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ABSTRACT

Mariner 6 and 7 photographs were used to investigate the nature and
» « ~ '

importance of linear surface trends on Mars. Cross correlations of frequency-

azimuth distributions of linear trends from different Mariner frames indicate

that lineations not recognized as topographic features have a component of

pseudoforms, probably introduced during digital reconstruction of the pictures.

Similar statistical tests may aid in the analysis of surface trends from future

satellites and space probes. In this study, the most reliable data were sepa-

rated into photometrically defined provinces. Meridiani Sinus and Margaritifer

Sinus display five major trends in common, which are interpreted as extensions

of crustal weaknesses related to the enormous equatorial canyon revealed in

Mariner 6 and 9 pictures. Alignments of crater wall segments generally match
* (.

these trends and suggest structural control of crater plan. Crater chains,

however, do not match these trends and are interpreted as secondary impacts.

Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity

and are believed to reflect a better preserved or more complex geologic history.
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MARTIAN LINEAMENTS FROM MARINER 6 AND 7 PHOTOGRAPHS

Introduction

Mariner 6 and 7 photographs suggest a complex structural history of the

Martian surface that is expressed by numerous lineations of various topographic

form. Binder and McCarthy (1972) proposed that such lineations on Mars com-

prise at least tvo systems, one of which is expressed on a global scale as

postulated by Meinesz (19̂ 7), the other, associated vith large basins. Strom

(196*0 made an extensive survey of the lunar grid system, and comparisons with

Mars (Binder, 1966; Binder and McCarthy, 1972) may imply a common structural

history of planetary bodies perhaps resulting from a decrease in their rotation

or polar wandering. The separate study presented here considers the preferred

orientations of the trends in the nonpolar regions included in the Mariner 6

and 7 vide-angle (A camera) photography. Regionally distinct structural histo-

ries are sought rather than a global system.

Approach

Enlargements were made at three contrast scales from maximum discrimina-

bility versions of the computer-processed data. The different contrasts pro-

vided a check for pseudoforms and residual noise in the processed photographs.

Lineations were mapped directly on the unrectified photographs and were

assigned one of three values corresponding to the observer's (P.H-S.) ability

to recognize lineations as topographic features (Figure l). The most signifi-

cant class of lineations (w3) represents forms identified as positive or
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negative relief through recognition of adjacent dark and light regions

indicating changes in slope. The marginally significant class of lineations

(v2) are identified as positive or negative relief but not vith the same

confidence as those in the w3 class. The least significant lineations (wl)

are recognized clearly as linear features but cannot be distinguished as

relief. The last lineation class might be confused with cpherent noise (see;

Rindfleisch, ejt al̂ ., 1971) introduced during electronic imaging. Comparisons

betveen the A-camera (wide-angle) and B-camera (telephoto) photographs confirmed

the identification of several wl lineations on A-camera photographs as true

surface features. In a few examples, narrow lineations recognized in A-camera

photographs were recognized in nested B-camera photographs, even though the

lineations were narrower than a picture element (pixel) in the A-camera version.

This may indicate a general albedo or spectral contrast associated with such

lineations. The unrectified photographs (Figure l) have greater information

content than the rectified (orthographically projected) versions and conse-

quently were used as guides for identification on the rectified photographs

(Figure 2).

The detectability of lineations strongly depends on the local solar ele-

vation, photographic scale, and obliqueness of view. The first two parameters

were supplied by the Pegasis data (Campbell, 1970) and were mapped as contours

for each unrectified photograph. We included the effects of the obliqueness

of view by dividing the photographic scale (surface distance per picture ele-

ment) by the cosine of the emission angle (angle between the camera's optical

axis and surface normal). This correction.strictly applies only for lineations
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trending perpendicular to the optical axis of the imaging system. Empirical

studies by Keene (19&5) related solar elevation to visual identification of

surface detail and provide relative values of detectability dependent on local

solar elevation. For example, a surface feature barely recognized at a solar

elevation of l4° must be four times as large for recognition at a solar elevation

of 65°. Consequently, multiplication of these relative values by the adjusted

photographic scale gives discernibility indices (Figure l) that illustrate the

relative change in the detection threshold of surface features having the same

morphologic form. An index of U in Mariner 6 frame 6N07 means that a lineation

trending perpendicular to the optical axis of the imaging system must be four

times wider than a lineation in Mariner 6 frame 6N19 (an index of l) in order

to be recognized. These indices do not include the effects of atmospheric

haze, which may be significant. Meaningful morphologic studies from photo-

graphic Mariner missions require an appreciation for changes in discernibility

across a single frame as well as between different frames.

