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ABSTRACT

A directed graph is used to model the search space of a state-space repre-

sentation with single-input operators, an AND/OR is used for problem-reduction

representations, and a theorem-proving graph is used for state-space represen-

tations with multiple-input operators. This paper surveys these three graph
•

models and heuristic strategies for searching them. The completeness, admis-

sibility, and optimality properties of search strategies which use the evalu-

ation function f = (1 - oj)g + toh are presented and interpreted using a

representation of the search process in the plane. The use of multiple-

output operators to imply dependent successors, and thus obtain a formalism

which includes all three types of representations, is discussed.



1. Introduction

Automatic problem-solving is usually divided into two parts. The first

part, representation, is concerned with the process of formulating the problem

to the problem-solver. The problem-solver uses this description of the problem

to determine a solution. The manner in which the problem-solver looks for

a solution is the second part of automatic problem-solving and is called search.

Early efforts in automatic problem-solving were directed towards construct-

ing systems for solving problems from a restricted domain, and were for the

most part empirical in nature. As work continued, in addition to the construc-

tion of more ad hoc systems, general methods and approaches were abstracted

from these systems, and a collection of theoretical results has begun to

form. One of these approaches is the use of graphs to model the heuristic

search process. Trees and graphs were first used as a model, later AND/OR

graphs, and more recently theorem-proving graphs have been used. General

procedures, which allow for the introduction of problem-dependent heuristic

information for searching these graph models have been developed, and proper-

ties such as completeness, admissibility, and optimality of these procedures

under specified conditions have been proved.

Section 2 describes the use of directed graphs to model state-space repre-

sentations and the types of heuristic search strategies used to look for a

solution. Section 3 describes a method of representing the search process

in the coordinate plane, and Section 4 uses it to interpret the completeness,

.admissibility, and optimality properties of heuristic search strategies. Direct

proofs of these properties for search strategies which use the evaluation

function f = (l-u>)g + uh are given in the Appendix. A search strategy for

AND/OR graphs similar in structure to those for directed graphs, and the

properties of this search strategy when the above evaluation function is used,



are discussed in Section 5. Section 6 contains a similar discussion for

theorem-proving graphs. AND/OR graphs are used to model the search in problem-

reduction representations, and theorem-proving graphs are used to model the

search in state-space representations with multiple-input operators.

2. Problem-Solving Using the Directed Graph Model

Many problems can be represented as state-space problems [Michie, 1970;

Nilsson, 1971; Simon, 1971]. A state-space representation consists of a set

of states (including start and goal states), and a set of operators which

map states into states. A solution is a sequence of operators which transforms

the start state into a goal state. By associating states with nodes and

operators with edges, a directed graph can be used as a model for state-space

representations which have operators with one input state and one output state

(single-input/single-output operators). Usually only the form of a state is

specified, and thus a representation implicitly defines a graph. The search

process can be thought of as making explicit a part of an implicitly defined

graph which, when the search is successful, includes a path from,the start

node to a goal node.

Algorithms for searching directed graphs fall into two categories

[Sandewall, 1971]. The labyrinthio methods make a decision to search along

a direction in the graph, and after searching for some time decide either to

continue in this direction or to backup and try another direction. Labyrin-

thic methods were used in GPS [Ernst and Newell, 1969]. The best-bud methods

assign a merit ordering to the set of nodes, typically by using an evaluation

function. At each stage of the search these algorithms take a global look

at all of the nodes which have been generated, but not yet expanded, and expand

the node with the best merit. For example, if the merit ordering ranks the

nodes according to the inverse of their levels, then the best-bud approach will



result in a depth-first search of the graph. These algorithms attempt to

generate the nodes of the graph according to the merit ordering. In general

they do not generate the nodes according to the merit ordering, because the

node n, may have an ancestor n« which has poorer merit, and hence n,

cannot be generated until some time after the generation of n? . In this paper

the term search strategy will refer to a best-bud method for searching a graph.

The basic form of a search strategy is as follows.

1. Place the start node s in the set S (the set of nodes currently

being considered for expansion).

2. Expand the node n in S with the best merit. If n is a goal

node, then we have found a solution. Otherwise, place the successors

of n in S , place n in the set S (the set of nodes which have

been expanded), and repeat this step.

This is a simplified form since, for example, it does not consider the possibility

of discovering that a node which has already been expanded has better merit

than was originally assigned to it.

One of the earliest search strategies is the uniform-cost strategy which

uses the evaluation function f = g , where g is the cost from the start node

to the current node [Nilsson, 1971]. The Graph Traverser [Doran and Michie,

1966; Doran, 1967] assigned a merit ordering with the function f = h , where

h is an estimated cost from the current node to the nearest goal node. Hart,

Nilsson, and Raphael [1968] developed an algorithm, called the A* algorithm,

which used the evaluation function f = g + h to assign a merit ordering to

the nodes. Pohl [1970a] considered the evaluation function f = (l-w)g + "<oh ,

where 0 ̂  01 ^ 1 , which includes the uniform cost algorithm (oi=0) , the A*

algorithm (w=̂ -) , and the pure heuristic algorithm (w=l) .

