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NONLINEAR EVOLUTION OF A DISTURBANCE IN AN UNBOUNDED

VISCOUS FLUID WITH UNIFORM SHEAR

by Robert G. Deissler and Burt M. Rosenbaum

Lewis Research Center

SUMMARY

The evolution of a disturbance in the presence of a uniform mean velocity gradient
is calculated by a power-series solution of the incompressible Navier-Stokes equations.
Terms through those in time cubed are retained in the solution. For the initial condition
a three-dimensional cosine distribution with two harmonic terms is assumed. The non-
linear interaction of these harmonic terms produces new harmonics which in turn inter-
act. For large velocity gradients the energy of the disturbance can grow with time.
The results may shed some light on the maintenance or growth of turbulence in a shear
flow.

INTRODUCTION

The history of a disturbance in a viscous fluid has been calculated to various degrees
of approximation for several initial conditions in references 1 to 3. The results showed
that the evolution of the disturbance is modified by the generation of new harmonics
through the interaction of those already present. The effect of chemical reaction on a
fluid disturbance was studied in reference 4. Various numerical aspects of Fourier-
type solutions of the Navier-Stokes initial value problem were considered in reference 5.

In the present report the results of reference 3 are extended to include the effect of
a uniform velocity gradient on the evolution of a fluid disturbance. Thus, in addition to
mode-mode interactions (interactions between the Fourier components of the wave), in-
teractions between the velocity fluctuations and a mean gradient are considered. As in
reference 3 the initial condition for the velocity disturbance is taken to consist of two
waves with different wave number and intensity vectors. It is noted that turbulence can
be regarded as being made up of a very large number of disturbances of the type con-
sidered in this report, so that the results may shed some light on turbulent shear flow,



particularly in- the early stages of development. In particular, it would seem that non-
linear effects might be more easily investigated in the present problem than in turbu-
lence. As will be mentioned in the section RESULTS AND DISCUSSION, there are, how-
ever, important differences between the results obtained for simple regular disturbances
and those for a fully developed random turbulence. The case of turbulence with a uni-
form shear, but without nonlinear effects, is studied in reference 6.

For simplicity a Taylor power series in time rather than the exponential method of
reference 3 is used. The basic equations and their analysis are considered in the next
section.

ANALYSIS

The following problem is considered: given the initial velocity distribution in an
unbounded viscous fluid with a uniform mean velocity gradient, predict the motion at
later times. For a viscous fluid with constant properties, the three-dimensional equa
tions of motion in dimensionless form are

and

jV = - B 2 U _ (2)
0X7 0X7 0X7 CX|

i t t K

where equation (2) is obtained by taking the divergence of equation (1) and applying the
continuity equation, and
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t = JL t*
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The quantity u* is a velocity component, x? is a space coordinate, XQ is a character-
istic length, t* is the time, p is the constant density, and v is the constant kinematic
viscosity. Note that the stars on dimensional quantities are omitted for corresponding
dimensionless quantities. The subscripts in equations (1) and (2) can take on the values
1, 2, and 3, and a repeated subscript in a term indicates a summation. (Symbols are
defined in the appendix.)

One can break the dimensionless instantaneous velocities into mean and spatially
fluctuating components; thus, set u. = U- + u.. Equations (1) and (2) become

= . ̂ 1 - JE. . 8uiUk I^i _ ""i"k + " ui + " "i (3)
1 3t 3x. ~ ~ ~ _ _ - -

3u

3x, 3X; 3x, 3xk 3xk 3x^ 3x^ 3xk

If the mean velocity is assumed to be in the Xj-direction, the left side of equa-
tion (3) becomes [d/dt + IL (3/8xj)]u.. In this analysis we let the observer move with
the mean velocity at each point, since we are interested in the changes with time of fluc-
tuation levels from that point of view. Also, the mean velocity gradient is taken to be in
the Xg-direction, constant in time and space, and equal to dUj/dxg = S. Coordinates
x. relative to the moving observer are given by the transformation x. = x. - S.jU^XgJt.
Then

