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THEORY OF DISORDERED HEISENBERG FERROMAGNETS*

by Robert M. Stubbs

Lewis Research Center

SUMMARY

The theory of Heisenberg ferromagnets with distributed disorder is developed by a
method using double-time, temperature-dependent Green's functions. Disorder is in-
troduced by allowing the exchange interactions between spins to deviate randomly from
the mean interaction. The disorder is characterized by a parameter p which is pro-
portional to the mean-square deviation of the exchange interactions from the mean inter-
action. The equations of motion for Callen-type Green's functions are solved by using
Tyablikov decoupling, and an ensemble average is performed over systems with similar
disorder to provide an ensemble-averaged Green's function. From these disordered
Green's functions the densities of spin wave states are derived which, in turn, are used
to calculate the magnetic properties of disordered systems. Several specific systems
are investigated including disordered simple cubic, body-centered cubic, and face-
centered cubic systems with various spin values. The theory is also applied to mixtures
of the chalcogenides of europium, which are good examples of Heisenberg ferromagnets.
Disorder is shown to have a marked effect on the density of spin wave states. Modest
values of the disorder parameter can produce relatively large changes in the state den-
sity - in the form of enhancement of the low-energy densities and extension of the energy
band to higher values. The increase of the density of low-energy states due to disorder
is of the order (1 - p) ' , leading to a corresponding increase in the low-temperature
specific heat. The spontaneous magnetization of a disordered ferromagnet decreases
with rising temperature more quickly than for a crystal, and the Curie temperature is
shown to decrease linearly with disorder as 1 - p. Calculations for the low-
temperature region and for the higher temperature paramagnetic phase show that dis-
order effects are more pronounced in the low-temperature, ferromagnetic phase.

*The material in this report was submitted as a thesis in partial fulfillment of the
requirements for the degree Doctor of Philosophy at the University of Toledo, Toledo,
Ohio, May 1972.



INTRODUCTION

Until recent years, solid-state physics has been a narrower field of study than its
name suggests. Perhaps crystal physics would have described the field more accurately
since nearly all published literature on the physics of solids, both theoretical and ex-
perimental,, was confined to systems with translational symmetry. This is not surpris-
ing since the mathematical simplifications inherent in lattice symmetries are consider-
able. Nor did this state of affairs present much of a limitation since most materials of
technological importance had a crystalline structure.

In 1965, the first amorphous ferromagnet was discovered (ref. 1) and several more
were identified soon afterward (refs. 2 to 5). When they arrived on the scene, there
was virtually no theoretical understanding of what to expect when disorder was present
in a magnetic system. The fact that ferromagnetism is a cooperative phenomenon
makes even more intriguing the question whether disorder would significantly affect a
ferromagnet and, if so, in what manner. In a sense the ions in a ferromagnet are more
strongly influenced by the other particles in the system than in an uncooperative phase
such as a paramagnet. In a ferromagnet the magnetic moments act in concert to pro-
duce a more or less parallel alinement, while the moment directions in a paramagnet
are random and the net magnetic moment vanishes. One might ask if the introduction
of disorder would have drastic results on such cooperative effects. In its present state,
the theory of magnetism is not sufficiently developed to give a definitive answer to these
questions. It is the intent of this report to rectify some of this incompleteness by ex-
panding and generalizing the theory of mangetism to include the effects of disorder.

In this report the problem of disorder in a ferromagnet is treated by a Green's
function theory that incorporates disorder by allowing a randomness in the exchange
interactions coupling the magnetic moments. The advantage of the Green's function
method is that it gives good results over the entire temperature range (ref. 6). In the
interesting regions near T = 0 and near T = T£, the Curie temperature, and in the
high-temperature paramagnetic region. Green's functions for disordered systems are
derived and used to calculate such properties as the density of spin wave states, spon-
taneous magnetization, Curie temperature, and specific heat and their dependence on
disorder. These calculations are applied to systems of various values of spin and vari-
ous structures.

Some background material for this study is provided in the form of a brief sketch of
the present state of the art. It is of interest to know which types of disorder have re-
ceived attention, what techniques have been used, and which problems have been solved
and which have not. The formal theory of double-time, temperature-dependent Green's
functions is presented. These are the Green's functions most useful in statistical phys-
ics. These Green's functions are then used to treat the problem of a disordered Heisen-



berg ferromagnet. Specific disordered systems are studied; and, finally, general con-
clusions are drawn from the various systems investigated. The appendixes contain
some of the more lengthy derivations and calculations.

EARLIER WORK

The modern theory of magnetism has developed rapidly since 1926 when Dirac
(ref. 7) and Heisenberg (ref. 8) independently discovered the concept of exchange.
Classical physics had no way to explain the strong interactions between spins needed to
account for ferromagnetism. It was shown that exchange was a purely quantum mechan-
ical effect with no classical analog and depended on the overlap of the wave functions of
the electrons whose spin accounted for the magnetic moments. The energy of interac-
tion between a spin at site i and a spin at site j was shown to be. - J(ij)Si • Sj, the so-
called Heisenberg energy, where J(ij) is the exchange integral. Depending on how com-
plicated a ferromagnetic system is considered, the Hamiltonian might contain several
more terms. But the Heisenberg term is basic and can be derived from the fundamental
Coulomb interactions of the electrons together with the Pauli exclusion principle.

Bloch (refs. 9 and 10) analyzed the Heisenberg model of a ferromagnet by using the
concept of spin waves. A spin wave consists of a single reversed spin distributed co-
herently over a large number of otherwise alined atomic spins in a crystal. Dyson
(refs. 11 and 12) considered the interactions between these spin waves and derived a
low-temperature series expansion for the magnetization in powers of the absolute tem-
perature T. Other temperature regions were investigated by alternate methods. For
temperatures near the Curie temperature Tp, molecular field theory (ref. 13) was
used; and for high temperatures, perturbation theory (refs. 14 and 15) was employed to
give an expansion in 1/T. In 1959, Tyablikov (refs. 16 and 17) showed that double-time,
temperature-dependent Green's functions could be used to describe the Heisenberg fer-
romagnet over the entire temperature range. His results for a spin -1/2 system showed
agreement in the main terms with all three methods. The Green's function theory was
extended to treat systems of spin greater than 1/2 by Tahir-Kheli and ter Haar (ref. 18)
and by Callen (ref. 19). Several attempts (refs. 20 and 21) to refine their work have
been made since, most having to do with improved decoupling procedures.

The first investigation of a noncrystalline ferromagnet to appear in the literature,
either theoretical or experimental, was a 1960 paper by Gubanov (ref. 22) in which he
used a semiclassical method to demonstrate the possibility of the existence of amor-
phous ferromagnets. Since that time, there has been a steady growth in the study of
various types of disorder in magnetic systems. One of the first problems treated was
the case of an ordered Heisenberg ferromagnet in which one spin is replaced by an



impurity spin differing from the host atoms in either spin magnitude or exchange coup-
ling. This system has been examined in detail by Wolfrom and Callaway (ref. 23) and
by several others (refs. 24 and 25), all of whom showed the existence of a spin wave
mode localized on the impurity, in addition to a modification of the spin wave band of
the host lattice. Hone and Vogelsang (ref. 26) demonstrated that weakly coupled impuri-
ties produce low-lying spin wave resonances leading to specific-heat anomalies at low
temperatures. These results are valid only for low concentrations of substitutional im-
purities since interactions between impurities are neglected.

Handrich (ref. 27) studied amorphous Heisenberg ferromagnets by using molecular
field theory, which predicted a decreased spontaneous magnetization arising from fluc-
tuations in the structure of the system. A shortcoming of this approximation is its fail-
ure to show any dependence of the Curie temperature on these structure fluctuations.
Later work (refs. 28 and 29) within the same molecular field approximation using com-
puter experiments showed increases in the Curie temperature brought on by randomness
in the exchange interactions. This behavior is not that to be expected from other stud-
ies (refs. 30 and 31) that show disappearance of ferromagnetism above critical concen-
trations of defects.

Recently, Montgomery, Krugler, and Stubbs (ref. 32) treated distributed disorder
in a spin -1/2 Heisenberg ferromagnet by a Green's function method. This was the first
quantitative demonstration that disorder decreased the Curie temperature. Because
that work represents the preliminary part of this study, further comments on it will be
saved for later sections of this report.

GENERAL THEORY OF TEMPERATURE-DEPENDENT GREEN'S FUNCTIONS

Often one wishes to calculate the expectation value of products of operators, and a
powerful and elegant technique that accomplishes this involves the use of Green's func-
tions. We will consider the two kinds of Green's functions which are most convenient
in the statistical treatment of magnetic systems: the retarded Green's function G (t, t'),
and the advanced Green's function Ga(t,t'). The definitions (ref. 6) of these and the
notation used in their regard are

Gr(t,t') ^ «A(t);B(t')»r = -i0(t - t')<[A(t),B(t')]> (1)

G( t , t ' ) = «A(t);B(t')»a =if l ( t ' - t)<[A(t),B(t')]> (2)

where 6 is a step function,
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when x > 0
0(x) = <( (3)

J) when x < 0

and the square brackets are the usual commutator brackets. The angular brackets are
the symbol for an average over a grand canonical ensemble,

(t,}
< [A(t), B(t')]> ^ - - - - - - (4)

Tr(e-3C/kT)

where 3C is the Hamiltonian for the system. The A(t) and B(t) are operators in the
Heisenberg representation

A(t) = j(™/VA(0)e-m/K) = ei(3Ct/K)Ae-i(3Ct/K) (5)

and thereby obey the Heisenberg equation of motion

e] (6)
dt

In general, the operators A(t) and B(t) are particle creation and annihilation operators
or products of these.

There are some properties of these Green's functions that are worthy to note before
proceeding. First, neither of them is defined when t = t' because of the discontinuous
function 9. Secondly, G t t , t') and G0(t,t') are dependent on time only through t - t'.r «.
This is seen by writing the definitions in explicit form, using equations (4) and (5) and
making use of the commutability of operators under the trace sign. And, finally, the
averages involved in equations (1) and (2) are not taken over the vacuum state of the
system but over the grand canonical ensemble. And it is here that the Green's functions
receive their temperature dependence.

The advantage of Green's functions is that, once their solution is found, they can be
used to calculate various correlation functions, from which all the properties of interest
in a system can be derived. The equations relating correlation functions and Green's
functions are developed in a later discussion of spectral representations. Now, we are
interested in writing the equation of motion for the Green's function and finding its solu-
tion.

The time rate of change of the retarded Green's function is



iK— G (t,f) = K — (t - t') < [A(t), B(t')]> - i0(t - t')<[[A(t),3C], B(t')]> (7)r

Noting that

A 0(_ t) = - A 0(t) (8)
dt dt

we see that both the retarded and advanced Green's functions obey the same equation of
motion and the subscripts can be dropped. An integral representation for 0 involving
the Dirac delta function is

- f 6(t') dt'
•J-ao

(9)

allowing equation (7) to be rewritten as

iK-d «A(t);B(t')» = K 6 ( t - t ')< [A(t), B(t')]> + « [A(t),3C]; B(t')» (10)
dt

This equation contains two Green's functions plus an inhomogeneous term involving
a delta function which recreates the form of the usual classical Green's function equa-
tions. Classically, Green's functions are used to obtain the field caused by a point
source or a distribution of point sources, and the solution is generally an integral repre-
sentation involving the Green's function. In these cases the Green's function is a solu-
tion to a differential equation having an inhomogeneous delta function term. It is the
similarity of these equations with those like equation (10) that brought about the label
"Green's function" for the functions used in quantum field theory.

However, the Green's function on the right side of equation (10) has, in general,
more terms than the original Green's function; that is, the operator [A(t),3€] has a high-
er number of terms than does the operator A(t). To solve equation (10) exactly, one
needs to know this higher Green's function, <{ [A(t),3C]; B(t')» , which requires the solu-
tion of the equation

),K];B(t')» =B«(t - t')< [[A(t),3C], B(t')]> + «[[A(t),3C],3C];B(t')» (11)
dt

This introduces still a higher Green's function, <([[A(t),3C],3C]; B(t )>} , and it is clear
that we can generate an infinite set of coupled equations involving a hierarchy of Green's



functions of the form «[. . . [[[A(t),3€],3C],3C]. . . ]; B(t')» . Although the exact solution
for ((A(t); B(t'))) requires solving the chain of equations, one can sometimes make an
approximation that decouples the chain and leaves a finite number of equations which can
be solved. This is, in fact, the procedure we employ later when we discuss decoupling
more fully For the present, we assume that the chain typified by equations (10) and
(11) can be decoupled and a solution found for the Green's function. The question now is
how can G (t,t') and G (t,f) be used to find the quantities of interest in the system un-
der consideration. To calculate these properties from the Green's functions, use is
made of correlation functions and spectral representations which we discuss in some
detail in the following paragraphs.