A search strategy is said to be complete if whenever there exists a



solution to the problem the strategy will find one. An admissible strategy

is one which terminates with a minimal solution whenever one exists. The

concept of optimality applies to strategies which are admissible and is defined

as follows. Let h] and h2 be two heuristic functions such that h'2 < h, £ h ,

where hp is a perfect heuristic function. An admissible strategy is said

to be optimal if searching with h2 expands all of the nodes that searching

with h1 expands. Admissibility can be viewed as the optimality of the

solution, whereas optimality is really the optimality of the search process.

The uniform-cost strategy searches along contours of equal cost from the

start node, and it is easy to understand why the first solution found is a

minimal cost solution. Hart et al . [1968] showed that a heuristic component

can be used to direct the search and still retain the admissibility property.

They proved that if A* used a heuristic function h which satisfied the

lower bound condition (h £ h ) then A* is admissible for 5-graphs (graphs

where the arc costs are greater than or equal to some 6 > 0). They also proved

that if A* used a consistent heuristic function (h(n) + h(n') £ k(n,n'),

where k(n,n') is the cost to go from n to n1) then A* is optimal for

6-graphs. Pohl[1969, 1970a] showed that search with f = (l-to)g + coh for

a) e Cl] expands only the nodes on a minimal solution path. In the same paper

he considered the case where the error in the heuristic function h is bounded

by 6 (h -6 ̂  h £ h +€) , and showed with a worst case analysis, that search

with t o = l will expand at least as many nodes as search with to = j • Pohl

I 197 Ob] has also shown that a search strategy with we [0,1) is complete for

the special case when the graph has unit arc costs. A bidirectional procedure

which is admissible for heuristics which satisfy the lower bound condition has

been developed [Pohl, 1969, 1971] for searching directed graphs.



3. Representing the Search Process in the Plane

Kowalski [1970] has introduced a method of using one quadrant of the

coordinate plane to represent a search space. In this section we describe this

method and show how it can be used to represent the direction of search for the

evaluation functions f = (l-oj)g + u>h and f = g + ah .

Each node n in the search space is represented at the point in the

coordinate plane (i,j) , where h(n) = i and g(n) = j . The start node (or

nodes if there is more than one) is located on the horizontal h-axis, and all

goal nodes are located on the vertical g-axis. Each heuristic function h

determines the locations of the nodes in the quadrant. Strictly speaking

a search strategy may place a node in more than one position during the search

process. The h-component of a node never changes, but the g-component may

assume as many values as there are paths from the start node with distinct

costs. The 6-finiteness of a graph guarantees that only finitely many nodes

are contained in any finite region of the plane.

Each choice of o> in f = (l-u)g + uh determines the direction in which
0)

the space will be searched. Kowalski calls search with to = j diagonal search

because it defines all nodes which lie on the same diagonal to have equal merit

and attempts to generate nodes in the direction indicated in Fiq. l.a. Upwards

diagonal search differs from diagonal search in that nodes with the same f-value

do not necessarily have equal merit. It defines the node n to have better

merit than the node n1 iff f(n) < f(n') , and h(n) < h(n') when

f(n) = f(n') ; and attempts to generate nodes in the same direction as diagonal

search except that the search proceeds up successive diagonals as indicated in

Fig. l.b. Figures l.c - l.f illustrate the direction of search for various

values of a) . If the distinction between the h-components is made for nodes

with the same f-value as is done in upward diagonal search, then along each

line in these figures the search proceeds in the direction of the h-axis.
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As the process of searching the graph proceeds the area of the quadrant

covered grows. All the nodes which lie in this area are not immediately

expanded, because paths from the start node to them may not have yet been found.

A node n which lies in the region which has been searched will be expanded

provided there is a path from the start node to n such that all of the nodes

on this path also lie in the region.

A merit ordering can be defined by an evaluation function written either

as f = (l-to)g + ooh for to e [0,1] , or as f = g + ah for a e [0,~) .

Since scaling the evaluation function does not affect the order in which the

nodes are generated, the relationship between these two forms is given by

a = a)/(l-(o) . When the first form is used changes in the value of u correspond

most naturally to changing the direction of search as illustrated in Fig. 1.

However, the parameter a in the second form can be thought of as being part

of the heuristic component of the evaluation function. When this is done the

direction of search remains diagonal, but all the nodes are moved either towards

the g-axis if a < 1 , or away from the g-axis if a > 1 . Thus the above two

forms point out the two ways in which a change in an evaluation function can

be viewed, either as a change in the direction of search or as a change in the

position of the nodes.

4. Completeness, Admissibility, and Optimality

In this section we discuss the completeness, admissibilit.y, and

optimality of search strategies, which use f = (l-to)g + wh for to e [0,1] .

For each of these properties we state a theorem which gives the subinterval of

[0,1] in which the given property holds, and, justify^the theorem in terms of

the coordinate representation of the search process. We also provide simple

proofs of the admissibility and optimality properties when the evaluation function

is written as f = g + ah . More complex proofs for f = (l-u)g + a>h

which are similar to those given by Hart et al. and Pohl are included

, 7



in the Appendix.

