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This note is a brief report on some research conducted by the author

and E.F. Infante in 1971, A complete report on this same research is

scheduled to appear in a separate article [1].

Let f be aAgiven function continuously mapping the real line R into

itself. Let X be a given non-negative real number. Let ¢:[0,7] > R be

any Cl—smooth function such that ¢(0) = ¢(m) = 0. We shall be discussing

the following problem. Find a function u continuously mapping the domain

{(x,t): O<x<m, 0<t<+e} into R such that (i) the partial derivatives u

t

and u o are defined and continuous on [0,7] x (0,+*); (ii) u satisfies

the equations

u, (x,t) = u_(x,t) + Af(ulx,t))
t XX

u(o,t) = u(mr,t) = 0

u(x,0) = ¢(x)

(0<x<m, 0<t<+w) (1a)
(0<t<+e) (1b)
(0<x<m) . (1c)

By a solution of (1) we mean a function u having the properties just spec-

ified.

Our primary goal in studying (1) is to determine the asymptotic

behavior of solutions u of (1) as t > +=.

The investigation takes place

under the following hypotheses concerning f.

(H,}) f is a c?_smooth function mapping R into itself.

ll
(H2) £(0) = 0 and £'(0) > 0.
(H3) 1im sup E_l f(g) =0
g |t
(H,) sgn f"(g) = -sgn & for all EeR.

n

In that which follows we shall let X denote the space of all Cl—smooth
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functions ¢:[0,71] + R such that ¢(0) = ¢(7w) = 0. On X we impose a norm
| lll by setting ||¢||l = sup{|¢"(x)]|: O<x<w} for all ¢eX. X is a Banach
space under || ||l.

It can be shown that, for any ¢eX and Ae[0,+*), Eqs. (1) have a unique
solution u(¢,1) defined on [0,7] x [0,+®). A non-trivial aspect of this
assertion is the statement that thé domain of definition for u(¢,r) is all
of [0,m1] x [0,+»). We shall briefly return to this matter below.

For any ¢eX, Ae[0,+»), xe[0,7], and te[0,+»), we can let ul(x,t3¢,X)
denote the value of u(¢,1) at (x,t). With this in mind, we can define, for
any Ae[0,+°), a nonlinear semigroup'{UA(t)}'on X by setting Ux(t)¢ =
u(s,t;6,A) for all ¢eX and te[0,+»). It can be shown that'{Ux(t)} is
strongly continuous.

Let Ae[0,+=). By an equilibrium solution of (1) (corresponding to A)
we mean a function uosX such that Uk(t)uO =y, for all tel0,+~). By
virtue of (H2), the origin ¢y = 0 in X is an equilibrium solution of (1)
for every Ae[0,+x).

To discuss the existence of other equilibrium solutions for (1), we
introduce a sequence of real numbefsvikn};:l by setting An = nz/f‘(O)
for each integer n > 1. By virtue of (H2), we have 0 < kl < A2 < 4. <

An < «.e . We are now ready to state our first theorem.

Theorem 1. For any integer n > 1 and any number As[kn,+w), Eqs. (1) bhave
+ R -

two equilibrium solutions u;(A) possessing the following three properties:

(1) ui(k) = 0 if and only if X = A .

+ -

(ii) The mappings A +—> u;(k) from [An,+w) into X are each contin-

. + *
wous. In particular, u (A) > 0 as A >\ . Alsc, llun(x)lll

+ t® as A > +o,
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+
(iii) For any Ae(kn;w), un(k) has exactly n+l zeros xs(k), xi(l),
' + . . + + +
cees xn(x) in [0,w] with 0 = xo(k) < xl(k) < ... < xn(k) = .
Moreover, for each integer q = 0,1,...,n-1, we have
+ Lot +
(—l)qun(x,x) > 0 if xq(k) < x < xq+l(A) and we have

(-1)%;(}4;” <0 if x;(x) < x < x _(A).

qt+l
In addition to the preceding assertions, we have that for any

Ae[0,+°) Eqs. (1) have no equilibrium solutions other than the zero solution

+
Uy = 0 and those elements u (1), n > 1, such that A

< A,
n —

On the basis of Assertion (ii) in Theorem 1, we may state that, for
+
any integer n > 1, the two equilibrium solutions u;(x) bifurcate from the
‘Zero solution as ) increases from An.

Now we come to our second theorem.

Theorem 2. For any ¢eX and any Ae[0,+=), there exists an equilibrium

solution uo(¢,k) of (1) such that Uk(t)¢ > uo(¢,k) as t > 4w,

The question arises, given ¢eX and Ae[0,+»), to which of the equilib-
rium solutions described in Theorem 1 is u0(¢,A) equal? A partial answer

" to this query is given in the following theorem.

Theorem 3. For any Ae[O,Al], the zero solution u, = 0 of (1) is globally

0
asymptotically stable in the sense of Liapunov. In particular, for each
$eX and Ae[O,Al], We-have |IUA(t)¢||1 + 0 as t > +2. For any Ae(Al,+w),
the zero solution u, = 0 of (1) is unstable. For any Ag[kl,+m), the solu-
tions ui(k) are each asymptotically stable in the sense of Liapunov.

+
Finally, for any integer n > 2 and any Ae[ln,+w), the solutions u;(k) are

each unstable.
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Theorems 1-3 are proved in the article [1] already mentioned. We
shall not repeat the proofs here but shall rather confine ourselves to
making the following remarks.

Our approach to studying Egs. (1) is to interpret (1) as é dynamical
system on X and then to apply certain methods associated with the Liapunov
theory of stability. The methods we have in mind are set forth in [2],
[3] and [4] and are often referred to as the invariance principle in |
stability theory.

An essential tool in our use of the invariance principle is the

following Liapunov functional:

™ $(x) .
Vx(¢) = f'{%-¢'(x)2 - A J £(g)Ag} dx  (¢eX,2e[0,+2)) . (2)
0 0

For each Ae[0,+»), Eq. (2) defines a functional V, mapping X into R. For

A

any ¢eX and \e[0,+=), it can be shown that
T
GA(UA(t)¢) = - f |ut(x,t;¢,k)|2 dx (t >0). (3)
0

Consider any ¢eX and Ae[0,+=). Using VA one can show that the solu-
tion u(¢,r) is defined everywhere on [0,7] x [0,+=). This is a matter
which we have mentioned earlier in this note. Of more immediate interest-

is the fact that, using V., one can show that u(¢,2) has a nonempty compact

A
connected invariant w-limit set w(¢,A)CT X. Here, one also uses the invar-
iance principle referred to two paragraphs above. That same principle

together with Eq. (3) tells us that any element in w(¢,1) must be an

equilibrium solution of (1).
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Therefore, one now seeks the equilibrium solutions of Egs. (1). This

means that one studies the two-point boundary-value problem

u"(x) + Af(u(x)) =
(0<x<m, 0<A<4) (1)

u(0) = u(x) =0
The results of our investigation are stated in Theorem 1. In particular,
we see that, for any Ae[0,+»), each equilibrium solution of (1) is isolated
in X. Hence, for any ¢eX and Ae[0,+~), the set w($,A) consists of exactly
one equilibrium solution of (1). From this there follows Theorem 2.

Theorem 3 is established using arguments from the classical theory

of calculus of variations. We shall not attempt to describe these argu-

ments here.
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