THEORETICAL ANALYSIS OF OXYGEN DIFFUSION AT STARTUP IN AN ALKALI METAL HEAT PIPE WITH GETTERED ALLOY WALLS

by Leonard K. Tower
Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1973
Abstract

The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

Key Words (Suggested by Author(s))

- Diffusion
- Heat pipe
- Liquid metal coolant
- Liquid-oxygen solution
- Oxygen diffusion
- Refractory alloy
- T-111
THEORETICAL ANALYSIS OF OXYGEN DIFFUSION AT STARTUP IN AN ALKALI METAL HEAT PIPE WITH GETTERED ALLOY WALLS
by Leonard K. Tower
Lewis Research Center

SUMMARY

The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

INTRODUCTION

Refractory metal alloys have been proposed for use at high temperatures in structures for space power production and other applications. When alkali metal coolants are present, oxygen in the system components must be minimized or segregated if corrosion is to be avoided. One means of segregating oxygen in refractory metal alloys has been the use of a gettering metal. To getter oxygen, hafnium has been introduced into tantalum-8 tungsten (wt. %) alloys to form T-111 (tantalum-8 tungsten-2 hafnium). Because of the stability of hafnium dioxide (HfO₂), most of the oxygen present in, or entering, the alloy will be sequestered as HfO₂ until all the hafnium is consumed.

In some applications involving gettered alloys, the oxygen levels to which the alloy is exposed may vary sharply. For instance, in a new heat pipe with alkali metal working fluid, the refractory metal wicking, arteries and walls contain oxygen introduced in all the fabrication processes. At startup, the liquid metal purified by distillation from the evaporator condenses on the condenser walls and is entrained in the wicking and arteries. The chemical potential of oxygen in these parts is very likely to be higher than that of the oxygen in the liquid metal, and oxygen will be leached into the liquid and transported to
the evaporator. Because the liquid metal vapor can contain little oxygen, the concentra-
tion in the liquid metal of the evaporator may rise. As this concentration rises, the ox-
ygen can move into the evaporator walls. If the concentration of oxygen in the evaporator
wall becomes sufficiently-high over a period of time, corrosive failure of the wall is a
probability (ref. 1).

Refractory alloys containing tantalum and niobium can dissolve considerable amounts
of oxygen (ref. 2) and diffusion at elevated temperatures is rapid (ref. 3). The presence
of a gettering element as an oxygen sink in alloys of tantalum and niobium can be expected
to modify both the rate of diffusion with time, and the oxygen capacity of the alloy.

In this report a simple analysis of the oxygen diffusion process into, or out of, a
gettered alloy exposed to oxygenated liquid alkali metal is presented. The analysis re-
lates the thermochemistry of oxygen in the liquid metal and in the container metal, to the
diffusion into or out of a semi-infinite alloy. The analysis is intended to clarify some of
the features of the diffusion processes process which may be encountered in cooling sys-
tems using gettered refractory alloys and alkali liquid metals. For this purpose, an ex-
ample is presented for oxygenated lithium in contact with T-111, a gettered tantalum al-
loy chosen because it is being considered for use in heat pipes. The analysis is part of a
continuing study of gettering systems for use in heat pipes.

ANALYSIS

Figure 1, from reference 4, shows a computed distribution of oxygen between lithium
and tantalum under conditions of equilibrium. At any given point on figure 1, oxygen in
the tantalum at atom fraction \(x_{O(Ta)} \) has the same chemical potential as oxygen in the
dilithium oxide (Li\(_2\)O) at mole fraction \(x \) in lithium. Experimental determinations of the
solubility of oxygen in lithium and in tantalum, extended analytically, were used in ther-
mochemical calculations to construct figure 1. Figure 1 must therefore be regarded as
largely theoretical. While the distribution shown has not been substantiated by exper-
imental data, it will be used here for purposes of illustration.