The azimuth and length of mapped lineations were measured for both un-

rectified and rectified photographs. Lineations that exhibited abrupt changes

in plan were segmented and treated as distinct lineation trends. In unrectified

photographs, an arbitrary "north" direction corresponded to the vertical edge

of the picture format, whereas in rectified photographs, coordinate overlays

from the Jet Propulsion Laboratory (Campbell, 1970) gave the local north

direction. Frequency-azimuth distributions of the lineations for each

-k-



photograph and each lineation weight were compiled (Figure 3> a and b).

Running means having a 4° window in azimuth smoothed the distributions in

order to absorb human errors in azimuth measurements and to prepare the data

for further statistical treatment.

Each lineation azimuth in the rectified photographs also was assigned

one of three integral weights dependent on the lineation length. Lineations

that are less than 21 km in length were assigned a weight of 1; between 21 km

and 4o km, a weight of 2; and greater than ho km, a weight of 3-

Autocorrelation and autopower functions were used for each frequency-

azimuth distribution from each photograph as a monitor for possible constant

intervals between dominant trends. In addition, these functions provided a

qualitative check on the reliability of the data by comparisons with functions

from randomly generated azimuths where there were relatively few lineations.

The autocorrelation function for discrete data is given by:

N-m
- S (x.-x) (x.. -x). _, i ' v i-Hn '

C(T = m-At) = . — (1)
2

(N-m).ax

where T is the lag, which is expressed in terms of equally spaced (At) data

points for increasing intervals m = 0, 1, 2, ...N; N represents the total

number of data points; x.- and x are the functional values at points i and

_ 2
m, respectively; x is the mean value for all data points; and o is the

sample variance. In this case, At is 1° of azimuth, N is l80°, and x^ and

x. are the number of lineations at azimuths i and i+m, respectively. Sir
i+m

the data in this case are azimuths, the series ends at N = l80°; however,
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evaluation of the autocorrelation function only to this limit results in the

elimination of possible correlations betveen lineations at 175° azimuth, for

example, and 185° azimuth, which is simply 5°. Consequently, the auto-

correlation function was modified to a "cyclic" autocorrelation function

N
E (x-xXx^-x)

C(T » m.At) = ==̂ -K - (2)
N ax

in which lineations between 0 and (i+m-l80°) were repeated where (i-Hn) exceeded

l80°. The autopower function is the fourier transform of the autocorrelation

function. In this study, the Fast Fourier Transform (FFT) algorithm was used

to calculate the autopower directly from the data rather than from the auto-

correlation function (Webb, 1970). The resulting autopower corresponded to

the autocorrelation discussed for equation (l) rather than equation (2).

The nonrandomness of these trends is confirmed both by comparison of

randomly generated orientations and by comparison with the frequency of pre-

ferred trends from mapped lineations with a Poisson distribution. The signifi-

cance of the trends with respect to their being actual surface features, however,

can be tested by comparison of cross correlations between two unrectified.

photographs with cross correlations of corresponding rectified pairs. The

cross correlation between, functions x(t) and y(t) is defined in terms of the

sample cross covariance,

(N-l)-JTJ

(3)
t=0
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where W is the total number of data points; x and y .are the mean values of

the functions x(t) and y(t), respectively; and T is the displacement, or "lag",

from the data point t. In this case, N is l80°; x(t) and y(t) are the number

of lineations at azimuth t from two separate Mariner frames, x and y, and T is

the lag in degrees of azimuth. The cross correlation then is given by:

R»

vhere R (o) is the cross covariance at zero lag between x(t) and x(t), i.e.,
•X.

simply the auto covariance; similarly, R (o) is auto covariance at zero lag '
«7

for y(t).

If mapped lineations represent residual trends resulting from imaging,

then a good cross correlation between frequency-azimuth distributions from

unrectified photographic pairs should result regardless of the picture format.

