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FOREWORD

This document is VolumeIV of a five-volume final report prepared
by Martin Marietta Corporation, Denver Division for the National
Aeronautics and SpaceAdministration, MannedSpacecraft Center
(NASA-MSC)under Contract NAS9-12359,Long-Life Assurance Study

for Manned Spacecraft Long-Life Hardware. This study was per-

formed with J. B. Fox, Manned Spacecraft Center, as Technical Mon-

itor and R. W. Burro_s, Martin Marietta, as Program Manager. Ac-

knowledgment is made to the individual contributors identified in

each volume and to R. A. Homan and J. C. DuBuisson, Task Leaders

for the electrical/electronic and mechanical areas, respectively.

The five volumes submitted in compliance with Data Requirements

List T-732, Line Item 4, are as follows:

Volume I - Summary of Long-Life Assurance Guidelines;

Volume II - Long-Life Assurance Studies of EEE Parts and

Packaging;

Volume III- Long-Life Assurance Studies of Components;

Volume IV - Special Long-Life Assurance Studies;

Volume V - Long-Life Assurance Test and Study Recommendations.
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I. INTRODUCTION

This volume contains the special studies performed under the Long

Life Assurance Study for Manned Spacecraft Long Life Hardware.

While Volumes II and III contain detailed studies of specific types

of parts and components, this volume contains studies applicable

to many types of hardware. These special studies are:

i) A Study of Temperature Cycling as Employed in the Production

Acceptance Testing of Electronic Assemblies ("Black Boxes").

2) A Study of Accelerated Testing Techniques.

3) A Study of Electronic Part Screening Techniques.

4) Industry Survey of Electronic Part Derating Practices.

5) Vibration Life Extension of Printed Circuit Board Assemblies.

6) Tolerance Funnelling and Test Requirements Study.

The study on temperature cycling of electronic assemblies encom-

passes a comprehensive industry survey and thorough analysis of

industry practices and experiences in this technique. As a re-

sult of analyzing the accumulated data, a specific theraml cycling

policy for long-life missions is recommended.

The study of accelerated testing techniques documents the state-

of-the-art, the applications, and the limitations of both quali-

tative and quantitative approaches to materials, solder joints,

electronic parts, electronic assemblies, mechanical/electromechan-

ical hardware, batteries, bearings, valves, and transducers.

Mathematical models and statistical requirements are presented for

the use of step stress, constant stress, and progressive stress

accelerated tests using the cumulative damage criterion, the in-

verse power rule, and the Arrhenius model. In addition, weak link

testing, enhanced defect testing, and dynamic mission equivalent

testing is discussed.

The study of electronic part screening techniques is addressed to

unconventional screening approaches. "Zero-time" screens such as

current-noise analysis, third harmonic analysis, and linear dis-

criminant analysis are reviewed. Other unconventional approaches

included are the optimization of stress screens, parameter drift

screening, short-time overload testing, neutron radiography, mon-

itored shock and vibration, laser scanning, and automatic inspec-

tion techniques.
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The electronic part derating survey includes a summary of derating

practices used by 12 aerospace agencies/programs. Recommended

long-life mission derating guidelines representing a composite of

these practices is derived from the summary, in addition, design

practices guideline, to be utilized in conjunction with derating

practices, are included.

The printed circuit board vibration life extension study includes

performance of a test program on printed circuit boards to deter-

mine the capability of such items to withstand long periods of

vibration. It also investigates the feasibility of reducing vi-

bration time during qualification testing by increasing the vi-

bration level. A summary of the test results, recommendations

for accelerated test approaches, and areas requiring further de-

velopment and evaluation, are identified.

The tolerance funneling study includes a brief review of the con-

cept. Suggested guidelines for tolerance funneling of module,

component, and subsystem test limits are provided, together with
a discussion of their derivation.
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II. A STUDY OF TEMPERATURE CYCLING AS _IPLOYED IN

THE PRODUCTION ACCEPTANCE TESTING OF ELECTRONIC

ASSEMBLIES

by R. W. Burrows
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II. A STUDY OF TEMPERATURE CYCLING AS EI_PLOYED IN THE PRODUCTION

ACCEPTANCE TESTING OF ELECTRONIC ASSEHBLIES ("BLACK BOXES")

A. INTRODUCTION

Temperature cycling, as an acceptance test of production assemblies,

is widelv used as a test screen for the detection of workmanship

and parts defects at the "black box" level. It also reveals de-

sign deficiencies when it is not extensivelv employed during de-

velopment and qualification testing. It is usuallv used in con-

junction with vibration. It is combined with vacuum exposure when

appropriate, and it is particularly applicable to electronic equip-

ment.

On the Apollo Program the temperature cycle shown in Figure 1 was

established as a baseline. One constraint on the derivation of

this baseline was that a test was desired which would be effective

but would not precipitate gross requalification testing of Apollo

hardware (qualification testing had been largely completed when

the Apollo acceptance test program was upgraded).

70°F

V

F Maxim

-40°F Minimum \

20AoF
!

Qualification Temperature

Qualification Temperature

A
20°F _-- A --_

A- Time to stabilize

equipment plus

1 hour minimum

Figure 1 Apollo Baseline Temperature Cycle
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BQ STUDY OBJECTIVE

The objective of this study is to review and analyze current tem-

perature cycling practices to determine if the Apollo baseline

test should be modified for future manned spacecraft programs.
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Ct CONCLUSIONS
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A survey of 26 companies/agencies shows that the preponderance

of opinion is that more than one thermal cycle is required.

Test data from seven companies shows that 6 to i0 cycles are

required for the elimination of the incipient defects. Six

cycles appear adequate for black boxes of about 2000 parts,

while i0 cycles are recommended for equipment containing 4000

or more parts.

The following companies subscribe to 6 to i0 cycles: Martin

Marietta Aerospace, General Electric, T_#, Lockheed, Collins

Radio, Radiation Incorporated, and Aerospace Corporation.

Hughes Aircraft Company has developed mathematical models to

predict how many cycles are required to achieve a specified

reliability depending on the previous amount of screening,

the auality of parts used, and the exact thermal conditions

and profile for the parts being screened. Many more than I0

cycles are sometimes required, per their model.

When unscreened parts are used and temperature cycling of

assemblies is employed as the main production screen, more

than i0 cvcles may be reGuired. Programs of 16 to 25 cycles

have been used.

Temperature ranges of -65°F to 131°F are the temperatures most

commonly used. Most parts will withstand temperature cycling

with power off through a temperature range of -65°F to 230°F

Heat rise with power on under test cooling conditions should

be calculated to limit the chamber temperature to a maximum

safe value. The maximum safe range of component temperature

and the fastest time rate of change of hardware temperatures

will provide the best screening.

The rate of temperature change of the individual electronic

parts depends on the chambers used, the size and mass of the

hardware, and whether the equipment covers are taken off. In

general, the rate of change of internal parts should fall

within I°F per minute and 40°F per minute, with the higher

rates providing the best screening. A temperature range be-
tween 160°F and 225=F is recommended.
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12.

13.

Temperature cycling with good parts and packaging techniques

is not degrading even with several hundred cycles. However,

the packaging design must be compatible with the temperature

cycling program or the acceptance test yield will be reduced

(to zero in some special cases). This compatibility is estab-

lished by temperature cycling the pre-production hardware.

The equipment should be closely monitored during the operating

portions of the cycle. It is desirable to turn off the equip-

ment during chamber cool-down or self-generated heat will pre-

vent the internal parts from reaching the desired low tem-

perature.

_#hen multiple temperature cycling is used as an acceptance

test, it is standard practice to allow repairs without re-

quiring a repeat of the entire test. Some programs have re-

quired no failure free cycles, some have required the two

final cycles to be failure free, and one program (involving

very simple hardware) required 20 consecutive failure free

cycles. It is recommended that one final failure free cycle

be required, together with criteria for extending the number

of temperature cycles as a function of the difficulty and

magnitude of the repair.

Implementing temperature cycling is most compatible with PC

board construction and least compatible with large, complex,

potted cordwood modules where failure means scrapping the
entire module.

The concept of augmenting the black box temperature cycling

with additional cycling at the PC board level should be con-

sidered. Hughes Aircraft, on one program, "stores" their

assembled PC boards in a temperature chamber for one week

during which time 158 temperature cycles are accrued. The

boards are not powered or monitored. This comprises a

very cost-effective approach to reliability.

An approximation of the types of failures detected in mature

hardware by temperature cycling is:

Design Marginalities - 5%

Workmanship Errors - 33%

Faulty Parts - 62%
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14. Muchof the data in this report is derived from programs using
AGREEtesting per MIL-STD-781B. The AGREEcycle combines tem-
perature ramps, temperature soaks, and low level (2g) vibra-
tion. The concensus is that the temperature soaks and the
low level vibration play a very minor role and, therefore,
the AGREEtechnique is essentially equivalent to a tempera-
ture cycling test, with the screening strength of the test
dependent on the temperature range, the temperature rate of
chanRe, and the numberof cycles.
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m. RECOMMENDATIONS

It is recommended that future programs adopt an environmental test

acceptance program for electronic black boxes consisting of the

Apollo proven 6g rms random vibration, minimum; thermal-vacuum

testing when applicable; and a temperature cycling program, in

accordance with Table i.

Table 1 Proposed Guidelines for Temperature Cycling Acceptance

Testing of Electronic Hardware

Type of Equipment

Simple (i00 electronic parts)

Moderately complex (500 electronic parts)

Complex (2000 electronic parts)

Very complex (4000 electronic parts)

No. of Temperature Cycles

i

3

6

i0

Temperature Range

The suggested range is -65°F to 131°F, or as a minimum, a temperature range

of at least 160°F is recommended.

Temperature Rate of Change

The rate of change of internal parts should fall within I°F and 40°F

per minute. The higher rates provide the best screening.

Temperature Soak Times

The next temperature ramp may be started when the internal parts have

stabilized within 50F of the specified temperature and the functional

checks have been completed.

Equipment Operation

Equipment should be energized and operated during temperature cycling,

except the equipment should be turned off during chamber cool-down to

permit internal parts to become cold.

Equipment }_nitoring

While it is desirable to continuously monitor the equipment during the

temperature cycling, cost considerations may dictate otherwise. In such

cases, periodic checks plus close monitoring of the final cycles is

appropriate.

Failure Criteria

The last cycle shall be failure free. Each repair should be reviewed

for the possibilities of introducing new defects into the hardware and

additional temperature cycles added when appropriate. If repairs are

complex or difficult to make and inspect, or many unscreened parts are

used as replacements, additional cycles should be implemented as appro-

priate to the individual case.
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m. DISCUSSION

i.

.

6

Purpose of Temperature Cycling

Temperature cycling in black-box acceptance testing is an effec-

tive screen for design, workmanship, and electronic parts defects.

Table 2 shows that with new, immature hardware temperature cycling

should reveal design, workmanship, and electronic part problems

with an approximately equal distribution. As the design and

assembly processes mature the design problems should diminish sig-

nificantly and approach zero, the workmanship problems should

diminish to some extent, and then the parts problems constitute

the major bulk of the failures. If extensive temperature cycling

is employed during hardware development, as it should be, then

"design" failures during the production program should be minimal,

and "workmanship" and "parts" problems should dominate. The number

of parts problems is influenced by the extent of the screening

accomplished at the parts level. However, significant part prob-

lems are frequently detected by temperature cycling of the as-

sembled black boxes even when the individual parts have been sub-

jected to Hi-Rel screening.

Examples of problems detected are listed in Table 3.

Summary Table of Industry Survey Results

Table 4 summarizes the data obtained from 26 companies. Of these

26 companies, the practice of multiple temperature cycling was a

very strong, unified, company policy with four companies: Collins

Radio, Decca Radar, Radiation Incorporated, and Honeywell, In-

corporated. Four other companies in the past few months have

moved towards a strong policy of multiple temperature cycling.

These companies are Martin Harietta Aerospace, T_#, Lockheed, and

Aerospace. The remaining companies either do not have a strong

policy or are large and diverse, such that multiple temperature

cycling may be employed within certain divisions, or on certain

projects, or when desired by a particular customer.

Data Analyses

Seven companies, listed in Table 5, supplied test data relating

failures to the number of temperature cycles.

Figure 2 plots the data from the seven companies and indicates

that from 6 to i0 cycles are required for the elimination of

incipient defects.
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Table 2 Distribution of Temperature Cycling Failures Between

Harginal Design, Poor Workmanship and Defective Parts

Company

General Electric

Maturity of
Hardware

Immature

Mature

Percentage of Failures by Categories:

Design

33%

Approaches 0

Fabrication

Workmanship

33%

10%

Parts

34%

90%

Collins Immature

blature

Lockheed Immature

Mature

Motorola Mature

Decca

Martin Marietta

Mature

Mature

33% 33% 34%

25% 25% 50%

10% 50% 40%

Approaches 0 10% 90%

5%

5%

40%

35%

55%

60%

Boeing Mature Approaches 0 50% 50%

Honeywell Mature Approaches 0 40% 60%

Averages for Mature Equipment 5% 33% 62%
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Table 3 Typical Examples of Defects Screened

Out By Temperature Cycling

Martin Marietta Aerospace

Packaging problems, such as bridging of conformal coating

Shorts and opens in transformers and coils

Defective potentiometers

Intermittent solder and weld joints

Shorted power transistor

Defective capacitors

Cracked dual inline integrated circuits

Collins Radio Co.

Poor solder joints, welds, seals

Nearly shorted wire turns and cabling due to damage or im-

proper assembly

Fractures, cracks, nicks, etc in materials due to unsatisfac-

tory processing

Out-of-tolerance parts and materials

NASA-MSC (Apollo)

Resistor core cracked due to absence of elastomeric buffer

coating

Hairline crack in transistor emitter strap ground connection

Damaged mica insulation washer causing transistor short

Improper staking of tuning coil slug causing erratic output

Cold solder joints

Open within multi-layer boards due to mishandling in processing

Diode internally open at low temperature

Drift problems

Decca Radar Limited

Defective transistor

Intermittent shorts in coils

Lugs shorted to ground

Drift and erratic operation problems

Supplier B

Problems with small gage wire (less than No. 40) in motors,

transformers, and other electromechanical devices

Failure of plastic encapsulated parts

Radiation Incorporated

Drift problems

Integrated circuit problems
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Table 4 Sun_ary of Recommended Temperature Cycles From Industry Survey*

Supplier/Agency

Lockheed Missiles and Space Co.

General Electric Co.

Aerospace Corporation

Decca Radar, Ltd.

Radiatior_ Incorporated

TRW Systems

Martin Marietta Aerospace

Boeing Co.

Hughes

Motorola

Collins Radio Co.

Honeywell, Incorporated (Denver)

Hewlett Packard Co.

Grumman Aircraft Engineering Co.

Bendix Corporation

Delco (AC) Electronics

Raytheon - Equipment Div.

RCA

Westinghouse

Sandia Corporation

Texas Instruments

Barnes Engineering Co.

Goddard Space Flight Center

JPL

Supplier A

Supplier B

No. of Cycles

Recommended

8 to I0

6 to i0

6 to 8

20

i0 to 25

8

6 to I0

3 to 12

Variable

22

9 to 25

12

16

4 to 6

6

5

5

3**

3 or 4

3 to 5

2 to i0

2 or more

I**

?**

5

I

Temperature

Employed

(°F)

-20 to 160

-65 to 131

Variable

5 to 131

-65 to 131

Variable

Variable

-65 to 131

Variable

-65 to 160

-65 to 160

-13 to 131

32 to 131

Variable

Variable

-20 to 120

32 to 160

Variable

Variable

-65 to 160

-67 to 131

Variable

Variable

Variable

-65 to 131

-65 to 165

Temp.

Range

(OF)

180

196

126

196

196

225

225

144

99

140

128

225

198

196

230

* These are the opinions of the individuals consulted. They may or may

not represent the current practice of the referenced companies.

** Additional cycles are required at the subsystem/system level thermal-

vacuum tests.
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Table 5 Companies Supplying Failure Rate Versus Temperature Cycle Data

Company

General Electric

Lockheed

Boeing

Collins Radio

Decca Radar

Motorola

Aerospace

Type and Size

of Data Sample

80 Radar Systems

80 Command Con-

trol Systems

150 SRAM Systems

360 Radios

i0 Radar Systems

270 Radar

Augmenters

21 Transponders

Were Hi-

Rel Parts

Used?

Yes

Yes

Yes

Was Vibra-

I tion a Partof the Cycle?

No

No

Yes

(2g)

l
No !! Yes

S i (2g)

L

No

No

Yes

Yes

(2g>

Yes

Temperatures

Employed

-65°F to

131°F

Variable -

Most tempera-
ture differ-

entials were

160°F

-65°F to

131°F

-65°F to

131°F

5°F to

131°F

-65°F to

160°F

Unknown
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Actual failure rate data is shown in Figure 3. The spread of the

data in Figure 3 is primarily due to differences in the complexity

of the equipment. The curves of Figure 3 indicate that more

cycling is required with the more complex equipment before the

curve approaches a constant failure rate, but a technical explana-

tion for this is lacking. However, even if this proves not to be

the case, the guideline recommending more cycling on the more com-

plex equipment still remains justifiable on the basis that the

more complex equipment constitutes a greater failure risk and it

is therefore cost-effective to impose more stringent screening.

In Figure 3, there is no apparent correlation between Hi-Rel parts

vs non-Hi-Rel parts. Such a correlation exists but is masked by

other variables.

Figure 4 shows the influence of complexity in failure rate and

provided the "average" curve from which the generalized "typical"

curves of Figure 5 were derived. The curves of Figure 5 were then

used to estimate the risks accruing from the repair of failures

and to establish the criteria for additional temperature aycles

in the event of a failure.

Failure Criteria

The recommended guideline of one final failure free cycle is not

only compatible with Apollo and Skylab, but it also represents a

logical compromise between two different schools of thought as

typified by General Electric and Collins Radio:

i) On the G.E.-LRU radar program involving i0 temperature cycles

(later reduced to 6 as the hardware matured), the approach

was to require the last two cycles to be failure free.

2) Collins Radio believes there is no technical rationale for

requiring any failure free cycles. Their reasoning is that,

if sufficient cycles are used to reach the flat, constant

failure rate portion of the curve, there is no purpose in re-

quiring further failure free cycles. For example, if a

failure is encountered on the tenth and last cycle, there is

little justification for running more cycles because the

failure rate of the hardware would not be benefited by the

additional cycles.

However, one justification for a final failure free cycle after

a simple repair is that it provides confidence on the repair, even

though the statistical risk in not performing the cycle appears

very small.
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. Risks Associated with Repairs

If a failure and a repair occurs near the last temperature cycle,

the question arises as to _ether the unreliability introduced by

the repair negates the benefits of temperature cycling. This

hazard involves two different risks:

i) The risk of degrading the hardware by the repair operation.

2) The risk of replacing a part with another part that has not

been screened by temperature cycling.

With respect to the first risk, if access to the defective com-

ponent can be easily achieved without disturbing other parts and

connections, and if the actual repair can be reliably made and

inspected, then the final failure free cycle is felt to be adequate.

If such is not the case, then a judgment decision should be made

requiring two, three, or four failure free cycles for the affected

portion of the hardware. Any repair should be closely inspected

under 20 power magnification with attention not only to the repair

itself, but also to possible damage to surrounding parts, solder

splash, etc.

With respect to the risk of replacing defective parts with parts

that have not been screened by temperature cycling, the question

can be answered in terms of quantitative risks by considering the

failure risks of a typical package of 2000 electronic parts, repre-

sented by Figure 5, and an assumed program of six temperature

cycles. Assume a failure is encountered on the sixth and last

cycle and a simple repair is made consisting of replacing one part

and resoldering its connection. The risk of failure of the new

part on its first severe temperature cycle encountered in the

field will be 0.30 ÷ 2000 or 0.015%. Since the remainder of the

equipment (the other 1999 parts) has approached a constant failure

rate condition of about 4% per cycle, the total risk of a field

failure has been increased from 4% to 4.015% by the repair, a neg-

ligible increase in risk. It can be seen that the temperature

cycling program has reduced the chance of a field failure (assuming

the field environment equivalent to one severe temperature cycle)

from 30% to 4% and the repair has then increased this risk to only

4.015%. This assumes, of course, that the workmanship associated

with the repair was equivalent to the original standards, was as

inspectable as the original hardware, and the repair process did

not degrade the surrounding parts.
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Following this same line of reasoning, but assuming that the repair

involved more than a single part, a different conclusion will re-

sult. For example, assume that the 2000 part electronic package

consists of four potted modules of 500 parts each, and that a part

in one module fails on the sixth cycle, necessitating a replace-

ment of the entire module. In this case six temperature cycles

would ordinarily reduce the risk from 30% to 4%, but the replaced

module will increase the risk by 0.30 ÷ 4 or about 7%, and produce

a total risk of about 10%. Four failure free cycles required at

this point, would significantly reduce the risk, from about 10%

to about 5.7% for the rather extreme packaging configuration

assumed.

These two risk approximations support a conclusion that a very

simple, reliably accomplished, replacement of one or several elec-

tronic parts introduces negligible risk, but repairs involving

many parts, such as a module replacement, will negate the objec-

tives of the test unless additional, failure free, temperature

cycles are run. It is evident that criteria for multi-temperature

cycling must define the course of action to be taken in the event

of a failure. Therefore, the detailed risk calculations presented

in Table 6 were performed. Inspection of this table shows that, in

pure technical terms, a very simple repair does not justify an

additional failure free cycle, but if this policy were adopted,

it is envisioned that an endless debate might be precipitated on

two issues: One issue being that since repairs are usually more

difficult to perform than the original fabrication, one failure

free cycle should be performed to provide confidence in the re-

pair. The other issue is that since the Apollo and Skylab pro-

grams required 1½, or i, failure free cycles, the concept of

eliminating the failure free cycle is an unjustifiable departure

from an established precedent. In consideration of these two

factors, the guidelines of Table 7 were derived from Table 6 by

replacing the zeros in the table by a requirement for 1 cycle.
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Table 6 Estimates of the Number of Additional Temperature Cycles

Required (After an Assumed Failure and Repair on the Last

Baseline Cycle) to Maintain an Approximately Constant Risk

of a Post-Acceptance Test Failure

PERCENTAGE OF

TOTAL

PARTS REPLACED

CYCLES

AFTER

REPAIR

% FAILURE RISK

OF THE UNREPAIRED

PORTION

% FAILURE RISK

OF THE REPAIRED

PORTION

% TOTAL

FAILURE

RISK

4000 Electronic Parts - Baseline Program of i0 Temperature Cycles.

0 to O. 1%

0.I to 1%

1% to 5 %

5% to 10%

0

2

4

6

8.0

7.9

7.6

7.2

0.06

0.34

1.00

1.20

8.06

8.24

8.60

8.40

2000 Electronic Parts - Baseline Program of 6 Tem)erature Cycles

0 to 0.1%

0.1% to 1%

1% to 5%

5% to 10%

4.0

3.9

3.8

3.6

0.03

O. 20

0.60

0.75

4.03

4.10

4.40

4.35

500 Electronic Parts - Baseline Program of 3 Temperature Cycles

.I to 1% 0 1.0 0.08

1% to 5% I 1.0 0.20

5 to 10% 2 0.9 0.25

1.08

1.20

1.15

I00 Electronic Parts - Baseline Program of 1 Temperature Cycle

1% to 5% 0 0.2 0.08

5% to 10% i 0.2 0.I0

0.28

0.30

*The above risks assume the repair can be easily and reliably performed without

degrading any other parts.
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Table 7 Guidelines for Additional Temperature Cycles to be

Conducted in the Event of a Failure

Number of Final Consecutive Temperature Cycles

Which must be survived by the Repaired/Replaced

Percentage of Total

Parts Repaired/Replaced

0 to 0.1%

0.1% to 1%

1% to 5%

5% to 10%

Portion of the Hardware*

4000 Parts

(i0 cycles)

1

2

4

6

2000 Parts

(6 cycles)

500 Parts

(3 cycles)

N/A

i

i

2

i00 Parts

(i cycle)

N/A

N/A

i

i

*Additional cycles, as appropriate, should also be added when the repair

cannot be easily and reliably performed.

As an example for further clarification, assume an electronic

device has 4000 electronics parts and a program of i0 temperature

cycles has been adopted. On the second cycle, a cold solder joint

is detected and is repaired. This repair would be considered

"Proven" by its survival throughout the remaining cycles. How-

ever, on the 8th cycle, a potted module fails and is replaced by

a module containing 160 parts. The 10-cycle program must then be

extended to 12 cycles in order to "prove" the new module by 4

consecutive failure-free cycles. Further assume that on the 12th

cycle, an R.F. choke fails in another section of the device and

is replaced. This would necessitate extending the program to a

total of 13 cycles, for the final failure free cycle. It should

be noted that, in any event, the last cycle must be failure free.

In summary, it is concluded that if a repair can be easily and

reliably performed, and involves only a few new parts, the repair

and the new parts are adequately verified by the final failure

free cycle, but if the repair operation is difficult, and dis-

turbs other parts, or if the repair involves many new, uncycled,

parts, then additional temperature cycles are needed after the

repair. Because of the difficulty of specifying criteria in this

area, it has been concluded that the decision must be made on an

individual basis as appropriate to the specific hardware being

tested. The foregoing discussion can be used as general guidance

for the specific item in question.
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. Is Temperature Cycling Degrading?

A more properly phrased question is: Does temperature cycling do

more good than harm? Or in more technical terms, "Does each suc-

cessive temperature cycle reveal more defects than are brought to

the brink of failure, to fail on the next cycle?" Or in relia-

bility terms, "Does the failure rate increase or decrease with

temperature cycling?" Those companies surveyed which have been

long engaged in extensive AGREE testing are extremely positive

about the benefits of extensive temperature cycling, while those

without this background and experience frequently raise the

"degradation" spectre.

Although this writer has discovered no specific data supporting

an increasing failure rate characteristic for a complex electronic

assembly, certain situations can be imagined which could produce

such a characteristic. Suppose for example that the equipment

contains i00 conformally coated transistors on plastic stand-offs

without lead stress-relief (a situation identified by MSFC as

undesirable and very prone to solder joint failure from tempera-

ture cycling). Further assume that the assembly process has been

so uniform that all transistor solder joints fail on the fifth

temperature cycle. Then the overall equipments failure rate curve

would show a marked increase at 5 cycles. In this hypothetical

case, it would be catastrophic to give the equipment 4 cycles,

with the fifth cycle occurring in flight. On the other hand, it

would be more desirable to give the equipment i0 cycles than to

give it none. This undesirable condition, in a properly executed

program, would have been detected and eliminated in the develop-

ment and qual test programs. The above remarks are intended only

as food for thought as the reader struggles with the question of

degradation.

