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LMSC-HREC TR D306582

FOREWORD

This document represents the final report of a study

performed by Lockheed Missiles & Space Company, Inc.,

Huntsville Research & Engineering Center, entitled "Hyper-

velocity Meteoroid Impact on Orbital Space Stations, " Con-

tract NAS8-28473. The program was administered by the

National Aeronautics and Space Administration's George C.

Marshall Space Flight Center under the direction of Mr.

David W. Jex, Space Sciences Laboratory.

The authors are grateful for the guidance and assistance

provided by Mr. Jex in addition to Dr. L. Raman, Mr. R. L.

Holland and Mr. G. Heintze.
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SUMMARY

In the event of a hypervelocity impact of a meteorite on a spacecraft,

structural damage may result. Of particular interest is the backside spalla-

tion caused by such a collision. To treat this phenomenon two numerical

schemes were developed in the course of this study to compute the elastic-

plastic flow and fracture of a solid. The numerical schemes are a five-point

finite difference scheme and a four-node finite element scheme. The four-

node finite element scheme proved to be less sensitive to the type of boundary

conditions and loadings. Although further development work is needed to

improve the program versatility (generalization of the network topology,

secondary storage for large systems, improving of the coding to reduce the

run time, etc.), the basic framework is provided for a utilitarian computer

program which may be used in a wide variety of situations. Analytic results

showing the program output are given for several test cases.
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NOMENCLATURE

Symbol Description

A surface area

a,, a_, a_, b,, by coefficients of equation of state

C damping coefficient for quadratic damping

C scalar damping coefficients

E energy of the control volume

e internal energy per unit mass

f any function

^R'^B body force, body force per unit mass

F surface forces

F ,F nodal forces
x r

m mass

p pressure

Q heat transfer rate per unit area per unit time

•^ heat transferred into control volume

q viscous deviator stress tensor

q1 viscous pressure

S position vector

t time

u, v displacements

V volume
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Symbol

W

x, r, 0

Y o

Greek

6 , 6 , 6r x rx

e

11

A.

v

p

"a

Superscripts

e

n

Subscripts

x, r, 6

xr

o

NOMENCLATURE (Continued)

Description

work done on control volume

cylindrical coordinate system coordinates

yield modulus

unit dyad (tensor)

coordinate system rotation corrections

strain

density/rest density ratio

plastic flow correction factor

shear modulus

viscosity coefficient

0 is planar motion, 1 is axisymmetric

density

distortional stress deviator tensor

principal stress

stress tensor

rotation angle

denotes time differentiation

designates element

denotes time step

denotes component in coordinate direction

off diagonal term in stress and strain tensors

denotes rest condition
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Section 1

INTRODUCTION

The analysis of dynamic response of elastic media to rapid loading, in

particular meteorite impact, has been of considerable interest to the scientific

community. Some of the most notable analytical investigations are given by

MacCormack (Ref. 1), Rosenblatt (Ref. 2); Read and Bjork (Ref. 3) and Wilkins

(Ref. 4). In these studies the emphasis has been placed on the dynamic response

of the target or impacted material and on the response of the projectile.

Experimental studies (Ref. 5) have shown that for a given weight, a thin

meteorite bumper arrangement gives better protection than a single skin. The

purpose of the bumper is not necessarily to completely stop the incoming pro-

jectile but to at least absorb some of the incident energy before failing under

the applied load. Backside spallation of the bumper then scatters fragments

of both the meteorite and the bumper material which in turn strike the structural

skin. These fragments possess a lower total energy and also impact the struc-

tural surface over a much wider area thus decreasing the peak loading.

Development of the bumper approach created a need for an analysis

which treats the fracture phenomena of a material. It is the purpose of this

study to provide this capability. The schemes chosen are based on combina-

tions of ideas found in the above references and the work of Ang (Refs. 6, 7, 8).

Of the two schemes investigated, a five-node finite difference scheme and a

finite element scheme, the finite element scheme produced the best numerical

behavior. It can be shown that the finite element treatment actually is analogous

to a nine-point finite difference scheme. The additional four points enhance the

stability characteristics (with respect to the five-point scheme).

In the following discussion both approaches are discussed. Computer

programs have been written to conduct the calculation and are briefly discussed

in this report.