On the other hand, if the lineations are true surface trends, then a better

cross correlation on rectified pictures might be expected if the surface trends

are part of a generally well-defined system.

Straight wall segments of polygonal craters and crater chain alignments

supplied additional data for linear surface trends. Each straight wall segment

was weighted subjectively from 1 to 3 depending on the certainty of identification.

Crater chains were divided into pairs of craters, and each pair was assigned a

similar subjective weight from 1 to 3 according to their visibility. Straight

wall segments, in general, are thought to be the results of slumping along

structural weaknesses, whereas crater chains may be due to secondary ejecta or

structurally controlled endogenic volcanism. Consequently, these two sets of
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data were treated separately both with respect to each other and with respect

to mapped lineations.

Photometrically corrected versions of the mapped regions showed the con-

tacts between low-albedo and high-albedo provinces that have long been recognized

through earth-based studies and recently compiled by de Vaucouleurs (1971).

The data from rectified photographs were grouped into their respective photo-

metric provinces so that possible tectonic provinces could be revealed.

Results

Figure k shows the frequency-azimuth distributions in polar coordinates

(rose diagrams) for selected frames from Mariner 6. The most significant

lineations (wj) were combined with the less significant lineations (w2) for a

larger sample size (w3-w2). The lower half of each rose diagram corresponds

to lineations weighted according to their apparent length, whereas the upper

half represents unweighted lineations,

' The rose diagrams of unrectified photographs show several features that

result from electronic imaging and subsequent computer processing. The 'east-

west' (horizontal) direction is typically devoid of lineations. This is not

the result of east-west solar illumination, which commonly does not correspond

to the 'east-west' direction of the picture format. It is more likely due to

the removal of coherent noise parallel to the direction of tape transport as

described by Rindfleisch, et al. (1971). The rectified photographs retain this

gap in their rose diagrams. The arrows in the unrectified photographs

(Figure 3a) indicate linear trends identified on unprocessed photographs. In
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general, such trends were eliminated effectively during noise removal at

JPL.

If the mapped lineations are true surface features, then they should be

detected most easily vhere they are perpendicular to the direction of solar

illumination. Such a selection effect 3n the rose diagrams generally exists

for w3-w2 lineations but appears to be subordinate to either prominent east-

vest trending lineations or contamination of the data by pseudoforms for wl

lineations.

The rectified versions reveal several preferred trends. Frame 6H09 (Fig-

ure 3b) shows a prominent north-south lobe for both the w3-w2 and wl lineations.

Frame 6N13 (Figure 4a) displays a large N66E lobe, whereas 6N21 (Figure *tb)

exhibits a preferred Wj4w orientation of lineations, which is almost perpen-

dicular to that in 6N13.

After elimination of duplicate lineations in overlapping photographs, all

of the wl lineations (total number of 1506) from frames 6N07, 6N13> 6N17, 6N19,

6N21, and 6N23 were combined and revealed prominent trends near N25W, N05W,

N50E, N63E, and N85E with less significant peaks near N30E and N^OE (Figure

5a). Combination of 775 w3-v2 lineations from the same frames showed prominent

trends near N25W, N05W, and N55E with less significant trends near N^W and

N30E (Figure 5b). Consequently, four of the five trends in the w3-w2 lineations

have corresponding trends in the wl lineations, and this suggests that some of

the wl lineations are surface forms. For comparison, 259 straight wall seg-

ments from the same Mariner 6 frames exhibited prominent lobes near N50W, 25¥,

and N50E with less prominent peaks near N30E, N60E, and N70E (Figure 6a). All
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but the less significant u60E and NTOE trends have corresponding trends in the

w3-w2 lineations. Crater chains (121 alignments) exhibited prominent narrow

lobes at N53W and N62E (Figure 6b).

In general, cross correlations betveen distributions of wl lineations from

unrectified photographs exhibit relatively sharp peaks near zero lag, whereas

the corresponding distributions from rectified photographs yield broader and

smaller peaks that are offset from zero lag (Figure 7)« The broadening and

reduction of the cross-correlation peak are interpreted as effects of geometric

stretching of the rectified photographs. The good cross correlation between

unrectified pairs remained after the elimination (filtering) of data in the

ranges N90W-N70W and N90E-N70E where typically few lineations occur in unrecti-

fied photographs. Inclusion of these voids in the frequency-azimuth distri-

bution introduces an improved cross correlation that may be meaningless with

respect to mapped trends.