R. L. Vander Hamm (Collins Radio) made this statement (Ref i) as

a result of l0 years experience with many AGREE tests in a variety

of equipment types:

"Quality and well-designed parts and materials are fully

capable of withstanding the extended, temperature-cycling,

AGREE-test environment. No example can be cited of a

quality part (if used properly) failing at an excessive

rate during AGREE testing. And, equally important,

when a chronic failure mode does appear in a particular

part, it can usually be easily corrected by the compe-

tent vendor."
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This statement is substantiated by the data supplied by Collins

Radio and shown in Figure 6 and Table 8. Figure 6 indicates that

"no major ill effects are induced with as many as 250 to 300

cycles." This conclusion is based on the fact that, after about

12 cycles, the curve remained flat out to 300 cycles. An interest-

ing feature of Figure 6 is that the curve is flat at 5, indicating

that the AGREE cycle used had an accelerating effect of about 5.

Collins Radio further reports that in a new contract from McDonnell-

Douglas to supply radios for the new F-15 fighter, they will use

AGREE Test Plan 3 on two radios for reliability demonstration

tests, and it is expected that the radios may receive 600 cycles

each. Yet Collins is confident that degradation effects will not

be encountered in this program.

The Decca Radar Co. of England manufactures thousands of marine

radars. Ten percent of their monthly production is subjected to

20 AGREE type temperature cycles, then refurbished and sold.

This author queried Mr. Harris of the Decca Radar Co. about the

degrading effects of temperature cycling. The following state-

ment is excerpted from his replying correspondence:

"We would most certainly agree that, in general, thermal

cycling is not degrading to discrete electronic parts or

assemblies providing that they have been properly manu-

factured in the first place. Faulty batches of com-

ponents, dry joints, pinched cables, etc, do show up

under stress. On completion of the test period all

equipments are re-inspected by the Quality Assurance

people and completely refurbished before being sold to

the customer. But I would emphasize that all equipment

which is subjected to this temperature cycling _s sold

to the customer and certain customers who are aware

of the procedure would like to think they could se-

lect an equipment that had been through the environ-

mental test procedure, rather than take delivery in

the normal way. Unfortunately when equipments are

delivered they are made up from a random selection of

units from Finished Unit Stock and this prevents the

customer from getting a completely environmental

tested equipment and also prevents us from following

the history of the equipments after they leave environ-

mental test. The refurbishing which takes place, gen-

erally consists of replacing cathode ray tubes which

have, by necessity, been changed quickly during the

test and bringing the exterior paintwork and appear-

ance up to factory standard.
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"Wehave no evidence that the temperature cycling we
carry out has any degrading influence on any solder
joint, printed boards with brittle copper (which is
one of the normal hazards of PCboards), or potted
modules which could affect their performance during
the normal life of an equipment which is i0 to 15
years; but, at the sametime, it must be remembered
that we are designing equipment for service on board
merchant vessels where someunreliability is accepted
and, although as yet we have not found any failures
which could be related to thermal cycling I cannot
presume to say that the standard of reliability at
which we are aiming bears any relation to the standards
required in spacecraft. The requirements for reliabil-
ity of any equipment must obviously be related to the
environment in which it is expected to work and be
maintained and whilst the reliability programme
which we are using produces very good results for the
marine environment I would hesitate to be dogmatic
where space requirements were concerned."

To pursue the degradation issue further, the basic capabilities
of electronic hardware to withstand temperature cycling is sum-
marized below.

a. Electronic Parts - Qualification of electronic parts gener-

ally includes 5 to 15 temperature cycles from -85°F to a high

temperature usually between 257°F and 347°F. The rates of tem-

perature change for temperature cycling in air is about 3°F per

second. Severe temperature shocks in hot and cold liquids are

also used, involving rates of about 100°F per second. Electronic

parts within a black box in a black box temperature cycling test

typically undergo a comparatively slow temperature change of about

0.03 ° per second. It can be seen that electronic parts have a

much greater capability in terms of both temperature extremes and

rate of change than required in black box temperature cycling.

A recent RCA paper (Ref 2) on thermal fatigue tests on the RCA

2N3055 power transistor in a number of different current applica-

tions is interesting. In the severest power transistor applica-

tion (AT of 145°C and maximum junction temperatures of 200°C) the

first failure did not occur until 449 cycles, and in most of the

less severe applications, more than i0,000 cycles were required

to produce the first failure.

II-25



b. Multilayer Printed Circuit Boards (MIB) - H. C. Hurley (Ref

3) conducted tests for RADC on MIB's using three environments, the

most severe of which was temperature cycling between -85°F and

230°F, using rates of change of about 0.1°F per second. In this

test cycle the first electrical opens were detected on the con-

trol samples at 150 cycles. However, with boards intentionally

manufactured with brittle copper, 50% circuit failure occurred

at 20 cycles (versus 300 cycles for the good quality control

samples) .

c. Solder Joints - Martin Marietta, Orlando Division (W. P. Wood)

conducted a test program in which solder joints on PC boards were

subjected to I000 severe temperature shocks by alternately

plunging the boards into dry ice and alcohol at -100°F and boil-

ing water at 190°F. (The water tended to become contaminated by

alcohol.) At 20 cycles two of the 2405 joints had developed

visible cracks. After i000 cycles 721 joints of the 2405 joints

tested had developed visible cracks. Several hundred of the

cracked joints were then electrically checked and no electrical

opens were found. It must be emphasized that these were joints

on which no lead stress had been imposed.

The above indicates that, by themselves, electronic parts, PC

boards, and solder joints have great capability to withstand tem-

perature cycling. The problem usually begins when this hardware

is packaged into an assembly.

Some typical troublesome problems are summarized.

l) Electronic components assembled on PC boards without stress

relief bends impose loads on the solder joint, and temperature

cycling may produce solder joint cracking. Heavy coats of

conformal coating on even a stress relief bend can negate the

beneficial effect of the bends.

2) Transistors mounted on plastic spacers and coated with con-

formal coating will produce cracked solder joints in a few

temperature cycles if the leads are not stress relieved. This

problem arises because the coefficient of thermal expansion for

plastics is about 8 to 30 times greater than Kovar transistor

leads, or Dumet diode leads.

3) Large multi-pin modules soldered into the PC board may result

in solder joint cracking, particularly if the conformal coat-

ing bridges between the module and the board.
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4) Cordwood modules potted with a rigid, solid, polyurethane or

epoxy may produce cracked joints and even crush weak parts

such as glass diodes on the very first application of a

temperature cycle.

5) Filters, motors, and transformers containing fine wire (no. 48

or No. 50) may constitute a problem. To avoid the problem,

wire sizes larger than No. 40 should be used.

6) Single or double sided PC boards without plated through holes

are undesirable.

7) Breakage of glass diodes can be expected if great attention

is not given to the encapsulating material and the process.

The above situations must be designed out of hardware for long

life applications, regardless of whether stringent thermal

cycling is employed in acceptance testing. Proper use of thermal

cycling during development and qualification testing will insure

a packaging design that is compatible with the use of stringent

temperature cycling during production acceptance testing.

Remarks on AGREE Testing

The philosophy of reliability testing was first introduced in

1957 in the report by the Advisory Group on Reliability of Elec-

tronic Equipment (AGREE). This philosophy is now reflected in

MIL-STD-781B, 15 November 1967. This document defines procedures

to be followed in both (i) qualifying new equipment to a required

MTBF level and (2) then maintaining this level on the production

units. _en AGREE testing is used on 100% of the production

hardware, it basically constitutes an environmental acceptance

test somewhat similar to what is currently being done on many

spacecraft programs, except that AGREE requires a greater number

of temperature cycles than is usually employed. The AGREE Environ-

mental Profile is shown in Figure 7.

Wright Field is the major proponent of MIL-STD-781B, with the Navy

a close second. The Air Force Launch Vehicle and satellite pro-

grams, and NASA do not utilize 781B to any significant extent.

The reason for this may be related to the low production quanti-

ties required by a typical spacecraft contract, and a feeling

that AGREE testing is not cost-effective on contracts involving

only a few production units. However, it is this writer's opin-

ion that the temperature cycling philosophies of MIL-STD-781B are

applicable without question, even though the issue of reliability

demonstration remains controversial on small production programs.
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, Remarks on Rate of Temperature Change

Occasionally, concern is expressed that black box "degradation"

may be caused by a too rapid temperature change. It should be

remembered that even though a closed black box is plunged from

cold air at -65°F to hot air at 160°F, the internal parts will

require several hours to reach 160°F due to the insulating effects

of the case. Curve D of Figure 8 shows that the rate of change

of the internal electronic parts in a conventional temperature

cycling test is quite slow, as compared with Curve A (conventional

electronic part temperature shock test by immersion in liquids),

or Curve B (conventional electronic part temperature shock test

in air). Curve C approximates the more rapid temperature change

that can be obtained if the black box covers are removed. This

practice is encouraged by General Electric Co. Rapid changes are

also encouraged by Supplier B, and Hughes Aircraft Company.
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A simple explanation of how a very rapid temperature change intro-
duces stresses on bonds due to differential thermal expansion is

shown by the following hypothetical assembly (Fig. 9).

Aluminum Cube

Epoxy Bond

Aluminum Plate

,

Figure 9 Hypothetical Electronic Assembly Showing

Temperature Stress on Bonds

If the above assembly is subjected to a slow temperature change,

no shear stresses are developed between the cube and the plate

(aside from those introduced by the epoxy). However, if the

assembly is subjected to a very rapid change, say immersion in

a hot liquid, the temperature of the plate will rise much more

quickly than the cube, and significant shear stresses are devel-

oped at the bond because the plate will expand before the cube

begins to expand. Such effects are present when the high rates

of Curve A Figure 8 are used, and are present to a much lesser

extent with the comparatively slow rates of Curve D.

Relationship Between Multiple Temperature Cycling and Thermal
Vacuum Testing

Multiple temperature cycling is employed by many manufacturers

who deliver black boxes to prime contractors, particularly on

Air Force (WADC) and Navy contracts. On the other hand, agencies

who are responsible for NASA spacecraft at the systems level

generally, do not employ multiple temperature cycling but do em-

ploy thermal-vacuum testing, usually at several levels of assem-

bly, starting with one cycle on the black boxes. Since this re-

port recommends increased use of increased temperature cycling
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at the black box level, the question arises as to whether multiple

temperature cycling, say i0 cycles, should be accomplished as a

thermal-vacuum test, or whether the two tests, temperature

cycling, and thermal-vacuum, should be conducted as separate

tests. Our recommendation is that they should be conducted as

separate tests. The rationale for this conclusion is presented

in the following paragraphs.

Thermal-vacuum testing, to effectively assess out-gasing phenomena,

must consist of long duration soaks at low and high temperatures

with emphasis on the long duration, high temperature, soak. Hence

one cycle of a thermal vacuum test may take days, or weeks in a

costly thermal vacuum test facility since heat transfer is accom-

plished by radiation. Also, the temperature ramps are quite

slow, too slow for the most efficient detection of incipient fail-

ures. Also, extending the duration of a thermal-vacuum test out

to, say I0 cycles, would be both very time consuming and very

expensive.

Another consideration is that in a systems level thermal-vacuum

test the temperature levels may be too mild to achieve the in-

tended purpose of detecting incipient failures. For example, if

a spacecraft has a thermal control system, the prime objective

of the thermal-vacuum test would be to demonstrate proper perform-

ance of the thermal control system and the individual black box

temperature excursions may be quite mild.

It therefore appears much more desirable to conduct multiple tem-

perature cycling on the black boxes using conventional, ambient

air, temperature chambers, and then to follow this test with the

conventional thermal-vacuum test, and of course, the conventional

6g (minimum) vibration test. At later stages of assembly, thermal

vacuum testing (but not multiple temperature cycling) would also

be applied at the subsystem and systems level, along with appro-

priate vibration or acoustic exposures, facilities permitting.

However, it appears that, in planning a multiple temperature

cycling program for black box acceptance testing, the proposed

guidelines of Table II could be used, but modified with some

credit being given for the number of thermal-vacuum cycles to be

accumulated at higher levels of assembly and test. It is sug-

gested that this credit be estimated, not on a 1 to 1 basis,

but on a 2 to 1 basis, because of the lessened effectiveness of

thermal-vacuum testing in detecting non-vacuum-related workman-

ship defects.

Mr. Gomberg's paper (Ref 7), abstracted in the Industry Survey

Section of this report, describes an RCA study of spacecraft

programs which has resulted in a shift of emphasis away from

thermal-vacuum testing and toward temperature cycling.
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i0. Cost Effectiveness of Temperature Cycling

A prime concern of NASA-MSC is the reduction of support costs;

that is, the total cost of reacting to failures incurred by the

customers (and the producer) after the hardware is delivered to

the _ield.

The following information is directly quoted from Mr. R. L. Vander

Hamm's paper (Ref i):

"Support to the airline/commercial customer during equip-

ment operation involves many things. Included are nor-

mally required activities for new equipment such as

training in operational and maintenance characteristics

of the equipment and assistance in solving installation

problems. A variable cost, however, is related to the

degree of support provided depending on MTBF, or, the

operational reliability of the equipment. These services,

provided at no cost to the customer, typically include:

Frequent trips by field service and design engineers to

investigate and correct reported chronic problem areas,

providing a supply of extra equipment spares to maintain

operations, supplying field retrofit kits to correct

chronic problems, issuing formal service bulletins and

supplying associated spare parts, and, return of equip-

ment to the factory for repair and rework. The relative

magnitude of these costs is represented in Figure i0.

i00

4J

o 80

O
60

• 40

_ 20

MTBF with AGREE

f

fl

'_ I_ Support Costs

! I I
1 2 3

Years in Service

65% Reduction in

Support Costs

Figure 10 Relationship of Support Costs to MTBF
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"It has been established that for an equipment of average

complexity (1200 to 1600 parts) delivered in relatively

large quantities and operationally reflecting the

"normal" reliability growth curve, the support costs

will reach six figures, or, approximately two to five

percent of selling price. For the same equipment, given

the benefit of a comprehensive reliability program in-

cluding AGREE testing, these support costs should be re-

duced by as much as sixty or sixty-five percent. (There

are other significant savings in the second case, such

as reduced cost of manufacturing and engineering support

to manufacturing. Also to the credit of the second ex-

ample is the purely subjective estimate of increased sales

due to better equipment reputation and customer good will.)

"Having established the costs to support a conventionally

designed and produced electronic equipment and the same

costs for a similar 'debugged' equipment, do the cost

savings warrant expenditure necessary to perform the re-

liability test program? The answer is a resound yes_

Total costs for a reasonably comprehensive reliability

program during design, and extensive AGREE-testing on

prototype and early production models, would not exceed

$20-35,000, on the average. Note that this sum is con-

siderably less than the extra costs of supporting an

'unreliable' equipment."
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F. INDUSTRY SURVEY

. Collins Radio Co.

This company adopted temperature cycling in 1959, basing their

approach on the early version of MIL-STD-781B. They produce both

commercial and military equipment and employ a number of different

approaches depending on their customers. They have i00 tempera-

ture chambers in almost constant operation.

On production acceptance testing, Collins' policy can be general-

ized as follows:

Commercial Equipment

Most Military Equipment

Some Military Equipment

3 to 6 cycles, -40°F to 131OF

9 to 12 cycles, -65°F to 160°F

16 to 25 cycles, -65°F to 160°F

The cycles are 6 to 8 hours in length, 50% hot and 50% cold.

On the S-3A aircraft for Lockheed and the E-2C aircraft for Grumman,

about 25 temperature cycles are being employed.

Collins has found temperature cycling so beneficial that they per-

form temperature cycling on commercial products, even when not re-

quired by contract. On commercial equipment with a one-year

warranty, the acceptance test usually settles out at about 6 tem-

perature cycles. Three temperature cycles are still employed even

when no warranty considerations are involved.

A common pre-production (development) test is to run the equipment

500 to I000 hours (160 cycles). They have had problems with plastic

encapsulated devices and one problem with potted cordwood modules.

It is common practice to periodically select production units

which have completed the above tests, and put them in another

chamber for a period of many weeks for exposure to another hundred

or so temperature cycles for demonstration of MTBF. The length

of this exposure depends upon the MTBF requirements of the par-

ticular contract. After this test, the test hardware is inspected,

refurbished, and sold as production units. The refurbishment

consists of paint touch-up and replacement of parts with a wear-

out failure mode such as power amplifier tubes and blower motors.

There is no indication that service life is shortened by the re-

furbishment.
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During the temperature cycling test of Hi-Rel black boxes, repeated

exposures to vibration at one to two g's at 20-60 cycles are ac-

complished using a shaker built into the chamber. Mr. Rutledge

estimates that the proportion of failures induced by temperature

cycling is 95%, with the 2g vibration playing a very minor role.

Mr. R. L. Vander Hamm believes that constant temperature burn-in

of black boxes is quite ineffective and does not recommend com-

bining constant temperature burn-in with temperature cycling
burn-in.

In temperature cycling, Collins uses a nominal rate of change of

5°C per minute and believes that rapid rates approaching tempera-

ture shock conditions should be avoided as unrealistic. They

adjust their temperature cycles in accordance with the thermal

mass of the hardware. That is, larger equipments usually are

given an 8 hour cycle and smaller equipment, a 6 hr cycle. It is

felt that soak time at temperature is not greatly significant,

as compared to the two other factors of rate of change and the

temperature excursions used.

Usually, the same temperature range is used in Qualification Test-

ing, that is, no margin between Qualification and Acceptance Test

levels. However, assurance of no degradation in acceptance test-

ing is certainly provided by the margin in the number of cycles,

since they nominally run 160 cycles in their preproduction (devel-

opment) testing.

With respect to the trade-off between Hi-Rel parts and the number

of temperature cycles, the approach, when high reliability is de-

sired, is to increase both the severity of parts screening and

the temperature cycling, and the use of high rel parts is never

used as a rationale for decreasing the temperature cycling.

Figure ii presents data from a paper by R. L. Vander Hamm (Ref I)

showing failure rate versus the number of temperature cycles.

Collins uses this curve as typical for their electronic equip-

ment.
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Figure 11 Collins Radio Company Temperature Cycling

vs Failure Rate Data

More specific Collins data (Ref 4) from AGREE-3 testing of the

AN/ARC-51 and AN/ARC-94 is presented in Figure 12. Data was

accumulated over a period of about two years from monthly reli-

ability tests. About 300 AN/ARC-51's and 60 AN/ARC-94's were

tested. The effectiveness of temperature-cycling and its rela-

tionship with test time are clearly shown. The data of Figure 12

was replotted as Figure 13 in order to facilitate comparisons

with the other data of this report.
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General Electric Company - Aerospace Electronics

The use of temperature cycling varies with the particular contract.

A typical approach is described. Again, the AGREE approach is

being employed on radars for the F-ill. This is a large produc-

tion contract involving about 20 radars a month. Early acceptance

testing employed i0 AGREE temperature cycles, but as the equip-

ment matured, the number of cycles was reduced to 6. The last 2

cycles are required to be failure free. The average production

radar experiences about 7 cycles, but isolated units, in early

production, received as many as 20 temperature cycles. The tem-

perature range is -650F to 131°F. Qualification units accumulated

18,000 hours of reliability demonstration testing, amounting to

hundreds of temperature cycles. Mr. S. G._ Miller feels that the

benefit of a temperature cycling test is derived almost wholly

from the temperature ramps and the soak time at maximum and mini-

mum temperature is of minor importance. He also recommends rapid

temperature changes as being very desirable, and to facilitate a

more rapid temperature change on the electronic parts, the covers

over the equipment are removed and the chamber air blown through

the equipment. Mr. Miller also emphasized that the temperature

cycling program should be planned with consideration for the

anticipated used environments.

The data supplied by Mr. Miller on the F-ill LRV radar systems

show that 6 to i0 cycles are required before the curve becomes

f_at. This data is presented as Figures 14 and 15. In these

tests, the AGREE 2g vibration exposure was not used, since it is

felt to be ineffective.

Lockheed Missile and Space Co.

Mr. C. Leake and Mr. D. C. Hill have been addressing exactly the

same objective as this writer and have arrived at the conclusion

that about 8 to i0 cycles and a temperature range of 160 to 180°F

is required for complex electronic equipment. Generally, Lockheed

controls the rate of change to less than 7°F per minute, but con-

sideration is being given to more rapid rates. Mr. Leake believes

that the additional number of cycles required in the event of

failure should be determined on the basis of the amount of rework

necessary to replace the failed part, the number of parts replaced,

and whether or not temperature cycles were employed at the lower

levels of assembly, such as the PC board level.
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Several other items of interest are also being considered at
Lockheedby someprograms. One is that all temperature cycles
in the initial acceptance test would be completed prior to any
repair of the box (unless the failure noted could damageother
parts of the unit). This would be done in order to reduce the
amountof repetitive rework. Another is that complete functionals
would be required only in the last several temperature cycles in
order to reduce cost. Monitoring of critical functions for failure
would be accomplished in other temperature cycles.

The data presented on Tables 9, i0, and ll and Figures 16 thru 21
were derived by Mr. Hill in his study of a major space program at
I_SC which conducted a series of special tests, including addi-
tional temperature cycles, on nine different types of its complex
communication and control equipment prior to flight. In this
analysis, only those temperature cycles with differentia]s of
120°F to 160°F were included. (Thermal-vacuumsystem testing
temperature cycling was not included since these do not provide
significant temperature differentials on the equipment on this
program.) Most temperature cycles included had 160°F differen-
tials. All of the hardware used 100%screened Hi-Rel type elec-
trical parts (that is JAN-TXor MIL-ERparts or parts with equiva-
lent screening). Figures 16 thru 21 show the equipment tempera-
ture cycling failure rate (i.e., failures in temperature cycling
divided by the numberof units tested) as a function of temperature
cycles. Figure 16 shows all communications and control equipment
ranging in electrical parts count from 437 to 1419; Figures 17 and
18 show individual large components (electrical parts count of
4988 and 9822) _lile Figure 19 shows a combination of the two, and
Figure 20 is a combination of all 9 equipment or unit types. The
solid line is a smoothedleast square polynomial fit of the data
points shownon the curves. Two curves are shown for unit type 8
in Figure 18. The upper curve includes a group of failures
attributed by the manufacturer to a selection of specific inte-
grated circuit parameters due to a design sensitivity problem.
Manyof these integrated circuits were not analyzed so that the
exact cause is unknown. The actual temperature cycle failure rate
curve for this unit probably lies somewherebetween the two curves
shown. The data used for the lower curve was chosen for use in
the combination curves of Figures 20 and 21.
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. Boeing Company - Aerospace Group

Mr. J. E. Arnold provided the following data from their SRAM sys-

tem, involving 7 articles, and a total complement of about 9500

electronic parts.

The SRAM Production Reliability Verification Test (PRVT) program

was initiated at the start of production to ensure that a highly

reliable and cost-effective weapon system was delivered to the

Air FDrce. Fifteen CEI/ECC types of hardware are committed to

this test program and, as of March 31, 1972, approximately 1,062

units of hardware have successfully passed the required tests.

Production Reli@bility Verification Testing is conducted in ac-

cordance with the requirements of MIL-STD-781B. Test Plan XXIX

governs the tes_ program and has been modified by contract to

impose a single criterion for hardware acceptance: the completion

of the specified test operating hours, failure-free. Fifty hours

(12 cycles) of test operating time are specified for all articles

of hardware except two. The environmental requirements of Test

Level E of MIL-STD-781B are imposed on all tests of production

articles. Each unit under test is subjected to thermal test

cycles from -65°F to 1310F and receives i0 minutes of low ampli-

tude vibration (2.2 gs) during each operating hour. The units

are operated during the temperature rise portion of each cycle

and during the high temperature stabilized period. Performance

is monitored during the entire "On" period for proper operation.

At the conclusion of a successful PRVT test period, each hardware

unit must also pass successfully a functional acceptance test.

The Boeing Company supplies seven articles of SRAM Carrier Air-

craft Equipment which receive PRVT. Six of these perform multi-

plex functions and one is a voltage regulator. These black boxes

range in complexity from 143 electronic parts to about 2500 elec-

tronic parts, including over 700 integrated circuits. PRVT data

from this group of equipment has been evaluated and composite

results are shown in Figure 22.

Analysis of failures that have occurred during the PRVT program

indicates that the primary failure-inducing factor is the tempera-

ture rate of change. The vibration environment (2.2 g) has almost

no effect.
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Mr. Arnold reports that in the early phase of the program about

80% of the failures involved workmanship, process, and people

problems, but as the program matured, this decreased and, at

present, about 50% are workmanship problems and 50% are problems

with parts, principally integrated circuits. Hi-Rel parts are

used in about 90% of the applications.

Mr. Arnold reports that 86% of the defects are detected in the

first three cycles. However, if high reliability is the objec-

tive, then more than three cycles are desirable.
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Hughes Aircraft Company

Mr. C. Ryerson reports that Hughes has developed mathematical

models to predict how many temperature cycles are required to

achieve a specified reliability depending on the previous amount

of screening, the quality of parts used, and the exact thermal

conditions and profile for the parts being screened. Many more

than i0 cycles are sometimes required. They also adjust the

number of cycles on the basis of the actual time-rate-of-change

of the temperature in the most thermally isolated portion of the

hardware. More cycles are employed when the rate of change is

low due to the thermal mass of the hardware.

Ryerson emphasizes that the best screening is achieved by using

the maximum safe range of component temperature and the fastest

time-rate-of-change of hardware temperatures. Most parts will

withstand temperature cycling with power off through a tempera-

ture range of -65°F (-54°C) to 230=F (II0°C). Heat rise with

power on under test cooling conditions should be calculated to

limit the chamber temperature to a maximum safe value.

In previous spacecraft programs, such as Surveyor, tremendous

stress was put on parts screening using methods such as Degrada-

tion Analyses (parameter drift) screening as developed at Hughes.

In the current economic environment, where the part screening

program is apt to be cost-constrained, other approaches have been

developed and used, depending on the customer, such as the use of

Jan TX parts, plus temperature cycling at both the PC board and

black box level. On some programs, the screening of assembled

PC boards consists of one week of rapid cycling in a chamber,

during which time the boards accrue 158 temperature cycles. It

has been found most cost-effective not to energize and function-

ally monitor the boards during the cycling.

A current paper by Ryerson, describing an integrated planning

approach, is "Relating Factory Test Results to Field Reliability,

Requirements for Field Maintenance and Total Life Cycle Costs,"

presented at the 29th Military Operations Research Symposium,

Air Force Academy, Colorado Springs, Colorado, June 28, 1972.

Aerospace Corporation

Mr. Edward Clark has performed an independent survey and has con-

cluded that, based on the Lockheed data, and other data, six to

eight temperature cycles should be employed. Data on twenty-one

transponders for a classified Air Force program was contributed by

Mr. Clark, and is shown as Figure 23.
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. Decca Radar, Ltd.

This company manufactures marine radars in large quantities and

has analyzed equipment reliability for over 16,000 ships.

In the early 1960's, a program to improve reliability was initiated.

One of the features of this program was to adopt the AGREE pro-

cedure, essentially a demonstration of MTBF under environmental

exposures. Many of the pre-production models are first submitted

to the AGREE temperature cycling procedure as well as the first

equipment off the production line. Thereafter, 10% of each month's

output is tested. Each month the MTBF is measured to determine

whether or not the quality of production is being maintained.