When written out explicitly, the equations for G tt,t') and G0(t,t') contain termsr <t
like (A(t)B(t')}, which are averages over the grand canonical ensemble of products of
Heisenberg operators. They are called correlation functions and are extremely impor-
tant in statistical physics. When t * t', these averages are the time correlation func-
tions which are useful in the calculation of transport properties. At equilibrium, the
time correlation functions depend only on t - t' as do the double-time Green's functions,
again because of the commutability of operators under the trace sign. When t = t',
then,

<A(t)B(t)> =<A(0)B(0)> = < A B > (12)

These are the more usual correlation functions which are used to evaluate the average
value of the dynamical quantities associated with the operators.

To develop the spectral representations for the correlation functions, we carry out
explicitly the operation implied by the angular brackets, <. . .), using the sum over
eigenstates of the Hamiltonian of the system. We assume the set of states | ju ) , where

K|M> = E M | M ) (is)

to be complete and orthonormal so that we can rewrite equation (4) as

-E /kT
(A(t)B(t')) = Q~ 1 £(M|A( t )B( t ' ) |M>e M (14)

where Q is the partition function,

Q = Tr(e"3C/kT) (15)

The Dirac notation on the right side of equation (14) should cause no confusion with the
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angular averaging brackets on the left. We shall expand equation (14) further in the

same basis, 2J [ ") < "I > and use relation (5).

, , , , -i(E -E )(t'-t)/R -E /kT
(A(t)B(t')} =Q < M | A ( 0 ) | ^ < ^ B ( 0 ) | M ) e M e ^

M " (16)

Similarly,

TI i(E -E ,)(t-t')/R -E /kT,v<B(t')A(t)> =QT < M B ( 0 ) } < A ( 0 ) M } e e

M v (17)

By defining a spectral density,

E /kT / E P \
^ 6 [ w - -^ + -f£) (18)

\ R R /

we can rewrite equations (16) and (17) more compactly as

/"*
(A(t)B(t')) - / IARMeKw/kT e'iw(t"t?) du> (19)

/

•»

Ww

)

T IAB(.)e-""<'-''

1/-OO

(B(t')A(t)) = I A n ( w ) e - w - dw (20)

Expressed in this form, the spectral density I. B(w) is seen to be the Fourier transform
of the time correlation function.

The spectral representations of the time correlation functions, equations (19) and
(20), can be used to write the spectral representations of the retarded and advanced
Green's functions. First, we define the time Fourier transform of the Green's functions



/

oo

fi

, a
o s j e - - d E (21)

GJE)=J- / Gjt - t')ei(E/R)t dt
a

More explicitly, the time transform of the retarded Green's function is

> - (B(t')A(t))]ei(E/R)tdt (22)
2" JL*.

or, by equations (19) and (20)

GJE) =JL ^ dt 0(t) r dcoIAR(co)ei[(E/R)-w]VW/kT - 1) (23)r 27T J^ J_x
 AB

At this point we notice that the step function 0(t) can be represented in integral form

r<*> • M.
-i / p-""t

lim -i- / dw' -^
e-0 2?f / w' + ie

«/- OO

0(t) - lim ^i- I dw'-s e > 0 (24)
ie

That this integral representation has the properties of the discontinuous step function
can be verified by a contour integration and the theorem of residues.

The t- integration of expression (23) can be carried out with the help of equation (24):

/

^° /*OO /»OO . ,__ /-_ .V,
</T?/K ,,\t \ I I i(E/K-o>-o>')t

dt0(t)e l (E/fe-a;)t=^ / dw' / £— _ -dt
2n I I wf + ie

) J - 00 I/- OO

6 E -

= (25)
1€ — - co + ie

fi



We used here the identity

=— f
2n J-°°

'ixy6(x) = — e ' d y (26)

Substitution of equation (25) back into equation (23) gives for the retarded Green's
function

-1 (27)

By the same procedure the advanced Green's function is

(28)

These are the spectral representations of the Green's functions.
Now consider E to be complex. Inspection of equations (27) and (28) shows that we

can consider G^E) and G0(E) as one function which has the properties of the retarded
I ct

Green's function when E is in the upper half-plane and the properties of the advanced
Green's function when E is in the lower half-plane. That is,

(a))(ehVkT . 1}

(29)
< 0

G(E) can be considered as a single analytic function having singularities along the real
axis. The retarded Green's function is analytic in the upper half-planej and the ad-
vanced Green's function is analytic in the lower half of the energy planel This analytic-
ity follows from a theorem (ref. 33) which states that the complex function G(E) has
analytic continuation in the upper (lower) half of the complex E plane if its Fourier
transform G(t) vanishes at t < 0 (t > 0). So the functions 0(t - f) and 0(t' - t), which

10



act to cut off the retarded and advanced Green's function when t < t' and t > t', re-
spectively, are the necessary and sufficient conditions for the analytic continuations in
the complex E plane.

It is interesting to see the information that can be gained in crossing the cut along
the real axis. That is, by taking the difference in the values of G(E) just above and
below the cut, we can evaluate the spectral density, which in turn allows us to calculate
the correlation functions. From equations (27) and (28)

G(E + ie) - G(E - ie) =^i I do>IAT»(eKw/kT -
AB

(30)

Noting that the Dirac delta function can be written

6(x) = lira -i- [— —\ (31)
e—0 2ff \x + ie x - ie/

equation (30) becomes

/T7\ IT /b-T

(32)G(E + ie) - G(E - ie) = UAB(-} (eE/kT - 1)

Equation (32) is an important relation. If the equations of motion of G(E) can be
solved, we can use equation (32) to obtain the spectral density I.B(E/R), which can be
used in equations (19) and (20) to produce

ftoo

i / G(Ka) + ie) - G(no, - i
I RcoAT i

C/-00

<A(t)B(0)> =i G(Ka) + ie) - G(no, - ie) GBcVkT e-ioit dft) (33)

< B(0)A(t)> = i n-a, + i e - n a > - i e e-iwt dw (34)

We have, finally, in equations (33) and (34) the relations by which we can calculate
time correlation functions from the Fourier transforms of the Green's functions. In the
case of the simpler correlation function < BA> , equation (34) is

11



/

o

o

G(K&)+- ie ) - G(Kco- ie ) dw (35)

The decision of how to define the Green's function for a particular physical problem will
depend in large measure on these last three equations. One wishes the correlation
function <BA> to be a meaningful, important property of the system under study; and
this will dictate the choice of operators B and A, from which the Green's function
<(A(t);B(t')» is defined.

DISORDERED HEISENBERG PER ROMAG NETS

Equation of Motion

Ferromagnetism is a cooperative phenomenon, and it is this fact that makes a fer-
romagnet so interesting physically and statistically. The direction of the spin of a mag-
netic moment is influenced by the field of other spins of the system, and the field from
that spin in turn affects the other spins . As discussed in the section EARLIER WORK,
the fundamental interaction responsible for ferromagnetism is the exchange interaction
of the form J(f, g)S, • S . In this expression, S* and S are the spin operators asso-
ciated with sites f and g, and J(f,g) is the exchange integral between these sites. For
a ferromagnetic interaction, J(f , g) is a positive quantity. The Heisenberg model is a
collection of magnetic moments, every pair interacting by exchange. The Hamiltonian
for the Heisenberg model is the sum of these interactions.

' Sg - HgjuB sf (36)

g f

Since each pair of sites is counted twice in the double sum, the factor 1/2 is present.
The second term of the Hamiltonian is the Zeeman term with the external magnetic field
H assumed to be parallel to the z-axis, g is the Lande g-factor, and jUg the Bohr
magneton. Representing the spin operators in terms of their components

S* - Sx ± iS]f (37)

puts the Hamiltonian into the form

12



\ ~ Z Z
f g

J(f>g)[i ^ + SgSf~) + SfZsfl~ HSMB Z SfZ (38)

These components obey the commutation relations

(39)

For a system of spin-1/2 particles where each spin is in one of two possible config-
urations, Sz = K/2 or Sz = -K/2, a very suitable Green's function is one of the type
used by Montgomery, Krugler, and Stubbs (ref. 32), «s£(t);S~(tf)» . From this choice
of Green's function the correlation function <S7st) can be calculated by equation (35).
Since, from elementary quantum mechanics,

9

S"S+ = S(S + 1)K2 - (sz) - KSZ (40)

for the spin-1/2 case,

2
S"S+=— - KSZ (41)

2

That is, <Sj St) is directly related to the magnetization. For spins higher than 1/2,

there is ambiguity in the term (sz) of equation (40) which makes «Sj(t);S"(t'))) an
unsuitable Green's function for spins greater than 1/2.

The Green's function we have chosen to develop the theory of disordered ferromag-
nets of any spin value are those used by Callen (ref. 19) in his extension of the Green's
function theory of crystalline ferromagnets to general spin:

Cfc(t)s ({St(t);e~~gs;}} (42)

The t' associated with Sz and S" has been set equal to zero. The superscript a is
a parameter which will become useful only when generalizing the theory to systems of
spin S greater than 1/2. The special case a = 0 will be the most important one when
using the Green's function to calculate properties of the system.

13



To study the time development of this function in the Heisenberg model, we write its
equation of motion

dt
(43)

The averaged value of the commutator we label O(a).

aS
Sf (44)

Note, that for a = 0, 0 is related to the magnetization a - <SZ)/S.

= 2K

Commuting St(t) with the Hamiltonian allows equation (43) to be written

iKAG a
g(t)- HgMBKGa

g(t)

(45)

(f, h)G* hg(t) - R ̂  J(f, h)G^ fg(t) = R6(t)6fg6(a)
h ' h

(46)

where

(47)

The appearance of higher order Green's functions Ga u_(t) in the equation of motion
a ' °for G. (t) is an expected development after the discussion of the general theory. We

could, of course, write equations of motion for these higher Green's functions and these
would introduce still higher order functions. Before talking about ways of decoupling
this chain of equations we introduce the Fourier transforms of the functions in equa-
tion (46):

14



Ga Jt)

G*
/

oo
y-iA.
\jf

oo

8(t) =
i f e- i (E/K)td /E

(48)

Substitution of equations (48) into equation (46) allows us to express the equation of mo-
tion in terms of Fourier components of the Green's function:

EGjg(E) = HgnBliGjg(E) - fi^JC.
h

hg (E) - ^-6fg0(a) (49)
ZtTl

The obvious way to decouple the hierarchy of equations for the Green's functions is
to find a way of representing higher functions in terms of lower order functions. This
procedure presents a finite set of equations which can generally be handled. In most
instances (refs. 16 to 21) the set of equations is cut off after the first equation by a de-
coupling approximation that represents a second Green's function (i.e., one with three
indices) in terms of the first, doubly indexed, functions. One gets the impression that
some of the decoupling approximations which have been used were not developed a priori
from considerations of the physics of the system but that the first criterion was to pro-
duce an approximation that would make the mathematics tractable. Plausibility argu-
ments can sometimes be offered as to why the approximation might be expected to be
valid under certain conditions (of temperature, e .g.) and the results of these calcula-
tions do indeed compare favorably with exact results in many circumstances. But, the
statement (ref. 18) of a decade ago that "the philosophy and justification of the decou-
pling procedure is still far from being well understood" is only slightly less true today.

We decouple in the manner first employed by Tyablikov (refs. 16 and 17) by making
the approximation

for (50)

which is equivalent to the statement

15



(sz(t)SJ(t);e for f * h (51)

This approximation replaces the average of a product by the product of averages. For
aSz

example, if f * g, then Sz will commute with the operator e gS~ and

Sz(t)S+(t),e
aS

(Sz(t)
aSz

Sj(t),e gS- (52)

In this case, equation (51) replaces the average of the product of the operators Sz(t) and
aS

Sn(t),e ZS,g by the product of the averages of these operators. This is sometimes re-

ferred to as ignoring the fluctuations in S*, but this is not literally true. What the
Tyablikov type of decoupling ignores is any spin correlations between sites f and h
and between sites f and g, while uncorrelated fluctuations in Sz are treated correctly.