Such statistical processing suggests that a significant component of

pseudoforms dilute the least weighted set of lineations, despite the elimination

of obvious noise patterns. This interpretation is supported by the correlation

at zero lag between Mariner 6 and Mariner 7 unrectified photographs. In

contrast, the frequency-azimuth distributions of the highest weighted linea-

tions generally produced marginal improvements in the cross correlations of

rectified pairs.

Cross correlations of 6N13-6N09 and 6N11-6N19 (wl lineations), however,

showed improvements in rectified pairs over the filtered unrectified pairs at

zero lag. Although cross correlations of 6N07-6N13 and 6W13-6N11 did not
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exhibit marked improvements in the rectified pairs, secondary peaks occurred

at zero lag. These exceptions may reflect a regional dependence of preferred

lineation trends since the above photographic pairs are in either the same or

similar photometrically distinct provinces. Further discussion of this

possibility is presented below. Such exceptions indicate that not all of the

least weighted lineatio.ns are pseudoforms and therefore should not be eliminated

completely from the final analysis.

Figure 8 shovs the frequency-azimuth distribution of lineations in

Meridiani Sinus, Margaritifer Sinus, which for this study includes Bos, and

Deucalibnis Regio, which for this study includes Aram. The less significant

wl lineations generally reflect the trends for the better defined wj-w2 linea-

tions in Margaritifer Sinus and Meridiani Sinus. The prominent peaks of the

two data sets from Deucaleonis Regio, however, do not match consistently.
i

The most significant lineations from both Margaritifer Sinus (Figure 5c) and

Meridiani Sinus (Figure 5d) display preferred trends within 3° of N̂ OW,

Nl6w; N08E, N33E, and N51E. Although the prominent KT̂ E trend in Margaritifer

.Sinus is not matched exactly for w3-w2 lineations in Meridiani Sinus, it is

matched by one of the most prominent trends of all data sets, which occurs

for wl lineations in Meridiani Sinus. In addition, a minor N69W trend from

w3-w2 lineations in Margaritifer Sinus is close to the W67V trend from w3-v2

lineations in Meridiani Sinus. These relatively close matches of at least

five out of six major trends in each province strongly suggest a similar

structural history. Three preferred trends (W19W, N11E, and N29E) from wj-w2

lineations in Deucalionis Regio (Figure 5e) may correspond to several of the

above trends, but they are among nine possibly significant peaks in the

frequency-azimuth distribution.
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Autocorrelation and autopower functions of the frequency-azimuth distri-

butions from individual rectified frames generally reveal peaks at lags

corresponding to 15°+ U° for w3-w2 lineations and to both 15°4-5° and 28+2°

for wl lineations. Combinations of lineations into the three photometric

provinces provide larger samples and, consequently, more reliable data for this

type of analysis. These groupings also produce azimuthal harmonics at 15°+2°

for w3-w2 lineations and at 15°+2° as veil as 28°+2° for wl lineations. Visual

inspection of the frequency-azimuth distributions (Figure 5) confirms these

intervals betveen trends. Such spacings suggest conjugate shear systems with-

in the Martian crust.

The two most prominent trends of crater-wall segments (N30E and NT2E) in

Margaritifer Sinus (Figure 6c) approximately reflect the W33E and N72E trends

recognized for w3-w2 lineations of Margaritifer Sinus and Meridian! Sinus

(Figure 5c and d, respectively). In Meridian! Sinus (Figure 6d), the three

most prominent crater-wall trends (N25V, N23E, and N6lE) also correspond to

the lineation trends in that province (Figure 5d) if a systematic 6° clockwise

displacement in azimuth is allowed. Crater-wall trends in Deucalionis Regio

(Figure 6e) exhibit eight possibly significant orientations, of which the

three most prominent trends are at N̂ W, N31E, and NW3E. The last two trends

correspond to lineation trends in the other two provinces but are expressed

poorly in the lineation trends in Deucalionis Regio (Figure 5e).