1-1
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Section 2

EQUATIONS OF MOTION GOVERNING
CONTINUOUS MEDIA

For a control mass in motion conservation of mass becomes

dm _ d f
dt dtj p d V = 0 . (2.1)

cv

from Newton's second law we get

~ (2.2)dt x me' I
J J
cs cv

while the first law of thermodynamics yields

dE dD . dW
dt dt dt

Now the velocity of the mass center is

= I pS dV/rS = / pS dV/m
rnc

cv
so that Eq. (2.3) becomes

cv cs cv

The work done on the control volume in time dt is

AW = / dF~ • dS" + (pT. • dS dV
/ S g JJ*f j
cs cv

2-1
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where dS is the distance moved in that time so that the instantaneous rate of

work done on the control volume is

W = I S • dFg + f pS • ffi dV

cs cv

The rate of change of energy contained within the control volume is

'•/•E = p e + S dV

cv

j »2 x* __ __
It is convenient to express as / Q ' dA where Q is the heat transfer

cs
vector per unit time per unit area. In a similar fashion let

dF = S . dAs

so that the governing equations can be summarized as below

d - f p d V = 0 (2.4a)
dt

cv

^ f p S d V = /"I:- dA + / " p f B d V (2.4b)

cv cs cv

gf- fp (e + i S ' S) dV = f (Q + S • 1) • dA + I pi • FB dV (2.4c)

cv cs cv

where the control surface is determined by the space time history of points on

the original or starting surface.

2-2
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Assuming continuous functions within the region we may write, with the

aid of Gauss' theorem, for momentum and energy

pS = V • S + pTB (2.5a)

p (e + S • "S) = V ' (Q + S • S) + pS • TB (2.5b)

Combining (2.5a) and (2.5b) yields

« '

pe = V • "Q + (S • V) • S (2.6)

At this point it is convenient to decompose the dyad (or second order tensor) S

into viscous and inviscid components viz:

S = S. + S = (T - pT - q'1 - q^

Now a is the deviator stress tensor due to elastic/plastic distortions, p is the

hydrostatic pressure, q1 the viscous pressure and 'q is the deviator viscous

stress tensor. The elastic stress convention is -such that tension yields a posi-

tive stress while pressure in hydrodynamics is usually defined in the opposite

sense. The viscous stresses usually are defined in the same sense as pressure.

Assuming an axially symmetric motion (or a planar one) the equations of

motion may be written,

as as /s - SQ\
r , rx + v (-JL_e) (2.7a)

I

as as
• • rx . x . , i /o TU\

px = -+ - + V — (2.7b)

for a cylindrical coordinate system.

2-3
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The equation of continuity becomes

V = * r + * x + V * (2'7c)

where the strain rates are;

9 r _ 9 v
€ r " 9 r ~ 9 r

9x _ 9_u
ex = 9x ~ 9x

£. - X.
9 r r

_ 9 r + 9 x _ 9 v + 9 u
rx 9x 9r 9x 9r

The material law for linear elastic isotropic homogeneous material is

(2.9)
< j = 2[j. ( e - ) (axisymmetric only)

a = jue +6rx ^ rx rx

The quantities 6 , 6 , 6 are corrections to account for the rotation of the^ r x rx
coordinate system.

Consider the rotation of the coordinate system by an angle w. Then

6 = (S - S ) sin w - 2S sinu cosur x r rx

6 = -6 (2.10)x r x '

6 = -2£ sin CJ - (S - S ) sinu cosurx rx x r

2-4
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but

(0 = V x (ui + vj)

Equations (2.9) could be differentiated with respect to time but there is no need

since the integral is the quantity that is really required.

Expansion of Eq. (2.6) yields

e = S e + S e + S k + X^ '
x x r r 0 6 x y x y

which yields

The hydrostatic pressure must be obtained from an equation of state.

Functionally -we may express this as

p = P(P, e)

The form used by Wilkins (Ref. 4) is

p = a. (r\ -1) + a., (r) -I)2 + a,(n -I)3 + fb, (n-1) + b? (r) -I)2] e
A £ J I A _J

where r} = p/p and is the functional used in this study.
o

To complete the governing equations the viscosity must be discussed.