THEOREM 1. [Completeness] If w e [0,1) , then a search strategy is complete

for all 6-graphs.

The direction of search for o> = 1 , the only value of u for which the

search is incomplete, is parallel to the g-axis as indicated in Fig. 2.a. If

the direction of search is not parallel to the g-axis and there is a path from

the start node s to a goal node t , then the search will eventually cover

a region which includes all of the nodes on this path. But if the direction

of search is parallel to the g-axis, there may be an infinite number of nodes

in one of the infinite regions which is encountered by the search prior to

the region which includes all of the nodes on the solution path. This may

keep the search from finding the goal node. In terms of the graph itself,

search with u> = 1 is incomplete because the heuristic may indefinitely

lead it down a path (or a set of paths) which does not contain a goal node.

Of course, if there are only finitely many nodes in the search space, then

a search strategy is complete for any w .

If the heuristic is perfect then g(n.) + h(n.) = g(t) for all nodes on a

minimal solution path s=nQ,...,n.=t , and all n. lie on the diagonal of the

minimal goal node t (see Fig. 2.b). If the heuristic is not perfect, but

does satisfy the lower bound condition, then the nodes nQ,...,n. are all

pulled to the left and lie in the triangular region bounded by the two axes

and the diagonal (including the boundary). Thus, diagonal, upper diagonal, and

any search with u £ ̂  (see Fig. 2.c) will have expanded n0,...,n. -j by

the time search reaches the location of the minimal goal t , and therefore t

will be found before any other goal node. However, if to > j (see Fig. 2.d)

then the search strategy may not have expanded s=n0,...,n. by the time

search reaches t , and may expand the nodes s=ni,... ,n'=t' . where t1 is
u x/
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a nonminimal goal, before it expands the remaining nodes on the path s=nQ)...,n. =t

Thus search with to > ̂  may find a nonminimal solution, whereas search with

oj £ 2 is admissible.

THEOREM 2. [Admissibility] If the heuristic satisfies the lower bound

condition then a search strategy with to ^ j is admissible for all 6-graphs.

As pointed out by Pohl [1969] and Kowalski [1970] the admissibility

property can easily be shown when the evaluation function is written as

f = g + ah . We know that f = g + h is admissible if h satisfies the lower

bound condition. The heuristic ah for a ̂  1 satisfies the lower bound

condition whenever h satisfies the condition, and thus search with f = g + ah

for a ^ 1 is admissible if h satisfies the lower bound condition.

The optimality theorem tells us that for all of the values of to which

give admissible searches, the use of better heuristics will result in improved

searches.

THEOREM 3. [Optimality] Let to e [0,̂] , h] be consistent, and h2 < h1 ^ h ,

where h is the perfect heuristic. Then search with hp expands every node

expanded by search with h-, for all 6-graphs that contain a minimal solution.

Consider first the justification for the case of to = j (diagonal search).

If the heuristic is consistent then all the nodes which precede n in the

graph lie on an earlier diagonal than the diagonal on which n lies. Diagonal

search then moves from diagonal to diagonal, and never has to backtrack to

an earlier diagonal to expand a node (see Fig. 2.e). In particular, all the

nodes in the triangular region will be expanded when t is found. Under

these conditions search with an evaluation function which uses a better heuristic

h, expands no more nodes than search with an evaluation function which uses a

poorer heuristic hg . This can be understood most easily if we think in terms

of the nodes located as they would be for a perfect heuristic, and of the

10



movement which results from using an estimate to the perfect heuristic. The

poorer heuristic h« pulls more nodes inside the triangular region than h-, ,

and hence search with g + h, expands fewer nodes than search with g + h2 •

For o> < TJ- the reason for optimality is the same. The poorer heuristic

pulls more nodes inside the triangular region than the better heuristic, only

now the triangular region in question is as shown in Fig. 2.c.

Although not noted in the literature , the extension of the optimality

theorem of Hart et al. can also easily be shown when the evaluation function

is written f = g + ah . Let h be a consistent heuristic and F = ah . Then

since a £ 1 and h is consistent, F(n) - F(n') = a[h(n) - h(n')] £ h(n) - h(n')

k(n,n') , where k(n,n') is the cost from n to n1 . Hence F is consistent

and f = g + ah for a e [0,1] (or equivalently, f = (l-u>)g + uh for

u e [Ojj]) is optimal.

If the hypothesis of the optimality theorem is changed from h2 < h, £ h

to h2 ^ h-j £ h ,. then it is possible that search with g + h, may not expand

a node n which lies on the minimal cost diagonal and is expanded by search

with g + \\2 . This is because a search strategy resolves ties arbitrarily,

and search with the poorer heuristic h,, may choose to expand a node n

which is tied for merit with a minimal goal node, while search with the better

heuristic h, chooses not to expand n . Thus, if hg ̂  h, £ h then search

with \\2 expands all the nodes expanded by search with h, except possibly

for a set of nodes which have the same merit as a minimal goal node.