The atomic fraction of oxygen in tantalum against the mole fraction of Li\(_2\)O in solu-
tion with lithium is shown for several temperatures. Also shown in figure 1 is a crossed-
hatched area representing the zone of stability for HfO\(_2\) computed as though metallic haf-
nium were in a phase separate from tantalum. The data for HfO\(_2\) were replotted from
reference 5. Actually, the hafnium in dilute solution in an alloy such as T-111 will have
a chemical potential somewhat different from the pure hafnium metal (ref. 6). The effect
of this change in the chemical potential of hafnium on the location of the hatched area is
no doubt of less consequence than some of the other assumptions entering into the con-
struction of figure 1 (ref. 4).
In the simple model of a diffusion event considered here, the alloy is assumed to be of semi-infinite extent in the \(u \) direction (fig. 2(a)). This assumption is made in order to simplify the mathematics. The initial concentration of oxygen throughout the alloy is \(c_{\infty} \), taken here in units of density, or grams per cubic centimeter. At time \(t = 0 \) conditions external to the alloy are suddenly changed, such that the concentration of oxygen required for equilibrium in the alloy is \(c_{0} \). Exposure to oxygen-bearing lithium could bring about such a change in conditions. If \(c_{0} \) exceeds the oxygen concentration \(c_{g} \) at which the gettering metal oxide is stable, the oxide is formed by the diffusion of oxygen at a rate governed by the diffusion constant \(D \).

The assumption is made that \(c_{0} \) is below the concentration required for oxidation of the main alloying constituents (tungsten and tantalum in T-111). Any formation and precipitation of the oxide of the gettering metal is assumed to have negligible effect on the diffusion coefficient \(D \). When the concentration \(c_{g} \) is reached at any point in the alloy, the getter is assumed to be oxidized at a sufficiently rapid rate that chemical equilibrium is maintained locally.

The method of attacking the present problem was adapted from techniques used by Crank (ref. 7) for mass diffusion in which the diffusion constant is discontinuous with concentration. This method is similar to that used by Danckwerts (ref. 8) for the general case of heat transfer with a moving boundary, as in the freezing of ice.

The time-dependent differential equation for diffusion in one dimension is

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial u^2}
\]

(1)

Referring to figure 2, one solution pertains to the region \(c_{g} < c < c_{0} \), designated by subscript 1;

\[
c_1 = c_0 + A \text{erf} \left(\frac{u}{2\sqrt{Dt}} \right)
\]

(2)

The other pertains to the region \(c_{\infty} < c < c_{g} \), designated by subscript 2;

\[
c_2 = c_\infty + B \text{erfc} \left(\frac{u}{2\sqrt{Dt}} \right)
\]

(3)

where \(c \) is the oxygen concentration, \(u \) is the distance coordinate, \(t \) is time, \(\text{erf} \) \(z \) designates the error function, and \(\text{erfc} \) \(z = 1 - \text{erf} \) \(z \) is the complementary error function.
Figure 2(a) presents a schematic view of conditions during the precipitation of gettering metal oxide. A lamina of thickness \(\Delta u \) is shown at the concentration \(c_g \), within which precipitation of getter oxide is occurring. The flux of oxygen into the lamina is \(-D(c_1/\partial u)\) and the flux out is \(-D(c_2/\partial u)\), both in grams per square centimeter per second or comparable units. If the reaction between getter \(X \) and oxygen is

\[
\text{mX} + n\text{O} \rightarrow X_m\text{O}_n
\]

and the concentration of getter in the alloy is \(c_m \) (g/cm\(^3\)), the oxygen gettering capacity of the alloy is

\[
q = -c_m \frac{n}{m} \frac{\text{MO}}{M_X} \text{g/cm}^3 \]

exclusive of the oxygen dissolved in the major alloy constituents. The negative sign indicates the consumption of free oxygen, and \(M \) denotes molecular weight.