Generally speaking in numerical analysis the introduction of viscosity occurs

more frequently to enhance stability of the numerical solution than for the

purpose of treating internal damping or viscous effects. As such the

viscosity models are created to control some undesirable behavior and do not

2-5
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necessarily have firm underlying mathematical principles. Several mathe-

matical models were tested in the subject analysis. These are: (1) Linear

Damping; (2) Quadratic Damping; (3) Velocity Angular Distortion; (4) Spatial

Angular Distortion; and (5) Spatial Displacement Distortion.

The first method has firm mathematical grounding in the sense that it

is a conventional model for fluids obeying the Reiner-Revlin law. The second

method uses a first coefficient of viscosity which is proportional to .the diver-

gence and a second coefficient which is zero. The last three methods are

artificially contrived. The third was suggested by Wilkins (Ref. 4) to control

an undesirable "hourglass" distortion. The last two were developed in this

study due to the inadequacy of the five point lattice scheme to "remember"

what the original rest configuration was and to return to that state in the

absence of disturbing forces.

In the scalar damping

•

q1 = C g M l | (2.12a)

qr = 2"l (€'r 'I !> (2>12b)

qe = 2"i (^e - J v* <

qrx = **!*„ (2.12c)

while in the quadratic damping

AA departure from Wilkins is taken in that the factor TT- was omitted in the

quadratic damping since it precluded a uniform radial distribution in cases where

no variations of properties in the radial direction can be expected.

2-6
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The remaining topics of yield and fracture complete the governing

equations discussion. The principal stresses are

a + a ,
* Jt i A I / I \ *— i / *^ \ ^ / i i ^ \r, -> = = + •=• <J(a + a ) + (2cr ) (2.14)

If2 2 — 2 ™ ^ v "v

and

a, = a (axisymmetric only)
j 0

The yield condition is given by Von Mises as

f f 2 + f f 2 + f f 2 _ | ( y o ) 2 < 0

If this condition is not satisfied then all stresses are corrected by multiplying

by the factor

T Y«x = =-2—2-

The validity of this procedure is discussed by Hill (Ref. 9). A fracture occurs

if the principal tensile stress exceeds the ultimate tensile strength.

This concludes the discussion of the governing equations for the continuous

media. The numerical analogs are developed in the following section.

2-7
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Section 3

NUMERICAL ANALOGS TO THE GOVERNING EQUATIONS

3.1 FIVE-NODE FINITE DIFFERENCE SCHEME

This is the simplest numerical analog possible, at least with regard to

the region of influence. For each node point in the array the positions, dis-

placements, stresses, pressure, viscosity, and vel ocities are stored. Figure

1 illustrates a typical interior node.

4

Fig. 1 - Typical Five-Npde Lattice Numbering Scheme

The spatial derivatives of any function f are

J_
2A ' (£ - (r

(3.1.1)

J_
2A (3.1.2)

The accelerations are computed using Eqs. (2.7a) and (2.7b). Integration of

the accelerations yields new velocities over the entire field while a second

integration yields the new positions and displacements. Using the above

3-1
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information the strain rates at the new time may be found from Eqs. (2.8) while

the new deviator stress distributions are found by integrating Eqs. (2.9).

The pressure and energy may then be evaluated and the new viscous terms

determined. From this information the updated stress tensor is found.

A special matrix is retained which for each node point stores the index

of the point to the left, right, top and bottom. In the event that point 0 is on

the left boundary the index for point 1 is set to that of point 0 and a one sided

derivative results. This process is used for all peripheral points. As will

be seen later the unconstrained corner point such as shown (Fig. 2) has poor

stability and constitutes the greatest problem with the five-point method.

-•2

Fig. 2 - Degeneration of Five-Point Grid at Corner Point

Boundary conditions are treated with special subroutines which reset displace-

ments, velocities and stresses in an appropriate fashion. These routines are

extremely flexible such that any type of boundary conditions may be treated by

receding rather than by data card input. Very few cards are involved, typically

5 to 10, in this receding. This approach was considered superior to a complex

input setup in which every conceivable type of boundary condition was anticipated.

3.2 FOUR-NODE FINITE ELEMENT SCHEME

This computer program features some of the aspects of the traditional

finite element programs used in structural analysis. Dynamic core storage

allocation is used for the major size-dependent variables, which are grouped

3-2
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in nodal quantities (position coordinates, displacements, velocities, forces,

masses) and regional quantities (stresses, pressure, scalar viscosity, total

energy and distortional energy).