In contrast to crater-wall segments, the trends of crater chains separated

into photometric provinces generally do not reflect consistently trends from

w3-w2 lineations. Both Margaritifer Sinus-and Meridian! Sinus display a
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prominent crater-chain trend near N5&W, which may be associated with the large

basin Hellas. Margaritifer Sinus also includes two possibly related trends

near N^E and N60E, both of which are absent in Meridian! Sinus. Deucalionis

Regio exhibits a prominent trend at N6lE but lacks the trend at N56w found in

the other two provinces.

The region northeast of Hellas (frame 7N23) includes prominent N50E, N37E,

and N21E trends (w3-w2 lineations) with a relatively minor NTOW trend. Closer

to the eastern rim of Hellas (frame 7N25, however, NOOE and N15E trends are

dominant. The N37E trend in frame 7N23 and the N15E trend in frame 7N25 are

approximately concentric with the Hellas basin at their respective distances

and orientations from the rim. Radially directed lineations fron Hellas only

occur in the w2 and wl lineations and .are subordinate to the concentric system.

The dominance of the concentric system of lineations is similar to old lunar

basins, such as Humorum and Nectaris, where the concentric structural weak-

nesses persist or are rejuvenated, whereas radial ejecta patterns are destroyed

with -age.

Discussion

Lineations are identified as a variety of topographic forms. Positive-

relief lineations include ridges analogous to lunar wrinkle ridges, ejecta,

scarps, and remnants of craters. Negative-relief lineations include grabenlike

nonsinuous rilles, rectilinear rilles, curvilinear rilles, and coalesced

craters. Several crater rim areas exhibit curvilinear rilles that converge

toward a common area from the rim crest. These are suggested to represent
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drainage features rather than ejecta or structurally produced rilles. The

existence of such rilles is confirmed from Mariner 9 photographs (see M9-̂ 219-

51). '

Clearly, the structural significance of preferred trends of lineations

requires the elimination of both electronic imaging noise and nonstructurally

produced forms, such as crater ejecta, topographically controlled drainage

features, lineations on crater floors, and wind-produced forms. In addition,

nonlinear features can be misinterpreted as lineations oving to poor resolution

and the effects of solar illumination.

Removal of possibly nonstructural lineations from the highest weighted

set did not alter significantly the trends described above. Deucalionis Regio

displayed the greatest number of such lineations possibly as a result of the

greater detectability of features in this region than that in Margaritifer

Sinus and Meridiani Sinus. In particular, frames 6N17, 6N19, 6N21, and 6N23,

which include Deucalionis Regio, have respective discernibility indices of

5.0 to 1.0, 2.0 to 1.1, 1.0, and 1.0. In contrast, frame 6W07 (Margaritifer

Sinus) has discernibility indices ranging from 17 to U, whereas frame 6N13

(Meridiani Sinus) has indices from 3-2 to 1.6. Consequently, the identification

of specific morphologic form from Mariner 6 photographs, beyond positive or

negative relief, should be more difficult in Margaritifer Sinus and Meridiani

Sinus. The greater detectability in Deucalionis Regio, however, may not be

offset by the ability to recognize the distinction between topographically

controlled drainage features and structurally controlled features. Conse-

quently, the complex rose diagram for this region may reflect the increased



detail recognized, a distinctive geologic history, or a combination of these

two possibilities.

Several features support the interpretation that Deucalionis Regio and

Aram have different geologic histories from Margaritifer Sinus and Meridian!

Sinus. Prominent rectilinear and curvilinear rilles accompany the contacts

between Aram and Margaritifer Sinus (Figure 2) as well as Deucalionis Regio

and Meridiani Sinus (Figure 9)- Although the rose diagram for Deucalionis

Regio and Aram is complex, the preferred lineation trends in Margaritifer

Sinus are generally similar to those in Meridiani Sinus; therefore, the latter

two regions perhaps had similar structural histories. The domelike relief of

Meridiani Sinus also may indicate locally contrasting tectonic development

(Binder and McCarthy, 1972).