The effect of equation (50) is to reduce to one the types of Green's functions in the
equation of motion

E - - R(SZ> Ga
g(E) + J(f, h)Gjg(E) = A 6 0(a) (53

Having purged the equation of motion of higher Green's functions, we can simplify equa-
tion (53), conceptually at least, by considering it a matrix equation

AG = (54)

where

©(a)
<SZ)
G(a) (a)

(55)

and 1 is the unit matrix.
The indices in these equations are lattice site labels; and so for a perfect crystal

the property of translational invariance would be exploited to solve equation (53), which
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we can do quickly. If we call the Green's function for a perfect crystal T, we would
write its spatial Fourier transform as

=i y ei(f-g).i
N 2_-f

N/ j

k

£g

(56)

where k is a reciprocal lattice vector. When substituted into equation (53), these re
lations (56) yield

Ta(E) -
E - E

(57)

where

- /(k ) (58)

and

(59)

f-g

The Green's function ra (E) has poles on the real axis at E = E . These are the
k k

eigenvalues of the Hamiltonian, the energies of the elementary excitations of the system.
From equation (32) the spectral density I. g(u>) will have 6-function singularities if the
Green's function has poles only on the real axis. In this case, from equation (19) the
correlation function will oscillate only at the frequencies E-./K. In our case the corre-

k
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lation function for a = 0 is (S~S*(t)} and its frequency of oscillation is that of the corre-
sponding spin wave.

In a disordered ferromagnet, translational symmetry is absent and so the technique
of expressing things in reciprocal lattice space, or k-space, is not available to us. The
solution for the disordered case which follows uses the method of reference 32 and is

r\

expressed in terms of r__(E).

Introduction of Disorder

Before proceeding, it would be beneficial to define more precisely what is meant by
the term disorder in our context. We have stated that a Fourier transform into k-space
would be disallowed for equation (53) if translational symmetry were absent. To be
more complete, we should say that even in a symmetric lattice the Fourier transform
that yielded Ta (E) in equation (57) would not be valid if the exchange interactions werek _ _
site dependent, that is, if J(f, g) depended on both indices and not just on rf - r . So,
another type of disorder which can be discussed is a randomness in the value of ex-
change interactions. Certainly, it is difficult to conceive of a system with positional
disorder that did not also have disorder in the J's since the exchange integral is very
sensitive to the interatomic distance, but the converse is quite conceivable. Substitu-
tional impurities in a perfect-crystal lattice would preserve positional symmetry while
producing disorder in the interactions. The disorder to which we will be directing our
attention is a randomness in the value of the exchange integrals with or without position-
al disorder. The requirement on the position of the spin sites is that their ensemble-
averaged positions (the ensemble average performed over systems with similar disor-
der) possess lattice symmetry. This requirement implies that the members of the
ensemble must be topologically equivalent. Topological equivalence means not only
that a one-to-one correspondence of spin sites be preserved throughout the ensemble,
but also that the number of near neighbors of each spin of each ensemble member re-
main the same. Specifically, this study investigates the cases where the ensemble-
averaged spin sites have simple cubic (sc), body-centered cubic (bcc), or face-centered
cubic (fee) symmetries.

What does it mean to take ensemble averages over systems with similar disorder ?
A way to depict the disorder in a system graphically is shown in figure 1, where the
number of exchange interactions per unit energy of strength J is plotted against J.
The case of a perfectly ordered ferromagnet with nearest-neighbor interactions of
strength J would be represented by the delta function spike, (1/2)ZN6(J - J ), where
Z is the number of nearest neighbors, or coordination number, and N is the number
of spins in the crystal. The dashed curve might represent a disordered ferromagnet
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Disordered /
ferromagnet-\J

f- Perfect crystal,

| ZN6U - J°)

J°
Strength, J

Figure 1. - Distribution of exchange interactions.

whose exchange interactions are distributed randomly about a mean interaction, say J .
Those systems whose exchange distributions match this curve would be said to have
similar disorder, and an ensemble whose members have identical curves is the kind of
ensemble we refer to when performing our averages. We assume, also, that the disor-
der is distributed throughout the ferromagnet and that deviations are not correlated over
finite distances.

It is not necessary to know the exact distribution function, 77(J) of figure 1, to be
able to calculate quantitatively the effects of disorder in a magnetic system. This work
parameterizes the distribution of J-values by two quantities, a mean value of the ex-
change integral J (f, g) and the mean-square deviation from this mean. We shall char-
acterize the amount of disorder in a system by a disorder parameter p which is related
to the ratio of the mean-square deviation and the mean:

J- J1

(60)

With respect to figure 1, p might be thought of as a measure of the width- height ratio of
the distribution function curves. Having defined disorder, the task now is the solution of
the equation of motion for a disordered ferromagnet (eq. (53)).

Equation (54) is the equation of motion reduced to matrix form. For the case of a
perfect crystal this equation is
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A°f = 1 (61)

where the superscript on the linear operator A indicates perfect order. We define a
matrix

A = A° - A (62)

Simple manipulation of equations (54), (61), and (62) leaves

A°G - AG = 1 (63)

• *> *. n *•
Since T commutes with its inverse A , operating from the left with T changes equa-
tion (63) to a Dyson equation

G = f + TAG (64)

or

G - T + TAP + TAFAF + rAFAFAr + . . . (65)

We wish to obtain an ensemble-averaged Green's function (Ga (E)> , which is done by
performing an ensemble average over systems with similar disorder. Since Fa(E) is

. k
the Green's function for the perfect- crystal (or zero disorder) case, (T) = T ; and so
the ensemble average of equation (64) is

<G> = f + f (AG) (66)

which we can put in a Dyson form

<G) - f + f S<G> (67)

where S, the "self-energy" is

(68)

This allows us to express ( G) in terms of f and the self- energy:

<G> = (1 - fs^f (69)
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The quantities { G) and S are translationally invariant because they are ensemble-
averaged quantities and, as such, are diagonal in k- space. The Fourier space transfor-
mation that effects this diagonalization yields

<G a(E)>_ =
k

1-1
(70)

Evaluation of S_jE) will allow us the solution to the ensemble-averaged Green's function

<Ga(E))_ k

jj
Upon ensemble averaging, equation (65) becomes

< G) = r + r < A) r + r < AF A) r + r < AF AF A> r + . . . (71)

where A involves the differences in the values of the exchange integrals between the
perfect and disordered systems. If we assume the deviations of the J^'s from the
mean to be symmetric, all ensemble-averaged quantities in equation (71) involving odd
powers of A will vanish.

( A ) = 0

(AFAF A) = 0

(AfAFAf AF A) = 0 (72)

This assumption defines F as the Green's function for a perfect crystal whose exchange
interactions are the mean interactions of the disordered ferromagnet, which we call the
corresponding perfect crystal.

Now, we make the approximation

s <AF A) (73)

~ n
which in equation (71) is equivalent to replacing (A ^ by (A ) . We have carried out
the ensemble averaging of equation (73) in appendix B. In the difference matrix A, we
designate the deviations from the mean exchange interaction as
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j ( f ,g ) = J.(f,g)- J°(f,g) (74)

and the ensemble averaging involves use of the relation

<J(f,g)J(M)> = J ( f , (75)

o
Here j (f, g) is the mean square deviation for the exchange interaction between sites f
and g and is proportional to the disorder parameter p (eq . (60)). Using relation (75)
in equation (73) gives

(76)

The diagonalization of S has also been performed in appendix B. In reciprocal
lattice space the self-energy becomes

(s°)a - z£ =
\ / kk 8(a)

_
IV" r_,[2/,(0) - 2/2 (k) - 24/2(k l) + /,(k + k") + ^ - k ' j l
N^ k L^2 ^2 2 2 2 J

k (77)

As shown in appendix B, when applied to the three cubic systems with nearest- neighbor
interactions, equation (77) simplifies to

Ea ( E ) =_2£p_E^l
k R0(a) k N / E -

(78)

We can now write the Green's function for the disordered system explicitly in terms
of the eigen energies of the corresponding perfect crystal. Using equation (78) in equa-
tion (70) gives
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k 2?7

This is the Green's function which we will now employ to study the effects of disorder on
a ferromagnet.

Density of States

Having finally solved the Green's function for a disordered ferromagnet in equa-
tion (79), we can immediately use it to calculate the density of spin wave states g(E).
This is a quantity of central importance in the calculations of the magnetic properties
because it allows sums over k-states, triple integrals, to be replaced by a single inte-
gration over the energy of these states. For example, we will later wish to calculate
the magnetization' a, which involves summing the quantity exp(E_/kT) -1 " over allL k J

k 's. This is generally done by an integration over the first Brillouin zone,

2/r/a

dkx dk.. dk

(80)

where v is the volume of the unit cell. Alternatively, this sum can be performed with
a significant saving of time and effort by

(81)
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The density of states here is the fraction of the total number of spin wave states per
unit energy that have energy E.

For a given crystal structure the energy of a spin wave in zero field depends on k
and the temperature T. The T dependence comes in by virtue of the presence of (S2)
in the expression for the energy, and (Sz) decreases with increasing temperature.
Dividing the spin wave energy by (Sz) produces a temperature-independent "energy"
that depends only on k . There are computational advantages to normalizing the spin
wave energies in this fashion since we shall be dealing with systems of various geome-
tries and spin values. We define a dimensionless energy

x_ =
k fi(Sz)J'

x =
R(SZ\ T.

(82)

For a specific symmetry, g(x) will be unique, whereas a g(E)-against-E curve would
be valid.only for a particular S and T. J' has the same units as an exchange integral,

_2
(Energy) x (Angular momentum) , and is dependent on the system under consideration.
In systems with nearest-neighbor interactions only, for example, J' has the following
values for simple cubic, body-centered cubic, and face-centered cubic geometries.
From appendix A,

Jsc - 12J

Jbcc = 16J

Jfcc = 16J-

(83)

where J is the nearest-neighbor exchange interaction.
The Green's function (G (E)_) is a natural function from which to derive g(x) since

k
it is also independent of temperature. To show this, we can substitute equations (45),
(58), and (82) into equation (79). This gives for the zero-field Green's function,
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k 7rJT

x - x_ - px_ —
k kk* N / x - x«,

/—/ k

(84)

a function which depends only on k and x for a given system and not on T or S.
To derive g(x) formally, we go back to the Green's function of a specific disordered

system and recast the diagonalized form of equation (54) as

G
°

6 a/3

2R2(SZ)

2n J' v RX ~ "

(85)

a

where B - are the elements of the matrix

R - 1
Of, =

fh 2K
£ j & j ) - j(f ,H)j

(86)

after diagonalization. Calling the discontinuity in G at the real axis in the energy plane
the "imaginary part" of G, that is,

= lim i[b(E + ie) - G(E - ie)l (87)
e-0 L J

we note that

(88)

The trace of the imaginary part of the Green's function, then, is the density of spin wave
states

2R N N J1
(89)

a

Obviously, g(x) is normalized, since there are N eigenvalues B .
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g(x) dx = - M x - ^ B j d x (90)

When the per feet-crystal Green's function (eq. (57)) is substituted in equation (89),
the density of states for the ordered system becomes

g (x) = £-1 Tr 9m r°(E) = ~
u 2KN k N

(91)

Equation (91) is evaluated for lattices of sc, bee, and fee symmetries in appendix A.
The evaluation involves replacing the sum over k states by a threefold integration over
the first Brillouin zone.

Finding the density of states for a disordered system g.-.(x) is more complicated
0 0since ( G (E)} __ is more complicated than T __(E) . Using equation (79) in equation (89)

gives k k

gn(x) = lim — -
-+0 2n N

x +

1

x - ie - x_ - /:
k

> ~ > \JX_ >
k N /

•^ x^,
k

x - ie -
-/

x-'/
k /

(92)
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The self-energy term that appears in the disordered Green's function adds complexity to
the problem in that gfl(x) cannot be written as a sum of delta functions. Before summing
the two terms inside the parentheses of equation (92), it is advisable to rewrite the sum
in the self-energy term in a different form. Using the perfect crystal gn(x) just calcu-
lated,

V^ x- C x'e <x->i ) —s—= /_!»±L
N / x ± ie - x_, / x ± ie - x'

/ V v «/

dx' (93)

-»t
k

From the theory of functions of a complex variable (ref. 34), we know that

/

x'g0(x') />x'g0(x') _
dx' = P I dx' + i7rxg0(x)

x - x' ± ie / x - x'
(94)

where the P before the integral sign indicates the Cauchy principle value. Now, equa-
tion (92) can be written

where

gp(x) =

pxgQ(x) I
N / / \2 / \2

Z—/ R x,x_ + I x,xj
IT \ k/ V k/

N4—f L \ k
k

for 1 < x

for 0 < x <

(95)
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l\x, x_\ = npx^

(96)

Replacing the sum over the first Brillouin zone in equation (95) by an energy integration
involving the density of states puts gQ(x) into a form more convenient for computational
purposes:

gp(x) =

f x'g0(x')
pxg0(x) /

J R(x,xT+ I(x,x')
dx' for 0 < x <

(97)

/*g0(x')6[R(x,xt)] dx' for Kx

where the vector sum in R(x,x') has also been replaced by an integral:

x"gQ(x")
R(x,x') =x- x1 - px'P / z dx" (98)

X - X'

Equation (97) is the density of spin wave states for a disordered ferromagnet, the
quantity that will allow us to calculate the effect of disorder on magnetic and thermody-
namic properties. But gfl(x) is important and interesting in its own right since it shows
the manner in which the energy states are redistributed when disorder is introduced in
the lattice. The physical insights gained from studying density-of-states curves are
helpful in determining when disorder will and will not be important.