Fig. 3 shows that neither the admissibility nor the optimality property

hold for a) e (pl-J . It also, shows that for <o e [0,-) , search with a perfect

heuristic may expand a node off of a minimal solution path [Pohl, 1969, 1970].

Thus in the interval [O,̂ -] , as better heuristics are used better searches

result; although except for u = ^ » the best heuristic (a perfect heuristic)

does not result in the best solution (expanding only nodes on a minimal solution

11
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Fig. 3 Examples using the graph shown in Fig. l.a.

1) Fig. 3.b shows that a search strategy is not admissible for 03 e (1/2,1]. The solution

n0«ni >n3»n/)>n5 has cost 6 and is minimal, but search with f = ig + |ti, finds the solution
nQ,n.| ,n2,n4,n,j which is nonminimal.

2) Fig. 3.b and 3.c show that a search strategy is not optimal for u e (1/2,1]. h, & h2 & h , but
for to = 3/4, search with h2 expands the node n3 which is not expanded by search with h,.

 p

3) Fig. 3.d shows that a search strategy with n perfect heuristic and co e [0,1/2) may expand a
node (in this case the node n«) which is off of a minimal solution path.

12



path). On the other hand, for u> e [pi] search with a perfect heuristic

expands only nodes on a minimal solution path, but the optimality theorem is

not true in (-i-,1] . The only value of w for which both the optimal ity

theorem and the admissibility theorem are true, and search with a perfect

heuristic expands only nodes on a minimal solution path is to = 75-.

In many problem domains one is not interested in finding a minimal solution

to the problem, but in finding any solution using a minimal amount of resources.

In these instances one would certainly not choose w e [0,p-] , since admissibility

is not required. In fact one may choose u> = 1 since completeness, the

assurance that every problem which has a solution will be solved given suffi-

cient resources, may not be a desired property. However not including a cost

component is not always advisable as shown by Pohl [1970]. He constructed an

example where the heuristic deliberately led the search away from the goal, and

showed that for this example search with f = h expands more nodes than search

with f = g + h .
1

Although there are instances where u e [pi] is best, if we have

reasonable confidence in the heuristic, oj e [O,̂ ) should not be chosen, as

the following corollary of the optimality theorem shows.

COROLLARY If h is consistent, then search with f = (l-w)g + wh for w < j

expands all the nodes expanded by search with f = ^g + ph.

Search with u = 4 is better than search with u> < j because, as can

be seen from Fig. 2.c, the area covered by the former in finding a minimal

solution is a subset of that covered by the latter.

5. Problem-Solyjng Using the AND/OR Graph Model

AND/OR graphs are generalizations of directed graphs in that successors

can be either OR-nodes or AMD-nodes. If all successors are OR-nodes the

AND/OR graph reduces to a directed graph. AND-successors are denoted by

13



a bar connecting the arcs and usually mean some sort of dependence among the

successor nodes. Corresponding to a solution path in a directed graph is a

solution graph in an AND/OR graph. A solution graph is a subgraph with the

following three properties: the root node is in the subgraph, if one AND-

successor of a node is in the subgraph then all AND-successors of that node

are in the subgraph, and all tip nodes are solved. In the following example

(double circles denote solved nodes) a solution graph consists of the entire

graph with the exception of the node d.

[f,
«*—>

Costs are assigned to each arc of an AND/OR graph, and the cost of a solution

graph is the sum of the costs of the arcs which are part of the solution graph,

AND/OR graphs can be used as a model of the problem space of problem-

reduction representations [Nilsson, 1971]. In a problem-reduction represen-

tation the original problem (and recursively each subproblem) is divided into

subproblems, where a Boolean relation applies between the solutions of the

subproblems and the solution of the original problem. Problems are associated

with nodes, and if all of the subproblems must be solved in order for the

original problem to be solved, the nodes which represent these subproblems

are AND-successors, otherwise they are OR-successors. Primitives subproblems,

ones whose solution is known, are associated with solved nodes.

Many heuristic procedures for searching AND/OR graphs [Amarel, 1967;

Slagle & Dixon, 1969; Nilsson, 1969; Nilsson, 1971] were developed prior to

the work of Chang and Slagle [1971]. These procedures were structurally

14



different from the best-bud procedures for searching directed graphs because

they contained sections which labeled nodes solved or unsolved, and backed

up the solved nodes to determine whether or not a solution graph had been

found. A back up procedure is not necessary for searching a directed graph

because a solution is a path and not a graph. The work of Chang and Slagle

showed that a back up procedure was not necessary for searching AND/OR

graphs either, and provided a unified approach to heuristically searching

directed graphs and AND/OR graphs.

The best-bud approach to searching AND/OR graphs is based on the following

method of formulating an AND/OR graph as directed graph. The method defines

the set of nodes in the AND/OR graph which must be solved in order for a

solution graph to exist as a node in the directed graph. Initially the

root node of the directed graph is set equal to the root node of the AND/

OR graph. The directed graph which corresponds to the above AND/OR graph is:

FC is a goal node since the nodes f and c are the solved tip nodes of

a solution graph.