Equipment are tested in batches of ten randomly selected from

the previous week's production. The test involves 20 cycles and

lasts for 500 hours. The temperature chamber is cycled daily from
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5°F to 131=F and back to 5°F. Equipment is cycled on and off

daily. After cold stabilization, the equipment is turned on and

operated at 20% below nominal voltage. During the high tempera-

ture, the input voltage is set to maximum. Papers (Ref 5) by

J. Harris and D. W. Sears detail the approach.

Mr. J. Harris of Decca Radar Limited has contributed the data,

shown in Figure 24, to this study.

Figure 24

Data from Batch 86 (i0 Radars

Tested Simultaneously)

\

M V
4 5 6 7 8 9 I0 ii 12 13 14 15 16 17 18 19 20

Temperature Cycles

Typical Data from Decca Radar Limited, Illustrating

Knee at Four to Six Temperature Cycles
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Mr. Harris reports that most batches tend to show a knee in the

staircase waveform although it is more pronounced in some cases

than others. The position of the knee varies from batch to batch

but certainly occurs between 4 and 6 thermal cycles.

Note that the failures tend not to be uniformly distributed. No

failures were encountered on Cycles 6, 7, but 3 failures occurred

on Cycle 9. This seems to be typical behavior rather than atypi-

cal, since the Lockheed data shows similar behavior. For example,

Unit Type 8, Serial Number 1 (Table ii) survived the first two

cycles, but failed in each of the next three cycles. This simply

means that the defects in the hardware are not uniformly distributed

with respect to degree of marginality. If a great number of de-

fects existed, they would tend to be uniformly distributed, but

since the defects constitute a small number, from a statistical

viewpoint, they tend not to be uniformly distributed.

One statement excerpted from the papers by Harris and Sears is of

interest:

"An interesting fact emerges when we survey the reliability

of all our radars in service, many of which have been in

service for 18 years, is that although equipments continue

in service for many years, and like us get older each

year, the reliability figure does not indicate an equip-

ment wear-out period."

Motorola

Data submitted by Mr. M. Braman is presented in Table 12. The

production test program fSr the APN receiver, radar augmenter,

consisted of 22 eight-hour temperature cycles from -54°C to 71°C,

and vibration of 2 gs, 24 hz, i0 minutes per hour. The device

contained about 420 electronic parts and the sample size was 370

devices.

II-53



o

Table 12 Motorola Temperature Cycling vs Failure Data

After 3 After 6 After 9

Cycles Cycles Cycles

Failures (Total) 46 23 15

Failures/Unit 0.12 0.06 0.04

Types of Failures

Diodes 5 6 5

Microwave Diodes 6 5 i

Transistors 17 4 4

FET's 1 0 0

Tantalum Capacitors 1 2 1

Integrated Circuits 4 0 0

Diode Attenuators 2 0 i

Workmanship 3 2 1

Unknown 7 4 2

Honeywell Incorporated

Mr. Ken Brackney submitted the following data, pertaining to a

tape recorder program for the U. S. Navy. The contract was in-

itiated in 1967 and currently, about 150 devices are in the field.

Integrated circuits and transistors are burned-in for 168 hours,

but without environmental screening. Assembled PC boards are

then given 20 temperature cycles from -80°F to 185°F using 9°F

per minute AGREE chambers, and with PC boards not energized.

The final completed units are subjected to 4 pre-acceptance test

cycles and 8 acceptance test cycles from -13°F to 1310F. Since

their contract requires a final 50 failure-free-hours, test

failures occasionally necessitate an extension of the test period,

such that the average delivered tape recorder has received about

14 cycles (in addition to the 20 cycles at the PC board level).

This represents a total of 34 temperature cycles. Since the

equipment anomalies are manifest during the temperature ramps,

long soak times at temperature are not deemed particularly bene-
ficial.
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During temperature cycling, the assemblies are also given 2 g's

peak vibration for i0 minutes in each hour. This vibration ex-

posure is not producing any significant failures, but is being

continued since it is contractual.

Hr. Brackney estimates that about 60% of the failures screened out

by the test program are part failures, about 40% are workmanship

defects or are unclassifiable.

This temperature cycling acceptance test program was initiated

without extensive prior use of temperature cycling either in de-

velopment testing or in Qualification Testing. As a result, prob-

lems were encountered when the acceptance test program was first

initiated, but these problems were successfullv resolved. Some

of the problems encountered were the cracking of glass diodes and

other "weak" parts due to the difference of thermal expansion co-

efficients with the polyurethane conformal coating, cracking of

resistor coatings, and failure of a fine wire attached to a larger

wire inside a crystal can relay. This latter problem necessitated

two vendor changes.

Radiation Incorporated

Radiation has used several approaches to temperature cycling, with

variations largely dependent on customer specifications and the

type of equipment. On unmanned spacecraft programs of the OAO,

Nimbus and ERTS class, two or three cycles between the design tem-

perature extremes were accumulated during acceptance testing; at

least one cycle of the test program acquired during thermal vacuum

testing in accordance with customer specifications. In general,

boxes tested at Radiation for these programs were subseauently

subjected to the GSFC cycling practices at subassembly and space-

craft levels as discussed in the preceding paragraph.

On several military avionics programs, AGREE techniaues have been

applied at both box-level screening and reliability demonstrations.

One of these programs requires 20 consecutive failure-free cvcles

in accordance with Test Level E of MIL-STD-781B (-54°C to 55°C)

prior to shipment. This is a relativelv simple eouipment consist-

ing of less than 200 electrical parts, and the total failure rate

is sufficiently low to permit this approach.

For more complex equipment, Radiation's experience on the AN/ASW-25

Digital Data Communications Set is an interesting case history.

This equipment is the essential data link in the Navy All-Weather
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Carrier Landing system and has a reliability requirement of a
minimumi000 hour _BF (one failure or less in i000 hours of test-
ing). Contractual requirements dictated that all systems be
tested for I00 hours (16 cycles) of formal demonstration in the
environment of Test Level E of MIL-STD-781. The results of such
testing on each month's production constituted a single test in
which the minimumrequirements were to be demonstrated.

The initial approach was to conduct a "manufacturing run-in test"
(_IT) of up to 24 hours at bench ambient conditions prior to
submitting the units to the formal demonstration tests. Early
in the program, tests on 234 systems demonstrated an _BF of 259
hours. Part failure rates in these early demonstrations were
considerably higher than those predicted using MIL-HDBK-217A,
and the first step toward reliability improvementwas to replace
I.C.'s having gold-to-aluminum bonding systems. _IT was also
increased to 75 hours. Subsequent tests on equipments with these
improvements resulted in an MTBFof 327 hours.

At this point it was noted that the initial test systems demon-
strated a muchhigher reliability when failures from the first
reliability tests were repaired and the units retested. Limited
data from someof these systems resulted in an _BF in excess of
1200 hours. As a result, a preconditioning program of a minimum
of 75 hours (12 cycles) of Test Level E testing was instituted
on all eGuipments, and the _BF of several subsequent demonstra-
tions continued to exceed 1200 hours. It was theorized that ex-
tending the preconditioning period would lead to further demon-
strated reliability improvementby eliminating additional "infant
mortality" failures. This was confirmed by demonstration testing
of systems with a minimumof I00 hours (16 cycles) of precondi-
tioning, and by further tests after 200 hours (32 cycles) of pre-
conditioning. Initial tests under these conditions demonstrated
_BF's in excess of 1500 and 1700 hours respectively. At the
present time, the 200 hour preconditioning period has been adopted
as a standard, and systems having this testing have subsequently
demonstrated a cumulative _BF of 1692 during 140,671 unit-hours
of testing. The cumulative MTBFof all systems since the 75 hour
preconditioning began is 1527 hours during 209,644 unit-hours of
testing.
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A curve to show the approximate average MTBFas a function of the
numberof cycles of preconditioning prior to demonstration is
shownon Figure 25. As in all statistical tests, individual test
results mayhave varied somewhatfrom the curve. The data starts
at 12 cycles because data is limited below that point. The reader
is cautioned not to extrapolate the curve for fewer than 12 cycles
because of the lack of confirming data for short periods of pre-
conditioning. The salient observations are that preconditioning
provides the meansfor the AN/ASW-25equipment to:

i) Achieve specification requirements.

2) Realize further reliability improvementby additional precon-
ditioning.

WhenHi-Rel screened parts are used, fewer than 16 to 25 cycles
seemto be appropriate. In one program supplying multiplexers
containing Hi-Rel parts to the MinutemanProgram, it was found
that i0 temperature cycles were sufficient since there were very
few failures after that point.

Mr. T. M. Barlow of Radiation's Reliability Engineering Section
recommendsthe following guidelines for temperature cycling:

i) Longer periods of cycling should be considered for equipment

using standard military parts than for those using screened

or "hi-rel" parts. Sixteen to 25 cycles are recommended for

equipment containing unscreened MIL-Spec parts and about I0

cycles are appropriate for equipment containing Hi-Rel parts.

2) Cycling is effective in determining weaknesses of soldered

connections. It is more useful on this construction than on

welded assemblies.

3) To minimize repair and reworh costs during the test program.

ease of maintainability is essential on equipment subjected

to stringent temperature cycling.
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TRW Systems

Mr. Ron Hoover reports that TRW has employed one thermal cycle

at the black box level. During spacecraft thermal-vacuum system

testing, another 5 or 6 cycles are accumulated. The black box

test is generally 12 hours at the low temperature and 12 hours

at the high temperature, with temperatures a function of the

specific spacecraft design and mission. A vacuum of 5 x 10 -5

Torr is used. The systems test is nominally about i0 days. The

temperature ramps require about i0 to 12 hours with functional

testing conducted at the high and low temperature plateaus.

The above practice is presently being modified by current studies

at T_# and also by the data herein, exchanged during the Long Life

Assurance Study. In a very recently contracted classified space-

craft program, T_#, in consonance with the Air Force, adopted an

environmental acceptance test program for the "black boxes" con-

sisting of vibration and eight temperature cycles, using the

steepest temperature ramps allowed by the test chambers. The

last two temperature cycles are required to be failure free.

Margins of IO°F were employed between acceptance and qualifica-

tion, with t_. temperature ranges in the order of i00 to 150°F.

The range for acceptance testing were somewhat constrained because

the qualification temperatures were already established.

Goddard Space Flight Center

The nominal practice is to employ thermal vacuum testing at three

levels of assembly. Black boxes are tested for 24 hours hot and

24 hours cold, subsystems are tested for 40 hours hot and 40 hours

cold, while the entire spacecraft receives 2 cycles: 12 hours

hot, 12 hours cold, then 40 hours hot and 40 hours cold.

Where spacecraft shadowing effects are present, the above approach

is augmented by the addition of a 3 hour cold soak. With equip-

ment operating at over 200 volts, the test times are lengthened

for the black box acceptance test to assure corona and arcing

problems are detected. Subsystem spares are given longer exposure

to hot and cold conditions to compensate for the fact that they

will not receive the higher level assembly testing. A gross sum-

marization of this approach is that black boxes receive about 4

thermal cycles, but only one cycle at the black box level.
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Hewlet t-Packard Co.

Mr. Ted Dennison reports that their product line is primarily

commercial, but even so, they have initiated an experimental

burn-in program at the black box level as a reliability improve-

ment measure which they felt necessary because of the increasing

complexity of their equipment. The burn-in is conducted for 7

days at 131°F, and is currently being done on every other pro-

duction unit to acquire field failure data on the effect of the

burn-in. They have also been studying the application of thermal

cycling and may adopt a program of about 4 cycles per day for 4

days (16 cycles), from 32°F to 131°F. The selection of 32°F

rather than a lower temperature is based on their existing tem-

perature chamber capability but is reasonable for commercial

equipment and its intended environment.

An interesting feature of their development test program approach

is that they employ a type of step-stress temperature cycling test

in which the equipment first receives four cycles from 0 to 40°C_

then four cycles from -i0 to 50°C, four cycles from -20 to 60°C,

and then four cycles from -30 to 70°C, for a total of 16 cycles.

In this approach, the relative seriousness of each failure mode

is established and better decisions regarding the scope of the

corrective action can be made.

Also, in development testing, prototypes are burned in for suc-

cessive periods at 16 hours, starting at 50°C, then at 60°C and

so forth until 100°C is reached, or until some constraining limit

is reached for the specific hardware being tested.

Bendix Corporation

Miss Peggy Gogin reports that Bendix has employed AGREE type tem-

perature cycling using 4 cycle and 6 cycle programs for the accept-

ance testing of production hardware. She reports that on another

program, using the AGREE 2g vibration only, no failures were en-

countered and feels that the benefits of the AGREE cycle lie in

the temperature ramps, rather than the soak time at high and low

temperature, or the vibration. Miss Gogin recommends six tempera-

ture cycles for future programs and cautions that the packaging

design must be adequate. Rigidly potted cordwood modules and

conformally coated glass parts were cited as hazardous.

II-60



15.

16.

17.

18.

Westinghouse - Aerospace Electrical Systems

Mr. Earl Bruns reports the current practice is one cycle. His

opinion is that for long-life space missions, it may be desirable

to increase this to 3 or 4 cycles. They employ soak times of 4

hours after temperature stabilization.

Martin Marietta Aerospace_ Denver Division

The past policy has been to employ 1 temperature cycle in black

box acceptance, with a temperature range of at least 100°F. On

the Titan Program, some black boxes are receiving less than 100°F,

but because of the use of potted cordwood modules, there is re-

luctance to increase the severity of the temperature cycling pro-

gram unless additional hardware can be procured and tested to

prove that greater ranges and more cycling can be safely imple-

mented without decreasing the yield during acceptance testing and

initiating redesigns. This situation arose because, like the

Apollo program, the temperature cycling program was initiated

after the qualification test program was completed.

On new programs, six to ten cycles are now being recommended,

together with temperature ranges exceeding 100°F, such as 160°F.

Barnes Engineering Co., Defense and Space Division

Temperature cycling varies with customer requirements but they

feel 2 or more cycles are necessary for the detection of workman-

ship defects. Temperature cycling is sometimes combined with

burn-in testing for 96 to 105 hours.

Delco (A.C.) Electronics

Mr. Bill Nelson, Apollo Reliability Program Manager, believes

that the number of temperature cycles should be varied in accord-

ance with the type of black box and the environment in which it

is to be used. In general, he recommends 5 cycles for black

boxes and 20 cycles for components. It is believed that time-at-

temperature is not of major significance since the failures occur

during the temperature ramps. He has experienced little degrada-

tion from temperature cycl_ng except in the small wire sizes

used in electromechanical equipment and motors. He emphasized

the importance of eliminatlng No. 51 and No. 52 gage wire.

The rate of temperature change should be slow enough to detect

intermittent changes, such as -20OF to 1200F in 1 hour.
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Raytheon - Equipment Division

Mr. Sheffret believes one cycle is not adequate and recommends a

minimum of 5 cycles. Nominal temperatures in use are 32°F to

160°F, with one cycle requiring 9 to i0 hours, with a soak time

at temperature of 1 hour minimum. On some programs temperature

cycling is combined with a burn-in test.

Sandia Corporation

Mr. J. F. Calek reports that Sandia employs both temperature shock

and temperature cycling. Temperature cycling is often used during

component development to verify designs. It is also used on

occasion for screening purposes in certain production problem

situations. The number of cycles is a variable depending on test

objectives.

With regard to temperature cycling, Mr. Calek is leaning toward

3 to 5 cycles, at nominal temperatures of -65°F and 160°F. En-

gineering judgment, past experience, end-item requirements, and

development test instrumentation results are combined to define

the temperature cycling profile for production acceptance purposes.

This tends to have most impact on rise and soak times, rather than

the temperature range or the soak time.

RCA - Astro-Electronics Division

A paper by Mr. Louis Gomberg is of considerable interest (Ref 6).

This paper described a study toward improving the cost-effective-

ness of spacecraft test programs, and is briefly abstracted herein:

In 1967, test program failure histories were studied for Relay I,

Relay II, Lunar Orbiter, RAE, and a classified program. The de-

tailed data from Reference 7 shows that most of the failures en-

countered in thermal-vacuum testing were precipitated by tempera-

ture and would not have required a vacuum to evidence the failure.

For example, on Lunar Orbiter, 260 failures occurred in thermal-

vacuum but only four required vacuum to evidence the failure.

Accordingly, it was concluded that thermal-vacuum testing of all

black boxes, at the Black Box level, should be discontinued and

additional temperature cycling substituted. The recommended ap-

proach is to analyze each hardware item and to impose thermal

vacuum testing only on those items deemed sensitive, by analyses,

or prior experience. Such items, usually restricted to high

power transmitters, bearing devices with labryinth seals, and

mechanical devices with exposed moving parts, represent less than

II-62



22.

23.

10% of the total population. Most of the electronic hardware,

batteries, and hermetically sealed devices are not thermal-vacuum

tested at the black box level, but do receive temperature cycling.

Currently, most of the hardware receives three temperature cycles

at the black box level pl _ an additional three cycles during the

system-level thermal-vacuum testing.

Mr. Gomberg reports that this more cost-effective approach was

proposed to the Air Force as a Value Engineering Change, was

adopted, and has proven successful on a classified Air Force

program.

Marshall Space Flight Center

Mr. Duan_ N. Counter of the Astronautics Lab strongly emphasizes

the use of temperature cycling on the development and qualifica-

tion test hardwar_ to prove proper electronic packaging. MSFC

has conducted very extensive investigations on the control and

elimination of solder joint cracking and all the aspects of stress

relief bends, solder joint configurations, conformed coatings,

potted modules, PC boards, thermal expansion of parts, etc. Be-

cause of this experience, Mr. Counter emphasizes the very extensive

use of temperature cycling to verify the packaging during the

development and qualification test programs, but cautions that

production hardware subjected to excessively severe thermal cycling

may induce wearout failure modes, the solution of which may over-

penalize the design.

Mr. Counter recommends that on future spacecraft programs, the

number of cycles should be increased beyond one or two, but empha-

sizes that the temperature cycle must be realistically established

and should not over-penalize the design, remembering that each

packaging design must be proven to be free from wear-out failure

modes. This proof is acquired during development and qualifica-

tion testing.

Grumman Aircraft Engineering Co.

Mr. Ralph Esposito participated in the formulation of the Apollo

acceptance test program on LEM. While most equipment received

1½ cycles, some selected equipment received a greater number of

cycles. Defects were revealed on the second, third, etc, cycles,

and Mr. Exposito feels that four to six cycles is much preferable

to 1½ cycles. He mentioned that the selection of a more stringent

Apollo approach would have had costly requalification test pro-

gram impacts, since the acceptance test program was finalized
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after the Apollo fire and after muchequipment had been qualified.
He emphasizedthe importance of using the Qualification Test to
demonstrate the capability of the equipment to undergo thermal
cycling acceptance testing without degradation.

Mr. Esposito also stressed the importance of very close functional
monitoring during the temperature ramps and felt that the 1 hour
soak time at temperature could be reduced since equipment anomalies
are evidenced during the ramps and seldom during the 1 hour soak
period at temperature.

Grummanis currently conducting a companyfunded study with the
objective of optimizing acceptance test methods.

Texas Instruments

Mr. William Brown reports that they frequently use the AGREE ap-

proach. From two to twelve cycles are employed, with the number

of cycles dependent upon the particular equipment and the par-

ticular contract. In one program, a complex avionic package, half

the units were given 12 cycles. The additional 6 cycles proved

to be beneficial, and 12 cycles were adopted. On another program

involving radar equipment, 3 pre-acceptance cycles and 4 accept-

ance cycles were employed. On contracts not requiring temperature

cycling, it is common practice to still employ 2 to 4 cycles as

a cost-effective approach for reducing field problems. For ex-

ample, the expenditure of $30,000 for the testing of 12 systems

is postulated to save more than $30,000 in reacting to field prob-

lems. Mr. Brown reports that the trend of their customers is

toward increased temperature cycling.

Regarding the relative effectiveness of the 2g vibration exposure,

Mr. Brown feels that 90 to 95% of the failures are due to the

temperature cycle.

With regard to the relationship between Hi-Rel parts and the number

of temperature cycles used, the approach, when high reliability

is required, is to increase _p_ the part screening program and

the number of temperature cycles used. In other words, the use

of Hi-Rel parts is not used as a rationale for decreasing the

temperature cycling program.

Nominal temperatures employed are -65°F and 131°F. Longevity

tests for MTBF demonstration are also conducted when required by

the contract. One such program involves testing 3 units, 3000

hours each (about 360 cycles each).
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JPL

Mr. Jerry Swansonreports that past programs have emphasized
thermal vacuumtesting at the systems level, but not temperature
cycling of black boxes at ambient conditions. However, there is
considerable interest in this at JPL, and Mr. Swansonis review-
ing past hardware problems to determine if temperature cycling
would have been beneficial. He envisions that temperature cycling
will receive greater utilization in future programs. Sometesting
maybe accomplished to aid the development of their temperature
cycling policy.

Supplier A

On contracts involving small quantities (5 or I0 units) of hard-

ware, a minimum of one temperature cycle is employed. The nominal

range is -55°C to +55°C. On production contracts involving large

quantities, such as 50 articles, from 12 to 20 temperature cycles

are used. This difference in approach is due to several factors:

I) The small build contracts are executed in an environment of

extreme emphasis of process control and workmanship.

2) On production contracts involving larger quantities of hard-

ware, the economic consequences of hardware returned from the

field for rework would be severe and justify stringent screen-

ing prior to delivery.

3) The production contracts can better afford extensive tempera-

ture cycling.

The engineer consulted recommended 5 cycles as a good nominal

choice for the Hi-Rel manned spacecraft of the future.

It was felt that soak time at temperature was not important and

the next temperature ramp can be initiated when the equipment

(internally) reaches the desired temperature.

In the various contracts being implemented by Supplier A, burn-in

times of 50 to 250 hours are also employed in black box accept-

ance testing. It was also felt that temperature cycling does not

degrade the equipment. Thermal vacuum and vibration are also

employed in acceptance testing, and their experience is that tem-

perature cycling was more productive than vibration in screening

out equipment weaknesses.
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Another engineer commented on the susceptibility to failure in

temperature cycling of plastic encapsulated parts and small wire

gages (less than No. 40) in motors, transformers, and other elec-

tromechanical devices.

Supplier B

This supplier of guidance systems and the associated complex elec-

tronics is currently supplying equipment in rather large volume

to a military user. The acceptance test includes a confirmation

of functional performance at both high and low temperatures and

so in effect, they are employing one temperature cycle. However,

due to very stringent performance requirements and the need for

matching and selecting parts to achieve the performance require-

ments, one unit may receive 6 to 8 temperature exposures. On

this same program, sample equipment are also selected from the

monthly production. Some of these are subjected to 28 "slow"

18 hour temperature cycles from -40°F to 120°F. Another test is

also employed in which the equipment is rapidly transferred be-

tween two chambers at -65°F and 165°F, with 4 hours in each

chamber. This latter test, more rapid, has been found to be

much more effective in detecting potential problems and failures.

Based on this experience, the cognizant engineer at Supplier C

recommended one "rapid" temperature cycle for 100% production

acceptance testing.

G, LIST OF COMPANIES/AGENCIES/PERSONNEL SURVEYED

"4

Collins Radio Co., Cedar Rapids, Iowa. Mr. R. L. Vander Hamm

and Mr. James Rutledge. (319) 395-1000 ext 2667.

Grumman Aircraft Engineering Co., Bethpage, Long Island, New York.

Mr. Ralph Esposito. (516) LR 5-9176.

Honeywell Incorporated, Englewood, Colorado. Mr. Ken Brackney.

(303) 771-4700 ext 806.

Lockheed Missiles and Space Co., Sunnyvale, California. Mr.

Charles E. Leake, Dept 62-05. P.O. Box 504, Bldg 104. (408)

742-0824.
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Boeing Co., Seattle, Washington. Mr. James E. Arnold. (206)

773-2662.

Hughes Aircraft Company, Aerospace Group, Culver City, California.

Mr. Cliff M. Ryerson. (213) 391-0711 ext 4622.

Motorola Co., Scottsdale, Arizona. Mr. Maurice Braman.

(602) 949-3033 ext 2792.

Delco (A.C.) Electronics Division of G.M., 7929 S. Howell Ave,

Milwaukee, Wisconsin. Mr. William Nelson. (414) 762-7000
ext 2939.

Raytheon-Equipment Division, 190 Willow St, Waltham, Massachusetts

02154. Mr. E. Sheffret. (617) 899-8400 ext 248.

Sandia Corporation, Albuquerque, New Mexico. Mr. J. K. Calek.

(505) 264-4546.

Decca Radar, Ltd., Croydon, Surrey, Great Britain. Mr. J. Harris

and Mr. D. W. Sears.

Westinghouse - Aerospace Electrical Systems, Lima, Ohio. Mr. Earl

Bruns. (419) 224-0121 ext 4147.

Hewlett Packard Co., Palo Alto, California. Mr. Ted Dennison.

(415) 493-1501 ext 2172.

JPL, Pasadena, California. Jerry Swanson, Mail No. 233-201.

(213) 354-2344.

TRW Systems, 1 Space Park, Redondo Beach, California. Mr. Ron

Hoover, Bldg M-I, Room 1531 (213) 536-2533; Mr. Robert Schedvin,

Bldg R-5, Room 1230 (213) 536-2566.

Goddard Space Flight Center, Greenbelt, Maryland. Mr. B. C.

Pierman, Code 326. (301) 474-9000 ext 4121.

Barnes Engineering Co., Defense and Space Division, Stamford,

Connecticut. Mr. Thomas Smith (203) 348-5381.

General Electric Company - Aerospace Electronics, French Road,

Utica, New York 13503. Mr. S. G. Miller. (315) 797-1000.

Radiation, Inc., Melbourne, Florida. Mr. T. M. Barlow. (305)
727-5028.
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Martin Marietta Aerospace, Denver Division, Denver, Colorado.

Mr. R. W. Burrows. (303) 794-5211 ext 2325.

Bendix Corporation, Teeterborough, New Jersey. Miss Peggy Gogin

(609) 288-2000 ext 5774.

RCA Astro-Electronics Division, Princeton, New Jersey. Mr. Louis

Gomberg. (609) 448-3400 ext 2187.

Aerospace Corporation, 2350 E1 Segundo Blvd, E1 Segundo, California.

Mr. Edward Clark. (213) 648-6618.

Texas Instruments, Box 6015, Dallas, Texas 75222. Mr. William

Brown. (214) 238-4934, Mail Station 296.

Supplier A - Preferred to remain anonymous.

Supplier B - Preferred to remain anonymous.
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III. A STUDY OF ACCELERATED TESTING TECHNIQUES

A. INTRODUCTION

In today's aerospace environment where hardware is being developed

and tested in a relatively short time and is expected to survive

for extended periods of time, it is obvious that credible accel-

erated life test technology should be utilized. On Space Shuttle

payloads, Space Station, and outer planet explorations, where total

missions approach ten years with little or no maintenance, the abil-

ity to demonstrate hardware performance on an accelerated basis

with a high degree of confidence is needed.

Since many organizations in many different technologies have been

actively pursuing the development of accelerated life test

methodologies, it is very desirable to assimilate and evaluate

this data so that logical, rational approaches can be identified

and utilized. This chapter summarizes the current state-of-the-

art of accelerated testing.

