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ABSTRACT
A directed graph is used to model the search space of a state-space repre-

sentation with single-input operators, ah AND/OR is used for problem-reduction
representations, and a theorem—provihg graph is used for state-space represen-
tations with multiple-input operators. This paper surveys these three graph
'mo&els and heuristic strategies for seérching them. The completeness, admis-
sibility, and optimality properties of search strategies which use the evalu-
ation function f = (1 - w)g + wh are presented and interpreted using a
representation of the search process in the plane. The use of multiple-

output operators to imply depéndent successors, ana thus obtain a formalism

which includes all three types of representations, is discussed.



1. Introduction

Automatic problem-solving is usually divided into two parts. The first
part, representafion, is concerned with the process of formulating the problem
to the problem-solver. The problem-solver uses this description of the problem
to determine a solution. The manner in which the problem-solver looks for
a solution is the second part of,au;oﬁatic problem-solving and is called search.

Early efforts in automatic problem-solving were directed towards construct-
ing systems for solving problems from a restricted domain, and were for the
most pari empjrica1'in nature. As work continued, in addition to the construc-
tion of more ad hoc systems, general methods and approaches were abstracted
from these systems, and a collection of theoretical results has begun to
form. One of these approaches is the use of graphs to model the heuristic
search process. Trees and graphs were first Used as a modei, later AND/OR
graphs, and more recently theorem-proving graphs have been used. General
procedures, which allow for the introduction of problem-dependent heuristic
information for searching these graph models have been developed, and proper-
ties such as completeness, admissibility, and optimality of these procedures
under specified conditions have been proved.

Section 2 describes the use of directed graphs to model state-space repre-
sentations and the types of heuristic search strategies used to look for a
solution. Section 3 describes a method of representing the search process
in the coordinate plane, and Section 4 uses it to interpret the completeness,
admissibility, and optimality properties of heuristic search strategies. Direct
~ proofs of these properties for search strategies which use the evaluation
function f = (1-w)g + wh are given in the Appendix. A search strategy for
AND/OR graphs similar in structure to those for directed graphs, and the

properties of this search strategy when the above evaluation function is used,



are discussed in Section 5. Section 6 contains a similar discussion for
theorem-proving graphs. AND/OR graphs are used to model the search in problem-
reduction representations, and theorem-proving graphs are used to model the

search in state-space representations with multiple-input operators..

2. Problem-Solving Using the Directed Graph Model

Many problems can be represented as state-space problems [Michie, 1970;
Nilsson, 1971; Simon, 1971]. A state-space representation consists of a set
of states (including start and goal states), and a set of operators which
map states into states. A solution is a sequence of operators which transforms
the start state into a goal state. By associating states with nodes and
operators with edges, a directed graph can be used as a model for state-space
representations which have operators with one input state and one output state
(single-input/single-output operators). Usually only the form of a state is
specified, and thus a representation implicitly defines a graph. The search
process can be thought of as making explicit a part of an implicitly defined
graph which, when the search is successful, includes a path from.the start
node to a goal pode. |

Algorithms for searchiﬁg directed graphs fall into two categories
[Sandewall, 1971]. The labyrinthic methods make a decision to search along
a direction in the graph, and after searching for some time decide either to
continue in this direction or to backup and try another direction. Labyrin-
thic methods were used in GPS [Ernst and Newell, 1969]. The best-bud methods
assign a merit ordering to the set of nodes, typically by using an evaluation
function. At each stage of the search these algorithms take a global look
at all of the nodes which have been generated, but not yet expanded, and expand
the node with the best merit. For example, if the merit ordering ranks the

nodes according to the inverse of their levels, then the best-bud approach will



result in a depth-first search of the graph. These algorithms attempt to
generate the nodes of the graph according to the merit ordering. In general
they do not generate the nodes according to the merit ordering, because the
node n, may have an ancestor n, which has poofer merit, and hence 'n] c
cannot be generated until some time after the generation of n, . In this paper
the term search strategy will refer to a best-bud method for searching a graph.
The basic form of a search Qtrategy is as follows.
1. Place the start node s in the set S (the set of nodes currently
being considered for expansion).
2. Expand the node n in S with the best merit. If n 1is a goal
node, then we have found a solution. Otherwise, place the successors
of n in S, place n in the sét S (the set of nodes which have
been expanded), and repeat this step.
This is a simplified form since, for example, it does not consider the possibility
of discovering that a node which has'alreédy been expanded has better merit
than was originally assigned to it.
One of the earliest search strategies is the uniform-cost strategy which
uses the evaluationfunction f = g , where g 1is the cost from the start node
to the current node [Nilsson, 1971]. Thé Graph Traverser [Doran and Michie,
1966; Doran, 1967] assigned a merit ordering with the fuhction f = h , where
h s an estimated cost from the current node to the nearest goal node. Hart,
Nilsson, and Raphael [1968] developed an algorithm, called the A* algorithm,
which used the evaluation function f =g + h to assign a merit ordering to
the‘nodes. Pohl [1970a] considered the evaluation function f = (1-w)g + wh .
where 0 <w =1, which includes the uniform cost algorithm (w=0) , the A*
algorithm (w=%ﬂ , and the pure heuristic algorithm (w=1) .