Although we discuss in detail the density-of-states curves of the three cubic struc-
tures with and without disorder in the section APPLICATION TO SPECIFIC SYSTEMS,
there are general remarks and observations which can be made at this stage. For ex-
ample, the shape of the density-of-states curve at low energies is important in the cal-
culation of low-temperature properties since in Boson systems it is only these low-
energy states that are occupied when T — 0. We can get information concerning the
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low-energy states in the disordered system by investigating <G°(x))k in the limit of
small x. Since

= -1 (99)

the Green's function for small x can be written

<G°(x)>- « -5 1 (100)
k x-0 jrJ' x - x_(l - p)

k

The poles occur when x = (1 - p)x,. Another way of stating this is that the introduction
of disorder has scaled the energy of the lowest eigenstates downward by the factor 1 - p.
There are more spin waves, then, at lower energies in the disordered ferromagnet, and
we would expect g0(x) to be accordingly larger than gn(x) for x near zero. We can be
more quantitative about this effect without becoming too complicated.

At low energies the dispersion relation for any crystal must be quadratic

x_ K CjT 2 for small k (101)
k st

where C^ is some constant which depends on the lattice structure. In this low-energy
domain we can calculate the density of states by integrating over a small sphere of
radius k..:

2\
47rk2(x - C JT 1 dk = 3- ^ (102)

Sr / 2C3/2k3

st 1

The quadratic dispersion relation results in square-root behavior for the density of
states at low energies. If these lowest states had their energies scaled downward by the
factor 1 - p,

_3
xk = (1 - p)cstk
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what would be the effect on the density of states? Going through the procedures of equa-
tion (102) again yields

gp(x) - (1 - p)-3/2g0(x) (104)

The effect of disorder on the low-energy density of states is to increase the density by
(1 - p) ' . This is an important result of the theory, and this factor will reappear
when discussing low-temperature properties such as magnetization and specific heat.
This increased number of low-energy states is a reflection of the decrease in the ex-
change coupling between some pairs of spins that comes about with the introduction of
disorder and the corresponding decrease in the spin wave energy.

There will be pairs of spins in a disordered ferromagnet that are coupled more
strongly than any in the corresponding perfect crystal. We would expect, therefore,
that there are spin wave states in the disordered system with energies higher than any
in the ordered system. Inspection of equation (97) does indeed show that g0(x) can be
finite above x = 1; whereas, gn(x) = 0 for x > 1.

We can make additional general remarks concerning the effects of disorder on the
density of states in regard to the moments of gD(x), where the n moment of gfl(x)
is defined

xngp(x) dx (105)

Obviously, the zeroth moment is unaffected by p since gfl(x) is always normalized by
the way the density of states is defined. The same is true of the first moment; that is,
the average spin wave energy does not change with disorder. We can show this with the
help of equation (89)

/ xg (x )dx= / xl
I I N Z

J J &

Jx=^i > B,, (106)
J1 / J1 N

The average spin wave energy is seen to depend on the trace of matrix B defined in
equation (86), a quantity depending only on the average exchange coupling which is inde-
pendent of the disorder parameter p.

The negative first moment, however, does depend on the amount of disorder. We
will show later that this quantity is proportional to the reciprocal of the Curie tempera-
ture. In the same manner as above and using equation (85),
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O*| Y 1&V A /~ Tr G°(0) (107)
2RN '

The trace of the Green's function at zero energy, then, is proportional to the negative
first moment. If we evaluate this for the ensemble-averaged Green's function (eq. (84)),
we get

(108)

That is, the minus first moment varies with the amount of disorder as (1 - p)~ .
To summarize, then, even before investigating the density of states of specific sys-

tems and their relation to disorder, we have been able to deduce several general fea-
tures:

(1) We expect the low-energy portion of the g.(x)-against-x curve to get larger
0/9 P

with increasing disorder as (1 - p) ' .
(2) We expect gD(x) to extend above the energy band of the perfect crystal.

With these changes of shape:
(3) The area under the curve will remain unchanged.
(4) The average energy will remain unchanged.
(5) The negative first moment of the curve will vary with disorder as (1 - p)~ .

It is interesting to see how these observations are verified later in the detailed density-
of-state calculations.

Correlation Functions for Spin Greater than 1/2

Having found the Green's function for a disordered ferromagnet, the central problem
becomes the derivation of the corresponding correlation function from which we hope to
calculate the magnetization, or <SZ) . The correlation function that equation (34) allows
us to calculate from the Green's function (79) is the spatial Fourier transform of

/e gS~Sf(t)V which we label
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i e ) > _ - < G a ( E - i e ) > _
k k -i(E/K)t

\kT,

Substitution of equation (79) into this equation would allow the straightforward calculation
of 4/(k,a), but this correlation function is useful for the S = 1/2 case only. For ex-
ample, for a = 0

(110)
N/

k

Setting t = 0 and f - g gives, for the spin-1/2 system, the magnetization as discussed
in equations (40) and (41):

2
n(sf) =?-- <s~(o)s+(o)> (ill)

For systems with S > 1/2, however, the magnetization cannot be calculated from
;Z/(k ,a) as it stands. The added complexity inherent in higher spin systems results from

z 2the ambiguity in the < (S ) ) term in equation (40), which we repeat here for convenience:

, 2 // 7\2\ z/ o CV\ O/O 1 \fc'' / I O^-
1 1 \ t:/ O^\ /1 1 O A(S fSf) = S(S + l)fi - ( S f > - h Y S f ) (112)

This term is not a variable when S = 1/2 since it has the same value for the two pos-
sible spin configurations. Callen (ref. 19) has developed a technique for crystalline sys-
tems that enables one to relate (SlSl) and O(a) to <S?) for any spin value. We can use
some of his results to extend the theory of disordered ferromagnetic systems to higher
spins. The technique involves utilizing the dependence of i//(k,a)and 6(a) on the pa-
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rameter a and the solution of an auxiliary differential equation in a. Only the essen-
tials of the Callen method are presented here.

The correlation function that is of main interest is the Fourier transform of equa-
tion (109), specifically the case where the site labels are the same and t = 0,

(113)

The dependence of the right side of equation (113) on a is contained in O(a), which can
be factored out to leave

/ f +\
(e fSfSJ \ = 6(a )* (114)

where

x_,
^ E - i€ - E. - pE .

x + ie - x_, k k

exp -5- - 1
VkT/

-T-5^k N / x - if - x_,
£—' k

(115)

The technique is to represent equation (114) as a differential equation by writing both
* TJ \ * ~as? - ASjSf) and 0(a) in terms of derivatives of (e L ) with respect to a. This differen-

tial equation is
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aSz^
-^ (e f )- S(S+ l)fi'(e L \=0 (116)

da2 \ / (1 + $)eaR - * da

which has for its solution

asf
(e

Finally, (S2) comes from equation (117) by differentiation.

<Sz> = -d /eaSZ\ = fi (S - *)(! + $)2S+1
 + (S

da \ /a=0 (1 + *)2S+1- 4^

By this equation one can solve for <SZ) self-consistently for any spin.
The $'s in equation (118) are the analogous quantities in a disordered system to

Callen's perfect-crystal $'s, which we call $ . We define * as the sum in k-space
of the occupation numbers exp(E__/kT) - 1 " for spin waves with reciprocal lattice

L k J

vectors k . This can be expressed in terms of the density of states as

(119)

where gg(x) is the crystal density of states. Equation (115) defining $ for a disordered
system can easily be put into this form with the help of equation (92):

$= I £ =$(p,T) (120)
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APPLICATION TO SPECIFIC SYSTEMS

In the preceding main section the general theory for disordered ferromagnets was
developed. This included the derivation of a Green's function and the resulting density
of states for disordered systems. These quantities allowed the self-consistent evalua-
tion of the magnetization. The theory has been developed to a stage where we can now
study in more detail the effect of disorder on specific systems. Which properties and
which structures are affected most by disorder and in what temperature range ? Is the
spin value important and what does the theory predict in the case of substitutional dis-
order as in the mixed chalcogenides of europium ? These and other questions are
treated in this section.

Cubic Systems

Density of states. - From equation (97) the density of spin wave states for a disor-
dered ferromagnet can be calculated provided the density of states of the corresponding
perfect crystal is known. We have calculated the density of states for sc, bcc, and fee
crystals, ggc(x, 0), gbcc(x, 0)and gfcc(x, 0), respectively, and shall summarize these
calculations here. A more detailed version of these calculations is presented in appen-
dix A. The technique of Bowers and Rosenstock (ref . 35) was employed in these calcu-
lations in which the density of states is written as

g(x)=l V 6/x- xj) (121)
N /.^ \ k/

The dispersion relation, the energy's dependence on the wave vector k , is substituted
in the argument of the delta function; and the sum over k- states is replaced by three in-
tegrations in the usual way. The dispersion relations for the normalized, dimensionless
energy defined in equation (82) are, for nearest- neighbor interactions,
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x^ = — - (cos ak, + cos ak + cos ak,) for sc crystals
k 2 6 * y z

1 1 / 0 o a \
s_ = — - [cos - k cos - k cos - k_| for bcc crystals
k 2 2 \ 2 X 2 y 2 Z /

?_ = (cos - k cos - k + cos - k cos - k + cos - k cos - k
k 4 4 \ 2 x 2 y 2 y 2 Z 2 Z 2 X

(122)

for fee crystals
^

where a is the edge length of the unit cube.
Performing the first of the integrations implied in equation (121) results in an inte-

grand for the second integration that can be put into a standard form of a complete ellip-
tic integral (ref. 36) of the first kind. The final integration was performed numerically
on an IBM 7044-7094 using Gaussian quadrature and, where functions were smoother,
Simpson's method.

The densities of states for perfect-crystal sc, bcc, and fee ferromagnets are shown
in figure 2. Notice that singularities appear in all three spectra. For both the bcc and
fee cases the density of states has logarithmic singularities, and there are discontinu-
ities of slope in the sc and fee spectra. The slope discontinuities at x = 1/3 and
x = 2/3 on the sc curve and at x = 3/4 on the fee curve all occur where the density of
states has square-root behavior with slope approaching infinity. These are the familiar
van Hove (ref. 37) singularities that appear because of the periodicity of the lattice.

When disorder is introduced in a ferromagnet, the density of states undergoes a
more or less continuous change of shape, so that, at small values of the disorder pa-
rameter, gfl(x) is very similar in appearance to g/j(x). Exceptions to this continuous
change of go(x) with p occur where there are infinities in g/j(x). These infinities be-
come finite when p becomes nonzero. The reasons for this will be discussed shortly.
The most noticeable general effect of disorder on the density of states is to enlarge the
number of spin wave states at lower energies, to decrease the number in the upper por-
tion of the perfect-crystal energy band, and then to extend the maximum energy to high-
er values. These features can be observed in the energy spectra of disordered systems,
figures, where ggc(x,p), g, (x,p) and gfcc(x, p) are plotted with respect to x for
various values of the disorder parameter p. All the shape changes that depend on dis-
order are caused by the self-energy term, from which all p-dependence originates. A
closer look at this term would be useful.

We recall that p came into the disordered Green's function (79) through a term
which mixed the energy variable x and the eigenvalue x^, the so-called self-energy,
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Figure 2. - Density of spin wave states for perfect ferromagnets as function of reduced energy.
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Figure 3. - Density of spin wave states for disordered ferromagnets as function of reduced energy.
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(123)

With its linear dependence on the disorder parameter, the self-energy vanishes with
disorder, reducing the disordered Green's function to the perfect-crystal function. Re-
placing the sum by an integration allows us to rewrite the self-energy as

= pxj-1 + xA(x)l (124)
kL J

where

r MXT)> / — dx'
I x- x'

JQ
(125)

The function A(x) is the sum over all the perfect-crystal eigenstates of the reciprocal
of the difference in energy of the variable x and the eigenenergy x,. We would expect,
then, A(x) to be negative for x near the low end of the energy band; to be positive for
x near the high end of the band; and to fall off to zero like x as x became larger
than x = 1, the perfect-crystal energy maximum. Figure 4 shows these features of
A(x) for the cubic lattices. The function -1 + A(x) , which contains all the x-dependence
of the self-energy, is also plotted in the same figure.