Placing a merit ordering on the set of nodes in the above directed graph

is equivalent to placing a merit ordering on the power set of the set of

nodes of the AND/OR graph. Chang and Slagle accomplish this by associating

with each node n. of the AND/OR graph a statement N. that the problem re-

presented by that node is solved. Formulas in prepositional logic are used
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to indicate the relationship between a node and its successors. The sequence

of formulas which represent the above AND/OR graph is A = BC = (D v E)C =

DC V EC = DC v FC . Conjunctions of the N. are called implicants. An

imp!icant corresponds to a node in the directed graph formulation of an

AND/OR graph. Thus, placing a merit ordering on the set of implicants of an

AND/OR graph essentially places a merit ordering on the power set of the

set of nodes of the AND/OR graph, or on the set of nodes of the directed

graph formulation of the AND/OR graph.

Chang and Slagle give a best-bud search strategy for AND/OR graphs which

is based on defining a merit ordering on the set of implicants. The search

strategy is equivalent to the best-bud approach to searching the directed

graph formulation of an AND/OR grpah. They prove that it, like the best-bud

procedure for searching directed graphs, is admissible for heuristics whi'ch

satisfy the lower bound condition and optimal for consistent heuristics.

The completeness, admissibility, and optimality properties of search with

the evaluation function f = (l-io)g + coh for the appropriate range of to

and the appropriate conditions on h apply to AND/OR grphs as well as

directed graphs. This follows directly from the fact that the search strategy

for AND/OR graphs is logically equivalent to the search strategy for directed

graphs applied to the directed graph formulation of an AND/OR graph.

6. Problem-Solving Using the Theorem-Proving Graph Model

Some state-space representations have operators which require more than

one state as input. The theorem proving problem is one such multiple-input

operator state-space problem. In the state-space representation of the

theorem proving problem clauses are states (the input clauses are the initial

states and the empty clause is the goal state), factoring is a single-input
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operator and resolution is a multiple-input operator. A solution is a de-

duction of the empty clause from the set of input clauses.

In considering the problem of developing search strategies for theorem

proving, Kowalski [1970] has generalized best-bud search strategies from

graphs which model the state-space of representations with single-input

operators to those which model the state-space of representations with multiple-

input operators. To obtain graphs which model the state-space of representa-

tions with multiple-input operators Kowalski extends the tree representation

of ordinary graphs (distinct paths to a node are represented by distinct

nodes) to a directed, acyclic graph, which he calls a theorem-proving graph.

For example, if {sQ,s,,s2} are initial states, and if y^l for 1 ̂  i ̂  6

are successor operators such that

= {ny}

Y6«n6.n7}) = {n8>

then the theorem-proving graph for this portion of the state-space is:

level 0

level 1

level 2

level 3

17



In the introduction we described a search strategy as one which determines

which node to expand at each stage of the search. One could equally well

think of a search strategy as one which determines which node to generate

at each stage of the search. The first approach was taken by Hart et al.

[1968] and the second approach was taken by Pohl [1970]. The two approaches

are illustrated for directed graphs in Fig. 4. The first approach results

in viewing the application of an operator in the normal direction, from the

domain to the range; while the second approach results in viewing the appli-

cation of an operator in the inverse direction, from the range to the domain.

For graphs which model representations with single-input operators one

approach is as good as the other.

For the case of multiple-input operators, it is easier to think in

terms of which node to generate than which set of nodes to expand, and this

is the approach taken by Kowalski. This allows for the merit ordering to

be defined on the set of nodes, rather than on the power set of nodes.

A search strategy for theorem-proving graphs, like one for directed graphs,

determines which node to generate at each stage. An efficient implementa-

tion of a search strategy for a multiple-input operator state-space problem

must be able to apply operators in the inverse direction without exhaustively

checking the power set of the nodes which have been generated. This' is

possible in the theorem proving problem when the g-component of a clause

is its level and the h-component is its length, and when the process of

performing a merge is assigned on explicit cost.

Kowalski calls a merit ordering a 6-finite merit ordering, if there are

finitely many nodes which have better or equal merit than any given node, arid

proves that any search strategy for theorem-proving graphs which generates

nodes according to a 6-finite merit ordering is complete. A 6-finite merit
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CLOSED

OPEN

Fig. 4.a. The approach to a search strategy which divides the nodes into
those which have been expanded, CLOSED; and those which are candidates for
expansion, OPEN. The nodes in OPEN are the tip nodes of the graph, those in
CLOSED are the nontip nodes.

-S

tion, S .

fig. 4.
graphs.

Illustrations of two approaches to a search strategy for directed
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ordering is a more general condition than a 6-qraph which was used by Hart

et al. The former allows finitely many arcs to have zero cost, while the

later specifies that all arc costs are greater than or equal to 6 which

is greater than zero. Kowalski also proves that with appropriate conditions

on the heuristic function, diagonal and upper diagonal search strategies

are admissible, and that upward diagonal search strategies are an optimal

subclass of diagonal search strategies.