It is our observation that two different categories of accelerated

life testing exist:

i) A Quantitative Accelerated Life Test provides a numerical con-

clusion about the life of a product; e.g., 13.7 years;

2) A Qualitative Accelerated Life Test provides proof that the

product will survive for a very long time; e.g., greater than

i0 years.

The development of quantitative accelerated life tests that provide

valid and accurate correlation with real-time data has been limited

to relatively simple items such as materials and discrete parts.

Success on these simple items has been achieved because only one

primary life terminating failure mechanism dominated.

More complex assemblies, such as batteries, bearings, integrated

circuits and electronic assemblies have a more complex array of

life limiting failure mechanism which change with the choice of

test temperature. Here, accelerated life testing becomes more

qualitative than quantitative; but experience has shown that quali-

tative approaches can successfully produce long-life hardware.
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For this reason, no potential qualitative test approach should be
rejected merely on the grounds that it is not quantitative. This
philosophy will aid in quieting the adversaries of accelerated
life testing who base their arguments on the fact that accurate
correlation has not been achieved.

The basic difficulty in developing a valid, correlatable accel-
erated test of complex devices is illustrated in Figure i.

O

O0

O

Various
Failure

Mechanisms

90°C

Temperature

Figure I Temperature Dependent Failure Mechanisms Within One Device

This figure illustrates the problem with a more complex device such

as a battery. Such a device has a complex array of life-limiting

failure mechanisms, and the relative contribution of each failure
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mechanismchangeswith the choice of test temperature. With this
hypothetical situation, acceleration by increasing the temperature
would have to be limited to 90°C. Then, with enough time and
resources, a time-temperature correlation curve could be developed
for this specific, hypothetical device. But this correlation
would not be valid if the device was changed, either by design
changes, part changes, or changes in the critical processes. The
original correlation curve would certainly not be applicable for
a slightly different device of the samegeneric class.

There is yet another distinction that should be maderegarding
accelerated testing. Someaccelerated tests are true accelerated
tests in that failure mechanismsare actually accelerated by
raising a stress level, usually temperature. Other so-called
accelerated test approaches are actually real-time, nonaccelerated
tests, in which degradation is accurately measuredand then extra-
polated into future time to provide an estimate of life capability.

The above principles have been presented to enable the reader to
better understand the various subjects subsequently presented in
this study.
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B. GUIDELINES FOR ACCELERATED TESTING

i.

,

o

General

Quantitative accelerated test techniques have been developed for

very simple parts and for materials. For more complex devices

containing multiple failure mechanisms, each mechanism usually

has a different, and non-linear acceleration factor; valid quan-

titative methods neither currently exist nor are they apt to be

developed in the foreseeable future. This category includes elec-

tronic assemblies, batteries, bearings, valves, transducers, and

other electromechanical hardware. However, reliable qualitative

accelerated test methods exist; and these methods merit continued

development and application in programs requiring long-life. Past

history has shown that qualitative accelerated life test techniques

have produced hardware with increased life and reliability, even

though they do not provide a quantitative life assessment.

This chapter presents a concise summary of the state-of-the-art,

describes current research, and identifies those techniques which

should be further encouraged.

Materials

The use of the Thermogravimetric Analyses technique can yield sig-

nificant schedule and cost savings as a partial cost-effective

substitute for real-time, long duration, thermal vacuum testing.

The application, advantages, and limitations of this technique

are discussed in the subchapter on the accelerated testing of

materials. This technique is currently being developed by Martin

Marietta Aerospace.

Solder Joints

Every long-life spacecraft program should verify the integrity of

solder joint configurations by extensive temperature cycling be-

ginning with the earliest prototypes. This is usually accomplished

in an ambient air temperature chamber, using a nominal cycle of

about one hour. A two-minute cycle consisting of immersion in

cold and hot liquids is about three times as severe and yields a

test program time reduction of 90. This is very attractive, when

the temperature cycling program requires thousands of cycles, as

was the case with the Apollo Telescope Mount Gyro Precessor.
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Electronic Parts

Electronic part accelerated test techniques are more advanced

than other part types. It can be effectively utilized on semi-

conductors, resistors, and capacitors. Step stress and high tem-

perature constant-stress tests, utilizing the Arrhenius model,

are recommended as the most advanced approach for semiconductors.

Further development of techniques is required for complex devices

such as LSI/MSI. The inverse power rule and progressive stress

or constant stress tests are the recommended approach for capaci-

tors. It is not necessary to perform accelerated tests to obtain

quantitative data such as failure or hazard rates. Simple quali-

tative tests can provide conservative life estimates, margin in-

formation, and data for comparative evaluations or estimating

screen level effectiveness. Accelerated testing can be applied

effectively when such data is needed. It is recommended that these

approaches be used selectively as these requirements arise, as

opposed to imposing a general accelerated test requirement on a

program.

The temperature and power screening levels imposed by Bell Telephone

Laboratories on discrete semiconductors and integrated circuits for

high reliability applications are much higher than generally used

in the industry. The commonly used levels and durations are

almost benign by comparison. These high levels were derived

through experience with accelerated testing that indicates the

commonly used levels may not be the most effective. It is recom-

mended that further studies be made to examine the feasibility and

desirability of implementing higher _emperature screening (burn-in)

levels on selected parts.

Electronic Assemblies

Both multiple temperature cycling and AGREE (MIL-STD-781B) testing

are very powerful forcing functions for improving the reliability

of electronic assemblies. Their wider use in development, quali-

fication and production acceptance testing should be encouraged.

Temperature cycling is less costly to implement than AGREE because

of the contractual risks of AGREE testing to the producer; but

AGREE testing should be considered for wider use by NASA, particu-

larly on the larger procurements where its application becomes

more cost-effective. Based on an industry survey of 26 companies,

both methods were more effective than constant temperature burn-in.
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Step-stress testing to failure by progressively increasing the

temperature, as developed by Grumman, should also be considered

as a good development tool to detect and rectify weak links. Al-

though this technique has no application in qualification or pro-

duction acceptance testing, it is considered an excellent develop-

ment test technique.

Mechanical/Electromechanical Hardware

Accelerated test approaches are not developed or utilized to the

extent existing for materials, solder joints, electronic parts,

and electronic assemblies. Several different approaches are de-

scribed in the text, including the cumulative damage method uti-

lized by E. Rabinowicz of MIT.

Batteries

Valid quantitative accelerated life test techniques have not been

developed for batteries. Current investigations at the Naval

Ammunition Depot and at Batelle Memorial Institute should be

monitored, but a significant state-of-the-art breakthrough is not

anticipated. The allocation of additional resources is not recom-

mended. Qualitative approaches, by increasing the temperature and

depth of discharge, have application in battery development pro-

grams to understand the failure mechanisms, since the data can be

utilized for design improvements.

Bearings

Valid quantitative accelerated life test techniques have not been

developed. However, further efforts should not be discouraged

since every attempt yields additional data and insight into failure

mechanisms. It appears feasible, according to LERC bearing ex-

perts, to accelerate a life test by increasing the temperature,

when the bearing is designed to operate in the elastrohydrodynamic

lubrication regime. Long-life bearings should be designed wherever

possible, to operate in this regime.

Recent developments in bearing technology have shown that a pre-

vious method of accelerating life by increasing the radial load

is invalid.

Some so-called accelerated life tests on bearings are not true

accelerated tests, but are efforts to extrapolate measured real-

time degradation out to a life prediction. These techniques pro-

vide a rather inaccurate prediction. But they do serve to provide
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the bearing technologists with valuable data that is used to ex-

tend the life of bearings, even though a valid quantitative life

prediction is not achieved.

For the bearings in the future reusable space vehicles, the issue

of designing bearings to withstand many repeated exposures to

severe vibration without reduction of life due to fretting corro-

sion (false brinelling) becomes paramount. Economic resources

should be directed towards the solution of this problem.

Valves

Increasing the cycling rate of valves is a valid accelerated test

approach when long-term aging mechanisms are either not presenL

or have been designed out. When aging phenomena is present, then

the increased cycling rate approach must be augmented by other

accelerated test programs. Examples of aging phenomena are cor-

rosion by fluids, cold fl_ of teflon seats, and bonding of a

metal seat to a metal poppet due to metal diffusion. A current

program being conducted by T_4 for JPL on the diffusion problem

and on acoustic signature testing is of interest.

The development of acoustic signature testing is being pursued by

both TRW and GE. This technique will not provide a true accel-

erated test, but it has the potential of identifying degradation

within the valve due to wear or aging. These trends could be

extrapolated to a prediction of life. This technique is usually

inaccurate since the amount of degradation necessary to cause

failure is difficult to accurately establish.

In general, valve specialists consider accelerated testing to be

untrustworthy; but utilize it in the absence of a valid, quanti-

tative technique. As with bearings and batteries, every attempt

to develop a valid method yields reliable information for improving

the product, even though an accurate quantitative life estimate
is not achieved.

Transducers

The principal long-life problem with transducers is not wearout,

but long-term stability (calibration shift). For existing devices

which have proven stability based on months of real-time test

data, there is little need for accelerated approaches. For newly

developed devices, each specific design should be analyzed for

the potential application of accelerated test techniques. For

III-7



ii.

12.

example, experience at Martin Marietta Aerospace has shown that

a minimum of five temperature cycles, exceeding use levels by

30°F, are desirable to guarantee long-term stability. For very

long-life programs, 20 temperature cycles are recommended.

Enhanced Defect Testing

In certain instances, this type of testing can quickly yield

valuable data, although it is not strictly classifiable as accel-

erated testing. An example of its use is a program by IBM in

which Multilayer Printed Circuit Boards were fabricated with a

number of controlled defects and then temperature cycled to

failure. This program quickly revealed that the ductility of

the copper was the most important factor for long-life.

Dynamic Mission Equivalent Testin$

This technique, developed by JPL, is applicable as a systems level

spacecraft test. The test acceleration is achieved, not by the

use of increased stress levels, but by operating the spacecraft

hardware to simulate one or many actual missions, except that the

non-operating, or quiescent periods are omitted. Since this test-

ing does not cope with dormant aging phenomena, the DME program

must be augmented by other accelerated test programs which address

the specific dormant aging problems.
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Co DISCUSSION

l. General Comments

The obvious method of obtaining service life information on a

product is to test it under worst-case service conditions for the

required service period or until it fails. This is the most re-

liable method, providing the widest acceptance of test results

with the greatest confidence. This approach is realistic and

desirable on new products when historical data is lacking, when

the required service life is short, and when sufficient test time

is available prior to placing the product in service. If the time

allowed is insufficient to thus verify service life capability,

then accelerated test approaches become attractive. An acceler-

ated test approach is considered herein to be any method which

provides information on or verifies a service life greater than

the test time. The objective of such testing is to reduce the

time and the cost required to obtain the desired information.

A widely used approach to accelerated testing consists of increasing

the degradation rate of a part by applying stress levels and/or

cyclic stress rates which are greater than those seen in normal

use. The time required to produce a given amount of degradation

or a failure is thus reduced and is said to be accelerated. If

the relationship between degradation rate and applied stress is

known, then the time required to achieve the same results under

normal stress conditions can be calculated. Confidence in this

extrapolation of test time to an estimated "real" time is related

to the accuracy by which the relationship between stress and

degradation rate is known. This in turn requires an understanding

of the specific mechanisms causing failure and an accurate mathe-

matical model of the physical laws governing these mechanisms.

The accelerated test stress type and level must not introduce new

failure mechanisms an@ must be within the range of validity of the

models used.

Accelerated tests have been performed for the purposes of achieving

quantitative results such as estimates of failure distributions,

estimates of mean life, determination of operating parameter rate

of change with time, estimates of mean time between failures (MTBF's)

or failure rates, determination of fatigue life and factors of

safety, establishment of warranties, determination of margins and

ratings, selection of screen test levels, and calculation of rela-

tionship between operating temperature and mean life. When valid
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results are achieved at the accelerated level, extrapolation to
any other level within the range of validity can be made. The
results can thus be applied to a wide range of in-service applied
stress levels. Achieving quantitative results from accelerated
testing requires the greatest degree of sophistication and care
in test design, test performance, and data analysis.

Accelerated testing for the purposes of achieving qualitative re-
sults such as comparison of new or competitive products or eval-
uating the uniformity of product quality levels has also been
performed. The various approaches, rationales, and limitations
to accelerated testing are summarizedin References 1 through 3.
Reference 3 contains 524 bibliographical entries on the subject
in addition to a critique of published test results.

In this chapter, recent results of solder joint thermal cycling
tests and materials accelerated tests are presented. The materials
accelerated test program included heavily filled polymers and
utilized the thermogravimetric analysis technique. Accelerated
weak-link testing of electronic assemblies is critiqued, and the
status of electronic part and mechanical/electromechanical hard-
ware testing is reviewed.

Q Materials

a. Introduction - The long life capability of polymers in a

vacuum at a specific temperature is generally established by real-

time testing for periods of several days to as long as 1 year,

depending on the mission length and the conservatism of the con-

tractor. Acceleration of the conventional thermal-vacuum mate-

rials test by increasing the temperature i0 ° to 50OF is an ob-

vious approach. But this approach is not generally used because

(i) a different acceleration factor exists for each material, and

(2) there are so many materials, the approach is impractical.

The Thermogravimetric Analysis (TGA) method described herein pro-

vides accurate and exceedingly rapid results on long term decom-

position processes of polymers which is not gained by conventional

thermal-vacuum testing. Mass spectrographic analysis of decom-

position products can be used in conjunction with the TGA if it

is desired to obtain an indication of their nature. The TGA test,

including sample preparation and data reduction, can be accom-

plished in less than 4 hours.
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The remaining problem is the development of techniques and confi-
dence in translating the chemical degradation data into reliable
predictions of material property changes. However, even with this
limitation, TGAcan, at this time, replace a major portion of the
real-time thermal vacuumtest program and yield more accurate
long-life projections at much lower cost.

b. Thermogravimetric Analysis Testing - The TGA method of testing

materials can be used as an accelerated test technique to predict

long term thermal degradation kinetics. Slow thermal degradation

over a long period of time may result in a loss of structural

integrity. Also the degradation products may condense on and

degrade other equipment. This may be of particular concern if

the degradation products are corrosive or interactive with other

parts and materials in the system. Two recent studies performed

by Martin Marietta Aerospace were concerned with thermal degrada-

tion kinetics of materials. The study of Reference 4 was concerned

with the aging of explosive and pyrotechnic propellant materials.

A detailed test program utilizing the TGA approach was developed

for determining and demonstrating the survivability of the chosen

materials. A list of such materials capable of withstanding

sterilization cycling at 260°F and i0 year aging under conditions

of 10 -6 torr and 150°F was compiled for the NASA Langley Research

Center.

An investigation of polymer degradation kinetics was performed in

the study of Reference 5. The validity of predicting these kinetics

at normal use temperatures from high temperature TGA measurements

was evaluated. The TGA approach on polymers has the advantage that

a large variety of materials can be tested quickly and economically

as opposed to an isothermal approach. Also, isothermal methods do

not readily distinguish between degradation of polymer and the

evolution or degassing of dissolved materials such as unreacted

monomer or catalyst. A summary of the test approach and the re-

sults as reported i_ Reference 5 are included herein.

1) Polymer TGA Test Approach - Six polymers were selected for

TGA testing. These were Dow Corning Silicone 6-1106, DuPont Viton

A, Shell Chemical Epon 828, Chomeric Inc. Choseal silver filled

conducting silicone, glass filled diallylphthalate, and Dacron.

Small samples of each polymer weighing approximately i0 mg each

were taken through total decomposition in a Mettler Thermoanalyzer

I equipped with a DTG (TGA derivative) output and a vacuum capa-

bility. The DTG provided the rate of weight loss at the test tem-

perature and the TGA provided the weight loss at that temperature.
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The heating rate was 10°C per minute for all materials except
Dacron. The degradation rate of Dacron is so rapid at TGAtem-
peratures that a smaller rate of 2°C per minute was used. Evac-
uation of the system to 5 x 10-6 torr was performed prior to the
start of heating.

Isothermal weight loss measurementswere also madeon samples of
each material for the purpose of comparing large sample isothermal
test results with predictions madefrom the small sample TGA
measurements. The samples used for isothermal testing weighed
from 4 to 6 gramseach. The isothermal test system consisted of
a furnace and controller, ion pump, appropriate valving and ion
gauges, and an Ainsworth Recording Semi-Micro VacuumBalance. Two
thermocouples were placed in the vacuumspace near the test sample
and one was imbeddedin a separate piece of the material under
study as a temperature reference. There was no difference in tem-
perature between thermocouples. Heating was started after the
system was evacuated to 5 x 10-6 torr. The weight loss was re-
corded for 12 hours at each temperature.

2) Derivation of Polymer Arrhenius Relationships - The simple

first order kinetic equation

dx/dt = k t (A ° - x)

was found to apply very well in describing the degradations. In

this equation dx/dt is the rate of weight loss, x is the weight

loss, A is the initial weight of the "active component" suffering
o

loss, and k is the rate constant at test temperature T. The
t

active component is that portion of the original sample undergoing

degradation at the test temperature such as solvent, catalyst,

monomer, or polymer. The thermoanalyzer yielded dx/dt from the

DTG output and x was obtained from the TGA. Analysis of the TGA

curve yielded the values of A for each component. For polymers
o

with a simple TGA curve indicating only one active component, A o

was the total weight loss. For polymers where the TGA curve

showed degradation to be more than a one-step decomposition, the

weight loss for each step was calculated yielding A for the
O

particular component degrading during the step.

For the isothermal data, dx/dt was obtained from the slope of the

weight loss curve near the end of a run at temperature and x was

obtained from the weight loss curve. The values of A were taken
o

as the fraction of total initial sample weight as determined from

the TGA analysis.
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From the above equation and the data obtained, the values of k at
various temperatures were determined and plotted on Arrhenius
scales of log k versus inverse absolute temperature. The TGA/DTG
and isothermal Arrhenius relationships are shownon the sameplot
for each polymer in Figures 2 through 7.
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Z) PoTymer 'ff'gATest Results - Figure 2 shows the Arrhenius re-

lationships obtained from the TGA and isothermal tests of Dow

Corning Silicone 6-1106. The smaller TGA slope is associated

with the "solvent" such as unreacted monomer or catalyst. It is

not a true activation energy. At the lower temperatures and

early in the TGA test where this slope appears, the weight loss

is predominantly "solvent" loss. For long term space missions

the thermal degradation of the polymer itself is tile important

consideration since the "solvent" will be degassed very early in

the mission life. The amount of "solvent" is insignificant with

respect to the amount of polymer. Thus, after the "solvent" is

degassed during the early stages of the TGA test, the subsequent

Arrhenius relationship reflects the correct activation energy for

decomposition of the polymer and the larger TGA slope yields an

activation energy of 26.4 kcal/mol for decomposition of Dow

Corning 6-1106.

The open circles of Figure 2 are isothermal results where the tem-

perature of the sample was increased periodically from ambient to

200°C with a 12 hour dwell at each temperature. The triangles

are isothermal results on another sample where the initial tem-

perature was 200°C. With the increasing temperature sequence, an

activation energy type slope is found for the "solvent." However,

with the decreasing temperature sequence, the "solvent" is removed

rapidly during the initial portion of the weight loss curve for

point 1 and no "solvent" points are observed. It is seen that

for decomposition of the polymer itself, the rate constants at

lower temperatures are accurately predicted by extrapolation of

the TGA activation energy line.

Figure 3 shows the Arrhenius relationship obtained from the TGA

and isothermal tests of Du Pont Viton A. The TGA yields two ac-

tivation energies. The high temperature region exhibits an acti-

vation energy of 85 kcal/mol. The isothermal results at lower

temperatures are accurately extrapolated from the lower tempera-

ture region of the TGA Arrhenius plot. The activation energy in

this region is 25.6 kcal/mol.

Figure 4 shows the Arrhenius relationship obtained from the TGA

and isothermal tests of Shell Chemical Epon 828. The results of

these tests were similar to those obtained for Figure 2. An ex-

ception is that both isothermal sequences were performed in an

increasing temperature manner starting from ambient temperature.

The decomposition activation energy is 30.8 kcal/mol. Again the

TGA degradation prediction is excellent.
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Figure 5 shows the Arrhenius relationship obtained from the TGA
and isothermal tests of Chomeric Inc. Choseal. Choseal is a con-
ducting silicone heavily filled with silver. The TGAcurve showed
a simple one-step decomposition with A = 18.8% of the total weight.o
Thus, this silicone was very nearly filled with about 80%silver.
For the TGAanalysis there is only about 1.9 mg of silicone so
that solvent evolution is not apparent. However, with the much
larger sample weight used for the isothermal test, a solvent
evolution is obtained. The activation energy for decomposition
of the polymer is 24.0 kcal/mol. Figure 5 shows that even with a
heavily filled material there are excellent results in predicting
the kinetics at moderate temperatures from TGAanalysis.

Figure 6 shows the Arrhenius relationship obtained from the TGA
and isothermal tests of glass filled diallylphthalate. The
diallylphthalate was used in a Microdot, Inc. electrical connector.
From the TGAcurve, the active componentwas found to be 43.6% of
the sample weight. The activation energy for this diallylphthalate
is 24.1 kcal/mol. Again, for this heavily filled material the
rate constants at moderate temperatures are accurately predicted
from the TGAanalysis.

Figure 7 shows the Arrhenius relationship obtained from the TGA
and isothermal tests of Dacron parachute material, As with Viton
A (Figure 3) there is no solvent evolution in either the TGAor
the isothermal tests. The activation energy in the higher tempera-
ture region is 48.3 kcal/mol. The isothermal results at lower
temperatures are accurately extrapolated from the lower temperature
region of the TGAArrhenius plot. The activation energy for decom-
position in this region is 26.5 kcal/mol.

The results displayed in Figures 2 through 7 show that, in all
cases, the small sample TGAanalysis provided accurate predic-
tions of large sample polymer decomposition kinetics at lower
temperatures. This is of considerable importance as a long term
degradation mechanismof polymers. Solvent in the polymers would
be degassed early in the life of long term missions or maybe
removedduring thermal-vacuum preflight tests and checkouts.
Throughout the course of this investigation, the solvent iso-
thermal Arrhenius slope was observed to be nearly identical to
that obtained by the TGAbut displaced to lower values of k by a
factor almost exactly 10-2 . (See Figures 2 and 4.) This observa-
tion maybe used to estimate the solvent quantity or degassing
lifetime from TGAif desired.
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4) Po_U_ E'DI E'Gsg Pz_ogz_, Uo_,_o$z{s_i_i'.s- Results of this program

have shown that tile true thermal decomposition of polymers can

be identified and separated from effects of the solvent in TGA

tests. The rate constants of the decomposition mode applicable

to realistically sized specimens operating at normal use tempera-

tures can be determined accurately in TGA tests. The first order

rate equation is applicable to this mode. The rate equation and

the determined rate constants can be used to predict thermal

degradation of polymers operating for any desired time at a

given temperaLure. The activation energies applicable for normal

usage temperatures of the polymers tested by the TGA approach

were determined to be:

Dow Corning Silicone 6-1106, 26.4 kcal/mol

Du Pont Viton A, 25.6 kcal/mol

Shell Chemical Epon 828, 30.8 kcal/mol

Chomeric Inc. Choseal, 24.0 kcal/mol

Glass filled diallylphthalate, 24.1 kcal/mol

Dacron parachute material, 26.5 kcal/mol

. Solder Joints

The life of solder joint configurations in a usage environn_nt of

temperature changes varies from a few cycles (in the case of a

multipin module bridged with conformal coating on a PC board) to

thousands of cycles (in the case of an unstressed copper lead

solder joint).

Extensive use of temperature cycling to validate the adequacy of

the electronic packaging is a requirement for long-life assurance.

Such testing is usually accomplished in a temperature chamber

using air as the heating and cooling medium, with each cycle re-

quiring a nominal time of about one to eight hours. The cycle

time selected is usually longer with equipment having appreciable

thermal mass and shorter with equipment of low thermal mass, such

as individual PC boards. However, in special cases it is de-

sirable to accelerate the cycling by plunging the equipment al-

ternately between hot and cold liquids thereby reducing the dura-

tion of _ach temperature cycle to minutes, or even seconds.
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A particular case (Reference 6) is presented as an example: The
requirement for a 12,000 thermal cycle goal from -10°C to +55°C
on the ATMGyro Precessor precluded a slow test to prove out ATM
designs. Therefore, three new methodswere evaluated. First,
an automatic, dual chamber, air blast thermal cycling machinewas
monitored. It was found to be unsatisfactory because it required
8 to i0 minutes to thermally saturate a normal size (5 by 5 inch)
PCboard assembly that had been soaked at the opposite temperature
extreme (-65°C to +125°C). This evaluation showed that any air
cycling machinewould be too slow.

Second, small parts of PCassemblies (approximately two inches
square) were dipped in hot oil at 300°F and liquid nitrogen at
-320°F. Surprisingly, the solder joints withstood these thermal
shocks. After several dozen cycles, they began developing the
sametype of solder joint deterioration and cracking that had
been observed previously on gradual air cycling. However, the
hot oil began softening the conformal coating, was messy to handle,
and was difficult to inspect accurately.

Third, similar parts were alternately dipped in boiling water and
isopropyl alcohol cooled by dry ice chunks. These materials main-
tained constant temperatures and did not affect the PCassemblies.
The usual types of deterioration and cracking of the solder joints
developed after a few score cycles. The small PCassemblies changed
temperature in approximately i0 seconds. Larger assemblies required
20 to 30 seconds. This approach was selected.

An automated cycling machinewas then built that would hold 16,
5x5 inch PCassemblies. This machine rotated groups of four assem-
blies on each of four arms, dipping them alternately into a tank
of boiling water and a tank of isopropyl alcohol cooled with dry
ice. Each group of boards were in each tank 45 seconds; they
would then drain 15 seconds before entering the next tank.

This technique was then used to test manysolder joint configura-
tions and the results are presented in Reference 6.

Of particular interest is the correlation curves which related the
slow air cycle to the fast hot water, cold alcohol cycle. This
correlation is shownas Table i.
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Cycle Data

Air Cycle, 45 minutes to 1 hour,

-55°C to +125°C (180°C delta)

Water-Alcohol, 2 minutes,

-75°C to +IO0°C (175°C delta)

Percent el Solder

Joints Cracked

5 i0 15 20

6(] 69 88 ii0

15 25 32

Acceleration Factor 4 2.8 2.7

Cycles

38 Cycles

2.9 --

It was concluded that the fast two-minute test was approximately

three times as severe as tile slower one-hour air test. The sciled-

ule benefits of the accelerated test are clear]y evident. For

example, MSFC has recommended that unproven solder joint conl-igura-

tions should be validated by 200 conventional temperature cycles.

Using the slow one-hour, air test, and working one shift per day,

tills would require 25 days. On the other hand, il a 67 cycle

"accelerated" test was substituted, tile test could be performed

in less than three hours. The time compression el 90 results

because the accelerated test is thirty times faster, and only

one-third the number of cycles is needed for equiva]ent damage.

The above discussion does not address the question of the correla-

tion between laboratory and field results.