From these plots it can be seen that A(x) has discontinuities in slope at the same
energy values where slope discontinuities appear in grj(x). Notice also that A(x) and
gg(x) have infinities at the same energy value. By writing the expression for the disor-
dered density of states (eq. (97)) in a way that mentions A(x) explicitly, it is easier to
see the effect of the critical points of the self-energy on gD(x).
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/

l x'gn(x') dx'
9

(x-x '{ l + p[-l + xA(x)]))2
 +

0 < x < 1
12[7rpxg0(x)x']'

{l + p[-l + xA(x)]}-1gJ- _* ^ Kx

(126)

In the region 0 < x < 1, gp(x) appears as gQ(x) modulated by an integral function
of x. Since slope discontinuities will appear in the integrand only at energies where
they appear in gQ(x), g«(x) will exhibit discontinuities in slope at the same values of x
but at an altered value for the state density. In this same region, the perfect-crystal
energy band, a more dramatic change occurs where gn(x) has infinities, that is, at
x = 1/2 in the bcc system and at x = 1 in the fee system. Since A(x) exhibits the same
type of singularities at these points, inspection of equation (126) shows that the inte-
grand, with the square of A(x) and gQ(x) in the denominator, becomes vanishingly
small. This results in a depression of g (x) near these values of x at finite values of
p. That is, the introduction of the smallest amount of disorder causes the density of
states near these critical points to change from logarithmically infinite behavior to a
decay to zero. Figures 3(b) and (c) show that the energy range over which this depres-
sion in go(x) occurs is small for minor disorder and grows with p.

We have observed that the maximum allowable spin wave energy becomes larger as
disorder is introduced. The behavior of g0(x) at energies above the perfect-crystal
band (i .e. , at x > 1) is related to the factor {l + p[-l + xA(x)]}~ , which modulates
both the function g^ and the argument of gQ. There are two patterns of behavior for
g (x) for x > 1, one for the sc and bcc systems and the other for the fee system. In
the former case, A(x) is finite at x - 1 and falls monotonically towards zero for in-
creasing x such that the aforementioned modulating factor goes from a positive finite
value to unity in the same range. The overall effect on the sc and bcc state density is
to extend the upper portion of the spectra preserving the shape, which is of square-root
nature. In this energy range the effect of disorder is to produce a high-energy tail,
with the spectra showing a slight discontinuity in slope at x - 1.

The behavior of the state density in this higher energy region is not the same for
the fee system. Because A(x) falls off from an infinite value at x = 1, the factor
{l + p[-l + xA(x)]}~ is zero at this value of x and climbs asymptotically to unity.
This has two effects. First, g* (x, p) is depressed immediately above x = 1 because
of this factor's appearance as a coefficient of g0. Secondly, the argument of gQ in the
right side of equation (126) is swept through the entire energy range as x goes from 1
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to the new energy maximum. The result for the fee case is that not just the high-energy
end of the crystal spectrum is reporduced in a modulated way but the entire crystal-
state density reappears in the region 1 < x < xmax, although rescaled in a nonlinear
fashion. That is to say, in the energy region above the crystal band, gf (x, p) begins
at zero, exhibits a slope discontinuity, and finally has a logarithmic infinity at the top
of the disordered energy band.

An important part of the density of states is the low-energy end. Since spin waves
act as bosons, at low temperatures only the low-energy spin wave states are occupied.
In calculating magnetic properties at low temperatures, then, only the shape of the
density-of-states curve at low energies is important. As has been mentioned in the

3/2previous chapter, disorder increases the state density by the factor (1 - p) ' while
preserving the square-root behavior. Since the limiting behavior of the perfect-crystal
state densities has been evaluated in appendix A, we are able to write the low-energy
part of the disordered density of states:

'SCV

(127)

x-° (1 - p)3/2,2

x~° (1 - p)3/2,2

gfcc(x,p) <*
x~° (l-p)3/V

Magnetization and the Curie temperature. - The cooperative nature of ferromagnet-
ism becomes very evident when we study the spontaneous magnetization of a ferromagnet.
The dependence of the relative magnetization on temperature for a Heisenberg ferromag-
net is shown in figure 5, where we have plotted (S2) /S = a for a simple cubic crystal of
spin 1/2. The behavior near the Curie point Tp is of particular interest. Just below
Tp the magnetization drops steeply and, in fact, the slope of the curve becomes nega-
tively infinite at Tp. A small increase in the amount of thermal fluctuations in this
region produces a relatively large decrease in the magnetization to zerb, an abrupt
change from a state where the spins act in consort to the uncooperative paramagnetic
phase. This precipitates an intriguing question. Since the spontaneous magnetization is
very sensitive to thermal fluctuations near the Curie temperature, would the introduc-
tion of disorder have a significant effect on the magnetic behavior in this region? The
questions of whether the Curie temperature would be altered by disorder and whether the
slope discontinuity in the magnetization curve at T remains are among those answer-
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Figure 5. - Relative magnetization as function of temperature
for simple cubic (sc) systems of spin 1/2.

ed in this section, which treats the effects of disorder on magnetization over the entire
temperature range.

In the preceding main section the expression for the averaged z-component of spin
was given for Heisenberg systems of any spin value. For the sake of convenience we
shall rewrite it in the form of the relative magnetization,

„ _ <SZ> _ 1 (S - $)(! + $)
\J — - ' - -«- - '-• - — —

2S+1 + (S + 1 +
- - - (128)

where $ in turn is a function of T, S , and p,

dx (129)

expl
kT

- 1

so that equation (128) is a self-consistent expression for the magnetization.
Upon expansion, equation (128) has the form of the quotient of two power series,

CT =

+ . . . +a2g_13>
(130)
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where the constants ap (i = 1,2, . . ., 2S - 1), and bj, (j = 1,2, . . ., 2S), depend on
the value of S. Before presenting the results of equation (130) for systems of various
spin, structure, and disorder, we are interested in the behavior of a for two limiting
cases: T approaching zero and T approaching Tp from below (i.e., T — T p - ) . For
low temperatures it will be important to know the coefficients of the lowest power of <£,
a., and b<; and for T near TC the coefficients of the higher powers of $ will be
needed. These are

2S* + S - 1

b1 = 2S + 1

(131)

and

2S-l

l2S-2

3S

_L (4S4- 5S2 + 1)

b2g = 2S

b2S-l = S(2 S +

1)(2S -

(132)

Low temperatures: When the temperature approaches absolute zero we expect all
ferromagnets, no matter how weak or strong the exchange interactions, to have all their
spins alined parallel. In the absence of thermal fluctuations there will be no spin re-
versals, and the ground state of a disordered ferromagnet will exhibit the identical
magnetization as the corresponding perfect crystal. If, in the manner of Dyson (refs. 11
and 12) we were to expand a in a power series in T, the leading term would be the
same for both ordered and disordered ferromagnets, namely unity. The question which
is of interest is where in this series does the effect of disorder first appear and how
does the disorder parameter enter. It will be shown that all subsequent terms are af-
fected by disorder.

At low temperatures, * is a small quantity because of the rapid exponential decay
of the integrand as the energy increases. The factor [exp (E_/kT) - 1 ~ in the inte-

L k J

grand of $ has an infinite, integrable peak at the zero of energy which, at low temper-
atures, serves to weight the density-of-states function heavily at the low-energy end.
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Because the low-temperature magnetization is insensitive to the shape of the high-energy
portion of g(x), we are justified in using the low-energy form of go(x) in the evaluation
<I> in this region. Thus, for H = 0,

(133)

•where C, is a constant whose value for various structures can be found from the low-
energy forms of the state density in equations (127). The right side of equation (133) can
be evaluated by recognizing that it can be put into an integral form of the Riemann zeta-
function £(s) by a change of variable:

!
'<sVo

dy (134)

This gives for the low-temperature form of $

3/2) / \3/2

(135)
T~° 2(1 - p)3/2 \nJ'<SZ)

3/2 3/2That is, for T near zero, * goes as T ' and (1 - p) ' .
Equation (130) in the limit of low T becomes

a <* 1 + (a, - bj* = 1 -- * (136)
T-0 * L S

Substitution of equation (135) allows a to be written to a first approximation as

a « 1 -- - - [— (137)
T-° 2S5/2(1 - p)3/2
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which is Bloch's well-known T ' law revised to include the effects of disorder. High-
er terms will also have dependence on p, but near T = 0 the effect of disorder is to
increase the T ' term by (1 - p) ' , which means that the magnetization of a disor-
dered ferromagnet will decrease more quickly than the corresponding perfect crystal in
this temperature range.

Curie temperature: The energy of a spin wave is not uniquely determined by its re-
ciprocal lattice vector but depends also on the magnetization. As the temperature ap-
proaches the Curie point from below and the magnetization drops to zero, there is a
corresponding decrease in the spin wave energy. To evaluate <& in this limit, we shall
expand the exponential term of the integrand in a power series. If we set the constant
quantities of the exponent equal to W,

W = K2SJ' (138)

then

Wox J_ /Wox\2
 + J_ /Wox\3

T 2! \ T / 3! \ T /

dx

Wa
1

« ^ 1 Wax A 1 /Wax\ .
1 H I I I +

2 T 6\ T /

dx (139)

Because the quantity Wox/T is small near the Curie temperature, the term in the
brackets in equation (139) can be rewritten as a power series that gives

T-TC-
— — / xgjx)dx+ . . . (140)
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We shall write an expression for I/a, the inverse of equation (130); and since <J?
is large near the Curie temperature, only its higher powers will be kept:

u+ b2S-l (141)
o+ a2S-2

The quotient on the right side of equation (141) is a power series in a/T containing only
odd integer powers:

-T- (s
(142)

More than the leading terms were kept in both the numerator and the denominator of
equation (141) in order to verify the absence of even powers of a/T and in order to be
able to evaluate the constant B in equation (142), which is

B _ (2S - 1)(2S + 3)W
1 20(S + 1)

-1
(2S2-
4(2S

- 25 - 1)W /
+ D(S + 1) J

xgp(x) dx (143)

The Curie temperature can be evaluated from equation (142). Rearranging terms
gives

1 - 3T

(S
/

„ M
V '

*
dx (144)

Note that this equation has no solution for arbitrarily large T. For finite a, the right
side of the equation remains finite as T — °°, while the left side does not. It is an equa-
tion valid only to the temperature where a vanishes. As a, and therefore the right
side of the equation, approaches zero; the left side will become infinite unless the ex-
pression in the brackets becomes zero. This condition determines T,-,:
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(S + 1)W

-1

(145)

To put in terms of the exchange interaction energy,

kTC _ S(S

R2J'

f «pI -£

J X

dx

-1

(146)

As mentioned in the previous main section the Curie temperature is inversely pro-
portional to the negative first moment of the density of states. And it was shown in
equations (107) and (108) that

.dx =
(1-

(147)

This implies that a disordered ferromagnet has a Curie temperature that is smaller
than the T,-, for the corresponding perfect crystal by the factor 1 - p.

(148)

The Curie temperature, then, is linear with the mean-square deviation of the exchange
integrals.

The calculation of T,-, is not complete until the integral of equation (27) is evalu-
ated. Machine calculations of this integral have been performed, using the three state
densities derived earlier. Our results agree with the work of Watson (ref. 38), who
calculated similar integrals analytically. Thus, we have
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gsc(x, 0)
dx - 3.033

Sbcc(x'0)

x

'gfcc(x,0)

dx = 2.786

dx = 1.793

(149)

Finally, substituting for the structure-dependent factor J' by means of equation (83),
and using equations (147) and (149), the Curie temperatures for disordered sc, bcc, and
fee structures of any spin value can be written in units of the nearest-neighbor exchange
energy:

kT«

K2J

= <

4S(S - p) =

3.033

16S(S + 1)(1 - p)

structures

3(2.786)

16S(S + 1)(1 - p)
3(1.793)

g(s

for

_ p) for fcc structures

(150)

Although disorder has a significant effect on the Curie temperature, the shapes of
the magnetization-against-temperature curves will be similar near Tp. From equa-
tion (144) it can be seen that the magnetization of a disordered ferromagnet will have the
same square-root behavior as the perfect crystal with a negatively infinite slope at Tp.
To first order, equation (144) can be written

(151)

Intermediate temperatures: Having investigated the spontaneous magnetization of
disordered ferromagnets at low temperatures and near the Curie point, we shall present
in this section the results of calculations of a over the entire temperature range of the
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ferromagnetic phase. These calculations have been carried out for various values of
spin and disorder and for the three cubic structures.