The completeness, admissiblity, and optimality of search with

f = (l-u)g + uh for appropriate values of <o also apply to the theorem-

proving graph model. At each stage of the process of searching a theorem-

proving graph the merit ordering defined by f determines which of the

nodes which are one step away from those nodes which have been generated at

previous stages will be generated at the current stage. This is analogous

to the directed graph case except that in searching theorem-proving graphs

a node n can never be completely expanded. Some time later in the search

process the node n may be needed as an input to the operator y because

a node n1 was generated such that y is applicable to a set B , where

{n,n'} £B . This difference however does not affect the above properties.

Multiple-Output Operators

It is natural to ask about representations with multiple-output opera-

tors, and of strategies for searching graphs which model them. The concept

of a multiple-output operator must involve some notion of dependence among

the successor states, because if they are independent then the multiple-

output operator can be replaced by a set of single-output operators. For

example, if y({n0}) " ^
ni»ny^ ' w''t'1 nl and n2 independent, then y

can be replaced by y, and y2 > where y-|({n0}) = {n-|} and y2({n^}) =
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One type of dependency among successor states occurs when sequences of

operators must be found which transform all of the successors into a goal state.

Consider, for example, a representation of the theorem proving problem which

defines a state not as a clause but as a literal of a clause. In this represen-

tation all the literals of some clause must be resolved away in order for a

solution to be found. Resolving away all the literals of some clause is like

finding paths in a graph from all successor nodes to goal nodes. This, of

course, is the case for AND-successors in AND/OR graphs. Thus because the con-

cept of multiple-output operators must involve some notion of dependence among

successors, an AND/OR graph can be used to model the search of such representa-

tions. Approaching this multiple-output operator/dependent successor relation-

ship from a different direction, leads to the observation that the concept of

multiple-output operators can be used to define the operators of a problem-

reduction representation. The use of both multiple-input and multiple-output

operators provides a formalism which includes both problem-reduction and state-

space representation.

Another type of dependency among successor states occurs when the applica-

tion of an operator to one of the successors in some way affects the other

successors. The problem here is analogous to the problem of side affects in

programming languages. If it is true that the application of an operator to

one successor affects the other successors, then the representation may as well

be redefined to make all of the successors into a single state. Consider the

above example of the theorem proving problem where states are literals. All

the literals of a clause which have a common variable are dependent, since a

substitution of a term for that variable must be made throughout the clause.

The bookkeeping involved in keeping track of these dependent states would sug-

gest that each set of dependent states be considered as one state. This does

not preclude operating on part of a state and storing the affects of this
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operation on the other parts of the state for subsequent use. Inference systems

Tike SL-resolution [Kowalski & Kuehner, 1971] define state-space representations

of the theorem proving problem with the above property.

Let us make one final comment about multiple-output operator representa-

tions. Unlike single-output operator representations, where at each stage

a search strategy simply decides which single node to generate, multiple-output

operator representations require search strategies to determine which set of

nodes to generate. Thus the merit ordering must be defined on the power

set of the nodes of the graph. As we have seen, this is what the procedure

of Chang and Slagle for searching AND/OR_qraphs does.

7. Summary

This paper has discussed three types of graphs which are used to model

the search process, and the completeness, admissiblity, and optimality

properties of strategies for searching them.. Each of the graphs model the

search process for a different type of problem representation: directed

graphs are used for state-space representations with single-input operators,

AND/OR graphs are used for problem reduction representations, and theorem-

proving graphs are used for state-space representations with multiple-input

operators. It was seen that heuristic strategies for searching graph struc-

tures for modeling single-input and multiple-input operator state-space

representations place a merit ordering on the set of nodes; while strategies

for searching the graph structure for problem-reduction representations, which

can be thought of as multiple-output operator representations, place a merit-

ordering on the power set of nodes. The graph structures themselves are quite

different, but the structures of the heuristic strategies for searching them

differ only in the set on which-the merit ordering is defined. More particularly,

the properties of completeness, admissibility, and optinality of search with
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f = (l-u)g + toh for appropriate values of o> and appropriate conditions on

h apply to all three models.

A summary of the theoretical properties of searching with the evaluation

function f = (l-co)g + coh is given in Fig. 5. The point, or the subinterval

of [0,1] , over which a given property is true is indicated in the graph,

with a reference and the graph model for which the property was shown appearing

in the margin. The admissilbity and optimality for to e [0,̂ -] for directed

graphs, AND/OR graphs, and theorem-proving graphs reference the author who

originally worked with procedures for searching these models. Pohl [1969]

and Kowalski [1970] say that search with to e [0,|-] is admissible for

directed graphs and theorem-proving graphs respectively. This author could

find no mention of the optimality for directed graphs and theorem-proving

graphs, and the admissilbity and optimality for AND/OR graphs in the refer-

ences. The extension of these properties to the interval [0,̂ -] is looked

upon mostly as an observation, and thus Fig. 5 refers to the original refer-

ences.