During this study, a search was made for data which correlated

solder joint cracking in the field with solder joint cracking as

observed in laboratory temperature cycling. There is a dearth of

information on this subject. One effort, accomplished by IBM

and reported in Reference 7, is summarized. On the Saturn program

an intermittent failure due to a cracked stud-type joint on a re-

lay lead in the Flight Control Computer was encountered. In the

ensuing investigation, it was decided to implement solder joint

fixes and to requalify the new solder joint configurations by

laboratory temperature cycling. The new qualification test was

arrived at in the following manner: It was determined from in-

spection of field units that the maximum solder joint crack rate

was 4.8 percent for a period of 14 months. It was established

that qualification testing should be based on a 24-month period.

It was projected that the actual crack percentage would be 8.4
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percent in 24 months. Laboratory temperature cycling of similar

PC boards showed that 46, 20-minute temperature cycles, between

-20°C and 85°C, were required to produce a crack rate of 8.4

percent. A safety factor of 1.5 was desired, so a qualification

test program of 60 cycles was selected and used to evaluate the

improved solder joint configurations. In this program, the failure

criteria for a cracked joint was: "any visible line of material

separation which is accompanied by frostiness and a coarse granular

appearance and is detected at no more than 30X."

Electronic Parts

a. fntro_atio_ - Accelerated testing techniques can be particu-

larly beneficial in the electronic parts area in view of the

dynamic nature of the industry. The rapid rate of technological

advances occurring not only tends to create a relatively high

"standard parts" obsolescence factor, but creates a situation

where the greatest advantages of performance or power/volumetric

efficiency have been in existence for a short period of time.

Little reliability history exists on specific parts. Paradoxically,

they may be more reliable than their predecessors or competitors,

but lack of data or experience may preclude their use. Accelerated

testing may be viewed as an accelerated means of obtaining knowledge

and experience.

There has been much activity in electronic part accelerated testing

as reflected by the amount of literature on the subject regarding

cost and technical benefits, as well as test results, approaches,

problems, and limitations. The subject has been controversial

and viewed with suspicion. However, interest persists. In this

section the methods of test and analysis are reviewed, results are

summarized, and the problem of the complex electronic part dis-

cussed.

b. Acceleration Factor - The acceleration factor is defined as

the ratio of failure time under normal stress conditions to the

failure time under high stress conditions. The high stress is

assumed to increase the rate of time dependent processes which

degrade the part to ultimate failure. Failure can be catastrophic

or an out of tolerance condition. The high stress is often re-

ferred to as an accelerated stress. If t 2 is the failure time

under accelerated stress, t I the failure time under normal stress,

and T the acceleration factor, then:

t I = Tt 2 [1]
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It is further assumedthat all parts in a test group are equally
affected by the acceleration factor and that the acceleration
factor is a function of stress conditions only. Therefore, failure
distributions under constant accelerated stress conditions must
have the same form as if the parts had failed under constant normal
stress conditions. The time scale of the normal stress distribu-
tion would be expandedby the acceleration factor _ whencompared
to the accelerated stress distribution. However, they must be of
the same type. If bimodal under normal conditions then accelerated
stress distributions must be bimodal, etc.

These requirements can be very helpful in anticipating and check-
ing accelerated test results. If experience shows that a particu-
lar part fails with a normal distribution then a normal distribu-
tion would be expected on a large sample tested under accelerated
conditions. Further, the cumulative distribution function F(tl)
at time _t must be equal to the cumulative distribution function
F(t:) at time t . This is illustraLed in Figure 8 for normal
distributions. The percentage failures in the shaded nreas are
indicated by F(t_) at time t_ and F(tl) at time t i_ For the
shaded areas to be equal, the numberof _z's from t± to tz must
be equal to the numberof o l's from [i to t I. Therefore:

(_2 - t2)/°2 = (tl - tl)/_l

or

tl = (czl/:_2)t2 + (02 [I -Cl [2)/L_2

This is consistent with equation [i] only if:

= of/o± = ti/t 2 = tl/t 2

[2]

[3]

[4]

¢0

EF
_0

Accelerated Stress

Failure Distribution

,f'_ C.D.F. = F(t2)

't
J

'11! 1

r'l_ _.,--" 'J 2
,,' ,_ \, _"_-_"..,.._. d 1

t2 t2 Time tl tl

Normal Stress

Failure Distribution

C.D.F. = F(t I)

Fi,jure S Accelerated and 7,/ormal Stress Failure Distributions
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Equation [3] is also valid for log normal failure distributions if
all parameters are related to log transformation of time. Letting
c£i represent the standard deviation of the natural logarithm of

times to failure under accelerated conditions, and similarly sub-
scripting the other parameters, Equation [3] becomes:

( / ) ( -£n t i £i <2 2 - ,<, ::)

or

t I = t 2 :J£d _£2 exp _£i - t£2 s£1 £2

Therefore, for log normal accelerated and normal stress failure

distributions to be consistent with Equation [i] it is necessary
that :

_£i = 0£2

and

T = exp - t2

The two-parameter Weibull distribution, with slope 5 and charac-

teristic life 0, has a cumulative distribution function:

F(t) = i - exp - [tle] 7

Letting subscript 1 denote parameters at normal stress levels and

subscript 2 denote parameters at accelerated stress levels,

cumulative distributions F(tl) and F(t2) will be equal only when:

[tllOl] _i = [tz/e2] 52

or

t 1 = 01[t2/02]52/_1

Therefore, for accelerated and normal stress Weibull distribu-

tions to be consistent with Equation [i] it is necessary that:

and

[5]

[6]

[7]

[8]

[9]

[io]

[ii]

[12]

[13]



These results are also valid for exponential distributions if $I

and _2 are set to unity. Here the characteristic life is the

MTBF or the inverse of failure rate h. Thus, for constant failure

rate or exponentially distributed parts to comply with Equation

[1]:

._ = o_/o 2 = x2/_, 1

The above distributions are most often utilized in accelerated

test data analysis and interpretation of results. It is important

to note that the conclusions drawn for each distribution are valid

only for constant stress data and an acceleration factor constant

with time.

c. The Arrheni_ Model - The usual stresses used in electronic

part accelerated testing are temperature, voltage, and power.

Temperature is the most common stress. Power dissipation is often

used as a means of generating acceleration temperatures and thus

avoid expensive high temperature test fixturing. The Arrhenius

reaction rate model:

R = A exp - B/T

or

R = A exp - AH/kT

where

R = process or degradation rate;

A = constant of proportionality;

AH = activation energy in electron-volts;

k = Boltzmann's constant in electron-volts per degree Kelvin, and;

T = temperature in degrees Kelvin.

The model is widely used as the basis for physically explaining

results of accelerated temperature tests. A wide variety of

empirical data fits this model. It has been used to explain the

IO°C rules for insulation deterioration, as well as semiconductor

leakage currents. High temperature test results on diverse items,

such as light bulbs, plastics, resistors, and semiconductors,

[14]

[15]
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have been explained with this model. The Arrhenius equation is
a first order approximation of the more generalized Eyring reac-
tion rate model (Reference i) which includes temperature as a
stress, as well as providing for other acceleration parameters.
These models require that the basic process causing damage,such
as oxidation, diffusion, migration, etc, proceeds linearly in time
under a given set of environmental conditions. Although the damage
process proceeds linearly in time, a measurable parameter of an
electronic part will change in a manner reflecting the usually
complex relationship between process effects and the parameter.
Failure occurs where accumulated damagehas sufficient effect to
place a parameter outside of defined limits.

If a single process is operating to cause part failure and all
operating conditions except temperature are held constant, then
the acceleration factor relating two temperatures is, from Equa-
tion [15]:

= exp B(I/T I - I/T2) [16]

where

T1 = lower temperature in degrees Kelvin;

T2 = accelerated temperature in degrees Kelvin, and;

B = AH/k.

This is the ratio of damagerate at accelerated temperature to
damagerate at a lower temperature. Because it is only a function
of temperature, independent of time, Equation [i] is assumedto
apply.

Equation [15] is the basis for the practice of plotting test data
on scales of inverse absolute temperature and logarithm of time.
If failures are distributed log normal in time, then a plot of
constant temperature cumulative failure test data on normal probabil-
ity paper with logarithmic ordinate would appear as in Figure 9.
Vertical spacings between the constant temperature lines therein
are proportional to differences of inverse absolute temperature
in accordance with Equation [15]. In accordance with Equation
[7] it is expected that test data at different temperatures will
plot as parallel lines.
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An equivalent plot which has been applied usefully in step stress

testing is the constant time plot of Figure i0. From Equation

[15], if failures are distributed log normally in time at con-

stant temperature, then they will be distributed normally with a

hyperbolic (or inverse) transformation of absolute temperature

at constant time. In Figure i0 the vertical spacings between

constant time lines are proportional to the differences in loga-

rithms of time. Because the slopes in Figure 9 are equal, the

lines in Figure i0 must also be parallel.

1

T

IIncreasing Temperature
t2

I
I _T
I I
I I

I
I J
i0 50

- % on normal probability scale

- Higher values of n = shorter

time

- T in absolute temperature

- Scale of I/T is inverted

Normal Prob

Percent

Figure 10 Cumulative Failure Plot-Constant Time
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From either Figure 9 or i0, the regression plot of Figure ii can
be formed. The numbereddata points in Figures i0 and ii corres-
pond to each other. Using the 50%failure line on Figure ll, the
regression curve slope is:

m = [I/T 2 - i/Tl]/(_n t I - Zn t2) = [I/T 2 - i/Tl]/_n

which is equivalent to Equation [16]. The negative reciprocal of
this slope is proportional to the constant B and therefore the
activation energy. High activation energies are thus evidenced
by low negative slopes of the regression curve.

[17]

T2

i Tb

rl

T
a

Figure 11

Increasing Temperature

__i: ®

- - -7 _ ..
I t ""

I I

t I
I ,

,I !

t2 tl

Log Time

1

Scale of _ is inverted

Arrhenius Regression Plot

50% Failure Line

10% Failure Line

From plots of cumulative failure data, such as in Figure 9 or i0,

regression lines for any desired failure percentage can be made

and the time to reach this percentage under any estimated tempera-

ture stress estimated by extrapolation.

The normal distributions of the transformed time and temperature

variables are shown superimposed on a regression plot in Figure

12. It is evident that an equivalent expression for Equation [17]

is:

m = -OT/O t
[18]
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WhereOT and ot are the standard deviations of the transformed
temperature and time variables respectively. FromEquations [16]
and [17]:

B = AH/k = ot/o T

Showing that the ratio of the standard deviations of failures in
transformed time to the standard deviation of failures in trans-
formed temperature is proportional to the activation energy. Also
from Figure 12, _ = tl/t 2 in verification of Equation [8].

[19]

1
T T2

T1

I
-I

Figure 12
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i

t2 tl

Distributions on Regression Curves

d. Cumulative Da_lage Criterion - If failure of a part occurs

when an Arrhenius damage level is reached, then the temperature

history is immaterial because Equation [15] requires damage at a

given temperature to be linear in time. Cumulative damage tech-

niques then apply to parts complying with the Arrhenius model.

The cumulative damage criterion is stated as:

_ (tn/Ln) = I

where t is the time spent at temperature T and L is the life
n n n

of the part at temperature T . If only two temperatures are con-
n

sidered and a part is operated for a time t I at temperature T 1

and then at temperature T 2 to failure at time t2:

tl t 2
--+--= 1
LI L2

[20]

[21]

111-31



This is showngraphically in Figure 13 where a failure will occur
along line L1 - L2. It is immaterial if T1 is performed prior to
or after T2 as long as the times t I and t 2 at each temperature
remain the same.

L2

_t2
4J

0

0 t I L 1

Time at T 1

Figure 13 Cumulative Damage Failure Line

A constant damage diagram is a hyperbolic curve as shown in Figure

14. The abscissa scale is linear in time. The ordinate scale is

nonlinear in temperature. The operational rectangles represent

the lifetimes L at temperatures T and enclose equal areas because
n n

of the properties of the hyperbola. The operational rectangle

area is proportional to damage level required for failure. For

parts complying with the Arrhenius model, the ordinate scale is

proportional to Equation [15], or exp - B/T. A locus of variable

temperature history when traced on this diagram will terminate

at failure when the area underneath it is equal to the operational

rectangle area.

The cumulative damage criterion applies to any rate model and any

stress where the damage at a given stress level occurs linearly in

time and provided that lifetime is independent of the sequence

in which stress is applied.
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Figure 14 Cumulative Damage Diagram

e. Inverse P_er Ru_e - In electronics, the inverse power rule

has been used as a rate model for voltage degradation of capaci-

tors and dielectrics. The rule can be stated as:

R = AV n

where

R = damage rate

A = a constant

V = applied voltage

n = a constant

If all other operating conditions, such as temperature, are held

constant, then the acceleration factor relating two voltages is

given by this rule to be:

I = (V2/VI) n

where

= acceleration factor

V 2 = accelerated voltage

V 1 = lower voltage

[22]

[23]
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Thus, if capacitors will fail at times t 2 at accelerated voltages,
then the times t I to failure at lower voltages will be expressed
by Equations [i] and [23]. The inverse power rule has been de-
rived from the Eyring reaction rate model (Reference 8) by using
in V for the stress function therein. Weibull distributions have
been used considerably in the analysis of capacitor accelerated
data. A plot of constant voltage test data plotted on Weibull
paper is shownin Figure 15.

In accordance with Equation [12] the test data at different volt-
ages will plot as parallel lines. The horizontal spacing between
the constant voltage lines is proportional to the difference in
the logarithms of the voltages.

% 63.2
50.0

VJ n
f/ V2

'
f I ,

I Slope I I

Figure 15

- % on Weibull scale

- Higher values of n = higher voltage

- t -- C_
o vl

- tl = e
v2

I = B I I Weibull Prob

t 2 tl to

Log Time

Weibull Plot-Constant Voltage

An equivalent plot is the constant time plot of Figure 16, which

may be considered for voltage step stress data analysis of capaci-

tors. From Equation [22] it can be determined that if failures

have a Weibull distribution in time at constant voltage, then

they will have a Weibull distribution in voltage at constant time.

In Figure 16 the horizontal spacings between constant time lines

are proportional to the differences in the logarithms of the time.

Because the slopes in Figure 15 are equal, the lines in Figure 16

must also be parallel.
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From either Figure 15 or 16, the regression plot of Figure 17 can be

made. The numbered data points in Figures 15 and 17 correspond to

each other. Using the 50% failure line in Figure 17, the regres-

sion curve slope is:

m = (in V I - in V2)/(in t I - in t2) = (in V 1 - in V )/in

which is equivalent to equation [23]. The negative reciprocal of

this slope is equal to the exponent n. Since the slope of Figure

17 is equal to the negative ratio of the slope in Figure 15 to the

slope in Figure 16, another expression for m is:

m = -iv/6 t

and

n = 6t/6v

Also, in Figure 17, the acceleration factor r = tl/t 2 = t0/t 1

between voltages V 2 and V i. From the 63.2% failure line t,j = _'_vl

and t 1 = @v2' therefore:

= t0/t] = Ovl/ gv2

in confirmation of equation [13].

[24]

[25]

[26]

[27]
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f. Step Stress Cestin d - The concept of step stress testing was

pioneered by Bell Telephone Laboratories (Reference 9). A wide

variety of parts have been tested by this method, such as, ger-

manium and silicon transistors, integrated circuits, resistors,

capacitors, and diodes. References 8 through 12 are step stress

test reports on these part types. The step stress test consists

of testing parts at fixed time intervals and incrementing the

stress in "steps." Figure 18 shows the process diagrammatically.

5

4
>

3
m

1

0
0 1 2

Time

Figure 18

i
t

A

3 4 5

t = Step Duration

Fixed Time Interval Step Stress Test
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The usual stress is temperature, power, or a combination of these.
The Arrhenius model is used for all parts except capacitors where
the inverse power rule is used. Parts are usually measured ini-
tially so that the test group is verified to be good and data is
available for computation of parameter shifts. The test group is
then entered into test at time 0 and stress level i. They remain
on test for the time interval 0-i and then are removed from test
and allowed to cool to room temperature. The parts are then meas-
ured again to determine if any failures have occurred. Failures
are usually defined as parameters exceeding predescribed limits on
values or deltas. Failures maybe removed from the test group at
this time for analysis or left in the group if higher stress ef-
fects on the part are still desired. Next the remainder of the
group is placed on test again at stress level 2 for the time inter-
val indicated in Figure 18 as 1-2, then removedfrom test and meas-
ured again. The step durations, or time intervals t from 0-i,
1-2, etc., are always equal. The stress increments are usually
equal either in magnitude of each increment or in magnitude of a
function of stress in each increment. For instance, in temperature
step stress tests, the temperature increments are usually equal in
degrees eentrigrade or equal in the change of reciprocal degrees
Kelvin. The steps are continued until the desired numberof fail-
ures are achieved, usually a minimumof 50%up to 100%. The fail-
ure distribution for the selected time interval and stress type
is thus obtained. Cumulative failure data maybe plotted as in
Figure i0.

The assumption is generally madethat damageachieved in previous
steps is insignificant comparedto that achieved in the step caus-
ing failure. The error introduced by this assumption is that the
percentage accumulated failures attributed to a given stress level
maybe too high. A method of correcting for effects of previous
steps is given in Reference 9. However, if any error exists,
it is in a safe direction as the percentage failures are too high
for the temperature against which they are identified. Also, if
stress increments are sufficiently large, damagefrom previous
steps is insignificant in comparison to that provided by the step
where failure occurs.

The above procedure provides cumulative failure data necessary
for construction of one of the constant time lines in Figure i0.
The step duration is the constant time value. If a regression
curve is desired such as in Figure ii, a minimumof two constant
time lines are required. For any failure percentage, this pro-
vides two points on the regression curve. A separate group of
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parts, each subjected to a different step duration time, is re-
quired for each point desired on the regression line. Three or
more groups of parts will provide three or more points, and thus
provide a check on results as they must be in a linear relation if
the Arrhenius analysis is valid.

In someof the earlier works such as that reported in Reference
13, germaniumtransistors were step stressed with durations of 20
minutes, 2 hours, and 24 hours. The resulting failure rate pre-
dictions were comparedto 25 million device hours logged in i000
hours storage tests which provided the sameestimates. It is re-
ported that the first two computer designs utilizing these devices
exhibited actual failure rates of 7 and 25 fits, respectively,
while the extrapolation predicted i0 fits. Failure rates of
silicon transistors used in the Ballistic Early Warning System's
initial installation were also accurately predicted by step stress
tests. Silicon transistors were tested in the temperature range
of 150°C to 350°C. Samplesizes in such testing have generally
been small, approximately 25 devices per group of parts (Refer-
ence 9). The number of steps used is approximately 5. Temper-
atures above 370°C cannot be used because new mechanismscome
into effect (gold-silicon eutectic). Most testing is performed
with a maximumtemperature of about 300°C. As devices becomemore
reliable, the step stress test becomesmore difficult. Early de-
vices tested with step durations of 2 to i0 hours could easily
define failure distributions before newmechanismswere intro-
duces. Manyproducts produced after 1963 would not provide a
reasonable quantity of failures in shuch short time periods. The
step durations had to be increased to approximately 168 hours.
Hence, as the product reliability is increased, the test time and
the quantity of parts tested must be increased as the stress level
is limited. The advantage over constant stress testing is greatly
reduced. A product which will not demonstrate a failure distri-
bution within i000 hours at 300°Ccannot be effectively step
stress tested.

In performing step stress tests and plotting the cumulative fail-
ure distributions, as in Figure i0, results are often as shownin
Figure 19. The change in slope is an indication that the original
group contained inferior parts and were not eliminated until tem-
perature T1 was reached. If the inferior parts had not been in
the original group, the distribution obtained would have been
that shownby the dotted line having the sameslope as the higher
temperature failures, but displaced to the left because of lower
cumulative percentages.
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This information is useful to determine more effective screen test

levels. The damage supplied by temperature T 1 for time t I elim-

inates the inferior parts. A screening time and temperature pro-

viding equivalent damage can be selected from the regression curve

of Figure ii.

The most powerful accelerated tests would be those where the models

used and the constants therein are universal, i.e., they can be

used regardless of part design or source. The approach is much

less effective if new constants must be determined for each type

of capacitor or transistor from each source. From results of step

stress and constant stress accelerated testing at Bell Telephone

Laboratories performed for more than i0 years, there is an indi-

cation that all diffused silicon devices with aluminum metalliza-

tion exhibit an activation energy of approximately 1.07 electron

volts. Current screening requirements for high reliability parts

by Bell Telephone Laboratories are more severe than is usually

required in the industry. Silicon transistors are usually screened

at 275°C to 300°C for 20 to i00 hours. Integrated circuits are

usually screened at 200°C to 250°C for i00 hours. Qualification

life tests have also been performed at these levels for a maximum

of four to five thousand hours or until a median failure level has

been achieved. Step stress testing activity is decreasing and is

used primarily on new parts. It is desirable to obtain unscreened

parts for step stress testing to determine or verify screen test

levels. With increasing part reliability, high temperature con-

stant stress testing is more effective for determination of re-

gression curves.
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The question arises in high stress screening if the screening proc-
ess itself consumesan inordinate amount of part life. With an
activation energy of 1.07 electron volts, a 250°C test for lO hours
is equivalent to 4 x 106 hours at 60°C. If a part is screened at
that level and then placed in service for i0 years (87,600 hours)
at a junction temperature of 60°C, the total 60°C life requirement
(including the burn-in) is 4.09 x 106 hours. The high temperature
burn-in consumesmore than 400 times the required service life.
However, if the regression curve and constant temperature tests show
that the parts have a median life Of i000 hours at 250°C, then the
median life at 60=Cis 4 x 108 hours. Ten years of operation after
high temperature burn-in then constitutes approximately 1.02%of
the median life. Reference 14 details procedures for analyzing
data from accelerated test failure distributions and regression
curves. Populations including "freaks" are considered. It is
stated therein that considerable evidence supports the belief that
the log normal distribution is appropriate for semiconductors and
hazard rates are accordingly calculated.

Accelerated tests utilizing the Arrhenius model and the accompany-
ing distribution diagrams and regression curves used for analysis
require that a single process or mechanismis dominant in causing
failure. Casually performing high stress tests and plotting curves
can lead to erroneous conclusions and estimates. A break in the
distribution as shownin Figure 19 could also be causedby a new
mechanismbecoming dominant. Reference 15 identifies manyof the
considerations and precautions in high stress test performance of
semiconductors. Failure analysis should be performed to verify
that the samemechanismis in operation. Because the activation
energy is constant for the mechanism,a similar break would be
achieved in constant temperature high stress test distributions
(of the type in Figure 9) due to equation [19]. Although a single
process is dominant in causing failure, there are certainly other
processes in operation within a device at high temperatures. The
amountof acceleration imparted to each process is a function of
its activation energy. From equation [16] the acceleration factor
for a given temperature difference can be determined for any
activation energy. Assuminga maximumtest temperature of 300°C
and a low operating temperature of 35°C (not uncommonfor some
low power devices), the maximumacceleration factor achievable
is shownin Figure 20 as a function of activation energy.
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Figure 20 Maximum Arrhenius Acceleration Factor

Figure 20 shows that processes with high activation energies are

more easily accelerated than those with low activation energies.

Processes with an activation energy higher than that associated

with the failures achieved are of no concern. However, low activa-

tion energy processes may not be accelerated enough to produce

failure in the high stress test. Although undetected in the high

stress test, they may be of concern in long service life applica-

tions as shown in Figure 21.
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Figure 21 shows that a low activation energy process maybe the
cause of failure in long service life applications instead of the
higher activation process used for estimating hazards. For this
situation to exist, the regression lines must be related as shown.
If the low activation energy process 0.001%failure line is located
as shownby the parallel dotted line, then failures from this proc-
ess will be detected in short time tests or real time experience.
Portrayal of this unique condition indicates the necessity for the
fullest possible understanding of the construction, material com-
binations, and the mechanismsinvolved in parts used for long life
missions, particularly in newly developed parts. It is desirable
that all degradation processes applicable be easily accelerated
and therefore have high activation energies. Low activation en-
ergy process evaluations can only be carried out in long-term
tests, and such processes are life-limiting in long service life
applications.

g. Constant Stress Testing - The simplest constant stress test

merely consists of placing devices on test at a stress level in

excess of the intended use level for a specified period of time.

This is a common approach in sample lot acceptance tests and quali-

fication life tests. In semiconductors, the temperature stress

level is usually around 125°C junction temperature. The time

periods vary, but i000 hours is not uncommon. An individual test

provides little information on the part, but large quantities of

1000-hour life test data are generated which provide insight into

approximate failure rates of generic classes. Individual part

types within a generic class, however, may vary considerably

from the generic class rate. These simple tests demonstrate that

the parts meet certain minimum requirements which, by experience,

provide assurance of product quality. Other stresses commonly

applied to parts as a means of providing assurance of product

quality are centrifuge tests, vibration tests, and temperature

cycling. The levels are generally far in excess of those antici-

pated in use, but are well within the capability of properly con-

structed parts. These tests do not provide margin, safety fac-

tor, or life distribution information.

If a failure distribution is desired, the constant stress test

can be extended in time to partial or complete failure of the

test sample. With moderate stress levels, a clear disadvantage

exists because the test time for the majority of parts would be

inordinately large. A means of reducing test time is to increase

the stress level. If similar failure mechanisms occur at the
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accelerated stress level as at normal use levels, extrapolation
maybe possible to other stress levels. Tests at more than one
stress level will provide additional data for extrapolation.

S 2 ,

> S 1,

S O

Figure 22

Accelerated Test

-i__Constant Stress Data Points

50% Failures

--_--- Use Level

I I
I

I
I

t t AO

Log Time

Constant Stress Extrapolations

One method which has been used to provide conservative estimates

is that shown in Figure 22. Here the part is assumed to have a

median failure line as a function of stress which is nonlinear as

shown. The stress scale is usually linear unless the physical laws

of degradation are known which relate degradation rate to stress.

The time scale is logarithmic if large time extrapolations are

being made. The actual time to median failure at the use stress

is tA. When a linear extrapolation through the accelerated test

data points is made, the estimated time for median failure is t
O.

As the estimate t is always less than the actual time for median
o

failure tA, the estimate is conservative. The assumption that tA

is greater than t requires the failure line to have a continuously
o

decreasing negative slope as stress decreases from infinity to the

use level.

Instead of time on the abscissa, cycles have been used for parts

such as relays and switches. This approach is very useful as it

can be applied to any type of stress and knowledge of the physical

relationship of stress to failure time is not required. The fail-

ure mechanisms operating at the high stress levels, however, must

be the same as experienced in normal use. Methods such as step

stress testing may be utilized in preliminary tests to determine

maximum stress levels. A limitation is that this empirical ap-

proach provides no information on the safety factor existing in

the conservative estimate.
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The Arrhenius model provides more precise quantitative results and

is useful for analysis of constant high temperature test data.

The constant temperature failure distributions are plotted as in

Figure 9 to obtain the regression curves of Figure ii. Again, it

is often advantageous to utilize step stress tests in conjunction

with the constant temperature test to determine temperature levels.