Deucalionis Regio exhibits a cratered terrain that morphologically resem-

bles portions of the lunar surface. Frame 6N20 clearly reveals wrinkle-

ridgelike features as well as a 13 km diameter crater with a concentric plan,

which appears analogous to numerous lunar craters along the margins of maria.

Such craters are interpreted as the result of volcanic modification of crater

floors (Schultz, 1972). Frame 6N19 includes several flat-floored craters with

breached walls. The surrounding crater density does not appear great enough

to degrade significantly such large craters, and the breached walls resemble

lunar craters inundated during the epochs of mare emplacement. Consequently,

Deucalionis Regio may be a region that has been modified significantly by an

epoch' (or epochs) of endogenic activity such as volcanically produced flooding

of crater floors. Detailed morphologic comparison of Deucalionis Regio to
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other provinces is unwarranted owing to the large differences in discerni-

bility indices from Mariner 6 and 7 photography. The preservation of its

cratering history, and possibly-its multistage endogenic modification, may

account partially for the complex frequency-azimuth distribution of lineations.

The enormous canyon that corresponds to the photometrically lighter Eos

appears to indicate relatively recent and large-scale tectonic events (Sharp,

et al., 19T1)- The full extent of this feature has been revealed in the more

recent Maringer 9 photographs (see McCauley, et a,!., 1972). The regional

trends (w3-w2 lineations) in Meridiani Sinus generally correspond to trends in

Margaritifer Sinus and Eos. Consequently, structural events related to the

formation of the Eos canyon may extend farther to the east.

As the good cross correlations of unrectified photographs suggest, the

general mismatch of preferred trends from wl lineations and w3-w2 lineations

may reflect dilution of the wl lineations by pseudoforms. Published Mariner

9 photographs (Sagan, et al., 1972), however, show dark and light lineations

that'apparently are wind produced. Thus, it is suggested that some of the

large peaks in the rose diagram of wl lineations may reflect meteorologically

controlled trends that will be distinct from w3-v2 lineations, which are

identified as topographic forms. Preliminary examination of Mariner 9 photo-

graphs of this region confirms such a possibility.

As Binder and McCarthy (1972) point out, surface trends may correspond

to ejecta and structural features associated with huge basins. If such

basins are not included in the photographic coverage, it is difficult, if not

impossible, to separate associated trends from regional or global structural
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trends. This problem is particularly severe for photographic flyby missions

such as the Mariner '69 and future space probes.

Conclusions

Mariner 6 and 7 photographs provided an intriguing glimpse into the

structural complexity of the Martian crust that now has been confirmed by

the highly successful Mariner 9 Orbiter. Experience vith photographs from

precursory probes indicates that caution must be used in mapping lineations.

Cross correlations of lineations from separate frames having different orien-

tations provide an index for the possible dilution of structural detail by

imaging noise. Lineations that are not recognized as topographic relief are

most likely to be confused vith pseudoforms, but such lineations commonly

represent the only data available in sufficient quantity for statistical

treatment. Realization of and proper allowance for this problem are pre-

requisites for any study of planetary lineation systems from terrestrial

satellites, such as ERTS-1, and space probes, such as the 1973 Mariner-Venus/

Mercury, that have digital imaging systems.

Combinations of data from Mariner 6 according to regions defined by photo-

metric boundaries reveal similar orientations of lineations at approximately

l4° and 28° spacings for Meridian! Sinus and Margaritifer Sinus (plus Eos).

This system probably represents conjugate shear fractures that are related

to the formation of the canyon in Eos. Such a conclusion is consistent with

an independent study of crustal fractures identified in the chaotic terrain

from Mariner 6 frames 6N06, 07, 08, and OlU, which include the Margaritifer
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Sinus and Eos areas (Wilson et_ al., 1973). Deucalionis Regio (plus Aram)

displays a more complex distribution of lineation trends that reflect a more

complex or better preserved geologic history. The regions included in Mariner

6 photographs commonly are bordered by numerous rillelike lineations. Con-

sequently, it is suggested that such boundaries in the restricted areas of

this study may have physiographic and perhaps tectonic, as well as photo-

metric, importance.