The elastic-plastic continuum is replaced by four-node regions (elements)

as shown on Fig. 3. The corner points are numbered 1 through 4 counterclock-

wise. The state of stress in the element is assumed to be constant. t

The mass characteristics of the continuum are modeled as discrete lumps

located at the node points (Fig. 4). The motion of the continuum is treated in

terms of the motion of these lumps.

The equation of motion is simply a sum of all forces, elastic and inertia,

acting on the lump. No special logic is required for boundary lumps since

the elastic forces are summed as the element stresses for each element are

updated. This simplifies the coding considerably, doing away with special

features for various types of boundaries. The equation of motion may be stated

as

mx = E Fx (3.2.1)

,e
mr =

e e
where F and F are the elastic (spring) forces of the elements holding lump

X. i

m.

The velocities are obtained by taking

Fe
x

x = x m

3-3
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Fig. 3 - Four-Node Element

x, i

Fig. 4 - Typical Node With Surrounding Elements

3-4
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n+l

(3.2.4)m

If a velocity boundary condition is imposed the affected nodal velocities com-

puted from Eqs. (3.2.5) and (3.2.6) are simply reset to the imposed values. Force

boundary conditions, such as externally applied forces, are imposed before Eqs.

(3.2.5) and (3.2.6) are executed.

In another integration step the displacements are computed,

n+l n . -n+4- A .n+4- ._ _ _,
u = u + x 2 A t 2 (3.2.5)

n+l n , -n+i A ,n+i (3.2.6)
v = v + r 2 A t 2

Displacement boundary conditions may also be imposed.

Now the element quantities can be computed based on the new velocities

and displacements, from the equations of motion.

A fracture condition has been added, which severs the springs representing

the strength of the element. This fracture occurs when the principal tensile

stress exceeds the ultimate tensile strength of the material.

The corner forces are computed for the element based on the new stresses

and damping terms. The directional damping terms are not stored. These

corner forces are

(r7 - rJ.-S_(x, -xj j -r+£s_ A1*, - . , - . - , - .xl 2 x xl x 2 4' xr l 2 4' 4 xr

x2 L x2 3 1 xr 3 1 J 4 xr (3.2.7)

TT* — A I /T1 If t- \ T1 I •v v \ I ~^T -t .i. T1 AFx3 ' ~z I (Sx3 (r4 ' T2> - Sxr ( X4 ' X2} | r + 4 Sxr A|

Fx4 = '•

3-5
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rl

r2

r3

r4 ' Sxy

(3.2.10)

r = 1; I =0 for plane strain problems.

3-6
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Section 4

NUMERICAL RESULTS

To investigate the numerical problems involved in the computation of

elastic-plastic flow a one-dimensional code was written and implemented. A

wave propagation problem given by Wilkins (Ref. 4) was checked with this code

using two different mesh sizes (250 and 50 node points). The material is de-
o

scribed by P=0, p = 4g/cm ^ = 3 Mb and Y = oo. The left boundary of the

\5 cm thick plate is excited by x = -10" sin2;rt cm/^ sec.

The stress waves are depicted on Figs. 4-1 through 4-3.

The five-node finite difference scheme was first tested on a one-dimen-

sional problem although the calculations were performed two-dimensionally.

Quadratic damping was used in this test case. A uniform velocity was imposed

at one end of a rod while the other end was fixed. The rod was constrained to

slide in a tube such that no vertical displacement was possible. The axial

velocities resulting from the improved boundary conditions are shown in Fig.

4-4 for several node points. As the time approached infinity the internal

oscillations damped and a linear velocity distribution throughout the rod was

achieved.

The two-dimensional codes initially suffered from stability problems.

The examples shown were taken again from Wilkins, with the material data

P = 1.88 (r? - 1) Mb, pQ = 7.72 g/cm3, n = 0.814 Mb and Y = 0 0 . The cantilever

plate is 1.00 by 5.25 cm, the fixed-fixed plate is 1.00 by 10.50 cm. The excita-

tion was achieved by supplying a boundary velocity.