A search strategy is said to be complete if whenever there exists a



solution to the problem the strategy will find one. An admissible strategy
is one which terminates with a minimal solution whenever one exists. The
concept of optimality applies to strategies which are admissible and is defined

as follows. Let h] and h2 be two heuristic functions such that H2 <h, = hp .

where hp is a perfect heuristic function. An admissible strategy is said

to be optimal if séarching with h2 expands all of the nodes that searching

]

with h] expands. Admissibility can be viewed as the optimality of the
solution, whereas optimality is really the optimality of the search process.
The uniform-cost strategy searches along coqtours of equal cost from the
start node, and it is easy to understand why the first solution found is a
minimal cost solution. Hart et al. [1968] showed that a heuristic component
can be used to direct the search and still retain the admissibility property.
They proved that if A* used a heuristic function h which satisfied the
Lower bound condition (h = hp) then A* 1is admissible for §-graphs (graphs
where the arc costs are greater than or equal to some § > 0). They also proved
that if A* used a consistent heuristic function (h(n) + h(n')_s k(n,n'),
where k(n,n') 1ds the cost to go from n to n') then A* is optimal for
- s-graphs. Poh1[1969, 1970a] showed that éearch with f = (1-w)g + whp for
® e [%31] expands only the nodes on a minimal solution path. In the same paper
he considered the case where the error in the heuristic function h is bounded
by € (hp-ehs h}s hpfe) , and showed with a‘worst case analysis, that search
with w =1 will expand at least as many nodestas search with o = %—. Pohl
[1970b] has also shown that a search strategy with _w e [0,1) {is complete for.
the special case when the graph has unit arc costs. A bidirectional procedure
which is admissible for heuristics which satisfy the lower bound condition has

been developed [Pohl, 1969, 1971] for searching directed graphs.



3. Representing the Search Process in_the Plane

Kowalski [1970] has introduced a method of using one quadrant of the
coordinate plane to represent a search space. In this section we describe this
method and show how it can be used to represent the direcpion of search for the
evaluation functions f = (1-w)g + wh and fa =g + ah .

Each node n in the search space is represented at the point in the
coordinate plane (i,j) , where h(n) =i and g(n) = j . The start node (or
nodes if there is more than one) is located on the horizontal h-axis, and all
goal nodes are 1o§ated on the vertical g-axis. Each heuristic function h
determines the locations of the nodes in the quadrant. Strictly speaking
a search strategy may place a node in more than one position during the search
process. The h-component of a node'never changes, but the g-component may
assume as many values as there are paths from the start node with distinct
costs. The §-finiteness of a graph guarantees that only finitely many nodes
are contained in any finite region of the plane.

Each choice of w in f = (1-w)g + wh determines the direction in which
the space will be searched. Kowalski calls search with « = %. diagonal search
because it defines all nodes which lie on the same diagonal to have equal merit
and attempts to generate nodes in the direction indicated in Fiq. l.a. Upwards
diagonal search differs from diagonal search in that nodes with the same f-value
do not necessarily have equal merit. It defines the node n to have better
merit than the node n' iff f(n) <f(n') , and h(n) <h(n') when
f(n) = f(n') ; and attempts to generate nodes in the same direction as diagonal
- search except that the searthproceeds up successive diagonals as indicated in
Fig. 1.b. Figures 1.c - 1.f illustrate the direction of search for various
values of w . If the distinction between the h-components is made for nodes
with the same f-value as is done in upward diagonal search, then along each

Tine in these figures the search proceeds in the direction of the h-axis.
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As the process of searching the graph proceeds the area of the quadrant .
covered grows. All the nodes which 1ie in this area are not imhediate]y
-expanded, because paths from the start node to them may not have yet been found.
A node n which lies in the region which has been searched will be expanded
provided there is a path from the start node to n such that all of the nodes
on this path also lie in the region.

A merif ordering can be defined By an evaluation function written either
as fm = (1-w)g + wh for we [0,1] , or as fu =g+ «h for o ¢ [0,=) .
Since scaling the evaluation function does not affect the ordef in which thé
nodes are generéted, the relationship between these two forms is given by
o = w/(1-w) . When the first form is used changes in the value of w correspond;
- most naturally to changing the direction of-search as illustrated in Fig. 1.
However, the parameter o in the secoﬁd form can be thought of as being part
of the heuristic component of the evaluation function. When this is done the
direction of search remains diagonal, but all the nodes are moved either towards
the g-axis if o <1 , or away from the g-axis if o > 1 . Thus the above two
forms point out the two ways in which a change in an evaluation function can
be viewed, either as a change in the direction of search or as a change in the

position of the nodes.

4. Completeness, Admissibility, and Optimality

In this section we discuss the completeness, admissibility, and
optimality of search strategies, which use f =4(1-w)g + wh for o e [0,1].
For each of these properties we state a theorem which gives the subinterval of
-[0,1] - in which. the giveniproperty;hq]ds,.anqajdstjfyxtheftheopem in terms of
the coordinate representatioh of the search process. We also provide simplé |
proofs of the admissibility and optimality properties when the evaluation function
is written as f =g + oh . More complex proofs for f = (1-w)g + wh

which are similar to those given by Hart et al. and Pohl are included

7



in the Appendix.

THEOREM 1. [Completeness] If w e [0,1) , then a search strategy is complete

for all &-graphs.

