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1.

This note is a brief report on some research conducted by the author

and E.F. Infante in 1971. A complete report on this same research is

scheduled to appear in a separate article [1],

Let f be a given function continuously mapping the real line R into

itself. Let X be a given non-negative real number. Let <f>:[0,TT] •*• R be

any C -smooth function such that <J>(0) = <j>(ir) = 0. We shall be discussing

the following problem. Find a function u continuously mapping the domain

{(x,t): 0<_x<jr, 0<t<+°<>} into R such that (i) the partial derivatives u

and u are defined and continuous on [0,ir] x (0,+°°); (ii) u satisfies
XX

the equations

u (x,t) = u (x,t) + Af(u(x,t)) (0<x<j, 0<t<+») (la)
L XX ~ ~"'

u(0,t) = u(ir,t) = 0 (0<t<-H») (Ib)

u(x,0) = <j)(x) (O<X<TT) . (ic)

By a solution of (1) we mean a function u having the properties just spec-

ified .

Our primary goal in studying (1) is to determine the asymptotic

behavior of solutions u of (1) as t -»• +°°. The investigation takes place

under the following hypotheses concerning f .

2
(H1 ) f is a C -smooth function mapping R into itself.

(H2) f(0) = 0 and f'(0) > 0.

(H,) lim sup C' f(C) = 03

(K̂ ) sgn f"U) = -sgn C for all £eR.

In that which follows we shall let X denote the space of all C -smooth
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functions < J > : [ 0 , T r ] ->- R such that < £ ( 0 ) = •K'r) = 0. On X we impose a norm

|| | ̂  by setting \ \ ^ \ \ 1 = sup{ | < J » ' (x) | : 0<x<rr} for all <|>eX. X is a Banach

space under | | | | .

It can be shown that, for any 4>eX and Xe[0,-H°°), Eqs . (1) have a unique

solution u(<j),X) defined on [0,ir] x [0,+°°). A non-trivial aspect of this

assertion is the statement that the domain of definition for u(<|>,A) is all

of [0,ir] x [0,+»). We shall briefly return to this matter below.

For any fyeX, Ae[0,-H»), xe[0,7r], and te[0,+°°), we can let u(x,t;<f>,X)

denote the value of u(<f>,X) at (x,t). With this in mind, we can define, for

any Xe[0,-H>°), a nonlinear semigroup {U (t)} on X by setting U..(t)<|> =
A A

u( ' , t ; c j ) ,X) for all 4>eX and te[0,+°°). It can be shown that (U. ( t )} is
A

strongly continuous .

Let Xe[0,+°°). By an equilibrium solution of (1) (corresponding to X)

we mean a function u eX such that U,(t)u. = UQ for all te[0,+°°). By

virtue of (Ĥ ), the origin <j> = 0 in X is an equilibrium solution of (1)

for every Xe[0,+°°).

To discuss the existence of other equilibrium solutions for (1), we

4»OO O

introduce a sequence of real numbers {X } . by setting X = n /f'(0)n n=l n

for each integer n >_ 1. By virtue of (H2), we have 0 < X < X < ... <

X < ... . We are now ready to state our first theorem.

Theorem 1. For any integer n _>_ 1 and any number Xe[X ,-H°), Eqs. (1) have

two equilibrium solutions u~(X) possessing the following three properties:

(i) u~(X) = 0 if and only if X = \^.

~(ii) The mappings X 1 — > u~(X) from [X ,+<*>) into X are each contin-

uous. In particular, u~(A) -»• 0 as X -* X^. Also, ((u'C

-»• +°° as X -»• +°°.
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(iii) For any Xe(X^), u ~ ( A ) has exactly n-H zeros *Q(A), x f (A) ,

..., x ~ ( A ) in [O,TT] with 0 = x ~ ( A ) < x*(A) < ... < x ± (X) = TT.n u x n

Moreover, for each integer q = 0,1,...,n-1, we have

(-DV^xjA) > 0 if x*(A) < x < x++1(A) and we have

(-l)V"(x;A) < 0 if x~(A) < x < x" (A).n q q+l

In addition to the preceding assertions, we have that for any

Ae[0,+°°) Eqs. (1) have no equilibrium solutions other than the zero solution

u = 0 and those elements u~(A), n >_ 1, such that A < X.

On the basis of Assertion (ii) in Theorem 1, we may state that, for

any integer n >_ 1, the two equilibrium solutions u~(A) bifurcate from the

zero solution as A increases from A .
n

Now we come to our second theorem.

Theorem 2. For any <}>eX and any Ae[0,+°°), there exists an equilibrium

solution un(4>,A) of (1) such that U,(t)<f> -> u (<)>,X) as t -*- +<*>.
U A U

The question arises, given <j>eX and Xe[0,+°°), to which of the equilib-

rium solutions described in Theorem 1 is u.,(<(>,A) equal? A partial answer

to this query is given in the following theorem.

Theorem 3. For any Ae[0,A..], the zero solution u = 0 of (1) is globally

asymptotically stable in the sense of Liapunov. In particular, for each

<J>eX and AeCO.A.^, we have | |U (t)<J>| | -»• 0 as t -»• +«. For any Ae(A1,+«>),

the zero solution u -• 0 of (1) is unstable. For any AeCA.. ,-f-°°), the solu-

tions u~(A) are each asymptotically stable in the sense of Liapunov.

Finally, for any integer n >_ 2 and any AeEA ,+°°), the solutions u~(A) are

each unstable.



Theorems 1-3 are proved in the article [1] already mentioned. We

shall not repeat the proofs here but shall rather confine ourselves to

making the following remarks .

Our approach to studying Eqs. (1) is to interpret (1) as a dynamical

system on X and then to apply certain methods associated with the Liapunov

theory of stability. The methods we have in mind are set forth in [2],

[3] and [U] and are often referred to as the invariance principle in

stability theory.

An essential tool in our use of the invariance principle is the

following Liapunov functional:

V.Gfr) = I {-̂ ({.'(x)2 - X I f(?)d£} dx (<j>eX,Xe[0,+co)) . (2)
A J ^ J

For each Xe[0,-H>°), Eq. (2) defines a functional V mapping X into R. For
A

any 4-eX and Xe[0,+°°), it can be shown that

11

V.(U.(t)$) = - I |u. (x,t;<j>,X)|2 dx (t > 0) .
A A J

(3)

Consider any <J>eX and Xe[0,+«>). Using V one can show that the solu-
A

tion u(c|>,X) is defined everywhere on [0,ir] x [0,t«>). This is a matter

which we have mentioned earlier in this note. Of more immediate interest

is the fact that, using V , one can show that u(<f>,X) has a nonempty compact
A

connected invariant oj-limit set uj(<{>,X)c: X. Here, one also uses the invar-

iance principle referred to two paragraphs above. That same principle

together with Eq. (3) tells us that any element in w(<|>,X) must be an

equilibrium solution of (1).
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Therefore, one now seeks the equilibrium solutions of Eqs. (1). This

means that one studies the two-point boundary-value problem

u"(x) + Xf(u(x)) = 0
(0<X<TT, 0<X<-H») . (1+)

u(0) = U(TT) = 0 ~ "~

The results of our investigation are stated in Theorem 1. In particular,

we see that, for any Ae[0,-H*>), each equilibrium solution of (1) is isolated

in X. Hence, for any <f>eX and Xe[0,+°°), the set co(<}>,A) consists of exactly

one equilibrium solution of (1). From this there follows Theorem 2.

Theorem 3 is established using arguments from the classical theory

of calculus of variations. We shall not attempt to describe these argu-

ments here.
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