The versatile Weibull distribution is often used in analyzing con-

stant stress data. Algorithms to compute the Weibull parameters by

inserting values of temperature, current, voltage, etc. have been

generated for specific parts. The disadvantage of these statis-

tical approaches is that a physical model of the failure process

or mechanism is usually lacking to justify the algorithm. Thus

each algorithm is limited to the part statistically analyzed or

to a narrow range of similar parts. Another approach which has

been used on switches and relays is the assumption of a constant

ratio of the Weibull hazard rates. (Reference 16). This approach

uses an algorithm relating four sets of Weibull parameters. Two

sets are those derived from (i) previous constant stress normal

use, and (2) accelerated constant stress data. The third set is

derived from present accelerated stress data. The fourth set is

the predicted failure distribution of the group of parts from

which the present accelerated data was derived. A disadvantage

is that normal use distribution which require long test times must

be obtained for each part type.

h. Progressive Stress Testing - Progressive stress testing is

performed by increasing the stress at a constant rate. An example

is the TGA tests of section C.2 in this report. Progressive stress

testing in electronics has been performed primarily on capacitors

where the inverse power rule is usually used, and the applied stress

is voltage. The acceleration factor of equation [23] is no longer

a constant, and equation [i] does not apply. If the rate (r) of

voltage increase is constant, then the voltage (V) applied to the

capacitor at any time (t) is:

V= rt

And from equation [22] the damage rate is:

R = Arnt n

[28]

[29]

111-44



The cumulative damage (D) to a capacitor is the integral of this

equation:

D = Arntn+i/ (n+l)
/

If this capacitor is instead subjected to a constant voltage (V),

the cumulative damage is:

D = AVnt

If time t I is required to accumulate a damage level which fails

the capacitor at voltage V I under constant stress conditions,

then the time t 2 required to fail this capacitor with a progres-

sive stress test is determined by equating equations [30] and

[31]. The relationship between t I and t 2 is:

tl = (rn/vl n) t2 n+I// (n+l)

Weibull distributions have been applied to both constant stress

and progressive stress test results. From equations [ii] and [32],

the exponents of t2 are equal if:

B2/BI = n+l

The relationships in equations [32] and [33] have been used to

determine the values of n for various capacitors (Reference 8).

If equation [32] is plotted on log-log paper using failure data

from constant stress and progressive stress tests, the slope of

a line such as the median failure line would have a slope of

i/(n+l) as shown in Figure 23.

The progressive stress test voltage at failure is rt 2. If this

is denoted as Vz, then from equation [32]:

t I = (V2/Vl)nt2/(n+l)

which shows that when V 1 = V2, or the constant stress test is

performed at the progressive stress failure voltage, the pro-

gressive stress test failure time is longer by a factor of (n+l)

as illustrated in Figure 23.

[30]

[31]

[32]

[33]

[34]
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Figure 23 Constant and Progressive Stress Test Times

When progressive and constant stress Weibull distributions are

plotted, the relationship of equation [33] appears as in Figure

24.

= B2Slope = _I _lope

Weibull Prob

Log Time

Figure 24 Constant and Progressive Stress Test Weibull Plots

The progressive stress test approach for parts complying with the

inverse power rule must be performed with several precautions.

The exponent n varies with temperature and, therefore, the

temperature should be constant. The sensitivity of n to tem-

perature varies with capacitor types. A small error in the

estimation of n may produce large errors in the regression curve

of Figure 17. The rate of voltage increase also must be main-

tained with precision. There is evidence that the inverse power

rule itself may produce errors in long life estimates. For

instance, storage age has been identified as influencing the

value of n on some part types.
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i. Electromigration - A model for electromigration induced fail-

ures of thin film conductors has been proposed which apparently

resolves inconsistencies on this subject reported in previous lit-

erature. A report which derives the model is reproduced in Sec-

tion D. Of particular interest is the dependence of the model

on the thermal resistance of the thin film stripe to the sub-

strate heat sink, as well as the grain structure node density

function. As electromigration may be a life limiting mechanism

of devices using thin film conductors, it is suggested that tests

to quantitatively verify the validity of this model be performed.

If the model is verified, then it would be possible to accurately

characterize thin film strips under a wide variety of use condi-

tions and to develop accelerated tests with improved predictive

capability.

j. Summary - The various rules, approaches, and methods of analy-

ses commonly used for electronic part accelerated testing have been

briefly reviewed. Although quite varied, the test approaches con-

tain one common factor--the stresses under consideration are in-

creased above normal use levels. The variations occur in the types

and combinations of stresses and the method of application. The

purposes for performing these tests and the application of results

are even more varied. For instance, the British Post Office Tele-

communication Headquarters has recently utilized step stress tests

(Reference 17) to establish threshold voltage drift specification

requirements for MOS integrated circuits intended for long life

usage. IBM used the Eyring model and accelerated tests to deter-

mine failure mechanisms and acceleration factors associated with

voltage, temperature, humidity, and encapsulation of the flip chip

mounting process (Reference 18). General Electric utilized step

stress tests (Reference 19) in physics of failure studies on the

double heat sink diode for product improvement and determining

failure mechanisms, as well as methods of removal by initial char-

acterizatin and stress screening. They also (Reference 20) utilized

power and temperature step stress tests with steam pressure and high

temperature humidity tests to evaluate plastic transistors with re-

fractory/gold metallization, gold leads, and a new passivation.

Bell Telephone Laboratories (Reference 21) used temperatures from

200°C to 300°C to determine long-term IGFET threshold voltage

shifts and to determine a screen test that selects parts with long

life stable characteristics. Boeing used high stress tests in

centrifuge, thermal shock, current, and voltage in developing a

reliability prediction model for microcircuits (Reference 22).

The literature is voluminous on accelerated tests performed to

determine or estimate margins, safety factors, burn-in levels,
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failure rates, hazard rates, and specification requirements. They
have also been used for qualification purposes, determination of
failure mechanisms,evaluation of product changes, comparison
evaluation between part types or sources, and monitoring of suc-
cessive production lots for quality shifts.

In Reference 23 it is stated that the state-of-the-art in part
level accelerated testing is far less advanced than generally be-
lieved. Evaluation of accelerated testing validity is based therein
on the points of: (i) general acceptance of the statistical and
engineering assumptions, (2) existence of an algorithm to connect
accelerated test results to life estimates at rated stress levels,
(3) existence of empirical proof that the algorithm yields accurate,
repeatable results, and (4) existence of a physical model to explain
observed results in terms of laws of failure. There is no known
accelerated test that meets all four requirements.

Step stress and constant stress high temperature accelerated tests
utilizing the Arrhenius or Eyring process rate models and log
normal failure distributions meet all requirements except (i).
There is someobjection that all failure modesand multiple simul-
taneous process effects are not considered in use of the Arrhenius
model. An associated factor is that the degree of acceptance of
quantitative accelerated test results (such as prediction of
hazard rates) is directly related to the confidence in the corre-
lation between accelerated and normal use conditions.

Predicting a log normal distribution with a meanlife of 4,600
years from small sample, high temperature tests is somewhatdif-
ficult for somepeople to accept. It is even more difficult to
demonstrate. However, in References 14 and 15, a strong appeal
i_ madefor acceptance of this approach. Apparently, the amount
of acceptance is increasing and the confidence of the user is
seemingly directly related to the amount of experience he has in
these methods. Undoubtedly, further progress in statistical
methods and physical modeling to accommodatemultiple processes
and failure modesis needed. Use of accelerated testing has been
of great benefit in understanding failure mechanisms. Apparently
the obverse is true in that better understanding of these mechan-
isms benefits test design and performance.

The early work in step stress and constant stress as performed
by Bell Telephone Laboratories on items such as germaniumtran-
sistors derived estimates of failure rates which were actually
verified in production systems. This work at high stress levels,
however, led to manyother benefits. For instance, when the
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parts were taken to destructive levels, a more intimate knowledge
was obtained of the ultimate capabilities or margins, as well as
stress levels which induce new failure mechanisms. The stress
levels which are most effective in eliminating marginal or weak
parts were also defined with greater accuracy, as well as the
probable consumption of useful life of good parts by these stress
levels.

The true ratings of the parts were also determined which en-
abled application of derating practices less subjective. For
the submarine cable life objectives of 20 years, these techniques
were very valuable in enabling decisions on selecting parts from
competitive sources, identifying optimum screen levels, estimat-
ing reliability, identifying part weaknessesand therefore areas
for improvement, providing confidence in product integrity from
lot to lot, applying derating more intelligently. The large amount
of data and experience accumulated has enabled them to confidently
apply stress levels to parts which make the standard screens seem
benign by comparison. As indicated in the Study of Electronic Part
Screening Techniques in this volume, this had led to the present
situation where only a nominal amount of evaluation testing is
required prior to implementing a high temperature screen.

The approaches identified herein have been applied primarily to
discrete parts. Integrated circuits have also been tested, but
additional problems arise with highly complex parts such as LSI
and MSI. Any part which in effect is a complex circuit and may
have fail-safe, feedback, or redundancy within it maymake internal
failures undetectable. Complexsequential logic devices are so
difficult to test that it is impractical to perform periodic com-
plete functional tests during a high stress test program. One
approach is to incorporate test element groups which have ter-
minals brought out for use in evaluating total circuit performance.
Another approach is to utilize test vehicles which are constructed
to representative or worst case construction features of the
material/process combinations used in the production devices.
These are used in accelerated tests to evaluate the production
devices. Another approach which would evaluate the production
internal geometries directly is to provide a special interconnec-
tion metallization pattern on the chip. This would bring external
terminations to internal geometries of interest. These geometries
could then be accelerated tested conventionally. Somemanufac-
turers will provide the specially metallized parts, at times
called "kit" parts, at nominal cost. This approach not only
would bring internal transistors and diffused resistors to the
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outside world for failure detection, but for controlled biasing

purposes as well. Further study is needed on this subject as con-

ventional approaches are inadequate and new approaches have not

been developed sufficiently.

k. Conclusiuons and Recommendations - The state of the art in

electronic part accelerated testing is represented by the step

stress and constant stress approach utilizing the Arrhenius or

Eyring process rate models. This approach can be used on all

semiconductors and resistors. It is the most powerful in having

application to a wide range of parts because of univeral activa-

tion energy constants.

The inverse power rule and Weibull analysis approach represents

the state of the art for accelerated testing of capacitors. It

is less powerful because of limited range of application of the

power exponent to different parts.

Statistically derived algorithms and distribution predicitons rep-

resent the state of the art for accelerated testing of switches

and relays. This approach is less effective because of the need

to perform tests establishing the algorithms and the limited

durability and range of application of the algorithms.

The other approaches considered can be useful for simple compar-

ative parts evaluations or determining margins and safety factors.

Conventional accelerated test approaches cannot be satisfactorily

applied to complex LSI/MSI parts. Further development of approaches

to evaluate the basic material/process combinations and applying

the results to the procured product is needed.

The imposition of a general program requirement for accelerated

testing of electronic parts is not recommended. However, it is

recommended that accelerated testing be selectively applied as one

of the means of comparative evaluations of parts for: (i) address-

ing a known reliability problem, and (2) for obtaining accelerated

knowledge of new part types intended for long life system usage.
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. Electronic Assemblies

a. Introduction - It is stated in Reference 24 that valid, quan-

titative accelerated testing on complete systems or major assem-

blies has never been accomplished. The reason for this is de-

picted in Figure i. Nevertheless, qualitative accelerated test-

ing of electronic assemblies is very widely and very beneficially

used in the aerospace industry.

The accelerating stress is almost always temperature. The tests

are usually more oriented toward improving reliability by detect-

ing marginal designs, parts, packaging, and workmanship then

they are oriented towards establishing a life prediction.

The forms of accelerated testing most commonly used are:

i) Burn-in at a constant elevated temperature;

2) Temperature cycling;

3) AGREE testing per MIL-STD-781B. This is a combination of the

above two approaches, plus vibration;

4) Step-stress testing to failure.

b. Burn-in at a Constant Elevated Temperature - An industry survey

of 26 companies accomplished during the study of temperature cycl-

ing is presented in the previous chapter. This survey indicated

that over 90% of the failures occurred during the temperature ramps,

during temperature tests consisting of both temperature changes,

and soaks at high and low temperature. A few failures occurred

during the constant temperature soaks. It was concluded that

"black box" burn-in at a constant high temperature was much less

effective than temperature cycling. However, one company, Radiation

Incorporated, finds it valuable for stabilizing the performance of

transmitters. Another application of high temperature burn-in is

during development testing where it is desirable and permissible to

exceed the qualification test temperature in order to accelerate

and detect failures from hot spots, such as inadequate heat sinks

on power transistors. However, it is usually a more reliable

approach to actually measure the temperature of potential hot

spots. Even though high temperature increases the failure prob-

ability, the failure may not actually occur during the burn-in

period unless very long periods are used.
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In summary, it is concluded that high temperature burn-in at
qualification or acceptance test levels is relatively ineffective
as comparedwith multiple temperature cycling. High temperature
burn-in at levels exceeding qualification test levels should be
considered for selective use during development testing, partic-
ularly on high power devices where the heat problem is signifi-
cant. An extension of this concept is exemplified by the Grumman
step-stress approach described later.

c. Temperature Cycling - Temperature cycling as applied to elec-

tronic assemblies is one of the most valuable and cost-effective

tools available for achievement of increased reliability. In

the interest of brevity, the reader is referred to Chapter II,

which treats this subject. Temperature cycling should be en-

couraged and more widely utilized for the following purposes:

i) Development "black box" prototypes should be temperature

cycled at the very earliest opportunity to verify that the

packaging concept is sound with respect to adequate level

stress relief and proper selection and application of con-

formal coatings or potting materials. Problems of marginal

circuit design and with parts are also discovered early.

2) Acceptance testing should employ temperature cycling in ac-

cordance with the guidelines presented in Chapter II.

3) Qualification tests should employ sufficient temperature

cycles to demonstrat_e that the production equipment will not

be degraded by acceptance testing.

4) Temperature cycling should be also considered for application

at the assembled PC board level, not only at the black box

level. The Hughes approach (described in Chapter II) of tem-

perature cycling PC boards, non-operating, and unmonitored,

is especially attractive because of its low cost.

5) Multilayer boards should also be temperature cycled to ensure

that later problems of cracking in the plated-through-holes

do not occur.

d. AGREE Testing per Mil-STD-781B - This test, combining temper-

ature changes, temperature soaks, and low level vibration is fully

described in Chapter II. It is widely used by Wright-Patterson

Field and the U.S. Navy. The industry survey described in Chapter

II revealed that the principal benefit of the test is in the tem-

perature changes. The temperature soaks and the low level 2g
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vibration play a minor role. The conclusion that the 2g vibration
is relatively ineffective is compatible with the _[SCpolicy that
the minimumeffective level for acceptance test screening is 6g
rms.

Data supplied by Collins Radio on manydifferent equipments,
and presented in Chapter II indicates that the measured_FfBF
during the AGREEtest, was about one-fifth the predicted MTBF,
indicating an acceleration factor of about five. Other sources
believe the acceleration factor is significantly greater than
five.

The traditional use of the AGREEtest is a contractual reli-
ability demonstration test in both qualificaton and acceptance
testing. Whenused in this role, it is a very powerful forcing
function for the achievement of reliability, because the con-
tractor cannot deliver hardware until the measured failure rate
has met the pre-established contractual requirements. Accordingly,
when this approach is contractually implemented, it is important
that the requirements are realistically set to achieve compati-
bility betweenboth producer and consumerrisks. Companieswith-
out prior experience with AGREEtesting can be expected to be
quite apprehensive. This apprehension maybe reflected in high
cost estimates.

e. Stop-Stress Testin U to Eai_{_a -.Grumman has used step-stress

testing of electronic assemblies. The test approach is reported

valuable for reliability improvement, evaluation of sources, and

as a design development tool. The concept is to detect and correct

weak ]inks until failures will only occur at conditions well outside

of the expected operating envelope. For obvious reasons, this test

approach is not suited for the qualification test or the production

hardware. Reference 25 describes specific examples of this approa<h.

These examples are abstracted.

Grumman utilized temperature, vibration, and humidity in combined

environments. The environments were applied in increasing]y severe

steps to a prototype analog converter. The environments were in-

creased to levels above expected black box use ]evels, but within

the design limits of individual components in the assembly. The

test specimen used was the first prototype which was similar to

the final design configuration.
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The first failure occurred at a temperature of 75°F and a vibra-
tion amplitude of 2 g's. This failure involved a servo amplifier
which had been identified as the critical item in a previously
performed reliability estimate and stress analysis. A major de-
sign deficiency was identified in the servo assembly. Design modi-
fications were madeand replacement with a design of a different
[orm factor from a different manufacturer solved the problem. Other
minor design rework to the analog converter solved other problems
noted during test.

After four steps of overstress testing, the equipment could suc-
cessfully withstand a vibration amplitude of 12 g's at a temper-
ature of 175°F. Ten failures occurred during this period, were
analyzed, and resulted in design improvements. Four additional
stress steps were performed, and the test was terminated with
the equipment operating successfully at 200°F at a vibration ampli-
tude of 15 g's. (The qualification level was to be i0 g's at a
temperature of 150°F.) Total accumulated test time in overstress
testing was 156 hours.

The first developmental unit was subjected to a demonstration test
without incorporation of the design changes identified in the over-
stress test. Seven failures occurred, five identical to failures
experienced in the overstress test. The overstress test design
changeswere incorporated into the second development unit. From
demonstration testing, it appeared that a minimumimprovement in
MTBFof 5 to 1 was directly attributable to the overstress tests.

A second example involved a design competition for a high voltage
power supply for an airborne display system. Three sources were
in the competition, funded to the samespecifications which in-
cluded functional requirements, the form factor, and the criteria
for success. This criteria was not an MTBFdemonstration, but a
simple overstress test to failure on three units of each design.
Detailed test procedures furnished to each competitor identified
the techniques and environmental levels that would be used in
evaluation. Each competitor was given access to the overstress
laboratory_ They were allowed to perform breadboard and prototype
tests against the procedures furnished. No penalty was assessed
for failures occurring during these developmental tests. All
sources took advantage of the laboratory facilities. Two of the
sources terminated overstress testing after the first series of
failures, using these results as a basis for design improvement.
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They did not utilize the opportunity to recheck the adequacy of
their design changes. The third source madea concerted effort
to continually check his design to higher levels of environment
and initiating further design changes to correct the failures.
As maybe anticipated, the results of this competition were as
shownin Figure 25.
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Temperature Test Results

Although vibration, altitude, and humidity tests were used in

the competition, no significant effect of these environments was

noted since much of the equipment was encapsulated. Not only

did the first two sources fail at lower temperatures, but an

inconsistency in the designs is reflected by the variations in

ability of each assembly to withstand temperature. Test articles

from the third source operated successfully up to 200°F without

failure. The test articles from the third source were retained

and accumulated more than 1700 hours of testing without failure

at the time that the report was written.

The above examples from Grumman are cases where the overstress

approach was of great value in obtaining design improvements and

safety factors during hardware developmental stages. It is re-

ported nhat more than 65% of the failures occurring under over-

stress conditions are duplicates of experienced operational fail-

ures.
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An approach similar to this is recommended in Reference 24. It

states that a series of subassembly tests should be performed

during the early design phases at environmental levels somewhat

above the normal stress level• Again, it is pointed out that the

designer obtains information on the manner in which his design

fails, and he can often redesign to provide a greater safety

margin. All problems should be analyzed and resolved before de-

sign release. Although statistically significant reliability

data is not derived, it is regarded as probably being one of

the best techniques for improving and assuring reliability.

Mechanical/Electromechanical Hardware

Reliability data on mechanical hardware has been difficult to

obtain because many mechanisms are specialized, few in quantity,

designed for special applications, and have multiple failure

mechanisms. Just how long a life a mechanism may have will de-

pend on the existence of time dependent processes, such as wear,

fatigue, and corrosion. Overstress testing, such as proof testing

to verify a design or fabricated assembly, is common and estab-

lishes the initial capability to meet minimum requirements of

strength. Other overstress tests have been devised to determine

endurance limits of materials either to estimate life under cyclic

loads or to determine safe loads which will provide unlimited life.

Even on controlled material samples, variations in results are

affected by specimen sizes and shape, surface finish, the method

of fabrication, temperature, previous stress history, and test

conditions. The only truly safe method of determing endurance

limits of fatigue is to simulate the life load profile on an

actual part.

The model generally used for fatigue is similar to the rate equa-

tion [22]:

D/N = AS n

where D/N is the damage per stress cycle N, A and n are constants,

and S is the stress which must be above the endurance limit. If

the stress SI causes failure at N I cycles, the damage D 1 at that

time is:

n
D 1 = ANIS 1

[35]

[36]
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If the damageaccumulated at any stress is assumedto create fail-
ure when level D1 is reached, then the cumulative damagecriterion
applies similar to equation [20] except that the numberof cycles
N is substituted for time, and L is cycle life. Equation [36],
holding D1 constant, produces the S-N curve of Figure 26.

_0

OO

O

Endu_an ce Limit

Log Cycles

Figure 26 Fatigue S/N Curve

Much of the work in fatigue overstress testing has been applied

to the determination of the S/N curve. Much conflicting data,

not only between experimenters, but between successive results

of the same experimenter, has resulted. The summation of equa-

tion [20], called Miner's rule, has varied from 0.18 to 23.0

(Reference 26). However, the usually accepted value is unity.

The rule is also influenced by stress history. A high stress

succeeded by a low stress will often produce results different

than if the application of stress were reversed.

For the special case where n = i, the S-N curve is a hyperbola

on linear scales. A progressive stress test, known as the Prot

test, has been used to determine the endurance limit. The stress

is started at a level estimated to be below this limit and is then

increased at a constant rate. The cyclic rate is held constant.
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It can be shown from equation [35], whenn = i and if the rate of
stress increase is denoted as r, the stress at failure Sf is re-
lated to the endurance limit E by:

Sf = E + (2 D/A)I/2rl/2

This relationship is shown in Figure 27. The assumption that
n = i is not a very satisfactory one for non-ferrous metals.
However, the method has been used with promising results on
Acrylics, Polystyrene, and Nylon (Reference 27). Although the
approaches used for accelerated tests, such as the Prot method,
and the models used, such as the cumulative damagecriterion,
are controversial in their assumptions, they have been utilized
extensively in materials testing. The motivation is to reduce
test time in determining material parameters. A critique of the
cumulative damagecriterion, and variations in techniques used
to modify it and improve the accuracy, is given in Reference 28.
An example of the variations obtained with Miner's rule is given
in Reference 29 where it is shownthat in somecases the rule
was accurate or conservative, but in other cases was dangerous.

[37]
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Figure 27 Prot Endurance Limit Curve

A material property that has been utilized with some success in

accelerated testing is the threshold stress intensity factor re-

quired to produce crack growth by stress corrosion. Laboratory

tests on 23 high strength ferrous alloy combinations were re-

ported in Reference 30. These were 23 combinations of material,
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heat treatment, and welding conditions. The accelerated test con-
sisted of placing notched and fatigue-cracked specimens in a
corrodant solution and tension loading them in a laboratory.
Identical specimenswere tension loaded in racks at the seacoast.
The thresholds obtained from the seacoast environment were used
as standards. Of the 23 material combinations, 20 showedagree-
ment between laboratory and seacoast tests. The other three
combinations showeddifferences which were attributable to ex-
perimental problems. The laboratory tests took a maximumof i000
hours, which was one to three orders of magnitude lower than the
seacoast tests.

Another material property successfully correlated in accelerated
tests is the temperature relationship to creep. The relation
proposed in Reference 31 is that for a given stress, the time t in
hours to rupture, is related to the absolute temperature T by the
equation:

T(20 + log t) = constant

This relationship is based on the Arrhenius Model in equation
[15]. Eight ferrous alloys were investigated and impressive
correlations were obtained for rupture strength data between:

(i) i0,000 hours at 1000°F and 13 hours at 1200°F, (2) I000 hours
at 1200°F and 12 hours at 1350°F, (3) i000 hours at 1350°F and 17
hours at 1500°F, and (4) i.i hours at 400°F and i000 hours at 300°F.

Accelerated methods of obtaining material properties, such as
fatigue endurance limits, creep rates at various temperatures and
stresses, and stress corrosion threshold values are valuable, but
difficult to apply in predicting the life of an assembly utilizing
various materials. The stresses, wear, lubrication properties,
etc., provide complexities which make it impossible to relate all
life limiting basic material processes to the assembly life in
operation.

An approach used on ball and roller bearings and gears has been
employmentof the inverse power rule similar to equations [22]
and [35]. The stress is the load, and Weibull distributions are
generally used for analysis. Another approach used on components
is reported in Reference 32 and is called measuredweakening. The
technique consisted of pre-cracking a gearing mechanismto accel-
erate fatigue. It is reported that the gear whenplaced in sys-
tem tests failed in 20%of the normal test time and introduced

[38]
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no new failure mechanismsin the system. The test has value in
that knowledge of gear life is obtained after a crack has been
introduced. The real time to produce a crack due to overload,
however, is uncertain and therefore the correlation to service
life is uncertain.

An interesting investigation of the cumulative damagecriterion
was madein Reference 33. The criterion was used in tests on light
bulbs, bearing balls, electric drills, and fractional horsepower
motors. The failure diagram of Figure 13 was used as the basis
for the test. Life tests were first carried out to failure at a
high stress determining L2. A second group of specimenswere
then operated for a period of time t I at low stress, and then oper-
ated under high stress to failure which occurs at time t 2 if damage
is cumulative. Twopoints on the cumulative damageline are thus
obtained as shownin Figure 28.

L21

t 2

0

4..1

E

[-.-i

Median Life of First Group at High Stress

_________Median Time to Failure of Second Group

at High Stress, After Being OperatedI
for Time t I at Low StressI "-

t "

I "

I

tl L1

Figure 28

Time at High Stress

Cumulative Damage Curve Extrapolation

The median life L I at low stress is then obtained by extrapolation.

The bearing balls were lubricated with turbine oil, and operated

at 14,000 rpm. The high stress load was 600 ibs and the low

stress load was 440 ibs. The electric drills were a low cost

hand drill. For the normal stress test they were run unloaded

continuously until the chuck ceased to rotate. Two high stress

conditions were used; one with a fan load and the other with the

fan in a box to increase the back pressure. The fractional horse-

power motors were surplus items purchased in quantity. To induce

failures within reasonable time, the lubricant was washed out of

the bearings and distilled water substituted. This was the low
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stress condition. Again, two high stress conditions were used.
Onewas lubricant with 1%acqueous solution of sulfuric acid,
the other was lubricant with 5%concentration sulfuric acid. In
all cases, both high before low, and low before high stress se-
quenceswere used to further test the application of the cumula-
tive damageconcept to these parts.

The failure modeswere, of course, diverse. The electric drills
failed by wearing downof the brushes, the process being adhesive
and electrical erosive wear. The fan increased the current and
thus the erosion. The bearings developed spalls. The electric
motors stalled due to a combination of adhesive and corrosive
wear. The failure distributions of the bearings were Weibull,
while that of the motors and drills were bimodal. The normal
stress and accelerated stress distribution had the same form for
each part type. It was concluded that the results were consistent
with the cumulative damageconcept even though three separate wear
processes were occurring, that of surface fatigue, corrosion, and
electrical erosion. The test results of all parts were grouped
on one cumulative damagecurve by normalization. Instead of actual
time on the two scales of Figure 28, percent of life at high and
low stress was used. All data followed the line well, except one
bearing point. The data indicates that tile procedure used in the
test program could very well have wide application. Further in-
vestigation is needed in methods of applying accelerated stresses
and in determining the parts suitable for testing by the cumula-
tive damagecriterion.