If \(q \Delta u \) grams of free oxygen are consumed in the lamina, the oxygen consumed must be represented by the net diffusional influx into the lamina during the time span \(\Delta t \), or

\[
\left(D \frac{\partial c_1}{\partial u} - D \frac{\partial c_2}{\partial u} \right)_{c_g} \Delta t = q \Delta u
\]

The lamina must move with velocity \(V_g = \Delta u/\Delta t \) to encounter fresh getter material. Thus equation (6) in the limit gives a condition for the boundary between regions 1 and 2:

\[
D \left(\frac{\partial c_1}{\partial u} \right)_{c_g} - D \left(\frac{\partial c_2}{\partial u} \right)_{c_g} = q V_g
\]

At the gettering concentration \(c_g \) occurring at \(u = u_g \), both \(c_1 \) in equation (2) and \(c_2 \) in equation (3) must equal \(c_g \). Therefore equation (2) becomes

\[
c_g = c_o + A \text{erf} \left(\frac{u_g}{2\sqrt{D}t} \right)
\]

and equation (3) becomes

\[
\]
\[c_g = c_\infty + B \text{erfc} \frac{u_g}{2\sqrt{Dt}} \]

(9)

Since \(c_g \) is constant, the variable \(\frac{u_g}{2\sqrt{Dt}} \) must be constant. Defining

\[K = \frac{u_g}{2\sqrt{Dt}} \]

(10)

enables equations (8) and (9) to be solved for \(A \) and \(B \) as follows:

\[A = \frac{c_g - c_0}{\text{erf} \, K} \]

(11)

\[B = \frac{c_g - c_\infty}{\text{erfc} \, K} \]

(12)

Equations (2), (3), (11), and (12) with a little manipulation can be expressed as

\[\frac{c_1 - c_\infty}{c_0 - c_\infty} = 1 - \alpha \frac{\text{erf} \, u}{2\sqrt{Dt}} \]

(13)

\[\frac{c_2 - c_\infty}{c_0 - c_\infty} = \beta \frac{\text{erfc} \, u}{2\sqrt{Dt}} \]

(14)

where

\[\alpha = \frac{c_0 - c_g}{c_0 - c_\infty} \]

(15)

and

\[\beta = \frac{c_0 - c_\infty}{c_0 - c_\infty} = 1 - \alpha \]

(16)
Equation (13) applies only when $c_1 > c_g$, and equation (14) only when $c_2 < c_g$. The gettering front velocity from equation (10) is

$$v_g = \frac{d c_g}{dt} = \kappa \sqrt{\frac{D}{t}} = \frac{2\kappa^2 D}{u_g}$$

Combination of equations (7), (10), (13), (14) and (17) results in an implicit expression for κ

$$\frac{1 - \beta}{\text{erf} \kappa} - \frac{\beta}{\text{erfc} \kappa} + \gamma \sqrt{\pi \kappa} e^{k^2} = 0$$

where

$$\gamma = \frac{-q}{c_o - c_\infty}$$

Essentially, γ represents the relative gettering power of the alloy since it is the ratio of the oxygen gettering capacity to the uptake of uncombined oxygen required to achieve chemical equilibrium. Equation (17) can be solved iteratively for κ, with values of β and γ assigned.

Figure 3(a) shows κ for several values of β against γ from 10^{-1} to 10^{2}, while figure 3(b) shows κ against γ from 10^{2} to 10^{5}. As the relative gettering strength γ increases, κ decreases, representing a slowing of the gettering front (eq. (17)).

With κ determined as a function of β and γ, equations (13) and (14) can be evaluated. Letting

$$z = \frac{u}{2 \sqrt{Dt}}$$

equations (13) and (14) give

$$\frac{c - c_\infty}{c_o - c_\infty} = 1 - \frac{\alpha \text{erf} z}{\text{erf} \kappa} \quad 0 < z \leq \kappa$$

$$\frac{c - c_\infty}{c_o - c_\infty} = \beta \frac{\text{erfc} z}{\text{erf} \kappa} \quad \kappa < z \leq \infty$$
Figure 4 shows the concentration function $(c - c_\infty)/(c_O - c_\infty)$ plotted against z for β of 0, 0.2, 0.4, 0.6, and 0.8 and values of γ ranging from 10^{-1} to 10^5.

As γ; representing the gettering strength, increases, the break in the curves of $(c - c_\infty)/(c_O - c_\infty)$ becomes more pronounced, as required by equation (7). When $\beta = 0$ as in figure 4(a), no material passes through the gettering front. For this reason the case $\beta = 0$ applies to one-dimensional diffusion in bodies of thickness y until the gettering front reaches y.