The method used to generate the various a-against-T curves is as follows. The 4>
corresponding to some a/T ratio was evaluated by a machine integration of equa-
tion (129). Equation (130) was then used to solve for a for any desired spin system.
To find the temperature corresponding to the value of a, we divide by the original a/T
ratio. To show the effect of spin in the theory, these calculations were carried out for
spins of 1/2, 1, and 7/2. The S - 7/2 case was included for two reasons. First, it
provides an example of behavior for a system of spin significantly higher than the com-
monly studied S-values. Second, the europium chalcogenides, probably the best exam-
ples of Heisenberg ferromagnets, have spin values of 7/2 associated with the europium
ions; and it is desirable to have calculations that are applicable to real systems. The
appropriate equations for these values of S are

a = 1

a =

for S = 1/2

1 + 3* +
for S = 1

a = • 7 7
54$ 4 + 36*5

56$

for S = 7/.?.

(152)

Figure 6 shows the magnetization curves for three perfect-crystal ferromagnets of

i.o
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fee

] 1 2 3 4 5 6
Temperature, T, fl2J/k

Figure 6. - Average z-component of spin ^Sz) as function
of temperature for simple cubic (sc), body-centered
cubic (bee), and face-centered cubic (fee) systems for
spins of 1/2 and 1.
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sc, bcc, and fee symmetries. Two values of spin, S = 1/2 and S = 1, are presented
for each structure. In this figure the average z-component of spin is the ordinate rather
than the relative magnetization a. For the same value of spin the Curie temperature is
seen to be highest for the fee crystal, intermediate for the bcc, and lowest for the sc.
This might be expected, since a spin in a fee lattice interacts more strongly with the
rest of the system, being involved with 12 nearest neighbors. The magnetic moments
associated with ions in bcc and sc lattices interact with eight and six neighbors, respec-
tively, and have correspondingly lower Curie temperatures.

The effect of the value of S can also be seen in figure 6. For a given structure the
Curie temperature increases with S as S(S + 1). Since the exchange interaction be-
tween two spins (J.-ST • Sf.) increases as S , this increase in TC is understandable.

The effect of disorder on the spontaneous magnetization is shown in figure 7 for a
sc system of S = 1/2, a bcc system of S = 1, and a fee system of S - 7/2. The be-
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T/(T,C'p-0

(a) Simple cubic systems of spin 1/2.
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I
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(b) Body-centered cubic systems of spin 1. (c) Face-centered cubic systems of spin 7/2.

Figure 7. - Relative magnetization as function of temperature for disordered cubic systems of various spins.

51



havior in each case is qualitatively the same. At any finite temperature, the magneti-
zation of a disordered ferromagnet is smaller than for the less disordered system; and
the Curie point in each case decreases linearly with 1 - p.

The a-against-T curves for all the systems considered, independent of the structure
or of the value of S or p, all start from a value of unity for a at T = 0 and decrease
monotonically to zero where there is a slope discontinuity at T = T— The behavior of
these curves near T = 0 and T = TC is similar (although the displacement of TC due

to disorder is significant), having T3/ and T1/2 dependence, respectively, with the
coefficients of these terms being functions of p. Any changes in shape of these curves
due to disorder, then, are subtle changes not easily discernible from the plots as they
have been presented. Changes in shape due to p would be more easily studied by
plotting a against T for a system with various amounts of disorder in such a way that
the curves intersect at T = 0 and T = TC- That is, the temperature scale would be
altered for each value of p to allow the TC'S to be superimposed. This procedure has
been followed in figure 8(a), where bcc systems with S = 1/2 and with various amounts
of disorder are presented. Displayed in this fashion, it can be seen that the effect of
disorder is to flatten the curve shape. The change in behavior of the magnetization
curves brought on by disorder are not just changes in scaling. This flattening effect of
disorder is less strong at higher spin values, as can be seen from figure 8(b), where the
same type of plot is done for a bcc system of S = 7/2. Recently, Sharon and Tsuei
(ref. 39) have confirmed this flattening phenomenon in measurements on amorphous
ferromagnetic Fe-Pd-P alloys.

Specific heat. - To calculate the magnetic or spin contribution to the specific heat
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0Curie tern-
perature, TQ
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Curie tem-
perature, TQ

(a) Spin 1/2. (b) Spin 7/2.

Figure 8. - Relative magnetization as function of reseated temperature for disordered body-centered cubic systems
of spin 1/2 and 7/2.
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CL, one needs an expression for the thermal average of the Hamiltonian. Mills (ref. 40)s
has derived such an expression exactly from spectral functions of the type discussed in
connection with the general theory. Cooke (ref. 41), by an alternate method, has also
derived a thermal average (3C) which although not exact for S > 1/2 is simpler in form
than the Mills result. The higher order correlation functions that Cooke ignored, how-
ever, do not contribute to the leading terms of (3C) at low temperatures. Thus, his re-
sult is a good approximation for any spin in this temperature region. Cooke's expres-
sion is

N

lTv -S(k,T)
2 (153)

where EO is some temperature-independent constant that does not affect the specific

heat, E (k ) is the spin wave energy of a magnon at T = 0,

E°(k) = R2s[j(0) - J(k )

and £(k,T) contains the temperature dependence

S(k,T) = K^S2) - Ks][f(0) -/(k)]

Changing the summation in equation (153) to an integration gives

(154)

(155)

N

<SZ> + RS<SZ) (156)
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At low temperatures, the integral in this expression is easily computed by a change
of variable and use of equation (134)

N
<SZ> +KS(SZ)

(1 - P)
3/2

(157)

For T near zero, equation (157) indicates that the leading temperature term for (3€) is
of order T ' and has dependence on disorder as (1 - p)~ ' . Since the specific heat
is given by

C =&-
s dT

(158)

it will behave as (1 - p) ' T ' at low temperatures. Disorder, then, will have im-
portant effects on low-temperature thermodynamic properties of ferromagnets, effects
that should be easily detected experimentally. For example, a value of 0.1 for p pro-
duces a 17 percent increase in the low-temperature specific heat over the value of the
corresponding perfect crystal.

Paramagnetic phase. - The cooperative effects of ferromagnetism disappear above
the Curie temperature. In this region the system of permanent magnetic moments goes
into the paramagnetic phase, where the ordering tendency of the exchange interaction is
subdued by the competing influence of thermal fluctuations and the net magnetic moment
is zero in the absence of external fields. To investigate how disorder affects the para-
magnetic phase of a Heisenberg system, an expression for I/a such as equation (141),
is needed. For the sake of computational simplicity, the S = 1/2 case is treated and
the general results are shown to be valid for any S. For S = 1/2, equation (141) be-
comes

-i - 1 + 2$
a

(159)

The right side of equation (159) can be put in the form of a hyperbolic function:

1 + 2 exp
- R2aJM

- 1
kT

-1

= coth
- K2aJ'x\

2kT
(160)
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If we write the part of spin wave energy with external field dependence as h and the
other energy term as y(x), the right side of this equation can, by the use of a mathe-
matical identity, be rewritten so that

tanh . tanh
2kT 2kT

tanh . tanh
2kT 2kT

where h = H g M R and y(x) = 0i/2)aJ'x. Setting

dx (161)

~ = tanh

= tanh

2kT

y(x)
2kT

(162)

and bearing in mind that only t.. has dependence on x,

cr t.
i + i -1;

n=l

dx (163)

By use of the series expansion for the hyperbolic tangent, t. can be written as a power
series in reciprocal temperature:

1 -
t 2^ '

a tn tA
 x V 4kT

where C is the n moment of the state density

4kT
(164)

(165)

Equation (164) can be used to solve for a iteratively to any order in T~ . For ex-
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ample, where a - t is used as a zeroth approximation, the second approximation gives

a = t0 + t0 (166)

In this equation, it can be seen that the effect of disorder does not appear until the third
o

term, where G£ appears in the coefficient of T . We have shown previously that C,
the first moment of the density of states, is related to the average energy of spin waves
and is unaffected by disorder. The second moment C9 and higher moments of g_(x)

& p
will have p dependence, but they do not appear in the leading terms of the series.

The paramagnetic Curie temperature 9 is a parameter of experimental interest
and it is defined by the Curie-Weiss law,

T - e
(167)

where C is the Curie constant and x is the magnetic susceptibility. The paramagnetic
Curie temperature is found empirically by extrapolating the linear high-temperature re-
gion of a (x)~ - against-T curve to the (x)~ =0 axis. Generally, 6 is appreciably
greater than the actual ferromagnetic transition temperature Tp. Since the suscepti-
bility is proportional to cr/H, we can find 6 by multiplying equation (164) by H, keep-
ing only lower order terms in T~ :

^ t0 \ 4kT
(168)

For high temperatures, t ^ h/2kT and so

2kT-
C^J'

(169)

when [x]~ =0, then

T =
C1R

2J'

4k
(170)
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The paramagnetic Curie temperature for a system with disorder is identical to the
perfect-crystal result.

The conclusion to be drawn from this section is that the paramagnetic phase of a
Heisenberg system is less sensitive to disorder than the ferromagnetic phase. We
might have intuitively expected this, since in the paramagnetic region the thermal fluc-
tuations have become sufficiently large to destroy the cooperative effects. With this
much "thermal disorder" already present in the system, we might have suspected that
the additional disorder of randomness in exchange interactions would be less significant
than in the lower temperature phase.

Europium Chalcogenide Mixtures

Divalent europium can be made to react with the chalcogenide series, O, S, Se, and
Te to form crystals of the cubic NaCl structure. In 1961 (ref. 42), EuO was discovered
to be ferromagnetic; and soon afterwards, ferromagnetism was found in EuS and EuSe,
while EuTe was found to be antiferromagnetic (refs. 43 and 44). These compounds are
insulators and are nearly ideal Heisenberg ferromagnets. Only the Eu++ ion is mag-
netically active in these compounds, and it has a spin of 7/2. As the size of the non-
magnetic ion and the lattice parameter increase, the ferromagnetic coupling decreases
and so the Curie temperature decreases from 69 K for EuO to 16. 5 K for EuS to 7 K for
EuSe. The antiferromagnetic EuTe has a Neel temperature of 7.8 K.

Mixtures of these chalcogenides of europium will be topologically equivalent, but
the exchange integral between two Eu++ ions will vary according to which chalcogenide
ions are nearby. A system disordered in this fashion should be able to be treated by
the theory developed in earlier sections. We shall consider the EuX Z / « _ ^ system
where X and Z represent any of the chalcogens - O, S, Se, or Te. Our convention
will be to let 77 be a measure of the concentration of the "weaker" specie, that is,
(Tp) > (T r) . The assumption will be made that the X and Z ions are ran-
V c/EuZ \ VEuX
domly distributed in the lattice. In the NaCl structure the Eu ions form a fee sublattice
and the nonmagnetic ions form another fee sublattice. Each Eu ion has six nonmagnetic
nearest neighbors and, in its own sub lattice, 12 Eu "nearest neighbors. " We assume
that exchange interactions exist only among nearest-neighbor Eu ions, and we pose the
following problem. What is the Curie temperature for such a system, and how does
T£ depend on the relative concentration 77 ?

To answer this question we propose a simple model. There are two nonmagnetic
ions that lie closest to a line joining two nearest-neighbor Eu ions, and the size of these
two ions will be most important in determining the strength of the exchange integral.
We assume, then, that the exchange integrals will have one of three values, depending
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on which types of ions occupy the two sites closest to the Eu-Eu bond:

J = J, when two X ions occupy these sites

J = J2 when two Z ions occupy these sites

J =— (J-i + J0) when an X ion and a Z ion occupy these sites
2 l *

(171)

In order to calculate the disorder parameter p, which will be a function of T), we
will need to know JQ, the average exchange interaction or the exchange integral of the
corresponding perfect crystal. If N is the number of Eu ions, the total number of ex-
change interactions is 6N and

Number of interactions of strength J* - 6Nr]

Number of interactions of strength J, = 6N(1 -

Number of interactions of strength - (J, + J0) = 6N2rj(l - TJ)
2 * *

(172)

The average exchange integral is, therefore,

J = Tj + (1 - r ? ) J + 2r/(l - ?]) (J + J)

The disorder parameter for this system is

(173)

12

- T?)