Inspections of Mariner 9 photographs showing the regions used in this

study confirm the reliability of these data. The potentially higher resolu-

tion provided by Mariner 9 commonly is offset by the higher solar illumination

(local solar zenith distance around 5̂°) so that the effective discernibility

of linear features is comparable to Mariner 6 frame 6N21 (local solar zenith

distance around 70°).
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Figure 1. Lineations mapped on the unrectified version of Mariner frame 6N09

(the regions of Aram and Margaritifer Sinus, lover left). Contours

of discernibility indices reflect the change in the ability to

recognize topographically expressed lineaments. An index of three

indicates that for recognition, a linear feature must be three

times as broad as a comparable feature in Mariner frame 6N21 (the

region Deucalionis Regio). Easily recognized lineations (v3) are

represented by solid lines, whereas poorly recognized lineations

(vl) are represented by dotted lines. The symbols —J— + ~~̂ ~

indicate negative relief, positive relief, and scarps, respectively.

Such symbols attached to dotted lines represent marginally recognized

lineations (w2)»
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Figure 2. Lineations mapped on the rectified (orthographically projected)

versions of Mariner frame 6N09. See Figure 1 for definition of

symbols.
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Figure 3. Rose diagrams of lineations from the unrectified version (Figure

3a) and orthographically projected version (Figure Jb) of Mariner

frame 6N09« The upper half of each rose diagram uses the number

of lineations, whereas the lower half illustrates lineations weighted

by their length. Lineations (w3-w2) recognized as topographic

features are to the right; lineations (wl) not recognized as topo-

graphic features are to the left. Arrows on the rose diagrams in

Figure 3c note coherent noise trends on unprocessed photographs.

Values within each rose diagram indicate the number of lineations

used.
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Figure U. Rose diagrams for Mariner frames 6N1J and 6N21. The upper half

of each rose diagram utilizes the number of lineations, whereas

the lover half illustrates lineations weighted by their length.

Lineations (w3-w2) recognized as topographic features are to the

right; lineations (wl) not recognized as topographic features are

to the left.
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Figure 5. Frequency-azimuth distributions of 1506 least significant (wl)

lineations (Figure 5a) and 775 most significant (w3-v2) linea-

tions (Figure 5b) from rectified Mariner frames 6N09, 11, 13,

17, 19, 21 and 2J. Figure 5c shovs the distribution of 185

w3-w2 lineations from Margaritifer Sinus; Figure 5d, 219 v3-v2

lineations from Meridian! Sinus; and Figure 5e, 3̂ -1 v3-v2 linea-

tions from Deucalionis Regio. Lineations have been weighted by

their length, and the distributions are normalized to the maximum

peak: in each data set.
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Figure 6. Frequency-azimuth distributions of 259 trends of crater vails

(Figure 6a) and 121 crater chain alignments (Figure 6b) from

rectified Mariner frames 6N09, 11, 13, 17, 9̂> 21, and 2J.

Figure 5c shows 35 trends of crater vails from Margaritifer

Sinus; Figure 5d, 102 trends from Meridian! Sinus; and Figure 5c,

259 trends from Deucalionis Regio. Each crater-vail trend and

crater chain alignment are veighted subjectively on a scale

from 1 to 3. The distributions are normalized to the maximum

peak in each data set.
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Figure 7- Cross correlations between frequency-azimuth distributions of wl

lineations from unrectified frames 6N09 an<l 6NL7 (curve A); cross

correlations between distributions of wl lineations from correspond-

ing orthographically projected frames (curve B).
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Figure 8. Rose diagrams from photometrically defined regions for w3-w2

lineations, which are recognized as topographic features (top

half of each rose diagram) and for wl lineations, which are not

recognized as topographic features (bottom half of each rose diagram)

Data for Deucalionis Regio include the light area Aram, and

Margaritifer Sinus includes the large canyon Eos. Values within

rose diagrams indicate number of lineations used. Lineations are

veighted statistically by length.
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Figure 9« Lineations mapped on rectified frame 6N21. The approximate boundary

between the lover albedo region, Meridiani Sinus (above) and the

higher albedo region, Deucalionis Regio (below), is accompanied

by numerous rillelike lineations. The albedo contrast between

these regions is not obvious owing to the enhancement of small-

scale contrast differences (maximum discriminability photographs).

See Figure 1 for definition of symbols.
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