The direction of search for w =1, the only value of « for which the
search is incomplete, is parallel to the g-axis as indicated in Fig. 2.a. If
the directi&ﬁ of search is not parallel to the g-axis and there is a path from
the start node s to a goai node t , then the search will eventually cover
a region which includes all of the nodes on this path. But if the direction
of search is parallel to the g-axis, there may be an infinite number of nodes
in one of the infinite regions which is encountered by the search prior to
the region which includes all of the nodes-on‘the solution path. This may
keep the search from finding the goal node. 1In terms of the graph itself,
search with w =1 1is incomplete because the heuristic may indefinitely
lead .it down a path (or a set of paths) which does not contain a goal node.

Of course, if there are only finitely many nodes in the search space, then
a search strategy is complete for any w . ‘

If the heuristic is perfect then g(ni) + h(ni) = g(t) for all nodes on a
minimal solution path s=n0,...,nk=t , and all n, lie on the diagonal of the
minimal goal node t (see Fig. 2.b). If the heuristic is not perfect, but
does satisfy the lower bound condition, then the nodes Ngs-«-sNp are all
pulled to the left and lie in the triangular region bounded by the two axes
and the diagonal (including the boundary). Thus, diagonal, upper diagonal, and
any search with =< %— (see Fig. 2.c) will héve expanded Ngse=«sM_3 by
‘the time search reaches the location of the minimal goal t , and therefore t
will be found before any other goal node. However, if w > %— (see Fig. 2.d)

then the Search strategy may not have expanded S=Ngs - by the time

L n
k-1
search reaches t , and may expand the nodes S=n6""’ni=tl , where t' s
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a nonminimal goal, before it expands the remaining nodes on the path s=n0,...,nk=t .
Thus search with w > %— may find a nonminimal solution, whereas search with

w s %— is admissible.

THEOREM 2. [Admissibility] If the heuristic satisfies the lower bound

condition then a search strategy with wié %- is admissible for all &-graphs.

As pointed out by Pohl [1969] éhd Kowalski [1970] the admissibility
property can easily be shown when the evaluation function is written as
f=g+ah. Weknow that f =g + h s admissib]e if h satisfies the Tower
bound condition. The heuristic oh for o =<1 satisfies the lower bound
condition whenever h satisfies the condition, and thus search with f = g + ah
for o <1 1is admissible if h satisfies the Tower bound condition.

The optimality theorem tells us that for all of the values of w which
give admissible searches, the use of better heuristics will result in improved

searches.

THEOREM 3. [Optimality] Llet w ¢ [0,%& » hy be consistent, and h, < h]:s hp s
where hp is the perfect heuristic. Then search with h2 expands every node
expanded by search with h1 for all s-graphs that contain a minimal solution.

Consider first the justification for the case of w = %— (diagonal search).
If the heuristic is consistent then all the nodes which precede n in the
~graph 1ie on an earlier diagonal than the diagonal on which n 1lies. Diagonal
search then moves from diagonal to diagonal, and never has to backtrack to
an earlier diagonal to expand a node (see Fig. 2.e). In particular, all the
nodes in the triangular region will be expanded when t is found. Under
these conditions search with an evaluation function which uses a better heuristic

h, expands no more nodes than search with an evaluation function which uses a

1
poorer heuristic h, . This can be understood most easily if we think in terms

of the nodes located as they would be for a perfect heuristic, and of the
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movement which results from using an estimate to the perfect heuristic. The

poorer heuristic h2 pulls more nodes inside the triangular region than h] s
and hence search with g + h] expands fewer nodes than search with g + h2 .

For w < %- the reason for optimality is the samé. The poorer heuristic
pulls more nodes inside the triangular region than the better heuristic, only
now the triangular region in question is as shown in Fig. 2.c.

Although not noted in the Titerature , the extension of the optimality
theorem of Hart et al. can also easily be shown when the evaluation function
is written f =g+ ah . Let h be a consistent heuristic and F = och . Then
since « =1 and h is consistent, h(n) - h(n') = a[h(n) - h(n')] = h(n) - h(n') =<
k(n,n') , where k(n,ﬁ') is the cost from n to n' . Hence h is consistent
and f =g+ oh for e [0,1] (or equivalently, f = (1-w)g + wh for
w € [p,%i) is optimal.

If the hypothesis of the optimality theorem is changed from h2 < h] < h
to h2_s h]_s h , then it is possible that search with g + h] may not expand
a node n which lies on the minimal cost diagonal and is expanded by search
with g + h2 . This is because a search strategy resolves ties arbitrarily,
and search with the poorer heuristic h2 may choose to expand a node n
which is tied for merit with a minimal goal node, while search with the better
heuristic h] chooses not to expand n . Thus, if ths h].s h then search
with h2 expands all the nodes expanded by search with h] except possibly
for a set of nodes which have the same merit as a minimal goal node.