The total amount of oxygen contained in the structure at any time, per unit area, is given by

$$G = \int_0^u g c_1 \, du + \int_u^\infty c_2 \, du - q \, u_g$$ \hspace{1cm} (23)$$

where, c_1 is given by equation (13) and c_2 by equation (14). Integration of equation (23) and combination with equations (10), (18), and (19) gives

$$\frac{G}{2\sqrt{Dt} \, (c_O - c_\infty)} = \frac{\alpha}{\sqrt{\pi} \, \text{erf} \, \kappa} + 2\gamma \kappa$$ \hspace{1cm} (24)$$

A plot of the dimensionless gettering parameter $G/2\sqrt{Dt} \, (c_O - c_\infty)$ against γ for several values of β is shown in figure 5.

The foregoing development treated the diffusion of oxygen into an alloy. The same analysis and figures can also be applied to the outgassing of oxygen from a material containing uniformly distributed oxygen in excess of that required to oxidize the getter. In such a case $c_\infty > c_g > c_O$, and q (eq. (5)) is positive since the getter acts as a source rather than a sink. Figure 2(b) illustrates the situation. Figures 3, 4, and 5 are again applicable, with $G/2\sqrt{Dt} \, (c_O - c_\infty)$ in figure 5 pertaining to loss of oxygen from the body.

EXAMPLE

The following example illustrates an application of the figures that have been presented. The example is based on the situation that might occur in the evaporator of a new heat-pipe. The refractory metal wick structure and arteries of alkali metal heat pipes often contain large amounts of oxygen after fabrication. At the first startup of the pipe, a large amount of oxygen from these sources and from the condenser walls is swept into the evaporator causing a sudden, large increase in the oxygen concentration of the alkali metal in the evaporator section of the pipe.
Consider an alloy with a composition within the range designated as T-111 (ref. 9). By weight, this alloy contains approximately 89.5 percent tantalum, 8 percent tungsten, 2.5 percent hafnium, 0.003 percent oxygen, 0.003 percent nitrogen, and 0.001 percent carbon. A semi-infinite section of this alloy is assumed to be heated to 1700 K and simultaneously exposed to solution of lithium and lithium oxide, with the mole fraction x of Li$_2$O in solution equal to 0.02. The problem will be to find β and γ and from these determine the time for the gettering front to move 1 millimeter and the time for $(c - c_\infty)/(c_0 - c_\infty)$ to reach 0.5. The amount of oxygen per square centimeter of structure when the front has penetrated 1 millimeter is to be found. The equilibrium distribution of oxygen between liquid lithium and tantalum in the alloy is to be taken from figure 1.

The assumption is made that any oxygen in the system must either be dissolved in the tantalum, or combined as HfO$_2$ and dissolved in the tantalum. The oxygen concentrations must be below the point at which tungsten oxides or Ta$_2$O$_5$ forms. The possible formation of lower oxides of hafnium is disregarded. The possible presence of negligible amounts of nitrides is also ignored.

The criteria for the distribution of oxygen in the alloy as fabricated are the following:

1. When $C_O < c_g$, no HfO$_2$ is present and $c_\infty = C_O$. Here C denotes the total concentration of an element in the alloy, both combined and uncombined, after fabrication.

2. When $c_g < C_O < 2C_{\text{Hf}} (M_O/M_{\text{Hf}})$, some amount of hafnium is oxidized and $c_\infty = c_g$. Moreover the effective gettering capability is reduced because some of the hafnium is already oxidized during fabrication. The amount of fabrication oxygen which must be taken up by hafnium is $C_O - c_g$. This reduces the gettering capability of the hafnium, and equation (5), modified to account for the fabrication oxygen, becomes

$$-q = 2C_{\text{Hf}} \frac{M_O}{M_{\text{Hf}}} - (C_O - c_g)$$

(25)