It appears that the state of the art in mechanical/electromechanical
hardware accelerated testing is most advanced in tile investigation
of the materials of which they are comprised. Accelerated testiL_g
to determine creep properties is the most advanced. The other
approaches such as Prot testing, the cumulative damagemodel ap-
plied to fatigue, and determination of stress corrosion thresholds
are largely empirical and lack a physical foundation as applied.
Accurate correlation, at the componentlevel, of accelerated test
results to normal use results cannot presently be made. The cumu-
lative damagemethod at the componentlevel appears promising, but
needs further study.
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. Batteries

Demonstrating or determining battery life by accelerated testing

is not currently feasible due to the many complex electrochemical

reactions and the impact of externally applied environments and

controls on these reactions. Material selection, manufacturing

processes, proprietary additives in plate separators and electro-

lytes further aggravates the problem. In fact, there is a gen-

eral feeling among battery experts, that accelerated life test-

ing of batteries to obtain a useful and meaningful life prediction

is impractical.

The problem of formulating a valid accelerated test is due to the

complexity of the interrelated failure mechanisms, all of which

are non-linear. The degradation characteristics are different

between electrochemical couples. As an example of the complexity

of the problem, the characteristics of the nickel-cadmium cell

are described to identify the problems involved. None of the

variables stated have linear relationships.

The normal reactions within a nickel-cadmium cell cause the cell

efficiency to decrease resulting in an increase in thermal output

as the temperature increases and the charge rate decreases. Aver-

age charge efficiency increases with greater depths of discharge,

but decreases as the average state of charge approaches 100%.

Life is dependent on the depth of discharge and the operating state

of charge. Since the charge voltage varies with temperature, state

of charge and charge rate, the charge control technique is a very

important variable. In addition, orbital conditions, or cruise

modes, significantly effect the life. Extended repetitive cycling,

or float charge, depresses discharge voltages and limits effective

capacity to a given voltage. Open circuit charge stand causes high

end-of-charge voltages. Battery reconditioning can change the deg-

radation characteristics and adds another unknown variable.

Even though a valid, "quantitative," test does not exist for bat-

teries, "qualitative" accelerated test approaches, using high

depths of discharge and increased temperature, are occasionally

used in battery development and evaluation programs. They provide

information on failure mechanisms and data for product improve-

ment. However, as previously stated, such test results cannot be

viewed as providing a valid and accurate life estimate for any

specific set of projected usage conditions.
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Present industry and governmenteffort in the area of accelerated
life testing of nickel-cadmium batteries falls into the following
two categories:

i) Development of test methods for reducing the total time re-

quired for actual testing; e.g., possible substitution of 3

to 12 months of testing for five years.

In this category, is the work conducted by Batelle Memorial

Institute for Goddard Space Flight Center up to mid-1970, and

which is presently under investigation by the same organiza-

tion for the Air Force (WPAFB).

2) Development of an analytical model for statistically project-

ing the cycle life of a battery system based on available life

test data under various conditions of battery depths of dis-

charge and temperature.

The work being carried out by the Naval Ammunition Depot

(Crane, Ind.) is in this category.

These two activities are summarized below.

a. BarretTe Memorial Institute - They have just completed studies

of accelerated testing of secondary satellite batteries under USAF

Contract AF33(615)-3701. The final report is scheduled for publica-

tion in late 1972. The study began with the development of gen-

eral recommendations for the design and analysis of accelerated

life tests. A mathematical model was developed based on stress-

strain relationships involving temperature, voltage, gas pressure

and mechanical parameters. Tests were conducted primarily on Ni-Cd

batteries to determine the proportionality constants between stress

and strain or between stress and rate of strain. Efforts were made

to relate quantitatively with aging, failure mechanism and battery

performance. Some of the stress levels acceptable for accelerated

life tests were determined. The mathematical model was modified

as tests data became available. However, it appears that accurate

and valid correlation factors for real-time to accelerated time

tests have not yet been established. Since the final report was

not available at the time of this writing, detailed comments on

the study results could not be made.
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b. Nava_ Ammunition Depot (Crane, Indiana) - This agency has con-

ducted life testing of batteries from all principal suppliers, under

varying conditions of temperature and depth of discharge. Period-

ically, the failure data is analyzed and predictions are made of

the future performance of those batteries not yet failed. These

predictions are then compared with the actual failure data to de-

termine the degree of correlation. These data have provided mean-

ingful battery application guidelines relating to temperature and

depth of discharge, but have not resulted in the development of a

valid "quantitative" accelerated life testing technique universally

applicable to batteries.

The life data presented in Reference 34 has been evaluated (Ref-

erence 39). Even with the limited data available, a semblance of

a reduced life test program becomes apparent. It appears that in

spite of the apparent variations in the Crane results, that the

data is normal with few exceptions. As a result of this analysis,

actual life testing can be reduced 50% by assuming a normal dis-

tribution and testing to failure only 50% of the test sample.

. Bearings

The lubrication and bearing research section of NASA-LeRC reports

that accelerated life testing is still in an embryonic stage.

Valid quantitative methods are not available. There is little

agreement between authorities on the best procedures to adopt.

Accelerated life testing of bearings, like batteries, s not de-

veloped to the point where there is a recognized, credi)le approach

among bearing technologists. _he RADC Handbook on Accelerated

Testing Technology, Volume II, (Reference 3) describes an accel-

erated method where acceleration is achieved by increasing the

radial load, increase the rate of wear in accordance with the

empirically desired relationship:

Where:

L = Life in Millions of Cycles

C = Basic Load Rating

P = Actual Load
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The above was based on the supposition that bearings fail from
metal fatigue. Since this 1967 report, significant progress has
occurred in the technology, such as the refinement of the Elasto
Hydro Dynamic (EHD) theory of lubrication, and additional insights
have been gained through spacecraft failures. For example, for
long-life bearings, it is desirable to design them to operate
in the EHDregime where the lubricant film is maintained thick
enough to prevent asperity (metal-to-metal) contacts. In this
case, bearing failure occurs not from metal fatigue, but from
either degradation of the lubricant, or loss of the lubricant.
However, this simple straightforward philosophy of life depen-
dency has recently been clouded by the discovery that race degra-
dation maystill occur due to the penetration of the EHDfilm
into surface microcracks, with consequent, high frequency pres-
surization of these imperfections. This results in surface
fatigue regardless of the fact that there is not metal-to-metal
contact.

Despite the uncertainties introduced by the above, LeRCbearing
experts suggest that the most valid method of conducting an ac-
celerated test of bearings operating in the EHDregime would be
to achieve the acceleration by increasing the temperature thereby
accelerating the loss of lubricant.

In the EHDlubrication mode, the lubricant film is sufficiently
thick to prevent asperity contact, lubricant loss by evaporation
or migration is the predominant failure mode. While failure from
chemical degradation has not been uncommon(due usually to exces-
sive heating) it should be possible to avoid this type of failure
by proper design and lubricant selection, and thus should not con-
stitute a valid failure modefor accelerated testing.

A feasible basis for accelerated testing in the EHDmodeis to op-
erate at elevated temperature thereby increasing the rate of evapora-
tion. Increased temperature will also lower viscosity which will
decrease film thickness, but as long as EHDconditions are main-
tained this should be of little concern. An alternate approach
would be to compensatefor the loss of film thickness by increas-
ing the speed. Predicted life would then be a function of the
Evaporation Rate Ratio times the Accelerated Test Life. The effect
of migration would probably have to be assessed by separate experi-
ments to determine the affect of the temperature on migration for
the particular bearing and associated lubricant reservoir. The
latter effect would be affected by the influence of the zero-g en-
vironment on the mechanics of surface energies.
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In the case of boundary lubrication, the situation becomesmore
complex. More parameters must be contended with, and failure by
wear becomesa concern. Evaluation tests should be first employed
to limit potential accelerated life test approaches to the most
promising candidates.

A paper by Meeks, Christy, and Cunninghamof HughesAircraft (Ref-
erence 35) presents a numberof considerations in accelerated
testing. This section of their paper is presented in its entirety:

"Any attempt at accelerated testing of ball bearings must
consider the probable failure modesand attempt to isolate
the effects of any acceleration factors introduced and
to relate the results to actual performance at design con-
ditions. The three most likely modesof failure of lightly
preloaded, well designed, satellite despin bearing systems
during a 10-year operating period are: (i) lubrication
degradation due to chemical contamination, polymeriza-
tion, decomposition, and/or catalytic effects of bearing
componentmaterials; (2) loss of lubricant due to evapora-
tion or surface migration; and (3) cage, ball, and race
wear or damage.

"Lubrication breakdown due to causes such as temperature
effects, catalytic effects of wear particles, or con-
tamination is very difficult to evaluate except by real-
time testing. However, a combination of laboratory chem-
ical analysis and bearing testing can yield valuable
insight into long-term performance that might be ex-
pected.

"Lubrication loss by evaporation and/or surface migra-
tion can be predicted analytically by molecular-flow
theory and estimated by surface-physics theory. Localized
effects of small thermal gradients, bearing and housing
geometry, and surface barrier coatings can appreciably
affect performance, however, and attenuation must be
given in design, and results confirmed by test, to
achieve optimum oil supply control system performance.
Bearing test temperatures can be raised to accelerate
lubricant losses; however, the results must be inter-
preted in light of thermodynamic flow loss, and surface-
physics loss theory. The lowering of viscosity by ele-
vated temperature also reduces bearing hydrodynamic oil
film thickness unless the rotation speed is changed
to produce a compensating effect.
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"Wear is significantly affected by lubrication film
thickness, and any attempt at accelerating life test-
ing should maintain film thickness representative of
the actual application. Film thickness can be varied
by increasing preload and rpm, which will accelerate
bearing wear but in a manner less predictable than the
lubricant evaporation because the wear rate is affected
in a complexway by preload, which affects the amounts
of sliding and of fatigue wear. Manyother variables
must be considered, such as microscopic asperity tem-
peratures, oil viscosity pressure coefficients, bail-
cage dynamics, oil distribution and transfer dynamics,
and time-dependent lubricant chemical changes."

Reference 35 also reports on an "accelerated" life test program.
However, it should be emphasizedthat the tests were not true
accelerated tests, but a program in which real-time (non-accel-
erated) test results from 220 days of vacuumtesting were _J_$z_-
_'oZ._,_ to provide life estimates. In these tests, two different

lubricants were used: Versilube F-50, and a hydrocarbon oil hav-

ing a high pressure additive. Bearings were tested at 55, 120,

and 180 rpm's and at three preload levels; i0, 20, and 40 lb.

The test was conducted at 54.4°C to control the oil-film thickness

to boundary lubrication levels (i.e., no significant elasto-hydro-

dynamic film load support) that occur in typical satellite despin

bearings.

The measurements recorded during the test were: (i) bearing torque,

(2) temperature of the outer race of one bearing in each module,

and (3) electrical resistance through the bearings. The electrical

resistance was measured at periodic intervals by an electrical con-

tact attached to one outer race of each bearing pair. The current

path was from the outer race, through the bearing balls, to the

inner race, and thence to a common shaft and slipring. The test

current used for this measurement was i00 DA. This measurement

is used to establish the percent metal-to-metal contact occurring;

i.e., detect the extent of boundary lubrication operation.

Analysis of the ball-to-race contact resistance data demonstrated

that the 55-rpm bearings were operating entirely in the boundary

lubrication regime, and the 120- and 180-rpm bearings were in the

transition regime between boundary and hydrodynamic lubrication.
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The oil losses from the modules showedan average rate of approx-
imately 25 mg/year, which is within the range of predicted rates
and is easily tolerated because several hundred milligrams of oi]
can be stored in a bearing system of this size.

The oil in the F-50 lubricated bearings had polymerized exten-
sively in the low-speed and high-preload modules and less so in
the high-speed modules. An excellent inverse correlation between
theoretical oil-film thickness and amount of polymer was observed.
The reason for this is believed to be tile very high temperature,
hundreds of degrees Fahrenheit, produced at the microscopic asper-
ity contact points occurring with very thin oil films. This pro-
duced polymerization of the F-50. F-50 oil polymerizes or cross-
links at approximately 600°F.

From these tests, the effects observed were extrapolated to make
estimates of probable bearing/lubrication system life. The esti-
mated life of F-50 lubricated, small-size bearings at 55 rpm's
before significant torque fluctuations (greater than two times
average) occur, is less than one year, due to thermally induced
chemical changes in the oil. The ultimate failure life of such
bearings lubricated with F-50 was conservatively predicted to be
probably less than two years. The hydrocarbon-lubricated bearings
could be expected to last considerably longer than two years with
uniform torques. The oil supply losses were low enough for up to
i0 years life for either lubricant. Quantitative measurementsof
wear showed that wear is inversely proportional to oil film thick-
ness.

From the analysis of tile data from these tests, several factors
offer encouraging support for the validity of carefu]ly controlled
accelerated bearing tests. Very good correlation was observed
between: (i) predicted film thickness in the boundary regime for
the 55-rpm bearings, (2) the transition regime (between boundary
and elasto-hydrodynamic) for the 120- and 180-rpm bearings, and
(3) the ball/race electrical contact resistance data. Also, the
amount of oil polymerization and wear in the 55-rpm bearings witi_
F-50 lubrication (which operated entirely in the boundary lubrica-
tion regime) were muchhigher than the amounts in the 120- and
180-rpm bearings (which were in the transition lub [i cat ion regime).
This agrees with prior bearing testing that shows high microscopic-
asperity temperatures occur in pure boundary conditions, becoming
progressively less as hydrodynamic conditions are approached.
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The final conclusion was that more work must be done before highly

accurate correlations of accelerated test results and real-time

conditions can be attained.

In the case of reusable vehicles like the Space Shuttle, the major

problem is not one of developing very long-life bearings, but

bearings which will withstand many repeated missions with vibra-

tion levels appreciably exceeding Apollo and Skylab levels.

Vibration shortens bearing life by causing fretting corrosion

(false brinelling). The achievement of long-life bearings then

hinges on designing the bearing system to prevent the occurrence

of fretting corrosion. It therefore appears that the alloca-

tion of technical resources for the Space Shuttle in the bearing

area would be better directed towards this life-shortening vibra-

tion problem rather than towards the development of valid accel-

erated life tests. Of course, an accelerated life test employ-

ing vibration as a primary degrading mechanism, would be a viable

subject to pursue for reusable space vehicle applications.

Valves

Most valve specialists believe present accelerated testing methods

are unreliable, but utilize them since more valid techniques are

not available.

Accelerated testing of valves is generally accomplished in several

phases, and not by a single test. For example, the cycle life of

the valve is commonly verified by using an increased cycle rate.

Although this test is very widely used, it doe not cope with time-

dependent phenomena which may be present such as creep, corrosion,

metal diffusions, etc. For long life valves, it is desirable, but

not always feasible, to design out or minimize the time-dependent

failure mechanisms. When this is accomplished, the increased

cycle rate test yields a valid cycle life projection. The cycling

rate must be constrained to prevent secondary effects such as

local depletion of lubrication, local hot spots due to friction,

or overheating due to power of the solenoid.

When time-dependent phenomena are present, these must be identi-

fied and subjected to the appropriate test evaluations which, in

many cases, can be accelerated by increasing the temperature. A

classic example of an aging mechanism that is somewhat independent

of cycle life is the cold flow or creep that may occur during long

dormant periods with a valve with a Teflon seat or poppet. It

has been demonstrated that Teflon seats with unit stresses to
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4000 psi can be designed for long life with very astute seat
design. However, an accelerated high temperature test is needed
to verify the absence of cold flow. Empirical data from Martin
Marietta Aerospace indicates that 2 weeks at 148.9°C should dem-
onstrate a i0 year capability for valves operating at or below
room temperature, but experimental data is required to validate
this conclusiuon.

Another example of an aging mechanismis the potential bonding
of the seat and poppet when subjected to high bearing stress for
long periods of time. This problem is addressed in a current
study by TRWfor JPL (Reference 36) is entitled Study of Advanced

Techniques for Determining the Long Term Performance of Compo-

nents. TRW conducted diffusion tests in which copper and chro-

mium plated Inconel, representing the seat and poppet materials,

were clamped together with a load of about 33,000 psi and sub-

jected to 500°C for times of lO, 200, and 400 hours. Bonding

did not occur, and since it was estimated that the acceleration

factor of the 500°C test was about i00, this junction would not

experience bonding for at least 5 years. Although bonding did not

occur, mechanical adhesion did occur. The adhesive was due to

deformation of the copper, causing it to be "locked in" on the

uneven surface of the chromium. TRW concluded that this technique

appeared valid for evaluating metal seat-poppet couples. They

plan additional work in this area. It was recommended that cor-

rosion tests should also be accomplished before and after diffusion

to establish if any net material transfer affects the extent of

corrosion or its mechanism.

Yet another example of aging and environmental mechanisms is in

the valve solenoid. Long term stability of the potting compound

needs to be verified by materials testing methods such as the

Thermogravimetric Analysis technique. Accelerated temperature

cycling should then be conducted on the potted solenoid to estab-

lish compatibility between the thermal expansion characteristics

of the potting and the small wires which are more subject to fail-

ure with hard, non-resilient, potting compounds.

TRW (Reference 36) also reports on a study of acoustic signatures.

This subject is also under investigation by GE (Reference 37).

The transmittance of acoustic energy through a component provides

a sensitive method of detecting changes or anomalies in the dis-

continuities within a valve. A change in the signature can be an

indication of a degradation or aging process or an indication of
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a defect. This technique is not in itself an accelerated test
method, but it is an instrumentation methodwith the potential
of detecting and measuring someaging phenomena. In somecases,
the trend data could probably be extrapolated to provide an end-
of-life prediction.

Transducers

Most transducers do not have wear-out failure meachanisms, but

are subject to long-term drift and stability problems. This is

particularly true of pressure transducers. In general, the trans-

ducer industry does not consider accelerating testing as trust-

worthy. They have not developed or utilized it to a significant

extent. Accelerated approaches to demonstrate long-term sta-

bility should be developed and employed to a greater extent,

particularly on newly developed instruments with unproven sta-

bility. On strain gage pressure transducers where the diaphragm

is operated at less than 40% of the yield, the life of the dia-

phragm is considered to be several million cycles; and the use

of accelerated pressure cycling is not deemed necessary. However,

with potentiometric types where wear of the wiper and resistance

element is the major life limiting factor, accelerated pressure

cycling should be employed to demonstrate life. The use of accel-

erated temperature cycling should be widely employed to access long-

term stability of pressure transducers. For example, one manu-

facturer who felt that his device was stable, was very surprised

by the loss of stability which resulted from a few temperature

cycles.

Most pressure transducer manufacturers use less than five temper-

ature cycles as part of the acceptance test to demonstrate stabil-

ity. It has been concluded from experience at Martin Marietta

Aerospace that five cycles is the absolute minimum and that 20

cycles should be considered for long-life applications. These

temperature cycles should exceed the usage environment, operating

and non-operating, by a margin of about 30°F on both the high and

low extreme. This test should be preceded by the conventional heat

treat or high temperature annealing process which eliminates weld-

ing stresses and other localized areas of high stress.

Accelerated temperature cycling is also applicable to some types

of temperature transducers where there is concern about either

the permanence of the hermetic seal or the integrity of internal

electrical connections.
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Many transducers are supplied with electronic hardware. In such
cases, the approaches discussed for electronic parts and assem-
blies are applicable.

There are literally hundreds of different transducer designs. The
effective application of accelerated testing must be based on a
study of the design details and the potential life problems asso-
ciated with a specific device. The above generalizations are in-
tended as a guide for establishing a test program for a specific
device. Whenmature devices are selected with proven long-term
stability, using real-time tests conducted over a period of many
months, there is little justification for accelerated testing.
However, manydevices are now employing new concepts and approaches;
and accelerated testing is desirable for assuring long-life. In
developing a new transducer for a long-life application, it is
desirable to design out all potential aging phenomena. Elimina-
tion of all non-metallic materials is a significant step towards
this goal. Oneexample is the thin-film-strain-gage-pressure-
transducer.

Enhanced Defect Testing

Enhanced defect testing could be considered a type of acceleration

testing in that data defining the most significant failure modes

is gained very rapidly. This is because defects are intentionally

enhanced and failures are then _orced by the application of stress

exceeding usage conditions. This type of testing is obviously con-

strained to the research and development area. It is used to gain

knowledge about the significance and consequences of various de-

fects in a given item of hardware. A classic example is the work

of H. C. Hurley of IBM. This enhanced defect test program pro-

vided major insights into the life and reliability problem of the

Multilayer Printed Circuit Board (Reference 38). In this program,

many different multilayer boards were fabricated with various de-

sign parameters and with many processes out of control in order

to introduce a series of controlled defects. Boards were fabri-

cated with good and poor lamination quality, with holes drilled

both clean and with smeared epoxy, and with both ductile and

brittle copper in the plated-through-holes. The boards were then

subjected to accelerated temperature cycling (3 hour cycles from

-65°C to II0°C) until electrical failures occurred due to crack-

ing from the mismatches of thermal expansion within the board.

This program revealed that the particular defect of brittle copper

is the major concern. Smear drilled holes contributed to failure

to a lesser extent, and lamination defects played a minor role.
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The effects of copper layer thickness and hole design were also
evaluated; but the most significant finding was that the defect
of brittle copper in the plated-through-holes was extremely seri-
ous, overshadowing most other defects.

The approach of EnhancedDefect Testing should be considered for
application in the research and development of new and critical
products when the relative failure mechanismsneed to be iden-
tified and assessed.

Dynamic Mission Equivalent Testing (DME)

This testing, applicable to a total spacecraft at the systems

level, is an accelerated test in the sense that it is a mission

simulation test excluding the non-operating, dormant, periods.

For example, a nine-year Jupiter-Saturn-Pluto Grand Tour mission

could be simulated by ground systems testing in 119 hours; a

time compression of 663 to I. Critical environments can be

applied during the test and the total mission simulation can be

repeated to increase the level of confidence.

DME is a form of compressed time testing developed by JPL where

non-operating periods are omitted in a manner similar to conven-

tional accelerated cycle testing of valves and relays. Dynamic

mission equivalent testing basically applies this time compres-

sion approach at the systems level. Aging phenomena not dependent

on cycle life or operating time must be evaluated by separate test

programs.

Many spacecraft components operate for only short durations fol-

lowed by a long duration of quiescence. A major portion of the

failure probability occurs during either the relatively short

operating periods and/or relatively short periods of environmental

stress. It is often feasible to eliminate or shorten the quies-

cent periods in order to accumulate many cycles of testing. D_

testing is a technique for organizing test planning to optimize

test effectiveness via selective simulation of mission stress

cycles thereby achieving significant time compression. D_ does

not depend upon stress acceleration, hence, it can be used on

flight equipment. DME techniques can be applied to either com-

ponent or system level tests. To be valid, the D_ test technique

must consider all functional and environmental parameters which

can affect life or reliability. Caution must be exercised to

be certain that a component does not in fact degrade sufficiently

during quiescent periods to nullify the validity of shortening

these time periods. In general the DME approach is:
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i) Define mission profile;

2) Subdivide profile into dynamic (non-equilibrium) and static
(equilibrium) portions;

3) Eliminate/reduce static portions where all parameters are
simultaneously quiescent;

4) Compress the time profile when one or more parameters are

always dynamic (changing) by accelerating the rate of change

in the parameter (but only when component response is not

affected) ;

5) redefine the mission profile for test purposes incorporating

Items 3) and 4) above.

To illustrate the use of the DME techniques, Table 2 is presented.

A Jupiter-Saturn-Pluto Grand Tour mission is used as the example.

For each mission phase, the approximate DME test time has been

estimated. The durations of the real-time mission phases are

cursory estimates. The test time for the J-S-P mission (nine

years) can be compressed to 118.8 hours; a time compression of

663 to 1!2

DME, as used by JPL, does not employ acceleration by raising stress

levels. It is recommended that consideration be given to the

merits of incorporating acceleration by also employing thermal

cycling during the test sequence. This would be especially valu-

able during development testing, and as a final screening test,

along with thermal vacuum testing, on the flight spacecraft.

As indicated, the DME technique reduced the test time by a factor

of 663 to i. The test specimen could be subjected to one complete

DME environmental cycle (118.8 hrs) in one five-day work week.

The test cycle should be repeated until sufficient confidence in

test specimen performance is gained.

Please note that Table 2 is for illustrative purposes only, al-

though based upon a projected J-S-P Grand Tour mission profile.

The profile assumed seven trajectory modifications (burns). Com-

munications and tracking are ON 40 days prior to trajectory modi-

fication. All equipment is turned ON about 3 days prior to planet

encounters. In addition to the DME test cycle, some equipment

must be subjected to additional life cycling--such as the attitude

control system which is operating during the entire mission; the

cycling of valves and engine burns could be accomplished in sepa-

rate high frequency cycling tests.
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Table 2 Test Time Comparison for a Jupiter-Saturn-Pluto Gr_d Tour Type Mission

Mission Phase

1 Launch

2 Earth Orbit

3 Trajectory Boost

4 Tracking & Communicaton ON

5 Trajectory Change

6 Cruise, Quiescent

7. Tracking & Communication ON

8. Trajectory Change

9. Cruise, Quiescent

I0. Jupiter Encounter, all ON

ii. All ON, Dump Data

12. Tracking & Communication

13. Trajectory Change

14. Cruise, Quiescent

15. Tracking & Communication ON

16. Trajectory Change

17. Cruise, Quiescent

18 Saturn Encounter, all ON

19 All ON, Dump Data

20 Tracking & Communication

21 Trajectory Change

22 Cruise, Quiescent

23 Tracking & Communication

24 Trajectory Change

25. Cruise, Quiescent

26. Tracking & Communication

27. Trajectory Change

28. Cruise, Quiescent

29. Pluto Encounter, all ON

30. All ON, Dump Data

Total Hours :

Time Compression:

Mission Time, DME Test Time,
hours hours

0.13 0.13 (once only)

0.50 0.50 (once only)

0. i0 O. i0

240 O. 20

0.05 0.05

i0,871 6.00

960 0.20

0.05 0.05

i08 6.00

84 1.00

24 24.00

216 0.20

0.05 0.05

12,635 6.00

960 0.20

0.05 0.05

115 6.00

65 1.00

24 24.00

216 0.20

0.05 0.05

25,080 6.00

960 0.20

0.05 0.05

25,080 6.00

960 0.20

0.05 0.05

180 6.00

60 1.00

24 24

78,863 118.85

663 to 1
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The DME times were based upon the following assumptions:

i)

2)

The quiescent cruise phases are adequately simulated by allow-

ing the equipment to cool off, about six hours;

The tracking and communication equipment life is degraded

primarily from ON-OFF cycling that produces thermal cycling

and electrical transients. This equipment should be tempera-

ture stabilized in about 0.2 hours;

3) The more severe equipment stress and wear occurs during the

post encounter period when all equipment is operating and

data continuously transmitted. Full real-time testing is

deemed necessary for these three 24-hour mission phases;

4) All testing is in a thermal-vacuum test chamber that simu-

lates the expected spatial environments;

5) Tracking and communication equipment are turned ON 40 days

prior to a trajectory change (burn), time scales permitting,

and;

6) The observatory periods (cameras on) are encounter minus 50,

75, and 250 days for Jupiter, Saturn and Pluto respectively.