Fig. 3 shows that neither the admissibility nor the optimality property
hold for w ¢ (%31] . It also shows that for w e [0;%0 , search with a perfect _
heuristic may expand a node off of a minimal solution path [Pohl, 1969, 1970].
Thus in the interval [0,%1 , as better heuristics are used better searches
result; although except for o = %—, the best heuristic (a perfect heuristic)

does not result in the best solution (expanding only nodes on a minimai solution

1



n0 h2(n0) =5 h1(n0) =5 hp(no) =
hz(n]) = 4 'h](n]) = 4 hp(n!) = 5
hy(ny) =2 hyln,) = 4 ‘hp(nz) =5 m = start
hy(ns) = 3 h](n3) =3 hp(pa) =3 ' ng = qoal
hyng) = 2 h1(n4) =2 hp(n4) =2
h,(ng) = 0 h](ns) =0 hp(ns) =0
Fig. 3.a
The values of the perfect heuristic hp. and
the two approximations h] and h2
Nodé Merit Order of Expansion , Node Merit Nrder of Expansion
] 3 _ .3 _ L] 3. _ .3
oo PP (1) : Mgt PP (1)
1.3, oL 3,051
n]. -[‘-] + -64 = 371- (2) n'l- 4] 'FZ4 34 (2)
L] 3, _ . L 3, _ 4l
n2. ZZ+32—2 (3) ‘nz. 42+E4—3§
] 3, _ 1 3, _
n3. ':1’3 + '53 =3 n3 1-3 + 1‘3 =3 (3)
o 1e L3, .53 1, .3, .,1
1] 35 . 13 . | 3, 41
ng: g7 +30 =13 (5) o ong g6+ 30=13 (5)
Fig. 3.6 . ' | Fig. 3.c; 5
Search with f = 79 + ﬁhl Search with f = 79 + E“z

1)

2)

3)

Node Merit - Order of Expansion
hy: 20+ 16 = 13 (1)
o B+l (2)
Ny %2 + %5'= 2% (8)
nyt 33+43=3p (3)
N, %4 + %2 = 3% (5)
ng: 26+ 0 = 4 (6)
Fia. 3.d

- . . 3 1 - - - :
- = - - - = -Search with f = 3g+ h R S -
4 4p
Q.

Fig. 3 Examples using the graph shown in Fig. 1

Fig. 3.b shows that a search strategy is not admissible for w ¢ (1/2,1]. The solution

NgsNysNgshygsng has cost-6 and is minimal, but search with f = %g + %h] finds the solution

NNy ahaangshp which is nonminimal.

Fig. 3.b and 3.c show that a search strategy is not optimal for w e (1/2,1}. h, = h2 < h_, but
for w = 3/4, search with h2 expands the node ny which is not expanded by search with h].

Fig. 3.d shows that a search strategy with a perfect heuristic and w e [0,1/2) méy expand a
node (in this case the node n2) which is off of a minimal solution path.

12



path). On the other hand, for w e‘[%31] search with a perfect heuristic
expands only nodes on a minimal solution path, but tﬁe optimality theorem is
not true in (%31] . The only value of w for which both the optimality
theorem and the admiséibi]ity theorem are true, and search with a perfect
heuristic expands only nodes on a minimal solution path is w = %z

In many problem domains one is not interested in finding a minimal solution
to the problem, but in finding ahy solution using a minimal amount of resources.
In these instances one would certainly not choose w ¢ [0,%3 » since admissibility
is not required. In fact one may choose w =1 since completeness, the
assurance that every problem which has a solution will be solved given suffi-
cient resources, may not be a desired property. However not including a cost
component is not always advisable as shown by Pohl [1970]. He constructed an
example where the heuristic deliberately led the search away from the goal, and
showed that for this example search with f = h expands more nodes than search
with f =g+ h .

Although there are instances where w ¢ [%31] is best, if we have
reasonable confidence in the heuristic, w e [0,%- should not be choseﬁ, as
the following corollary of the optimélity theorem shows.

COROLLARY If h is consistent, then search with f = (1-w)g + vh for « < %-

expands all the nodes expanded by search with f = %g + %h.

Search with o = %- is better than search with w < %- because, as can
be seen from Fig. 2.c, the area covered by the former in finding a minimal

solution is a subset of that covered by the latter.

5. Problem-Solyving Using the AND/OR Graph Model

AND/OR graphs are generalizations of directed graphs in that successors
can be either OR-nodes or AND-nodes. If all successors are OR-nodes the

AND/OR graph reduces to a directed graph. AND-successors are denoted by

13




a bar connecting the arcs and usually mean some sort of dependence among the
successor nodes. Corresponding to a solution path in a directed graph is a
solution graph 1in an AND/OR graph. A solution graph is a subgraph with the
following three properties: the root node is in the subgraph, if-one AND-
successor of a node is in the subgraph then all AND-successors of that node
are in the subgraph, and all tip nodes are solved. In the following example
(double circles denote solved nodes) a solution graph consists of the entire

graph with the exception of the node d,

Costs are assigned to each arc of an AND/OR graph, and the cost of a solution
graph is the sum of the costs of the arcs which are part of the solution graph.
AND/OR graphs can be used as a model of the problem space of probiem-
reduction .representatiéns [Nilsson, 1971]. 1In a problem-reduction represen-
tation the original problem (and recursively each subproblem) is divided into

subproblems, where a Boolean relation applies between the solutions of the
subproblems and the solution of the original problem. Problems are associated
with nodes, and if all of the subproblems must be solved in order for the
original problem to be solved, the nodes which represent these subproblems
are AND-successors, otherwise they are OR_successors. Primitives subproblems,
ones whose solution is khown, are associated with solved nodes. |