Fig. 5 does not refer to all of the theoretical results about heuristic

search. The use of f = (l-to)g + uih is only one way to define a merit order-

ing, and any result which does not define the merit ordering in this way (such

as the theorem proved by Kowalski that search with any 6-finite merit

ordering is complete) cannot be shown on the graph.

A theory of heristic search is beginning to form, and we have discussed

some of the initial steps in the formation of that part of the theory which

concerns the use of graphs to model the search process. The theory tells

us that completeness, admissibility, and optimality are properties which are

possessed by heuristic search strategies which satisfy certain conditions.

These results do not imply that these properties are always to be desired.
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Admissible search strategies tend to be more conservative in that they

stay nearer to the start node — they take less chances. They stay nearer

to the start node and take fewer chances than inadmissible strategies be-

cause they guarantee finding a minimal solution before any other solution.

In some problem environments one is not interested in obtaining a minimal

solution. In other environments minimal solutions are considered nice,

but finding a solution quickly is more important. In these cases one would,

of course, not necessarily employ an admissible strategy. The same thing

is true for completeness only to a lesser extent. Complete strategies are

more conservative than incomplete strategies because they guarantee finding

a solution if one exists. They cannot continue the search indefinitely down

a path (or a number of paths simulataneously) because the goal node may not

lie along that path. The relative conservativeness of admissible and complete

strategies can be seen from the amount of emphasis that they place on the

heuristic component. Admissible strategies cannot place more emphasis on

the heuristic component than the cost component, whereas all that is necessary

in order for a strategy to be complete is that there be a nonzero cost

component. But even though search strategies with the completeness, admis-

sibility, and optimality properties are not always to be desired, the

characterization of strategies which do possess them is important. The

characterization is important because there are problem-solving environments

where they are a concern, and where they are not, the characterization can

aid in the design of powerful heuristic search strategies.
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APPENDIX

The appendix contains proofs of the completeness, admissibility, and optimality

theorems for search strategies which use the evaluation function f = (l-w)g + to

We call such a search strategy A* . The proofs are similar to those of Hart
/̂  /s

et al. [1968] and Pohl [1970]. g and h are approximations to g and h .

THEOREM 1. [Completeness] If u e [0,1), then A* is complete for all
0)

6-graphs.

PROOF. Let n be an arbitrary node. We will show that only finitely many

nodes have better merit than n . Completeness follows because if there is

a solution then all of the nodes on a solution path have the property that

finitely many nodes have better merit, and thus the goal node will eventually

be expanded.

Let B be the set of nodes which have better merit than n , and let
/̂

n1 e B . Then since h(n) :> 0 , and n' has better merit than n ,

(l-co)g(n')'s (l-u)g(n') + uh(n') = f(n') 'sf(n) . .

Let d be the number of nodes along the longest path from the start node s
^

to n1 . Then d6 ̂ g(n') , and
•*.

(l-u)d6 £ (l-u)g(n') * f(n) or d * tjn)». for u jM .
*. (. I -U )(>

Hence, if n1 € B , it must be within /* '\f nodes of s . Since eachU -co ;o
node of the graph has a finite number of successors, there are finitely many

A

nodes within /J n ' \ f nodes of s , and the set B is finite. Thus(I-U))6

there are only finitely many nodes which have better merit than n , and

A* for we [0,1) is complete.

1
THEOREM 2. [Admissiblity] If h(n) £ h(n) for all n and u e [O,^] ,

then A* is admissible for all 6-graphs.
0)

PROOF. Since Theorem 1 showed that A* is complete, what remains to be shown



is that if there exists a minimal solution, then A* will find it. Assume
(0

that there is a minimal solution. Let .n be the node expanded by A* just
10

prior to termination, and let m be any other goal node. Suppose, on the

contrary, that A* has not found a minimal solution, i.e., g(m) <g(n).

Let s=m0,m, ..... m.,...,m.=m be a minimal solution path to m , and m.

be the last node on this path which has been generated. The following chain

of inequalities shows that the node m. had better merit than n .
j

A A

= (l-o))g(m.) + toh(m.) [g(m.) = g(m.)» since a minimal path to m.
J J J J has been found] J

£ (l-co)g(m.) + toh(m.) [from the lower bound condition]
J J

^ (l-oj)[g(m.) + h(m.)] [since o> ^ 1/2]
J J

= (l-to)g(m) [g(m) = g(m.) + h(m.), since g and h
J J

are exact]

< (.l-oo)g(n) [g(m) < g(n) is assumed]
A

^ (l-co)g(n)

= f(n) .

/s s*

This is a contradiction since A* selected n over m. when f(m.) < f(n) .
0) J J

Hence A* is admissible.
CO

Before proving optimal ity we first prove two lemmas which are analogous

to those found in Hart, et al .

If the evaluation function is f = g + h , then the f -value of all nodes

on a minimal solution path is the actual cost of a minimal solution, and if
1 1the evaluation funciton is f = -jg + ^h then the f-value of all nodes on a

minimal solution path is one half of the actual cost of a minimal solution.