3. When $C_O > 2C_{\text{Hf}} (M_O/M_{\text{Hf}})$, all hafnium is oxidized and no further gettering occurs.

The density ρ of T-111 is nominally 16.70 grams per cubic centimeter (0.604 lb/cu in.) (ref. 9). The total concentration of hafnium for the assumed composition, both oxidized and unoxidized, is

$$C_{\text{Hf}} = w_{\text{Hf}} \rho = 0.418 \text{ g/cu cm}$$

(26)
where \(w \) is the weight fraction of constituent in the alloy. The total concentration of oxygen is

\[
C_0 = w_0 \rho = 5.02 \times 10^{-4} \text{ g/cu cm}
\]

(27)

From figure 1, for 1700 K and a \(\text{Li}_2\text{O} \) mole fraction \(x \) of 0.02, \(x_g = 3.1 \times 10^{-6} \) for monatomic oxygen dissolved in tantalum. Converting this to an oxygen concentration in the alloy gives

\[
c_g = C_{\text{Ta}} \frac{M_{\text{O}}}{M_{\text{Ta}}} x_g = 4.1 \times 10^{-6} \text{ g/cu cm}
\]

Also \(2C_{\text{Hf}} (\frac{M_{\text{O}}}{M_{\text{Hf}}}) = 0.075 \text{ gram per cubic centimeter} \) from equation (26). Criterion 2 is thus satisfied, and \(c_\infty = c_g = 4.1 \times 10^{-6} \text{ gram per cubic centimeter} \). From equation (25), \(-q = 0.074 \text{ gram per cubic centimeter}\).

The oxygen concentration \(C_0 \) represents equilibrium between the oxygen in the tantalum and in the lithium after the hafnium has all been consumed. From figure 1 for \(x = 0.02 \) and \(T = 1700 \text{ K} \), \(x_{\text{O}(\text{Ta})} = 6 \times 10^{-6} \). Then

\[
c_0 = C_{\text{Ta}} \frac{M_{\text{O}}}{M_{\text{Ta}}} x_{\text{O}(\text{Ta})} = 7.9 \times 10^{-6} \text{ g/cu cm}
\]

Therefore, \(C_0 - c_\infty = 3.8 \times 10^{-6} \text{ gram per cubic centimeter} \). From equation (16) \(\beta = 0 \) and from equation (19) \(\gamma = 1.95 \times 10^4 \). For these values of \(\beta \) and \(\gamma \) figure 3(b) gives a \(\kappa = 5 \times 10^{-3} \).

In order to compute the time for penetration of the gettering front to a selected depth from the foregoing value of \(\gamma \), the diffusion coefficient for oxygen in T-111 must be specified. Reference 3 presents this equation for the coefficient of diffusion of oxygen in tantalum

\[
D = 0.0044 \exp \left(- \frac{12800}{T} \right) \text{ cm}^2/\text{sec}
\]

(28)

At 1700 K, \(D = 8.474 \times 10^{-3} \text{ square centimeter per hour} \). This value is accepted here for the T-111 alloy. Since \(\kappa = 5 \times 10^{-3} \), the time for the gettering front to reach 1 millimeter (eq. (10)) is \(1.2 \times 10^4 \text{ hours} \).

From figure 4(a) a ratio \((c - c_\infty)/(C_0 - c_\infty) \) of 0.5 is reached at \(z = 2.5 \times 10^{-3} \). For the diffusion coefficient just determined, the ratio of 0.5 is reached at 1 millimeter of depth after \(4.7 \times 10^4 \text{ hours} \), by equation (20). This value at first glance seems to
represent an inordinately slow diffusion process in view of the 1700 K temperature. Three factors contribute to this effect. One is the gettering process which causes a steep concentration gradient to the left of the front, and a very flat gradient to the right (fig. 2). The other factors, the oxygen distribution coefficient from figure 1 and the assumption of a single diffusion mechanism, will be discussed further in the next section.

For \(\beta = 0 \) and \(\gamma = 1.95 \times 10^3 \), figure 5 gives a value of 295 for the gettering parameter \(G/2(c_0 - c_\infty)\sqrt{Dt} \). After the front has penetrated 1 millimeter, the total amount of dissolved and combined oxygen in the structure is then \(1.26 \times 10^{-2} \) gram per square centimeter. In view of the very large value of \(u \), almost all of this oxygen is contained as \(\text{HfO}_2 \) between the liquid-solid interface (\(u = 0 \)) and the gettering front (\(u = u_g \)).