Figures 4-5 and 4-6 show how the upper edge of the cantilever plate is

set into motion at constant velocity and constant rotation, respectively. Rela-

tively smooth deformation patterns result. If an edge is released, however,

instability occurs almost immediately (Fig. 4-7). This points to a weakness

in the formation in the edge condition of the five-point scheme. For all three

plots the deformations are magnified ten-fold.

4-1
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i.oo

-4.00

' I.)0 2. )0 3. )0 90 5. 90 6. )0

-8.00

Cycle 251 at t= 3.351 ^ sec

Axial Distance (cm)

Fig. 4-1 - Stress Distribution in the Plate
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».oo

1.00

-t.OO

I. 10 5. 10 6.

-1.00

Axial Distance (cm)

Fig. 4-2 - Reflection of the Wave at the Free Boundary
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Axial Distance (cm)

Fig. 4-3 - Stress Distribution for Coarse Mesh at t = 3.3 jtsec
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VIBRATION OF AN ELASTIC PLATE CLAHPEO AT ONE END

v-3v = 10 cm/n sec

TOT

./ s /

1INE> tt.fM NICROSEC CYCLE NUMBER 199

Fig. 4-5 - Elastic Shear Deformation (Five-Point Scheme, Plane Strain)
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VISM1ION OF Ml ELASTIC PLA1E CLAWED Al (ME END

IIM> T.rjr HICROSEC CVCLE NUflBER

Fig. 4-6 - Elastic Bending Deformation (Five-Point
Scheme, Plane Strain)
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T|«C> t.trt niCROSEC CYCLE NUP8ER N

Fig. 4-7 - Instability of the Five-Point Scheme at
the Corner Points
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The fixed-fixed plate problem was solved by the five-point scheme, but

shear waves occurred (Fig. 4-8). These could neither be controlled by the

angle q nor by the Navier-Stokes q. Several corrective schemes were tried.

The stabilizing effect was good for considerable length of time but eventually

instability occurred.

For rotationally symmetric problems the five-point scheme is consider-

ably more stable. Figures 4-9 and 4-10 show a circular plate with a hole

clamped at the outer edge. It is significant that the corners on the inner

edge remain stable. Eventually the integration becomes unstable, however,

although the grid remains smooth.

Results obtained with the four-node element scheme have shown good

comparison with those reported by Wilkins as far as amplitude and frequency

of the vibrating plate is concerned (Fig. 4-11). Unfortunately an hourglass

distortion appears. This should be controllable by a higher coefficient for the

angle damping coefficient.

4-9
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VIBRATION DF AN ELASTIC PLATE CLAMPED AT BOTH ENDS

TtHE» 12.683 HICRflSEC CYCLE NUMBER 120

Fig. 4-8 - Shear Waves in Elastic Plate (Five-Point
Scheme, Plane Strain)
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VIBRATION OF AN ELASTIC PLATE CLAMPED AT CIRCUMFERENCE

|.Tip NICROSEC CTCLE NUMBER 49

Fig. 9 - Cutoff at t = 8/z sec
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VIIRATION OF AN ELASTIC PLATE CLAMPED AT CIRCUMFERENCE

TINE* tt.ltl HtCROSEC CTCLE NUMBER iff

Fig. 4-10 - The Grid Moves to the Other Side
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VIBRATION Of A CANTILEVER PLATE

TIBt* HKR05EC CTCLC NUMBER TIO

Fig. 4-11 - Bending of a Cantilever Plate Showing
Hourglass Distortion
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Section 5

CONCLUSIONS AND RECOMMENDATIONS

In order to analyze the behavior of a spacecraft structure subjected to

a meteorite impact two numerical analogs to the governing differential equa-

tions related to elastic-plastic flow and fracture of a material have been

developed and computer programs have been written to perform the calcula-

tions. Of these two schemes, the finite element or four-node scheme appears

to be superior for the following reasons.

• Stability problems appear to be only of the "hourglass"
type and may be controlled.

• It is simpler to formulate

• The boundary condition treatment is simple to apply.

Full production versions have not been created with either method. Stability

problems occupied more effort than originally anticipated and thus detracted

from development of a user-oriented analysis.

It can be said, however, at least regarding the finite element scheme

that the major problems have been overcome and that a nominal amount of future

development will, in fact, produce a utilitarian program.

