCMS

The extremely high values of thermal conductivity observed in heat

pipes naturally brings up the question of the advantages to be realized from

heat pipe/PCM systems. A heat pipe might offer advantages for improve-

ment of PCM system thermal diffusivity or as a heat transporter and a PCM

as a heat sink. Just the brief consideration of the theory of heat pipes will be

gone into here. Extensive reviews will be found in Refs. 6 and 7. A basic

schematic of a heat pipe is shown in the following sketch.

Heat Out

Wick
Heat Vapor Wick

Condensor
` -Liquid Section

Evaporator
Section

Heat is absorbed as latent heat of vaporization at the evaporator end. The

temperature of the evaporator end is at the vaporization temperature of the

liquid inside the pipe. The vapor is driven by the temperature gradient to

11
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the conidenisor end where it condenses, giving up its latent heat of vaporization.

The condensed liquid returns to the evaporator end by capillary action. Con-

sider now the following arrangement of heat pipe and PCM:

Heat
Input/Output

Surface

Heat Pipe

A number of possible advantages could be realized from the arrangement for

thermal control on spacecraft. Heat would be absorbed at some given temper-

ature at the input surface and given out over the heat pipe/PCM interface.

The PCM would melt, absorbing the heat. The absorbed heat would in

essence be stored until rejected or used for other purposes. Possibly, the

heat pipe would operate in a reversible manner. If so, the stored heat could

be returned to the heat input/output surface if its temperature began to drop

below the solvent boiling point. Thus the heat input/output surface would be

maintained at a constant temperature. A reliable judgment, however, as to

the advantages of a system composed of heat pipe plus PCM must await further

study on the relative rates at which heat is transported by the heat pipe and

the PCM.

12
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2.4 ROLE OF CONVECTION IN PCM SYSTEM OPERATION

The presence of liquid and gaseous (bubbles) phases during PCM melting

or freezing means that convection will be operative to varying extents, depend-

ing on the boundary conditions. The presence of convection increases the

rate of heat transfer over what it would be if no convection were present.

Convection, thus, is generally a desirable phenomenon in PCM operation.

Convective theory, unfortunately, is not yet able to predict generally the type

and extent of convection likely to occur in any given system. Detailed mathe-

matical analysis or experimental data are usually required for specific in-

stances. The work of Catton and Edwards reported in Ref. 8, however, does

appear particularly pertinent to PCM operation because liquid convection in

the presence of honeycomb fillers is explicitly considered. Cotton and Edwards

consider the effect of insulating (phenolic-Fiberglas ) and conducting (aluminum)

honeycomb on the extent of Benard Convection. Benard convection is a cellular

form of fluid motion frequently exhibited by liquids whose horizontal extent

is large in comparison to their vertical extent. The reader seeking further

general information on convection is referred to Ref. 9. Figs. 2 and 3

illustrate that the onset of natural convection is inhibited by the presence of

honeycomb filler, the inhibition being more pronounced with aluminum honey-

comb than with phenolic honeycomb. Figures 4 and 5 show the corresponding

extent of heat transfer.

13
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Section 3

PCM SYSTEMS - LONG-TERM STABILITY

3.1 THERMAL CYCLING

Long-term thermal cycling can result in a number of deleterious effects.

For example, PCM degradation can build up the concentration of impurities to

a level which seriously interferes with efficient operation. Other deleterious

effects of thermal cycling on PCM operation include eventual distruction of the

nucleation catalyst and stratification of impurities. Because the effect of ther-

mal cycling is so important for long-term PCM operation, an experimental

testing program is currently in progress. The current work consists of pack-

aging various PCM materials into small aluminum cannisters. The cannisters

in which photography film is sold were found to be suitable, equipped as they

are with an air-tight lid. The cannisters are then placed on a hot plate which

is automatically turned on and off at set time intervals. The PCM operation

before and after thermal cycling is determined by monitoring the temperatures

at the top and bottom of a thermal diffusivity cell whose top is being heated at

a constant rate.

3.2 CATALYST STABILITY

Very few specific nucleation catalysts are known. One of the very few

which has been identified is the compound zinc hydroxy nitrate which apparently

is a specific nucleation catalyst for the PCM candidate, lithium nitrate tri-

hydrate. The long-term stability of this material in contact with molten

lithium nitrate trihydrate, therefore, will soon be tested in the same manner

as that in which the long-term stability of various PCMs is tested.

16
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Section 4

PLANNED FUTURE ACTIVITIES

Refinements of the experimental apparatus and of the data processing to

improve the accuracy and precision of the thermal diffusivity measurements

are currently in progress. Construction of new cells designed to minimize

heat leakage and to enable more accurate effective thermal diffusivity values

to be measured for composite systems is planned for the near future. After a

satisfactory design is achieved, a number of other filler materials and configura-

tions will be evaluated. Also planned for the near future are a series of experi-

mental tests of PCM performance after a long period of sustained thermal cycling.

A number of new, promising PCM candidate materials were identified in

the course of the present study. Accurate heat of fusion data on these new

candidates, however, are not available. The development of a simple calo-

rimeter method to rapidly determine heat of fusion, therefore, is planned for

the near future.
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