Many heuristic procedures for searching AND/OR graphs [Amarel, 1967;
Slagle & Dixon, 1969; Nilsson, 1969; Nilsson, 1971] were developed prior to

the work of Chang and Slagle [1971]. These procedures were structurally

14



different from the best-bud procedures for searching directed graphs because
they contained sections which labeled nodes solved or unsolved, and backed
up the solved nodes to determine whether or not a solution graph had been |
found. A back up procedure is not necessary for searching a direcfed graph
because a solution is a path and not a graph. The work of Chang and Slagle
showed that a back up procedure was not necessary for searching AND/OR
graphs either, and provided a unified approach to heuristically searchfng
directed graphs and AND/OR graphs.

| The best-bud approach to searching AND/OR graphs is based on the following
method of formulating an AND/OR graph as directed graph. The method defines
the set of nodes in the AND/OR graph which must be solved in order for a
solution graph to exist as a node in thé directed graph. Initially the

root node of the directed graph is set equal to the root node of the AND/

OR graph. The directed graph which corresponds to the above AND/OR graph is:

FC is a goal node since the nodes f and ¢ are the solved tip nodes of
a solution graph. |

Placing a merit ordering on the set of nodes in the above directed graph
is equiva]entito placing a merit ordering on the power set ofrthe set of
nodes of the AND/OR graph. Chang and Slagle accomplish this by associating
with each node n, of the AND/OR graph a statement Ni that the problem re-

presented by that node is solved. Formulas in propositional logic are used

15



to indicate the relationship between a node and its successors. The sequence
of formulas which represent the above AND/OR graph is A = BC = (D Vv E)C =
DC v EC = DC VvV FC . Conjunctions of the Ni are called <mplicants. An
implicant corresponds to a node in the directed graph formulation of an
AND/OR graph. Thus, placing a merit ordering on the set of implicants of an
AND/OR graph essentially places a merit orderjng on the power set of the

set of nodes of the AND/OR graph, or on the set of nodes of the directed
graph formulation of the AND/OR graph.

Chang and Slagle give a best-bud search strategy for AND/OR graphs which
is based on defining a merit ordering on the set of implicants. The search
strategy is equivalent to the best-bud approach fo searching the directed
graph formulation of an AND/OR grpah. They prove that it, like the best-bud
procedure for searching directed graphs, is admissible for heuristics which
satisfy the lower bound condition and optimal for consistent heuristics.

The completeness, admissibility, and optimality properties of search with
the evaluation function f = (1-w)g + yh for the appropriate range of
and the appropriate conditioné on h apply to AND/OR grphs as well as
directed graphs. This follows directly from the fact that the search strategy
for AND/OR graphs is logically equivalent to the search strategy for directed
~graphs applied to the directed graph formulation of an AND/OR graph.

6. Problem-Solving Using the Theorem-Proving Graph Model

Some state-space representations have operators which require more than
ohé stateras input. Thé'theorem proVing problem is one suéh multiple-input
operator state-space problem. In the state-space representation of the
theorem proving problem clauses are states (the input clauses are the initial

states and the empty clause is the goal state), factoring is a single-input
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operator and resolution is a multiple-input operator. A solution is a de-
duction of the empty clause from the set of input clauses.

In considering the problem of developing search strategies for theorem
proving, Kowalski [1970] hés generalized best-bud search strategies from
graphs which model the state-space of representations with single-input
_ operators to those which model the state-ipace of representations with multiple-
input operators. To obtain graphs which model the state-space of representa-
tions with multiple-input operators Kowalski extends the tree representation
of ordinary graphs (distinct.paths to a node are represented by distinct
nodes) to a directed, acyclic graph, which he calls a theorem-proving graph.
For example, if {s;,s;,s,} are initial states, and if y;5 for 1 =1 <6

are successor operators such that

v1{{ngsny}) = {ng}
vo({ngony}) = {ny}
v3{{ngsny}) = {ng}
'Y4({n1,n3}) = {ng}

1l

v5({ng}) {ny}

Y6({n69n7}) ‘ {n8}

then the theorem-proving'graph for this portion of the state-space is:

level 0

level 1

levei 2

Tevel 3
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In the introduction we deserbed a search strategy as oﬁe which determines
which node to expand at each stage of the search. One could equally well
think of a search strategy as one'which determines which node fo generate
at each stage of the search. The first approach'was taken by Hart et al.
[1968] and the second approach was taken by Pohl [1970]. The two approaches
are i]lustrated for directed graphs in.Fig. 4. The first approach results
in viewing the application of an operator in the normal direction, from the
domain to the range; while the second approach results in viewing the appli-
cation of an operator in the inverse direction, from the.range to the domain.
For graphs which model representations with single-input operators one
approach is as good as the other.

For the case of multiple-input operators, it is easier to think in
terms of which node to generate than which set of nodes to expand, and this
is the approach taken by Kowalski. This allows for the merit ordering to
be defined on the set of nodes, rather than on the power set of nodes.

A §earch strategy for theorem-proving graphs, like one for directed graphs,
determines which node to generate at eafh stage. An efficient implementa-
tion of a search strategy for a multiple-input operato? sfate-space problem
must be able to apply operators in the inverse direction without exhaustively
checking the power set of the nodes which have been generated. This is
possib]é in the theorem proving problem when the g-component of a clause
is its level and the h-component is its length, and when the process of
| performing a merge is assfghed on explicit cdst. ‘

Ko&;]ski calls a merif'6;5efiﬁ§f;_G-finite meritlér&eringfff there are
finitely many nodes which have better or equal merit than any given node, and
proves that any search strategy for theorem-proving graphs which generates

nodes according to a §-finite merit ordering is complete. A §-finite merit
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CLOSED

OPEN

Fig. 4.a. The approach to a search strategy which divides the nodes into
‘those which have been expanded, CLOSED; and those which are candidates for
expansion, OPEN. The nodes in OPEN are the tip nodes of the graph, those in

CLOSED are the nontip nodes.