During the course of the study the fracture condition itself was not

thoroughly investigated, but no undue problems are anticipated.

It is concluded that further exercise of the existing programs and further

development is warranted.

5-1

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306582

Section 6

REFERENCES

1. MacCormack, R. W., "The Effect of Viscosity in Hypervelocity Impact
Cratering, " AIAA paper C9-364 (1969).

2. Rosenblatt, M., "Analytical Study of Strain Rate Effects in Hypervelocity
Impacts," NASA-CR-61323, January 1970.

3. Read, H. E., and R. C. Bjork, "A Numerical Study of the Hypervelocity
Impact of a Cylindrical Projectile with a Semi-Infinite Target, " Shock
Hydrodynamics, Inc., August 1970.

4. Wilkins, M. L., "Calculation of Elastic-Plastic Flow," UCRL-7322, Rev. 1,
Lawrence Radiation Laboratory, Livermore, Calif., 1963.

5. National Aeronautics and Space Administration, "Scientific Involvement
in Skylab, " by Space Sciences Laboratory of Marshall Space Flight Center;
"Meteoroid Investigations by Edward Schrieber, " NASA TM X-64725.

6. Ang, A.H-S., and J.H. Rainer, "Model for Wave Motions in Axisymmetric
Continue, " Proceedings of the American Soc. of Civil Engineers, Journal
of the Engineering Mechanics Division, April 1964.

7. Ang, A.H-S., and G. N. Harper, "Analysis of Contained Plastic Flow in
Plane Solids, " Proceedings of the American Soc. of Civil Engineers.
Journal of the Engineering Mechanics Division, October 1964.

8. Ang, A.H-S., and L.A. Lopez, "Discrete Model Analysis of Elastic-Plastic
Plates, " Proceedings of the American Soc. of Civil Engineers, Journal of
the Engineering Mechanics Division, February 1968.

9. Hill, R., The Mathematical Theory of Plasticity, Oxford, 1950.

6-1

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306582

Appendix

USERS' MANUALS FOR THE COMPUTER PROGRAMS
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A.I FIVE-POINT SCHEME

Card

1

2

3

Columns

1-72

1-5
6-10
11-15

16-20
21-25
26-30

1-10
11-20
21-30
31-40

Format

12A6

15
15
15

15
15
15

E10.4
E10.4
E10.4
E10.4

41-50

1-10
11-20
21-30

1-10
11-20
21-30

31-40

1-72

E10.4

E10.4
E10.4
E10.4

E10.4
E10.4
E10.4

E10.4

12A6

Description

Heading

Time step increments for output
Total number of time steps
Type of symmetry 0 = plane

1 = cylindrical
Number of stations in x-direction
Number of stations in r-direction
Type of output 0 = plots desired

p (g/cm ) = density
^ (Mb) = shear modulus
Y° (Mb) = yield strength
F. (Mb) = ultimate tensile strength

tXl

^ = a constant

Coefficients of equation of state
Coefficients of equation of state
Coefficients of equation of state

ai
a 2

$y = length of the region in r-direction
fx = length of the region in the x-direction
ya = beginning of region in r-direction

(plate with hole)
a = magnification factor for plots

Message to the operator of the SC 4020
plotter.

A.2 FOUR-NODE ELEMENT SCHEME

Card

1

2

Columns

1-72

1-5
6-10
11-15

16-20
21-25
26-30

Format

12A6

15
15
15

15
15
15

Description

Heading

Time step increments for output
Total number of time steps
Type of symmetry 0 = plane

1 = cylindrical
Number of stations in x-direction
Number of stations in r-direction
Type of output 0 = plots desired
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Card

3

4

5

Columns

1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80

1-50

1-10
11-20
21-30
31-40

1-72

Format

E10.4
E10.4
E10.4
E10.4
E10.4
E10.4
E10.4
E10.4

5E10.4

E10.4
E10.4
E10.4
E10.4

12A6

Description

p (g/cnnr) = density
H (Mb) = shear modulus
F^ (Mb) = yield strength

J. (Mb) = ultimate strength

= constants

ag (cm/n sec) = speed of sound

Coefficients of equation of state

Boundaries of the grid

Message to the operator of the SC 4020
plotter.
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