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FINAL REPORT

EXACT INTERVALS AND TESTS FOR MEDIAN WHEN ONE
"SAMPLE" VALUE POSSIBLY AN OUTLIER

Grace J. Kelleher John E. Walsh
University of Texas at Arlington* Southern Methodist University**

ABSTRACT

Available are n independent observations (continuous data) that are

believed to be a random sample. Desired are distribution-free confidence

intervals and significance tests for the population median. However,

there is the possibility that either the smallest or the largest observ-

ation is an outlier. Then, use of l procedure for rejection of an out-

lying observation might seem appropriate. Such a procedure would con-

sider that two alternative situations are possible and would select one

of them. Either (1) the n observations are truly a random sample, or

(2) an outlier exists and its removal leaves a random sample of size

n-l. For either situation, confidence intervals and tests are desired

for the median of the population yielding the random sample. Unfortun-

ately, satisfactory rejection procedures of a distribution-free nature

do not seem to be available.. Moreover, all rejection procedures impose

undesirable conditional effects on the observations, and also, can

select the wrong one of the two above situations. Such difficulties /

could be bypassed if intervals and tests are used that simultaneously }

apply to both situations, i.e. if a confidence coefficient, or signifi-

cance level, has the same value for both situations. It is found that

two-sided intervals and tests based on two symmetrically located order

statistics (not the largest and smallest) Of the n observations have this

property. / .

*Also allifiated with Computer Aid Companies, Inc. *
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INTRODUCTION AND DISCUSSION

The data are n independent observations that are continuous data and

are believed to be a random sample. The order statistics of these obser-

vations are

x(l) 5 x(2) < ... • x(n).

Distribution-free confidence intervals and significance tests are desired

for the median 0 (not necessarily unique) of the population sampled.

However, the possibility exists that x(n) is an-outlier, or the possibil-

ity exists that x(l) is an outlier. That is, x(n) is so much larger

than the other observations that there is doubt that it was produced

by the population that produced the other n-l observations. Alternatively,

x(l) is so much smaller than the other observations that there is doubt

that it came from the population that yielded the other n-l observations.

When such a doubt exists, use of a procedure for deciding on the

rejection of an outlying observation might seem appropriate. A standard

rejection procedure would consider that two situations are possible and,

on the basis of the observations, would select one of these two situations

(as that which occurs)

The n observations are truly a random sample for one of the two

situations (with the median 0 of the associated population being investi-

gated). The doubtful observation is an outlier for the other situation.

More specifically, the population yielding the suspected outlier is

different from the population yielding the other n-l observations, and

in such a way that removal of the outlier leaves a random sample of size

n-l. In addition, the population for the random sample obtained under

these conditional circumstances is considered to be the same as the

population that unconditionally yielded these n-l observations. Then,



distribution-free intervals and tests are desired for the median 0 of

the population yielding the sample of size n-l (for the situation where

the doubtful observation is an outlier). Also, when x(n) is an outlier,

x(l),..., x(n-l) are the order statistics of the sample of size n-l, while

x(2),..., x(n) are the order statistics of this sample when x(l) is an

outlier.

Unfortunately, development of a satisfactory procedure for rejection

of an outlier is a formidable problem for distribution-free cases. What

represents a substantial deviation from the other observations depends

strongly on the distribution tail (which can be of any continuous form in

the distribution-free cases). Even if a satisfactory rejection procedure

could be developed, its use would involve important difficulties. First,

the wrong one of the two situations might be selected. Second, use of.

the rejection procedure would introduce undesirable conditional effects

on the probability properties of the observations. For example, suppose

that the n observations are truly a random sample. They will no longer

be a random sample after being subjected to the rejection procedure, even

if the correct situation is selected. That is, only those sets whose n

observed values satisfy one or more requirements imposed by the procedure

are considered to be random samples.

A more attractive approach would be to use intervals and tests that

apply simultaneously to both situations. That is, a confidence interval

has the same confidence coefficient for the two situations. Also, a

test has the same significance level for both situations. Fortunately,

intervals and tests with this property can be developed. In fact, the

well-known equal-tail sign tests, and the corresponding two-sided confi-

dence intervals, are shown to have this property (when x(l) and x(n3 are



not used) . This is the case whether x(n) could be an outlier or whether

x(l) can be an outlier. For convenience of presentation, only the confi-

dence intervals are explicitly considered. However, the property for the

corresponding test follows in a direct fashion, since the tests can be

obtained directly from the intervals.

If the n observations were truly a random sample, the well-known

confidence intervals defined by

P[x(i) • e 5 x(n + 1- i)] = 1- () n- l il() (1)
j=0

are applicable. These are the confidence intervals considered (for

2 5 i < n/2). The relationship (1) is found to hold when x(l) is an

outlier and also, when x(n) is an outlier. Verification of this prop-

erty is given in the next section.

VERIFICATION

Only the situation where x(l) is an outlier receives consideration.

A similar method provides verification that (1) holds when x(n) is an

outlier.

In general, the value of P[x(i) 8 5. x(n + 1 - i)] can be expressed

as unity minus

P[x(i) > 8] + P[x(n + 1 - i) < )].

When x(l) is an outlier, x(2) becomes the smallest observation, etc. and

n-l 2

P[x(i) > 8] = ()n- n)
j=0o 

P[x(n + 1- i) < 0] = ()n-l 
j=0
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with their sum being

()-ll [(n')+ n-1 +

where ( -) is zero. However, = () and

for 1 5 j < i. Thus, the value of P[x(i) 5 8 5 x(n + 1 - i)] is

1- (½)n-i n
j=O\j /

- which is the value of (1)

It is to be noticed that P[x(i) > 1] does not differ much from

PIx(n + 1 - i) < ]1 when i is of at least moderate size (ordinarily

implies that n is at least moderately large. A desirable feature of

the results presented is that the probability can be accurately deter-

mined for each tail of an interval or test.
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