However, when the search is directed by f = (l-co)g + coh then the f-value

of nodes on a minimal solution path varies between the min{w,l-to} times the

actual cost of a minimal solution and the max{to,l-to} times the actual cost
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of a minimal solution. The actual cost of a minimal solution is given by

g(t) where t is a goal node to which there is a minimal solution path.

The algorithm A* never expands a node whose merit is larger than f(s) .

A bound on the worst merit of a node expanded by A* is given in the following

lemma.

LEMMA 1. Let h satisfy the lower bound condition, t be a goal node to

which there is a minimal solution path, and y = max{l-w,u} . If A* expands
0)

a node n , then f(n) ^ yg(t) .

PROOF. Let s=n0,n.|,...,n.,... ,nk=t be a minimal solution path, and suppose

that A* has generated but not yet expanded n. . Assume, on the contrary.,
/v

that A* expands a node n , where f(n) >yg(t). Then

f(n.) = (l-oj)g(n.) + o>h(n.)
J J J

*>> •«•

= (l-o>)g(n.) + u>h(n.) [g(n.) = g(n.) , since A* has found a
j J J J oj

minimal path to n •]
J

£ 0-u>)g(n.j) + u)h(n-) [from the lower bound condition].
J J

We now divide the proof into two cases.

Case 1. (1-u)) £ o)

f(n.) ^ (l-w)g(n.) + u>h(n.)J J J
^ (l-co)[g(n.) + h(n.)3J J
= (l-ai)g(t) [since g and h are exact]

Case 2. (1-co) < u

f(n.) s 0-u))g(n.) + uh(n.)
J J J

* u[g(n.) + h(n.)3
J - J

= (jg(t) [since g and h are exact]

Thus f(n.) £ yg(t) , while f(n) > ygCt). Therefore A* did not select the
J w

node with the best merit. Hence, if A* selects n , f(n) ^ yg(t) . This

completes the proof.
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The following lemma shows that if u e [0,̂ 1 and the heuristic function

satisfies the consistency condition, then A* does not expand a node before

finding a minimal path to that node.

" !•LEMMA 2. Let h be consistent and to e [0,-f] . If A* expands n , then
f. CO

v\

g(n) = g(n) .
s\

PROOF. Assume, in the contrary, that g(n) >g(n) . Then A* could not have
to

A

found a minimal path to n because g(n) j g(n) . Let m be the first node

on a minimal path to n which A* has not expanded. The following sequence

of inequalities leads to the conclusion that the node m has better merit

than the node n ,

A

g(n) > g(n)

(l-u)g(n) > (1-<o)g(n)

= . (1-aj)[9(n>) + k(m,n)] [k(m,n) is the cost of minimal path

from m to n]

= (l-u)g(m) + (l-uj)k(m,n)

^ (l-w)g(m) + cok(m,n) [since co ^ 1/2]
«* A

= (l-co)g(m) + u)k(m,n) g(m) = g(m), since a minimal

path to m has been found]
. . *> *N * S,

* (l-^JgCm) + oj(h(m) - h(n)) [since h is consistent]
/* A. A yv

Therefore, (l-uj)g(n) + ooh(n) > (l-to)g(m) + aih(m)

f (n) > f (m)

This is a contradiction because A* selected n when m had a better merit.u
A

Hence g(n) = g(n) . This completes the proof of Lemma 2.

THEOREMS. [Optimality] Let ^ be consistent, <o e [0,j] , and h2(n)_<h1(n)

h(n) for all n . Then A* using ?2 = g2 + h2 exoands every node that

A* using f1 = g] + h] expands for all 6-graphs that have a minimal solution.
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PROOF. Let n0,n,,... ,n^,... be the nodes expanded by A* using f-, .
^

Assume there is a node expanded by A* using f, , but not by A* using
0) I U)

A ^

f? , and let the first such node be n. . Since A* using f, expands n.

we know that
/\
fl(ni) ̂  (l-u)g(t) [from Lemma 1, since (1-co) =

max{l-u),o)}]

(l-ojjg^n.) -t- (̂n.) ^ (l-oj)g(t)

(1) (l-o))g(ni) + toh^n^ ^ (l-u)g(t) [ĝ n̂  = g(r\.) from Lemma 2]

/s

Since A* using f, expands all the ancestors of n. but does not expand
yJ £- 1

n. , and since it is admissible,

A. A.

(l-w)g2(ni) + wh2(ni) ̂  (l-u)g(t).
A

We are assuming that the node n. is not expanded by A* using f2 , but it is

generated by A* using f2 , and since o> e [0,̂] at some stage g2(ni) = g(n^) .

Hence,
i

(2) (l-u)g(n.) + o)h2(n.) * (l-o))g(t).

Together (1) and (2) imply,

(l-u)g(n.) + wĥ .)̂  (l-u)g(n1) + uhgt^) .

Subtracting (l-co)g(n.j) and dividing by u gives,

(3) (̂n.) ^ h2(n.) .
^ *• • *•

But h2(n) < h^n) for all n . Therefore, A* using f2 expands all of the nodes
A " - . . - -

expanded by A* using f-j . This completes the proof of the optimality theorem.
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