Fig. 4.b. The approach to a search strategy which divides the nodes into

those which h . ; .
tione ¥ ave been generated, S; and those which are candidates for genera-

Fig.h4. [1lustrations of two approaches to a search strategy for directed
~graphs. ' .
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ordering is a more general condition than a &§-graph which was used by Hart
et al. The former allows finitely many arcs to have zero cost, while the
later specifies that all arc costs are greater than or equal to ‘57 which
is greater than zero. Kowalski also proves that with appropriate conditions
on the heuristic function, diagona] and upper diagonal search strateaies
are admissible, and that upward diagonal search strateaies are an optimal
subclass of diagonal search strategies.

- The completeness, admissiblity, and optimality of search with
f & (1-0)g + wh for appropriate values of w also apply to the theorem-
proving graph model. At each stage of the process of searching a theorem-
proving graph the merit ordering defined by f determineg which of the
nodes which are one step away from those nodes which have been generated at
previous stages will be generated at the current stage. This is analogous
to the directed graph case except that in searching theorem-proving graphs
a node n can never be completely expanded. Some time later in the search.
process the node n may be needed as an input to the operator y because
a node n' was generated such that y 1is applicable to a set B , where

{n,n'} < B . This difference however does not affect the above properties.

Multiple-Output Operators

It is natural to ask about représentations with multiple-output opera-
tors, and of sfrategies for searching graphs which model them. - The concept
of a multiple-output operator must involve some notion of dependence among
the successor states, because if they are independent then the multiple-
_output opefator;can be,repTacedvbyfa,set of single-output operators. --For
example, if y({no}) = {nl’"é} » Wwith N and N, independent, thenk Y
can be replaced by y; and v, s Where y]({no}) = {n;} and yz({n]}) =
{n2} .
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One type of dependency among successor states occurs when sequences of
operators must be found which transform all of the successors into a goal state.
Consider, for example, a representation of the theorem proving problem which
defines a state not as a clause but as a literal of a clause. In this represen-
tation all the literals of some clause must be resolved away in order for a
solution to be found. Resolving away all the literals of some clause is 1iké
finding paths in a graph from all successor nodes to goal nodes. This, of
course, is the case for AND-successors in AND/OR graphs. Thus because the con-
cept of multiple-output operators must involve some notion of dependence among
successors, an AND/OR graph can be used to model the search of such representa-
tions. Approaching this multiple-output operatdr/dependent successor relation-
ship from a different direction, leads to the observation that the concept of
multiple-output operators can be used to define the operators of a problem-
reduction representation. The use of both multiple-input and multiple-output
operators provides a formalism which includes both problem-reduction and state-
space representation.

Another type of dependency among successor states occurs when the applica-
tion of an operator to one of the successors in some way affects the other
successors. The problem here is analogous to the problem of side affects in
programming languages. If it is true that the application of an operator to
one successor affects the other successors, then the representation may as well
be redefined to make all of the successors into a single state. Consider the
above example of the theorem proving problem where states are literals. All
the literals of a clause which have a common variable are dependent, since a
substitution of a term for that variable must be made throughout the clause.
The bookkeeping involved in keeping track of these dependent states would sug-
gest that each set of dependent states be considered as one state. This does

not preclude operating on part of a state and storing the affects of this
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operation on the other parts of the state for subsequent use. Inference systems
Tike SL-resolution [Kowalski & Kuehner, 1971] define state-space representations
of the theorem proving problem with the above property.

Let us make one final comment about multiple-output operator representa-
tions. Unlike single-output operator representations, where at each stage
a search strategy simply decides which single node to generate, multiple-output
operator .representations réquire search strategies to determine which set of
“nodes to generate. Thus the merit ordering must be defined on the power
set of the nodes of the graph. As we have seen, this is what the procedure

of Chang and Slagle for searching AND/OR_graphs does.

7. Summary

This paper has discussed three types of graphs which are used to model
the search process, and the completeness, admissiblity, and optimality
properties of strategies for searching them. Each of the graphs model the
search process for a different type of problem representation: directed
graphs are used for state-space representations with single-input operators,
AND/OR graphs are ‘used for problem reduction representations, and theorem-
proving graphs are used for state-space representations with multiple-input
operators. It was seen that heuristic strategies for searching graph struc-
tures for modeling single-input and multiple-input operator state-space
representations place a merit ordering on the set of nodes; while strategies
for searching the graph structure for problem-reduction representations, which
can be thought of as multiple-output operator representations, place a merit-
ordériﬁg on the power set of hodes; Tﬁérér;;h structurés theﬁseives are quite
different, but the structures of the heuristic strategies for searching them

differ only in the set on which: the merit ordering is defined. More particularly,

the properties of completeness, admissibility, and optimality of search with
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f = (1-w)g + wh for appropriate values of w and appropriate conditions on
h apply to all three models. ‘