While the example herein was inspired by a problem involving a lithium-filled heat pipe with finite gettered walls, the figures that were used pertain to a semi-infinite body. In this example, a value of \(\beta = 0 \) was determined which meant that no diffusing oxygen was found on the side of the front away from the oxygen source. In such cases the semi-infinite solution applies exactly until the gettering plane passes entirely through the material.

DISCUSSION

In the foregoing analysis and example, numerous assumptions were necessary in order to achieve a simple and understandable solution. Real physical situations can be expected to deviate considerably from this ideal situation.

The distribution of oxygen between lithium and tantalum used in the example was determined from figure 1, taken from reference 4. While figure 1 was based upon experimental determinations of the solubility of oxygen in lithium and in tantalum, thermochemical theory was used in its construction. A good experimental determination of the distribution coefficient has not been made. However, if the actual ratio was within the same range, \(10^{-3} \) to \(10^{-8} \), as the theoretical value on figure 1, it might defy measurement. If the actual value of the distribution coefficient were much larger than the one determined from figure 1 for the example, the gettering front would progress at a proportionally higher rate than was calculated in the example.

The simple theoretical treatment discussed in this report would become more complex if possible ternary oxides of lithium, tantalum, and oxygen are formed. Ternary oxides are suspected as part of the corrosion process in contacts between refractory metals and alkali liquid metals (refs. 10 and 11). While they have not been observed with tantalum and lithium, there is always a possibility that they could play a role in the intergranular penetration of oxygen into the refractory metal. This could alter the distribution coefficient (fig. 1) and the diffusion coefficient (eq. (28)).
Further complexity in this ideal treatment would be introduced by the formation of Hf$_2$O and Hf$_3$O (ref. 12) in addition to the HfO$_2$ assumed. Furthermore, the solution of large amounts of oxygen in hafnium (refs. 12 and 13) could cause additional problems. Whether this can occur when the hafnium itself is a minority constituent of a solid solution is problematical. The present analysis could possibly be modified to incorporate the additional gettering implied by solution of oxygen in hafnium and the formation of lower oxides.

The assumption of local chemical equilibrium at the gettering plane led to equation (7). Although in some cases the gettering front might move so rapidly as to invalidate such an assumption, in the example just considered, the front moved very slowly after a small penetration and local chemical equilibrium was justified.

CONCLUDING REMARKS

The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated liquid metal coolant was analyzed. Such a situation arises in heat transfer systems having gettered refractory alloy tubing with alkali liquid metal coolant.

In the analysis, the relation between the diffusion process and the theoretical thermochemistry of oxygen in the alloy and in the alkali metal was developed. Certain assumptions such as the semi-infinite extent of the alloy metal wall were necessary to achieve a simple solution. For these reasons the treatment is largely theoretical in nature.

The use of the figures developed in the analysis was illustrated by an example for oxygenated lithium coming in contact with T-111, a gettered tantalum-based alloy, at high temperature. This situation may be encountered in the startup of some heat pipes for high-temperature applications, which have been proposed and tested.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 12, 1973,
503-25.
REFERENCES

Minimum atom fraction of oxygen in tantalum at which HfO$_2$ forms, x_0.

Figure 1. - Equilibrium distribution of oxygen between liquid lithium and solid tantalum at several temperatures with zone for stable HfO$_2$(c).

Figure 2. - Schematic illustration of oxygen diffusion into and out of semi-infinite section of getterd alloy.

(a) Diffusion into alloy.

(b) Diffusion out of alloy.
Figure 3. Getter plane position parameter \(\kappa \) plotted against \(y \) for several values of \(\beta \).
Figure 4. Variation of concentration function \(c - c_0 \) where \(c_0 \) for several values of \(\gamma \).
Figure 5. - Gettering parameter $G / 2 \sqrt{\beta (c_0 - c_\infty)}$ plotted against γ for several values of β.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546