3Xj 3x. ^ 3xx

and
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Also,

3x.,
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Equations (3) and (4) become, in the new coordinate system,
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where 6-, is the Kronecker delta. In addition, the equation of continuity which had the
form

3u.

now becomes

3us
— = S t — ( 7 )
3x. 3x <

For the initial condition on the velocity fluctuation at time t = 0, take

m'

where m' can, in the general case, be any positive integer, and am and q^ are,
respectively, intensity and wave-number vectors. In the actual numerical calculations
m' will be set equal to 1,2. Two is, of course, the smallest number of terms that can
be retained if there are to be mode-mode interactions.



To get the evolution of the velocity fluctuation, a Taylor series in time- is used and
the required initial time derivatives are obtained from equations (5), (6), and (8). The
Taylor series is

/ \ ,
u =u +_L t + - i + - M +. . . (9)

The quantity (u. ) in this equation is obtained from equation (8), which can be more
\ 1/o

conveniently written in complex notation as

Z — m —!a<V1 "x (10)
2 l

m

where m takes on both positive and negative values (i. e. , m = ±m'), and qrm = -qm

and aj"m = am. In the case considered in this report, where m' = 1, 2, the values m
takes on are given by m = -2, -1, 1, 2. Also, the equation of continuity yields the rela-
tion

(Note that, although a repeated subscript indicates a summation, summations over
superscripts are only to be carried out when explicitly indicated by the summation sign.)

To obtain (3u./3t) in equation (9), equation (10) is first substituted into equa-
(\

tion (6) evaluated at the initial time. This gives
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where m and n are independently assigned the values assigned to m. Inspection of
equation (12) shows that pn has the form

Z --m \"^
.-.« •«*^•
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Substituting equations (13) into equation (12) and equating coefficients of like powers
of e give

m m
(14a)

_mn 1
m n n m
£ akqiqk (14b)

where equation (11) has been used to simplify the expression for Tr11"1. Substituting
equations (10) and (13) into equation (5) evaluated at t = 0 gives for the first time deriv-
ative in equation (9)

(^ . V bf .«5f- + i V an-
w0 Z-i Z-i 'x ' m m, n

(15)

where
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(16b)

.mnand a. has been written so as to maintain symmetry in the superscripts m and n.
/ o / 2\To obtain 19 Uj/St J in equation (9), differentiate equations (5) and (6) with respect

to time. This gives at t = 0
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where (9p/3t)0 is given by

- 2
3t/0 9*i\3t;o

(18)

Substituting equations (10), (13), and (15) into equations (18) and (17) and proceeding as
was done to obtain f3uj/9tj give

u\ V""̂  —m - V^i i \ ni iq * x \ »mn
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Equation (11) and the relations

have been used to simplify equations (20) and (21). These relations were obtained by dif-
ferentiating equation (7) with respect to time t, setting t = 0, and then substituting the

/ \ / \expressions given by equations (8) and (15) for (u,,) and (3u./3t) , respectively.
\ 4/0 ^ l '0
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and where

q?
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The additional relations obtained from differentiating the equation of continuity and em-
ployed to simplify equations (23) and (24) are

^m_m oc~ m mc. q. = /sbD0 q.
11 £t \

Substituting equations (10), (15), (16), and (19) to (24) into equation (8) gives the time
evolution of u. as a function of the coordinates in the moving system for small and mod-
erate times. However, we are more interested in the space-averaged value u.u.. If the
product u-u- is averaged (integrated) over space, the integrals of the various terms are
zero except for those for which the exponential factor reduces to 1, so that the result is,3
for terms up to order t ,

u^T = Ay + Bijt + Cijt
2

 + Dijt
3 (25)

11



where the coefficients of the powers of t are given by

m

2 m

(m+n+r+s = 0)
(26c)

il
12 2

m, n, r, s
(m+n+r+s =

(26d)

Although u.u. has been obtained by integrating u.u. with respect to coordinates in the
moving system, its value is not dependent on carrying out the integration in that system
and will be the same in the stationary system.