A summary of the theoretical properties of searching with the evaluation
function f = (1-w)g + wh is given in Fig. 5. The point, or the subinterval
of [0,1] , over which a given property.is true is indicated in the graph,
with a reference and the graph model for which the property was shown appearing
in the margin. The admissilbity and optimality for w e [0,%3 for directed
graphs, AND/OR graphs, and theorem-proving graphs reference the author who
originally worked with proéedures for searching these models. Pohl [1969]
and Kowalski [1970] say that search with w ¢ [0,%—& is admissible for
directed graphs and theorem-proving graphs respecti?e]y. This author could
find no mention of the optimality for directed graphs and theorem-proving
graphs, and the admissilbity and optimality for AND/OR graphs in the refer-
ences. The extension of these properties to the interval [0,%} is Tooked
upon mostly as an observation, and thus Fig. 5 refers to the original refer-
ences.

Fig. 5 does not refer to all of the theoretical results about heuristic
search, The use of f = (1-w)g + wh 1is only one way to define a merit order-
ing, and any result which does not define the merit ordering in this way (such
as the theorem proved by Kowalski that search with any s-finite merit
orderihg is complete) cannot be shown on the graph.

A theory of heristic search is beginning to form, and we have discussed
some of the initial steps in the formation of that part of the theory which
~concerns the'ﬁse’offﬁ;ébﬁé tdfhéaélifﬁerséaféh proééés; ;fﬁé’fhédrytté11§’
us that completeness, admissibility, and optimality are properties which are
possessed by heuristic search strategies which satisfy certain conditions.

These results do not imply that thesé properties are always to be desired.
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Admissible search strategies tend to be more conservative in that they

stay nearer to the start node — they take less chances. They stay nearer

to the start node and take fewer chances than inadmissible strategies be-
cause théy guarantee finding a minimal solution before any other solution.
In some problem environments one is not interested in obtaining a minimal
solution.: In other environments minimal solutions are considered nice,

but finding a solution quickly is more important. In these cases one would,
of course, not necessarily employ an admissible strategy. The same thing.
is true for completeness only to a lesser extent. Complete strategies are
more conservative than incomplete strategies because they guarantee‘findinq
a solution if one exists. They cannot continue the search indefinitely down
a path (or a number of paths simulataneously) because the goal node may not
Tie along that path. The relative conservativeness of admissible and complete
strategies can be seen from the amount of emphasis that they place on the
heuristic component., Admissible strategies cannot place more emphasis on
the heuristic component than the cost component, whereas all that is necessary
in order for a strategy to be complete is that there be a nonzero cost
component. But even though search strategies with the completeness, admis-
sibility, and optimality properties are not always to be désired, the
characterization of strategies which do possess them is important. The
characterization is important because there are problem-solving environments
where they are a concern, and where they are not, the characterization can

aid in the design of powerful heuristic search strategies.
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APPENDIX
The appendix contains proofs of the completeness, admiséibi]ity, and optimality
theorems for search strategies which use the evaluation functionvf = (1-w)g + wh .
We call such a Séarch strategy' AE . The proofs are similar to those of Hart

~

et al. [1968] and Poh1 [1970]. é and h are approximations to g and -h .

THEOREM 1. [Completeness] If w ¢ [0,1), then AZ is complete for all

S-graphs.

PROOF. Let n be an arbitrary node. We will show that only finitely many
nodes have better merit than n . Completeness follows because if there is
a solution then all of the nodes on a solution path have the property that
finitely many nodes have better merit, and thus the goal node will eventually
be expanded.

‘Let B be the set of nodes which have better merit than n , and let
n' € B. Then since ﬁ(n) >0, and n' has bétter merit than n ,

(1-w)g(n') = (1-w)g(n') + wh(n') = F(n') = f(n) .

Let d be the number of nodes along the longest path from the start node s

ton' . Then ds = é(n') , and

~

(1-u)ds = (1-0)a(n') = F(n) or d = H{Ole

Hence, if n' € B, it must be within {4?%73- nodes of s . Since each

for w# 1.,

node of the graph has a finite number of successors, there are finitely many

nodes within f1n
-w)é8

there are only finiteiy many nodes which have better merit than n , and

nodes of s , and the set B s finite. Thus

A* for w e [0,1) is complete. i

THEOREM 2. [Admissib]ity] If ﬁ(n):s h(n) for all n and oy e [0,%1 s
then A; is admissible for all &-graphs.

PROOF. Since Theorem 1 showed that A: is complete, what remains to be shown
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is that if there exists a minimal solution, then .A; will find it. Assume
that there is a minimal so]ution: Let .n be the node expanded by AZ just
prior to termination, and let m be any other goal node. Suppose, on the
contrary, that A* has not found a minimal solution, i.e., g(m) < g(n).

~ Let S=Mg sy s -« oM e o oMy =M be a minimal solution path to m , and m;
be the last node on this path which has been generated. The following chain

of inedua]ities shows that the node mj had better merit than n .

Fmy) = (1-u)g(my) + wh(m;)
= (1-w)g(m;) + wh(m,) [g(m ) = g(m ), since a minimal path to m,
J J has been found] J
< (1-m)g(mj) + wh(mj) [from the lower bound cond1t1on]
= (l-m)[g(mj) + h(mj)] [since w =1/2]
= (T-w)g(m) [g(m) = g(mj) + h(mj), since g and h
are exact]
< (1-p)g(n) [g(m) < g(n) is assumed]
= (1-u)g(n)
= £(n) .