(drj - I)
(174)

where d is the ratio
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J2- J«
* (175)

From equation (150) the Curie temperature is proportional to the product of 1 - p and
JQ. Therefore, the Curie temperature for EuX Z(1 _ )5 that is TC(TJ), in units of the
TC for pure EuZ, is

J
-
J

- 77)

12(drj - I)
(1 - drj) (176)

This relation has been used to calculate the Curie temperatures of the three sys-
tems - EuS??O(1_T]), EuSe S^_ v and EuSe O/1_ v. The results are shown in figure 9.
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Figure 9. - Curie point as function of relative
concentration for europium chalcogenide
mixtures.
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When the value of d is relatively small, that is, when the Curie temperatures for pure
EuX and pure EuZ are relatively close, the change in TC(T]) with 77 is almost linear.
This is so because p(rj) never gets very large when d is small, in which case the
change in Tc(?7) is caused almost entirely by the change in JQ(T]), which is linear. If d
becomes sufficiently large, the [l - p(rj)] term assumes more importance, producing a
departure from linearity. In fact, for d > 0. 923 a minimum occurs in the TC(TJ)-
against-T] curve. In this case, replacing the X ions of EuX with Z ions would initially
cause a reduction in T^, even though EuZ is a stronger ferromagnet with a higher Tr

than EuX. For d > 0. 98 the ferromagnetic phase is destroyed completely by small con-
centrations of Z (i. e., TJ <: 1). For the EuSe O/1_ j system, d = 0. 90, a value suffi-
ciently large to warrant an experimental investigation of the region of low oxygen con-
centration to see if any of these surprising predictions associated with high d-values are
observable in this system.

DISCUSSION AND CONCLUSIONS

Several general statements can be made now, in answer to the central question posed
in the INTRODUCTION. There it was asked whether disorder would have a significant
effect on a cooperative phenomenon like ferromagnetism and if so, how? The Green's
function theory developed herein to study distributed disorder in a Heisenberg ferromag-
net gives us an affirmative answer, and the disorder has been shown to manifest itself
in several ways.

Disorder, introduced by allowing a randomness in the strength of the exchange
couplings, has a marked effect on the density of spin wave states. Modest values of the
disorder parameter p can produce relatively large changes in the state density gfl(x)
in the form of enhancement of the low-energy densities and extension of the energy band
to higher values. Physically, this can be explained as an effect of the addition of great-
er and lesser exchange interactions than are found in the corresponding ordered system.
Some spins in the disordered system will find themselves more strongly coupled to their
neighbors, while other spins will be less strongly coupled than in the perfect crystal.
Since the energy of a spin wave is proportional to this exchange coupling, there will be
more very low-energy magnons and also higher energy magnons than the case where all
spins are equally coupled. This is analogous to the situation in lattice dynamics
(ref. 45) where the substitution of light impurities into a crystal produces localized
modes in the phonon density of states outside the perfect-lattice continuum, while heavy
defects produce an enhancement in the lower part of the spectrum. Both of these effects
are present in the spin wave state density, where allowing a randomness in the values of
exchange interactions corresponds to adding heavy and light impurities to a phonon sys-
tem.
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The increase in the density of low-energy states is of the order (1 - p) , and
this manifests itself in the low-temperature properties such as the specific heat. When
T is near zero, all but the lowest spin wave states are unoccupied. As the disordered
ferromagnet is heated slightly, the spin waves are allowed to occupy the states to a
higher energy according to the Bose distribution, but there are more of these states
than in the ordered system. Thus, more energy must be put into the system to produce
the equilibrium distribution associated with a given temperature, and the specific heat is
correspondingly larger.

The spontaneous magnetization of a disordered ferromagnet decreases with temper-
ature more quickly than for a crystal and the Curie point was shown to diminish linearly
with disorder as 1 - p. The transition from the ferromagnetic to the paramagnetic
phase is no less abrupt for a disordered system, however, in that the spontaneous mag-
netization exhibits the same negatively infinite slope at Tp.

In the preceding main section, the effects of disorder on systems of various struc-
ture and spin were presented. Without repeating specific results, there are general
conclusions to be drawn from this work. Probably, the most important statement to be
made is that order and disorder are of most significance in cooperative phenomena and
of less consequence where cooperative effects are absent. A corollary to this statement
might be that the effects of disorder are more noticeable at low temperatures than at
high. The disorder parameter is involved in the first term of the low-temperature
specific-heat expansion, but it is not present in the high-temperature susceptibility until
the third term of the series.

At the conclusion of what has been an initial attempt to include the effects of dis-
tributed disorder in the theory of magnetism, there are suggestions that can be made
for future work in this area. Certainly, the decoupling approximation used in the sec-
tion Equations of Motion limits the accuracy of our calculations. Improvement in the
low-temperature expansions (ref. 19), for example, are sure to come about by the use
of more sophisticated decoupling schemes that might include correlation effects. An-
other improvement to the present work is likely to be produced by a more complete de-
scription of the disorder. The one parameter description used herein, treats all dis-
tributions of exchange interactions alike, provided the relative mean-square deviations
are equal. However, the shape of such distributions are undoubtedly important for some
properties. And, of course, to produce results that agree more closely with experi-
mental measurements, inclusion of more than just nearest-neighbor interactions might
well be required.
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In conclusion, we have generalized the theory of ferromagnetism to include the ef-
fects associated with the disappearance of translational symmetry. It is our hope that,
in rectifying some of the incompleteness in our knowledge of magnetic systems, we have
provided new insights in our understanding of all cooperative phenomena.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 28, 1972,
502-01.
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APPENDIX A

DENSITY OF SPIN WAVE STATES OF PERFECTLY

ORDERED CUBIC FERROMAGNETS

In calculating the density of spin wave states of a disordered ferromagnet, use is
made of the density of states of the corresponding perfectly ordered ferromagnet. The
details of the derivation of the density of states for crystals of simple cubic (sc), body-
centered cubic (bcc), and face centered cubic (fee) symmetry are presented here. Sim-
ilar calculations have been carried out by Jelitto (ref. 46) and others (ref. 47) whose
results are in agreement with those presented here.

Simple Cubic

According to Green function calculations, a spin wave of wave vector k has an
energy

E(k ) = Hg/ip + fi<Sz)[/(0) - /(k)] (Al)

When there is no external field, this dispersion relation becomes

. V fg

f-g

E(k) = R<SZ> . J l - e - i - * - * (A2)

where Jr is the exchange interaction between the spins at sites f and g. The vectors
f and g* are the position vectors for these sites. Exchange interactions are relatively
short ranged and so we make the assumption

fj if f - g = Nearest-neighbor vector
(A3)

10 otherwise

For a simple cubic lattice, then
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E(k)=R(S z ) J ) l -e ' i A < k (A4)

where A represents the six possible nearest-neighbor position vectors ±ax, ±ay, ±az,
where a is the length of the cube edge and x, y, and z are unit vectors in the x, y,
and z directions. Carrying out the summation in equation (A4) gives

E(k) = 2R(SZ) J(3 - cos akx - cos ak - cos akz) (A5)

It is convenient to deal with a "reduced energy, " which is the energy normalized to
range between zero and unity. We define, then,

X_ - -.—r = - — (cos ak, + cos ak + cos ak ) (A6)
k fa_\ 2 6 x y z

^ /max

We wish to derive a spin wave density-of-states function gsc(x) which represents
the number of spin wave states of energy x per unit energy, divided by the total num-
ber of states. The fraction of states with energy between x.. and x,, then, would be

ggc(x) dx (A7)
xl

From the way we described g0.,(x), it is obvious that g0/,(x) is a normalized functionsc sc

r1
J gsc(x) dx = 1 (A8)

The reciprocal lattice vectors k which are associated with the spin waves of energy
x,, are uniformly distributed throughout k-space. So the derivation of g0,,(x) reduces

K. SC
itself to the calculation of the volume bounded by the two surfaces of constant energy:
x(k , k , k ) = x and x(k , k , k ) = x + dx. The fraction of the total volume boundedx y z x y z
by these two surfaces is g0_(x) dx.sc

Since any spin wave can be represented by one wave vector in the first Brillouin
zone (i. e., any spin wave with a wave vector outside the first Brillouin zone is indis-
tinguishable from the spin wave with the corresponding wave vector in the first zone),
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we need only concern ourselves with the first Brillouin zone when wishing to sample all
-» o
k-space. The volume of the first Brillouin zone is (n/a.) . We can write g (x), thensc
as

* _ _ (A9)x

where 6 is the Dirac delta function.
Before calculating ggc(x) from equation (A9), it might be beneficial to say a few

words concerning the appearance of the delta function. If one were interested in count-
ing the number of spin wave states in the energy range between two energies x, and
X, one way would be to use the delta function in the following manner:

i'l 6(x - x,) dx = Number of states in energy range x« < x < x« (A10)

As the sum is made over all possible k- vectors, the delta function acts as a counter,
registering unity every time k is such that xt < x_ < x9 and registering zero when

1 k £

the wave vector is such that its spin wave energy falls outside this range. Comparing
equation (A10) with expression (A7) suggests that

gsc(x)a^6(x-xk) (All)

k

The number of spin wave states is of the order of magnitude of the number of atoms in
the crystal. In macroscopic samples, this number is sufficiently large to warrant re-
placement of the sum over k- states with an integration over the Brillouin zone. Thus,

(2,)3
/
'B-Z-

dk (A12)

With this as the rationale for equation (A9), it remains only to carry out the three
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integrations. After substituting equation (A6) into equation (A9) and making use of the
identity

6[f(x)] =
df(x)
dx

(A13)

where f (XQ) = 0, and making the change of variables

cos (ak ) = u cos (ak ) = v cos (akz) = w (A14)

we have

5[w - (3 - 6x - u - v)]

(1 - u2)(l - v2)(l - w2)

(A15)

We shall see that after performing the w-integration, the limits of integration in the
u-v plane must be redefined. That is, since

6(w - 3 + 6x +u + v)

- u2)(l - v2)(l - w2)

t/(l - U2)(l - v2) 1 - (3 - 6x - u - v)2

for -1 < (3 - 6x - u - v) < 1

(A16)
0 otherwise

the original limits of the u and v integrations must now be more strictly defined so
that not only -1 < u < 1 and -1 < v < 1 but also

u + v > 2 - 6x and u + v < 4 - 6x (A17)

After the first integration, then

- u2)(l - v2)[l - (3 - 6x - u - v)2]

(A18)
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where for 0 < x < 1/3

UTT = 1 VTT = 1

UL = 1 - 6x VL = 2 - 6x - u

for 1/3 < x < 2/3

UTT = 3 - 6X VTT = 1

UT = -1 VT = 2 - 6x - uLI j_i

and

UTJ = 1 vn = 4 - 6x - u

UT = 3 - 6x VT = -1i_i ij

and for 2/3 < x < 1

UTT = 5 - 6X VTT = 4 - 6x - U

The second integration, involving the inverse square root of a fourth-degree poly-
nomial in v, can be reduced to an elliptic integral (ref. 36) of the first kind. After
factoring the integrand of equation (A18), we have

r«/v.
(A19)

[v - (4 - 6x - u)][v - (2 - 6x - u)]

The factors in the integrand of expression (A19-) can be arranged in such a way to look
like

[(v - a)(v - b)(v - c)(v - d)]" (A20)

where
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a> b > c > d

The roots a, b, c, and d are, of course, 1, -1, 4 - 6x - u, and 2 - 6x - u arranged
to satisfy the inequality (A20). When so arranged expression (A19) takes the form

Jc

(A21)

c w vV - a)(v - b)(v - c)(v - d)

Such an integration, between the third and second largest roots of a fourth-degree poly-
nomial, can be reduced to a complete elliptic integral of the first kind

K(m)= f dt (A22)

d - t <
•/u f

where the argument m is

m = (a - d)(b - c) (A23)

(a - c)(b - d)

and the coefficient of K(m) is

2 (A24)
- c)(b - d)

Carrying out the second integration in this manner leaves

K(m)

/

UU
m du (A25)

where
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un = 1
U i ,

• for 0 < x < -
U = 1 - 6x|

UTT = 1
U ' 1 9for ± == x < ±

UTT = 5 - 6x|
U | n

for - =s x ss 1

where

m = - (5 - 6x - u)(-1 + 6x + u)

The integrations involved in equation (A25) were carried out on an IBM 7094-7044
and the results are shown in figure 2(a). As could have been predicted by the symmetry
of earlier equations, the density of states is symmetric about x - 1/2. There are two
discontinuities in the slope of the curve, occurring at x = 1/3 and x - 2/3. The be-
havior immediately below x - 1/3 and above x = 2/3 is of square-root nature, which
means that the slopes have infinities of inverse square-root nature. By well-known
arguments the low-energy density of states must be proportional to the square root of
the energy and the proportionality constant can be calculated by evaluating equation (A25)
in the limit of x approaching zero:

(A26)

It is convenient to have an analytic expression of the density of states in the low-energy
limit because, in the calculation of low-temperature thermodynamic quantities, the low-
energy portion of the density-of-states curve is the only part that has importance.
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Body-Centered Cubic

The density of spin wave states for a body-centered cubic ferromagnet g^cc(x) is
calculated in this section in a manner analogous to the procedure for the simple cubic
case. The zero-field dispersion relation is written by carrying out the sum indicated
in equation (A2), again considering only nearest-neighbor interactions. After defining
a reduced energy, the delta-function formalism introduced for the simple cubic case is
used to find the volume in k-space between surfaces of constant energy, a process in-
volving a threefold integration over k-space. A plot of the results of these integrations
is presented in the form of gi,cc(x) against x, and some comments are made on the
shape of this curve.