RESULTS AND DISCUSSION

As in the case of nonlinear decay without a mean velocity gradient (ref. 3), the non-
linear terms in the Navier-Stokes equations here produce a proliferation of a new eddies
or harmonic components at various wave numbers. These effects are contained in the
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double, triple, and quadruple summations in equations (15), (19), and (22). In the pres-
ent case the presence of terms containing mean gradients produces harmonic components
in addition to those in reference 3. For instance, in equation (17), the nonlinear term

contains mean gradient effects through equations (15) and (16).ui (9uk/9t)
Figure 1 compares the results of the present analysis for dlL/dxg = 0 with those

from reference 3 for the same initial conditions. Note that these initial conditions sat-
isfy continuity and give nonzero interaction terms, even for S = dU.|/dx0 = 0
( 1 1 2 2 1 2 ? 1 \ 1 4

aiqi = aiqi = °» aiqi * °» and aiqi * °r For S = °» the only essential difference
between the two analyses is that the present analysis utilizes a Taylor series, whereas
that in reference 3 results in a series of exponentials. The first, second, and third
approximations for the Taylor series correspond, respectively, to retaining terms in

2 ^t, t , and t in equation (25). Comparison of the various approximations for the Tay-
lor series solution and of the results for the Taylor series with those for the exponen-
tial method should give an idea of the accuracy of the results.

The results in figure 1 for the present Taylor series solution appear to be accurate
to a dimensionless time of about 0. 003, whereas those for the exponential method are
good for much larger times. The Taylor series should still give a good indication of
the effect of shear on a disturbance, particularly for large shear, where large effects
of shear at small times might be expected.

For one accustomed to thinking in terms of turbulence, it may seem surprising that
the shear component UjUg is not zero for a zero mean velocity gradient. It should be
recalled, however, that the present disturbance is for a limited number of wave-number
vectors. Even for turbulence, it is necessary to integrate over all directions in wave-
number space to obtain zero shear stress for zero velocity gradient.

The effect of shear on the kinetic energy u.u./2 is shown in figure 2, where u.u./2
is plotted against dimensionless time for a low, an intermediate, and a high velocity
gradient. (The same initial conditions are used for figs. 1 to 4. ) For the low velocity
gradient S = 20, the energy decays, as for zero velocity gradient. For the intermediate
velocity gradient, the energy decays at a slow rate at small times and then appears to
increase. For the large velocity gradient the energy in figure 2 increases monotonically.

Figure 3 shows the behavior of the individual components of the disturbance for a
o

high velocity gradient. All the components except u« increase with time. Inasmuch as
production terms (terms multiplied by 6- j ) do not occur in the equations for u|, one
might suppose that component increases because of energy transferred into it from u^
by pressure terms (terms with qm in the denominator). Figure 4, where the pressure

1 9
terms have been neglected, indicates that is the case, since u« without the pressure
terms decreases with time. The shear component still increases, apparently because
the u-i in -UjUn increases sufficiently rapidly to offset the effect of the decrease
in u2.

13



All of the results thus far were for the same initial conditions. In order to get an
idea of how changes in initial conditions can affect the components of the disturbance,
the directions of the intensity and wave-number vectors relative to the direction of the
velocity gradient are varied in figures 5(a) to (e). Those figures, together with fig-
ure 3, present the results for a set of six permutations (out of a possible 36) of the com-
ponents of the intensity and wave-number vectors for fixed magnitudes of the vectors.
Comparison of the various figures shows that changes in the initial conditions affect the
evolution of the disturbance both quantitatively and qualitatively.