This is a contradiction since Az selected n over mj when ?(mj) < ?(n) .
Hence A; is admissible.

Béfore proving optimality we first prove two lemmas which are analogous
to those found in Hart, et al.

. If the evaluation function is f =g + h , then the f-value of all nodes
on a minimal solution path is the actual cost of a minimal solution, and if
the evaluation funciton is f = %g +”%h then the f-value of all nodes on a
minimal solution path is one half of the actual cost of a minimal solution.
However, when the search is directed by f = (1-w)g + wh then the f-va]ﬁe

of nodes on a minimal solution path varies between the min{w,1-w} times the

actual cost of a minimal solution and the max{w,l-w} times the actual cost
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of a minimal solution. The actual cost of é minimal solution is given by
g(t) where t 1is a goal node to which there is a minimal solution path.
The algorithm A* never expands a node whose merit is larger than f(s) .
A bound on the worst merit of a node expanded by A: is given in the following

lemma.

LEMMA 1. Let h satisfy the lower bound condition, t be a goal node to
which there is a minimal solution path, and y = max{l-w,w} . If Az expands

a node n , then %(n)is va(t) .

PROOF. Let s=n0,n],...,nj,...,nk=t be a minimal solution path, and suppose
that A; has generated but not yet expanded nj . Assume, on the contrary,
thatv A* expands a node n , where %(n) > yg(t). Then
£(n;) = (1-)g(n;) + wh(n,)
= (1-w)g(nj) + mh(nj) ,[g(nj) = g(nj) , since A* has found a
minimal path to nj]
| s (1—w)g(nj) + wh(nj) [from the lower bound condition].
We now divide the proof into two cases.
Case 1. (1-w) 2w
f(nj):s (1-w)g(nj) + mh(nj)
= (T-u)lg(ny) + hiny)]
= (1-w)g(t) [since g and h are exact]
Case 2. (T-0) <w
fn;) = (1-w)g(ny) + wh(ny)
< w[g(nj) + h(nj)] -

wg(t) [since g and h are exact]

]

Thus %(nj)_S_yg(t) , while %(n) > yg(t). Therefore A; did not select the
node with the best merit. Hence, if A; selects n , %(n)‘s_yg(t) . This

completes the proof;
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The following lemma shows that if w e [O,%J and the heuristic function
satisfies the consistency condition, then .Az does not expand a node before

finding -a minimal path to that node.

LEMMA 2. Let h be consistent and w e [0,%& . If A; expands n ,‘then
g(n) = g(n) .

PROOF. Assume, in the contrary, that é(n) >g(n) . Then A* could not have
found a minimal path to n because a(n) # g(n) . Let m be the first node
on a minimal path to n which A; has not expanded. The following sequence
of inequalities leads to the conc]usidn that the node m has better merit

than the node n .

g(n) > g(n)
(1-0)g(n) > (1-u)g(n)
(1-w)[{g(m) + k(m,n)] [k(m,n) is the cost of minimal path

from m to n]

(T-w)g(m) + (1-w)k(m,n)
(1-w)g{(m) + wk(m,n) [since w = 1/2]

Ry,

= (1-0)g(m) + wk(m,n) g(m) = g(m), since a minimal
path to m has been found]
:5 (1-w)a(m) + o(h(m) - h(n)) [since h is consistent]
Therefore, (1-w)g(n) + wh(n) > (T-w)g(m) + wh(m)
£(n) > f(m)
This is a contradiction because A; selected n when m had a better merit.

Hence é(n) = g(n) . This completes the proof of Lemma 2.

THEOREM 3. [Optimality] Let hy be consistent, w e [0,3] , and hy(n) <hy(n) =

h{n) for al1 n . Then A; using ?2 =g, + ﬂz expands every node that

A; using ?] =gy * h] expands for all s-graphs that have a minimal solution.
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PROOF. let NgsMyseeesNysees be the nodes expanded by .A; using %] .
Assume there is a node expanded by A; using %] . but not by A; using
%2 , and let the first such node be n; - Since .Az using %] expands hi s
we know that

%l(ni)‘s (1-w)g(t) [from Lemma 1, since (1-w) =.

max{1-w,w}]
(1-0)gy(n;) + ahy(n,) = (1-u)g(t)

(1) (1-u)g(n;) + why(n;) = (1-u)g(t) [gy(n;) = g(n;) from Lemma 2]

Since A; using f, expands all the ancestors of n, but does not expand

n; » and since it is admissible,

f,(n;) = (1-u)g(t)
(T-w)gy(ny) + why(ny) = (1-w)g(t).

~

We are assuming that the node n, is not: expanded by A; using f2 s but it is
generated by A* using %2 » and since w ¢ [0,%- at some stage 92("i) = g(ni) .

Hence,

i

(2) (1-)g(ny) + uhy(ny) = (1-w)g(t).

Together (1) and (2) imply,

(1-0)g(n;) + why(n;) = (1-u)g(n;) + ahy(n;) .
Subtracting (1-m)g(ni) and dividing by w« gives,
(3) h](ni)‘s h2(n.) .

But ﬁz(n)_< ﬁ](n) for all n . Therefore, A* using gé expands all of the nodes

expanded by A% using f, . This completes the proof of the optimality theorem.
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