In the body-centered cubic system, each spin has eight nearest neighbors. The dis-

persion relation resulting from summing terms like Jfg6 ~ over nearest neigh-
bors is

E(k) = 8K< S2) J(l - cos 2 k cos - k cos - k \ (A27)
\ 2 x 2 y 2 z/

where, as before, J is the exchange integral between nearest neighbors and a is the
length of the edge of a body- centered cube. The maximum energy that a spin wave in a
bcc system can possess is, then, 16K(SZ) J. Dividing equation (A27) by tE(k)]
yields a reduced energy that is convenient in that it is a dimensionless quantity which
varies between zero and unity and has the added advantage of removing the temperature
dependence ((S2) is temperature dependent) from the spin wave energy. For the bcc
system, then, the reduced energy is

x_ = cos - k cos - k cos - k,, (A28)
k 2 2 2 X 2 y 2 Z

Setting

cos - k = u cos - k = v cos - k - w (A29),2 x 2 y 2 z

we have
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f f rI du I dv I

c/1 »/i t/i

w -
dw-

(A30)

The w-integration will produce nonzero results only when u, v, and x are such that

-1<1^E<1 (A31)
uv

Inequality (A31) together with our knowledge that u and v can only have values between
+ 1 and -1 fixes the limits of the u and v integrations after the w-integration is com-
pleted. The first integration leaves

-2x J l-2x/u

dv l (A32)

. - u2)(l - v2)[uV - (1 - 2x)2]

Since the integrand is an even function of u and of v, it is sufficient to integrate in one
quadrant of the u-v plane only because of the symmetry of the integration limits.

Following the procedure of the simple cubic case, the v-integration can be put into
the form

fI du I

/ ,,-V^lJ l-2x 1 Jb
(v - a)(v - b)(v - c)(v - d)

where for 0 ̂  x < -

o 1 v , ! - 2 x ^ 1 - 2x , na = 1 b = c = d = -1
u

and for - ±s x <
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a =
u u

which gives

K

du

(u + |l- 2x | ) \ l -u 2

(A34)

The density of states generated by equation (A34) is shown in figure 2(b). The in-
teresting portions of the curve, near x = 0 and x = 1/2, have been calculated analyti-
cally; and the other points have been evaluated by numerical machine integration. As in
the simple cubic case, the curve is symmetric about x = 1/2. However, whereas,
ggc(x) was everywhere finite; gj,cc(x) has an infinity at x = 1/2 of squared logarithmic
nature. We can show this by evaluating expression (A34) in the limit of x — 1/2. We
define a parameter f which is two times the displacement of x from the singularity:

f - 1 - 2x (A3 5)

As x approaches 1/2 from below, f approaches zero from above. For x < 1/2, then

du (A36)

(u + f )\ 1 - u

When f is small, the argument of the complete elliptic integral K is very close to 1
in the range of integration, except at the very low end where u is near f. Since K(m)
can be expanded in a power series in m , = 1 - m,

K(m) = aimi + a9mi

when m is near unity, the approximation
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K(m) « aQ + b0 In J- (A38)
ml

becomes a good one. The approximation used in calculating the limiting form of g, (x)
near the singularity is

f -0_3
- u I ut/1 - u£

+ 1§ / _^ du (A39)

where

= 1.38629 b Q =-

Carrying out these integrations leaves

where

CQ = !§ (a0 - bQ In 4) In 2 - 0. 247926

(a0 - b0 In 2) = 0. 536521

c2 = — b 0 = 0.129006

U
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The relative error introduced by the approximations of equation (A39) can be shown
to decrease as f approaches zero because the absolute error remains bounded as x
approaches the singularity although g^cc^O does increase.

Finally, the low-energy form of gkcc(x) is evaluated by noticing that the argument
of the elliptic integral in equation (A34) is close to zero in the range of integration when
x is small. We write, then,

fiWW - .-I - - -^ (A41)
f1 "-« !§ / ? tt

x-o 3 I i ; x-o j
n I 0 2th - u2 n

Jl-2x 1

Face-Centered Cubic

The dispersion relation for spin waves in a fee ferromagnet with nearest-neighbor
interactions is

E(k) = 4h/Sz) J(3 - cos-k cos-k -cos -k cos-k -cos-k cos ^ k \
\ 2 X 2 y 2 y 2 Z 2 Z 2 x /

(A42)

where the symbols are defined earlier in this appendix. Dividing equation (A42) by the
maximum spin wave energy gives for the reduced energy

x^ = [cos - k cos - k + cos - k cos - k + cos — k,, cos — k ] (A43)
k 4 4 \ 2 x 2 y 2 y 2 Z 2 Z 2 x /

Following the procedures outlined earlier,

a3 f2

(2^)3 °

r r rI du I dv I

./-I /-I -/-I

6fw - 3 - fe - uv

dw x u + v x (A44)

uv | t / ( l - u 2 ) ( l - v2)(l- w2)
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After carrying out the integration over w, the v-integration is accomplished after
putting the resulting integrand into a standard form for the complete elliptic integral of
the first kind, leaving

du.
K(m,)

-2x
(1 - u2)(3 - 4x + u2)

for 0 < x < 1/2

- x)

>2x-l

du

-2x

K(m2)

' 1 - u 2

du

2x
_x y( l - .u 2 ) (3- 4x + u2)

for 1/2 < x < 3/4

/4x-3 •2x-l
K(m-)

- u2)[(4x - 2)2 - 4u2] 7T3(1 - x)
du

K(m9)

/4x-3
1- u'

K(m,)
du L for 3/4 < x < 1

2x-]

>- (A45)

where

+ 3 - 4x
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_ -u2 + (2x - I)2
--

94(1 - xr

-u2 + (2x - I)2

Figure 2(c) shows the results of machine calculations of equation (A45). Unlike the
sc or bcc cases, the density of spin wave states for the fee system shows no symmetry
about x - 1/2. The most striking difference in the fee curve is the logrithmic singular-
ity in g(x) at the energy maximum . At x = 3/4 there is a discontinuity in the slope
reminiscent of the behavior of g,,^(x) at x = 1/3 and x - 2/3. That is, the slope of

oL>

gfcc(x) becomes infinite as x approaches 3/4 from below, and the behavior of gfcc(x)
is of square- root nature in this region. The limiting form of gfcc(x) as x approaches
zero is easy to calculate after noticing that m ̂  is small throughout the range of inte-
gration when x is small. Thus,

gfcc(x) « -i Jx (A46)
x-0 2 v
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APPENDIX B

DERIVATION AND APPLICATION OF SELF-ENERGY TERM

Derivation and Diagonalization of the Self-Energy

The self- energy matrix is defined by equation (73),

) (Bl)

s>.

where A is the difference between the A matrices for the disordered ferromagnet and
the corresponding perfect crystal,

A = A° - A (B2)

and the angular brackets indicate an ensemble average over systems with similar dis-
order .

The components of Sa in lattice space can be written

h i

where, from equation (55),

(B4)

Here j(g, f) is the deviation of the exchange coupling between sites g and f from the
mean value:

j(g,f) = J (g , f ) - J°(g,f) (B5)

The superscript zero indicates that the term is associated with the corresponding per-
fect crystal. Substitution of equation (B4) into equation (B3) gives

/ , zA2/\^\-^ , \ / *
sa = f 27r(Sz) j(2^2jfe,h)i(j'i)(r£J + rhi " rgi ' r jhV (B6)

0(a) / ' h i
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We assume deviations of the exchange interactions to be symmetric about the mean
value. The ensemble averaging, then, is carried out by use of the relation

6g.6M) (B7)

• 2,where j (g, h) is the mean-square deviation of the exchange integral between spins at
2

sites g and h. Since j (g, h) is an ensemble-averaged quantity, it is translationally
invariant and depends only on the ensemble-averaged |r - f. |. Equation (B7) assumes
that there are no three-or-more-site correlations in the deviations. For example, the
ensemble average of the product j( i , j ) j ( i ,h) vanishes. Thus, equation (B6) becomes

J 2 (g , j ) ( r g j - r

(B8)

Next, we write equation (B8) in a more symmetric form and employ the Fourier trans-
form of T gh,

N / v k

k

(B9)

where k is a reciprocal lattice vector.

_ 2 ; r < S 2 )
0(a)

(BIO)

It will be helpful in deriving the diagonalized form of Z to study the product of S
and T.

(Bll)

g
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Since

rf -
lg k

(B12)

Equation (Bll) becomes

tf i)
Ig N6(a) k k

-
k k

x<26g j

h

H)-k

An example of how this expression will be treated can be given by looking, say, at the
second last term. Forgetting the coefficient for the moment, we have

k k
(B14)

Since j (g, j) is translationally invariant and depends only on (g - j), its Fourier trans-
form is

(B15)

which allows equation (B14) to be written

k k
k k

(B16)
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Similar manipulation of the remaining terms simplifies equation (B13) to

(rs)f =lg
vNQ(a)/ Z_^ L-i k

k' k

^ - 2/2(k') + /2(k + k") + /2(k - k')] (B17)

Since the matrix (r S) is diagonalized by the Fourier transform

( S)f. = ( f S L t e - ' (B18)
k

k

comparison with expression (BIT) indicates that

z
(f s)_, =(Ms!>.] 1 V r^.r J2/2(0) - 2/2(k') - 2/2(k) + /2(k + i?) + /2(k - k '

k \©(a) / N / j k kL • ^ *T ^ ^^
k (B19)

The f and S are both diagonal in reciprocal lattice space, so that

(B20)
k k k

The self- energy can now be written in diagonal form,

- 2/2(k') - 2/2(k) +/2(k + k') +/2(k - k')]
k \ 0(a) / T$Z_j k

k (B21)

Application to Cubic Systems with Nearest-Neighbor Interactions

If we rewrite the sum in equation (B21) as
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we recognize terms similar in form to the zero-field spin wave energies. For example,
from equation (58), when H = 0

(B23)

From the definitions of /fo} and ^(k), equations (B15) and (59), respectively, we see
that when only nearest-neighbor interactions are considered

(B24)

Here j is the mean-square deviation for nearest-neighbor exchange interactions, and
J is the nearest-neighbor exchange integral. We can use the results of appendix A,
where E-. is evaluated for the cubic systems, to evaluate equation (B24).

xC
For the face- centered cubic system, for example,

= 4j2[sin2 * (kx + sin2 i 2
- ky) + SHI* * (ky + kz)

sin2 i (ky - kz) + sin2 ^ (kz + kjj) sin2 * (kz - kJ (B25)

where an alternative expression to equation (A42) has been employed to represent E_
k

in terms of the squares of sine functions. This permits equation (B21) to be written

\ v
Si

k e(a)j
sin 2k.'+ + sinV sin2k (B26)

k1
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where

(B27)

The sum in equation (B26) can be rewritten

sin2k.'+ sin
2kr>

x - x_, ;
k

(B28)

Because of the equivalence of the lattice sites in a fee system

sin2k:+

x - x_,
k

sin2k:~

x - x_^,
k

(B29)

allowing expression (B28) to be simplified to

|sin2k+ + sin2k71
X - X_,

k

i=l

(B30)
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But

,-«2irf+ r-^ 3 \v x-i
k (B31)

X ~ X—»T «3 / j X ~ X^.f O / X ~ X.^.r
k ^T k j=l / J k

r k i"
again because of symmetry considerations. This further simplifies expression (B28) to

- - (B32)

which, when substituted back into equation (B26), gives

)
x_,-
£— ' (B33)

o,i^vayo X " "

Since the disorder parameter is

2 j2

P = *72

where Z is the number of nearest neighbors

(B34)

sa=_2*p_E_! ^ K (B35)

k K6(a) k N / E - E_,
k

k '
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The other two cubic systems, sc and bcc, can be handled in the same manner since
the symmetry arguments are the same. Doing this verifies that equation (B35) is a gen-
eral result for the three cubic systems.
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