Perhaps the most interesting aspect of the curves in figure 5 is that, although theo — •K
equations for u| contain production terms, ur for dU^/dx^ * 0 decays faster than it
does for dUj/dXg = 0 in several cases. That result might be caused by a change in
sign of the production term, in which case the shear component UjU« would become
positive, or by large energy transfer out of u? into the other components by the pres-
sure terms. The results show that both of these effects can be important. In figures
5(a) and (d) UjUg does change sign and become positive, so that the production term
becomes negative. In that case Ujiig tends to increase S rather than to decrease it,
as it normally does for turbulence. That is, it acts like a pump rather than a brake on

o
the fluid. There is also an eff eot^ of pressure terms in transferring energy into u,
from other components, since u| increases with time even though the equations for that
component do not contain a production term. _

o
In figures 5(b) and (c), on the other hand, the abnormally high decay rate of u| is

due entirely to pressure forces since U-UQ is negative and thus the production term
for u? is positive in those figures. The large effect of directional energy transfer in

~~9 ~~?those figures is also shown by the fact- that both uS and u| increase with time, even
though the equations for those components do not contain production terms.

CONCLUDING REMARKS

The nonlinear terms in the Navier-Stokes equations produce a proliferation of new
harmonic disturbances at various wave numbers. The presence of a mean gradient pro-
duces harmonic components in addition to those produced when it is absent. Although
the present Taylor series solution seems to be limited to shorter times than is an anal-
ysis in which exponentials are obtained, it is capable of showing the effects of a mean
velocity gradient on the early evolution of a disturbance. As the mean gradient in-
creases, the rate of decay of the kinetic energy of the disturbance decreases. For large
gradients the energy can increase with time. However, for the chosen initial conditions,
at least one of the directional components always decayed.

Rotating the intensity and wave-number vectors of the initial disturbance changed
the evolution pattern of the disturbance both quantitatively and qualitatively. For some

14



orientations the shear component of the disturbance changed sign, so that it tended to
increase the velocity gradient (pump the fluid), rather than to decrease it (brake the
fluid). Also, the shear components of the disturbance could be nonzero even when the
velocity gradient was zero. These results differ from those for homogeneous turbulence
apparently because the disturbance considered in this report consisted of a limited num-
ber of harmonic components. As in turbulence, the pressure forces played a significant
role in the directional distribution of the disturbance energy.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 13, 1973,
502-04.
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APPENDIX-SYMBOLS

am defined by eq. (8) or (10)

aP11 defined by eq. (16b)

a?"11" defined by eq. (20c)

amnrs defined by e^ (23d)

bm defined by eq. (16a)

bmn defined by eq. (20b)

bmnr defined by eq. (23c)

cm defined by eq. (20a)

cmn defined by eq. (23b)

dm defined by eq. (23a)

p dimensionless pressure, (XQ/PV )p*

p* pressure

qm component of initial dimensionless wave number vector xQqm

^q. component of initial wave number vector

q111 initial dimensionless wave number vector XQqm

q111 initial wave number vector

S dimensionless mean-velocity gradient, dU«/dx2

t dimensionless time, vt*/*Q

t* time

U. component of mean velocity

ui component of dimensionless spatially fluctuating velocity

ii. component of dimensionless velocity, XQU?/I/

M* component of velocity

x. dimensionless position coordinate relative to moving observer, x.

x. dimensionless position coordinate, X|/XQ

16



XQ characteristic length

o-m defined by eq. (2 la)

o-mn defined by eq. (21b)

arrmT defined by eq. (21c)

J3m defined by eq. (24a)

,8mn defined by eq. (24b)

^mnr defined by ^ (24c)

|3mnrs defined by eq. (24d)

6^ Kronecker delta, 1 for i = j, 0 for i * j

v kinematic viscosity

ffm defined by eq. (14a)

?rmn defined by eq. (14b)

p density

Superscripts:

* dimensional quantity

~ averaged velocity or stationary coordinate
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Figure 5. - Evolution of disturbance components for dimensionless velocity gradients of 1000 and 0.

21



•g

-i-

i

fn!n'n ')U9UoduioD aoueqjnisip ssajuoisuauiia

22 NASA-Langley, 1973 12 E-6857



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE S3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
4SI

POSTMASTER : If TJndellverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C. 20546