The observation periods are not reflected in Table 2. Adjust-

ment in DME should be made for affected components.
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D, A STATISTICAL MODEL FOR ELECTROMIGRATION INDUCED FAILURE IN THIN

FILM CONDUCTORS

Reproduced in this section is Technical Report No. 72-07 prepared

by Martin Marietta Corporation, Research Institute for Advanced

Studies.
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ABSTRACT

A Statistical Model for Electromigration

Induced Failure in Thin Film Conductors

John D. Venables and Robert G. Lye
Research Institute for AdvancedStudies

Martin Marietta Corporation

Baltimore, Maryland 21227
(301)247-0700

A statistical model has been developed that relates the electro-

migration-induced failure rates of metallized conductors to the physical

processes that cause such failures. The analytical formulation of this

model suggests: i) a resolution of the controversy regarding the rela-

tionship between meantimes-to-failure and the current density, ii) a

potentially more useful statistical analysis for failure rates_ and,

iii) the possibility that electromigration failure rates and their

statistics maybe computedafter making only a few simple measurements

to characterize the system.

To be published in Proceedings of the 10th Annual
IEEEReliability Physics Symposium,Las Vegas,
April, 1972.
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A Statistical Model for Electromigration

Induced Failure in Thin Film Conductors

John D. Venables and Robert G. Lye
Research Institute for AdvancedStudies

Martin Marietta Corporation

Baltimore, Maryland 21227
(301)247-0700

I. Introduction.

Electromigration induced failures in thin metallized stripes have

received considerable attention in recent years, but the usefulness of this

work has been limited by the lack of a well defined statistical model that

would permit relating conductor lifetimes to specific physical mechanisms.

For example, considerable uncertainty remains regarding the correct method

for extrapolating the results of accelerated tests, obtained at high current

densities or elevated temperatures, to predict mean times-to-failure under

normal operating conditions. Moreover, no physical basis has been provided

to justify the common use of lognormal statistics in the analysis of experi-

mental data. In this investigation, a statistical model that appears

capable of resolving these and other questions has been developed and

compared with previously p_lished data.

II. Electromi_ration Damage Mechanisms in Thin Metallic Conductors.

According to the theory of current-induced mass transport developed

i
by Huntington and Grone_ the driving force for electromigration arises

from the momentum exchange between moving conduction electrons (or holes)

and the atoms comprising the conductor. The process is related to ordinary
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thermal diffusion, which, however, is perturbed by the fact that atoms

are assisted across their saddle point positions into nearby vacancy

positions by a force resulting from the presence of the "electron wind."

The rate at which atoms moveunder the influence of the current flow

is controlled by both the temperature of the conductor and the strength of

the electron wind. These two factors have been included in the expression

1for the velocity of atomic migration, v, derived by Huntington and Grone:

v=(j DZ*e) [Do/kT) exp(-_kT) _I, (i)

in which the first term in parentheses is the driving force provided by

the electron wind, the second term is the temperature dependent mobility

of the atoms; and j is the current density, p the resistivity of the conductor,

(Z'e) the effective charge of the migrating atom, Doexp(-_kT ) the diffusion

coefficient, Q the activation energy for diffusion, k Boltzmann's constant,

and T the temperature of the conductor.

Experimental measurements on bulk conductors in which dimensional

changes, or marker motion, are monitored during the electromigration process

have, for the most part, established the validity of equation (1) 132

However, the mechanism of uniform thinning by mass migration is not suffi-

ciently rapid to account for the failure rates observed in thin film

stripes. At least part of this discrepancy arises from finite divergences

of the atomic flux that are generated by temperature gradients or structural

inhomogeneities. 3, 4, 5

i) Temperature gradients.

Since the atomic velocity given by equation (1) is dependent upon

temperature, local temperature gradients will cause a divergence in

the atomic flux. For an electron conductor, such as aluminum, a

depletion of mass will occur wherever the electron flow is in the

direction of increasing temperature. 3 Conversely, an accumulation
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of mass occurs wherever the electron flow is in the direction or

decreasing temperature. Metallized thin film stripes, however,

usually are in such good thermal contact with their substrate that

the resultant temperature gradients are not very severe, and their

influence on failure rates appears to be small. _6

ii) Structural irregularities.

Considerable experimental evidence indicates that electromigration

in metallized films is confined mainly to grain boundaries. 3'6'7 For

example, recent measurements 3'7 of the activation energy, Q, for the

electromigration process in A1 polycrystalline thin films show that

the value is about 0.5 eV-0.7 eV, which is of the magnitude expected

for gyain boundary diffusion. This structural sensitivity has been

confirmed by electron microscope studies 3'9 on A1 films, which revealed

hillock and void formation associated with the grain boundary structure.

The voids, which form as a consequence of flux divergences at appro-

priately oriented non-symmetrical nodes, grow _rith time and eventually

coalesce to form an open gap across the conductor. The effect is

paa_icularly severe in films that exhibit a relatively small grain

size, because large numbers of nodes are then available to serve as

nuclei for the formation of voids. $'I0 If the grain size is too large,

however, the probability increases that a single grain will cover the

entire stripe width. Under these circumstances, a new source of flux

divergence is introduced; the single grain acts as an effective barrier

to atoms migrating from the negative side, preventing replacement of

atoms that are transported away by connecting boundaries on the other

side of the grain, k'10

*Activation energies for bulk diffusion in aluminum are approximately 1._ eV. 8
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In the following section, a model will be developed for the electro-

migration-induced failure of conductive stripes containing many grains across

each transverse section. The model is based upon the void formation mechanism_

which is relevant to AI, the material most widely used in thin film conductors.

It should be noted however that films made from certain other materials, e.g.,

silver, appear to fail by a grain boundary grooving mechanism, in which the

ii
entire boundary becomes depleted in thickness. The reasons for this differ-

ence are only partially understood, but it is expected that the approach

followed here could be modified to include this related mechanism.

llI. Development of the Model.

The observations described in Section II suggest that the electro-

migration-induced failure of conductive stripes may be represented in a

simple mathematical formulation. The model employed here is based explicitly

on the following assumptions:

i) The flow of current through the metal stripe creates voids at grain

boundary nodes that are oriented suitably relative to the current flow

and the longitudinal temperature gradient. The resulting porosity, p,

increases at a rate proportional to the density of grain boundary nodes,

n, the current density, j, the resistivity, p, and the mobility of the

metal atoms along the grain boundaries, _.

: (2)
dt

where C is an unspecified constant of proportionality.

ii) Pore formation reduces the cross-sectlon of the metal strlpe

available for carrying the current, thereby increasing the local

current density within the remaining section,

j=jJ(1-p), (51

where j is the initial current density in the pore-free stripe.
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iii) The increased current density causes _n increase in the current-

enhancedmotion of the metal atoms comprising the stripe, but it also

increases the local Joule heating within the remaining conducting

portions of the stripe.

iv) The local temperature, T, within the stripe increases above the

ambient temperature, To, by an amountthat is proportional to the

local Joule heating,

aT---T-To=j2p/h.

v) This increase in temperature leads to a corresponding increase

in the mobility, _, of the metal atoms along the grain boundaries,

.=D/kT=(D#kT)e-Q/kT

where D is the diffusion coefficient for motion along the grain

boundaries, and Q is the activation energy for this process.

vi) The increase in temperature leads also to a change in the

resistivity, p_ of the metal#

_=_o(l_(T-To) 1, (6)

where G is the temperature coefficient of resistance. If the total

current passing through the stripe remains constant, this increased

resistivity causes an additional increase in the local rate of Joule

heating, and in the effective electric field (jp), experienced by

the atoms in the saddle point position.

vii) At a position along the length of the stripe where the grain

boundary configuration and the temperature gradient combine to create

suitable conditions, porosity will begin to develop, slowly at first,

and then progressively more rapidly until it exceeds a critical value,

at which time the stripe will fail catastrophically. This critical
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value of the porosity may depend somewhaton the nature of the metal

used for the stripe and the environment to which it is exposed. For

the present purposes, it will be assumedthat failure occurs when

the local temperature within the stripe exceeds the melting point

of the metal, but under other circumstances it maybe more appro-

priate to select that temperature at which the metal begins to

react vigorously with the substrate or the external environment.

Under these circumstances, the time to failure, TF, is given by the

expression-
kT1 o o

TF: 2On [JoOoDoexp(-Q/kTo)] f(Xo' Xl' Q'To) (7)

where_o_To/To--Jo2_o/h%,

_x_exp(-Q_/kTo)_,f(Xo,xl,a,To)-- x2(l_x+_0_o)
o

Xo--_o/[i-_o(_o-i)],

(7a)

(7b)

(7 c)

IV. Application of the Model.

A. Relationship between T F and Jo"

The relationship between the velocity of atomic migration and current

1
density derived by Huntington and Grone suggests that the mean time-to-

failure,< TF >, should be inversely proportional to Jo' i.e.,
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and T --melting temperature of the metal (or the critical
m

temperature at which catastrophic failure occurs).

The function f(Xo, Xl, Q, To) has been evaluated numerically to determine the

variation of TF under several possible experimental conditions, with the

results shown in the next section.
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(n=l). Triangles are data points of Blair et al. l0 normalized to
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the thermal contact of the stripe to its heat sink as described in the
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< TF > _ jo -n, (8)

where n=l, but this relationship is not obeyed for current densities

greater than approximately 105 A/cm 2. For example, Black 12 has reported

that an exponent, n--2, characterizes his data in the range

0°5xi06 < Jo < 2"8xi06 A/cm2' whereas Attardo 13 reports n=l.5 in the

range 105 < j < 106 A/cm2o Moreover, the results of Blair et alI0 are

consistent with a value n=4-5 in the range ]_xl06 < Jo < 2xI06 A/cm2"

The mathematical formulation of the present model, equation (7), indicates

that the time-to-failure varies with current density in a complex manner,

and that a simple power law dependence is inadequate to describe the experi-

mental observations over more than a small range of current densities.

The behavior of T F as a function of Jo predicted by the model is

illustrated graphically in Figs. i and 2. The theoretical curves were

computed by numerically integrating equation (7), using the following

parameters characteristic of AI and of the conditions under which experi-

mental data normally are obtained.

a = 0-004/°C

Q = 0.7 eV (for grain boundary diffusion)

T m = 659.7°C (melting point of AI)

T = 200°C
o

In addition, the value of To was computed from (_a) using the result of

2
Rosenberg and Barenbaum II that a current density j=ixl06 A/cm produces

a temperature increase ATR< 20°C in a typical AI stripe initially at

room temperature. Thus, from (7 a)

•o-_TR(l_(To-500) )(i/To) (j J_106) 2- (91
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_. Time-to-failure curves computed for different values of the

parameter _T R. The wide divergence of the curves at high current

densities suggests that accelerated tests will be meaningful only

when the precise nature of the thermal contact between stripe and

environment has been established.
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For the curve shown in Fig. i a value of ATR=I0°C was chosen arbitrarily.

This curve is compared in Fig. 2 with the behavior expected on the basis

of equation (7) for either a poorer thermal contact with the environment

(_TR=20°C), or a better thermal contact (ATR=5°C).

It is apparent from an inspection of the two figures that the present

model is capable of resolving the seemingly inconsistent results discussed

above. The slopes determined by Black 12 (n=2) and by Att_rdo 13 (n=l.5) are

tangent to the curve predicted by the model, Fig. i, within the range of

current densities employed in their respective experiments. The data of

Blair et al. I0 also fit the theoretical curve quite accurately when

,
normalized to the time-to-failure scale chosen in the figure. In addltlon_

the curve becomes asymptotic to a straight line with n=l, at low current _ensities

I
consistent with the Huntington and Grone model for atomic migration.

The three curves shown in Fig. 2 are a subset of the family of curves

characterized by the para_eter ATRJ all of which have asymptotic slopes

corresponding to n=l at low current densities. They illustrate the important

role that thermal contact to the substrate plays in determining times-to-

failure, especially in the range of current densities where most accelerated

life data are obtained. Thus, at 2x106 _cm 2 the model predicts that a

stripe-substrate combination characterized by relatively good thermal contact,

_TR=5°C_ should exhibit a mean lifetime approximately one hundred times longer

than one in which the the_nal contact is only four times poorer, _TR=20°C°

This result appears to have important implications for the proper

analysis of accelerated life test data. Although it has been realized that

interconnects used in integrated circuits can tolerate the passage of high

*The time-to-failure scale is presented in arbitrary units since the

constant of proportionality, C, in equation (7) has not as yet been

evaluated.
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Fig. 3. Influence of the baseline temperature, To, on tlmes-to-failure

as predicted by the model for a thermal contact equal to that used for

Fig. 1.
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current densities (>105 _cm 2) only because they are bonded to a massive

heat sink, little attention has been given to the precise quality of the

thermal contact. According to the present model, this factor cannot be

ignored except at the risk of generating questionable or perhaps misleading

information. Moreover, the results suggest further that tests done in an

oil bath, for example_ in which AT R is reduced artifically, may have no

real relevance to the expected behavior of failure rates under conventional

conditions, unless appropriate corrections are applied.

B. Temperature dependence and activation energies.

The predicted influence of the baseline temperature, To, on the

T F __vsjo dependence is illustrated in Fig. 3. In Fig. 4, these computed

data are replotted employing the conventional approach used to estimate

activation energies. Despite the complexity of the original function,

equation (7), from which these curves were computed, it is observed that

the behavior is represented accurately as a straight line within the

indicated ranges of current density and baseline temperature. Interest-

ingly_ however, the result indicates that the apparent activation energies

determined in this manner can deviate from the value associated with the

migrating atoms (assumed here to be 0. 7 eV) by an amount that depends on

parameters related to the testing conditiQns. Thus, the calculated curves

+
indicate that the apparent activation energy, Q , decreases from approximately

0.7 eV at low current densities to 0.65 eV when Jo=2Xl06 A_cm 2. For larger

values of AT R (poorer thermal contact), this deviation is expected to be

+
even more pronounced. Even at low current densities, however, Q is expec-

ted to differ slightly from Q, by amounts that depend on the temperature

coefficient of resistance, 5, in the material comprising the stripe.
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+
In addition, the value of Q obtained by this procedure may exceed

Q significantly in appropriate circumstances (j or T very large).
o o

These results indicate that the time to failure is a complex

function of the baseline temperature_ and cannot be represented in

a simple manner by an Arrhenius plot to give directly an activation

energy for the processes involved. The heretofore unexplained varia-

tion in activation energies observed by some investigators 4'12 may

perhaps be understood on this basis.

C. The statistics of electromigration induced failures.

Statistical distributions of electromigration failure times

for AI stripes under accelerated test conditions have been reported

4
by Attardo and Rosenberg. In their work_ it was assumed that TF obeys

a lognormal statistical distribution_ and indeed their experimental data

appear to be represented rather well on this basis. No physical justi-

fication was provided for this assumption, however, and consequently

some doubt remains that lognormal statistics can be used reliably for

extrapolation purposes.

An alternative, and potentially more accurate method of analyzing

the statistics is suggested by the analytical formulation of the present

model, equation (7)_ which establishes a relationship between the time-

to-failure and the node density across the width of the stripe,

i

TF_ --n "

Because n is a random variable 3 it would be expected that the statistical

parameters of TF could be derived from a mathematical transform of the

distribution function associated with n.
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to approximate characteristics of the grain structure shown in Fig. 3

of their article.
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To test this hypothesis a frequency function for n was determined

from the micrograph, published by Attardo and Rosenberg,4 for an AI stripe

with a meangrain size of 8 _m. The function was then approximated by a

rectangular curve, f(n), where

fCn) 0;0

= i/w 

as shown in the inset of Fig. 5. A value of w=i/2 was found to represent

rather well the distribution of nodes in this film. The ramp-like distri-

bution f_'nction obtained from this frequency curve was then mathematically

transformed using standard procedures 14 and the result used to construct

graph paper on which the data of Attardo and Rosenberg 4 could be re-plotted.

The results, shown in Fig. 5 indicate that the present approach

provides a fit to the data that is as good as or better than the lognormal

distribution used previously without specific justification. Because the

statistical model propose@ here has been derived directly from a knowledge

of the basic physical mechanism involved, it is expected to permit more

accurate prediction of failure rates than the empirical approach used

pre vi ou sly.

V. Conclusions.

The proposed model has been subjected to experimental verification

thus far by demonstrating agreement with published data only. The broad

scope of the agreement achieved and the apparent resolution of inconsis-

tencies reported in the previous literature suggest that the model may

be useful for subsequent studies of electromigration induced failures.

For this purpose, however, it would be _esirable to obtain more detailed
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quantitative verification. Certain critical experiments are suggested by

the analysis. Specifically, insufficient attention has been given in the

past to the nature of the thermal contact between the stripe and its heat

sink. This parameter is exposedby the model as an important factor in

dete_nining failure rates, particularly under accelerated test conditions.

A quantitative ex_ination of this aspect of the problem appears desirable,

therefore, to test the validity of the simple linear heat exchangerelation

employed in this model, and to evaluate the effects of different degrees of

thermal contact. Second, the simple rectangular frequency function, f(n),

employed here is only a first approximation to the true characteristics.

Detailed studies using more accurate representations of f(n) will be

neededto verify the statistical analysis.

If such tests provide a satisfactory validation of the model_

measurementsof the node density function, f(n), and the Joule heating

parameter, _o' would suffice to characterize the lifetimes of stripes

under a wide variety of conditions. The results described here would

be useful also for developing accelerated life tests with improved

predictive capability.

Finally, the approach followed here suggests the possibility that

statistical models for other intrinsic degradation processes maybe

developed from analyses of the basic physical mechanismsinvolved.
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IV. A STUDY OF ELECTRONIC PART SCREENING TECHNIQUES

A. INTRODUCTION

The effectiveness of screening tests currently performed on elec-

tronic parts can be partially measured by the quantity of defec-

tives which are passing these tests and which show up later during

hardware fabrication, test, or usage. The usual screen tests such

as parameter measurements, thermal and mechanical shock, vibration,

radiography, hermiticity, constant acceleration, etc., have evolved,

over the years as methods to detect basic defects caused by mate-

rial or process anomalies during manufacture. When a defect is

encountered, often the user will generate another screen by ad-

ding a test to the procurement specification to prevent future

occurrences. The screens being utilized on the common electronic

parts are fairly standardized for many of the tests both as to

type and to levels or durations. The tendency is to add new tests

while retaining existing ones.

In addition to eliminating the more obvious defectives (screening

out unreliable devices), more subtle screens have been attempted

to further identify (within the remaining "good" devices of a lot)

those items which have the probability of longest life. The per-

fect set of screen tests would positively eliminate all defective

parts and precisely predict the operating life of each acceptable

part with minimum time and cost expenditures.

In this study, some fundamental questions regarding screen tests

in general will be analyzed. Both conventional and unconventional

screening techniques will be reviewed.
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B, CONCLUSIONS

io

2.

°

.

°

.

.

The most significant reliability problem common to most elec-

tronic part types is that of ionic and/or particulate contami-

nation. This problem is significant for transistors, diodes,

resistors, integrated circuits, relays, and switches.

Conventional screens are not adequate to detect and eliminate

all contaminated parts. Further, some of the screens may

degrade ionic contaminated parts to a condition where failure

is potentially imminent in service life.

Other prevalent part defects inadequately detected by conven-

tional screens are semiconductor bonds with heel cracks, in-

tegrated circuit microcracks at contact windows, and seal

leaks of wet tantalum capacitors. These defects may also be

advanced by conventional screens such that failure could be

potentially imminent in early service life.

Conventional screens are oriented to elimination of parts

with specific defects or weaknesses. In general, conventional

screens are not designed either to screen out parts on the

basis of life expectancy or to provide information regarding

longevity of the parts being screened. It is strongly recom-

mended that the high stress screen approach, such as that

performed by BTL Laboratics be investigated as discussed in

Section I.

The degradation analysis approach and step stress or constant

stress testing to destruction are the most feasible techniques

to obtain cost and time effective information on relative life

expectancy of individual parts or longevity estimates of part

lots.

The Linear Discriminant Analysis approach is not considered

appropriate in real-time, real-cost programs. The method is

too uncertain, purely statistical, and unrelated to physical

kinetics. The one advantage it has is that there is no other

linear combination of parameters which will provide a better

"zero-time" screen.

Current-noise testing is not an efficient screen test if the

noise index is used as a reject criteria. It is recommended

that this approach be utilized only for detecting mavericks

in a production lot, such that parts which have outlier noise

levels are considered reliability risks.
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Third harmonic analysis screening is unsuitable for semicon-

ductors. Further study is needed to determine its efficiency

on discrete linear devices. It may be more efficient than

current-noise testing. At worst, it may also be useful to

detect mavericks by means of outlier harmonic content.

Short-time overload tests in the order of 1 to 2 hours are

potentially one of the most effective ways to screen resistors.

It can probably replace burn-in and power conditioning tests.

Elimination of burn-in should not be made without data estab-

lishing the maximum overload temperature required and the

optimum duration. One approach is the optimization method

of Section I, coupled with physics of failure verification

of realistic failure mechanisms.

Of the unconventional screen tests, neutron radiography has

potential in inspection for contamination, particularly for

switches, relays and circuit breakers. It may be useful on

capacitors but should not be used on semiconductors containing

boron dopant. The newer particulate contaminate tests such

as combined shock and vibration are promising but not 100%

effective. Laser scanning is a promising and needed tool

for probeless testing of integrated circuits, particularly

bipolars. Other approaches such as electron beam probing is

required for MOS circuits. The automatic visual inspection

techniques, although highly desirable, need considerable

development effort before being feasible.
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C, ADEQUACY OF CONVENTIONAL SCREENS

A review of failure experience is useful in that a measure of

screen test effectiveness is obtained and an analysis of screening

methods to eliminate these failures can be made. A summary of

ALERT reports and other current industry electronic part failure

experiences through March 1971 was published (CRI14391) in Feb-

ruary 1972 by Lockheed Missiles and Space Co., Inc. for Ames

Research Center under Contract NAS2-6060 (Ref 1). The predominant

problems experienced with the electronic part types of interest

are listed in Tables i through 9.

From these tabulations it is evident that contamination is the

most significant problem common to most of the part types. Tran-

sistors contained loose solder, weld splatter, TCE, and moisture.

Diodes contained weld splash, solder balls, moisture, and loose

silicon chips. Fixed resistors were contaminated with aluminum

and variable resistors contained metallic chips. Integrated

circuits contained moisture, glass splatter, solder, eutectic

residues, and carbonized material. Relays contained iron parti-

cle, weld splatter, header slivers, flux, human hair, teflon and

other fibers, flaked plating, excessive moisture, and ammonium

chloride. Switches contained epoxy, flux, solder, and sealing

cement.

The conventional screens of temperature cycling, high temperature

storage, mechanical shock, electrical, testing, radiographic inspec-

tion, burn-in, visual inspection, and vibration will detect many

contaminated parts; but cannot be relied upon to eliminate all

contaminated parts. Radiographic inspection, for example, will

not detect aluminum, teflon, or fiber particles. Radiographic

inspection also has a resolution limitation of slightly less than

one mil on materials opaque to X-ray. Also, the success of vi-

bration tests, monitored or, not, depends on the particulate first

being shaken loose as well as on the probability that the particle

will cause malfunction at the time of measurement. In addition,

tests such as burn-in or temperature storage may degrade parts

having corrosion-causing contaminants without carrying the mech-

anism to a detectable failure. The danger is that the screened

part may have degraded to a condition where failure is potentially

imminent in service life.
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Tab_e I Transistor ProbZems

No. Of

Alerts/

Problem Items Problem Causes Conventional Screens Remarks

Lifted 7

Bonds

Metaliza-

tion

Parameter

Deviation

Conductive

Contamina-

tion

Poor bonding processes.

Excessive bonding pressure

causing bond distortion and

cracking at the heel.

Moisture contamination or

residual TCE from cleaning

process.

Moisture contamination in

encapsulated gas ambient.

Moisture in package due to

defective hermetic seals.

Loose solder, weld splat-

ter, slack leads, or

poor lead dress.

High temperature storage, thermal

shock, acceleration, burn-in,

electrical testing.

Thermal shock, acceleration,

hermetic seal, burn-in, elec-

trical testing.

Dew point test, hermetic

seal.

Acceleration, electrical

testing, radiographic inspec-

tion.

Parameter 6 Channeling due to lack of High temperature reverse bias,

Deviation channel stop protection, burn-in, electrical testing.

Mechanical 3 Corroded leads, notched Visual inspection.

Anomalies leads, plating pin-holes,

and bare spots on leads.

Power cycling will induce

fatigue and accelerate

cracked and necked wire

failures. Marginal bonds

could be degraded by con-

ventional screens and

still pass.

Hermetic seal will pre-

vent contamination from

using environment.

Process - induced con-

taminants may cause

degradation of parts dur-

ing conventional screens

without precipitating

failure.

Dew point test could be

ineffective with well-

passivated devices.

Moisture contamination

could cause corrosion.

Radiographic inspection

limitations are generally

particles of .001 in.

size or larger. Acceler-

ation may be ineffective

for particulates.

Conventional screens

are adequate.

Conventional screen is

adequate.
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Fable2 Diode ProbZems

No. Of

Alerts/

Problem Items Problem Causes Conventional Screens Remarks

Inadequate 4 Conventional screens are

Bonds adequate.

Conductive

Contamina-

tion

_isture

Contamina-

tion

Mechanical

Anomaly

Gold-germanium lead solder

of plastic devices unable

to withstand cordwood

module temperature stress,

defective stud gold plating

caused poor die bond, poor

"S" ribbon bond to metal-

ization, excessively crimp-

ed aluminum gate lead in

SCR.

Weld splash, solder balls,

loose silicon chips.

Seals defective at

manufacture or due to

installation allowed

moisture to enter the

device.

Poor external lead welds,

contamination of leads

resulting in corrosion

and breakage, or corrosion

and solderability fail-

ure.

High temperature storage,

thermal shock, burn-in, elect-

rical testing.

Acceleration, electrical

testing, x-ray, visual examin-

ation, high temperature

storage, thermal shock

Hermetic seal, high, temp

reverse bias, electrical

testing, visual examination.

Visual examination.

Acceleration is not

always effective for

particulates. X-ray

limitations are generally

particles of .001 in.

size or larger.

Conventional screens are

adequate.

Conventional screens are

adequate. High quality

standards and tight

process controls would

minimize the problem.
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TaLle Z Fixed Recistor ProLZems

Problem

Open

Resistor

Element

Fractured

Cores &

Substrates

Parameter

Deviation

Parameter

Deviation

Open

Resistance

Element

Wire

Galvanic

Corrosion

Parameter

Deviation

No. Of

Alerts/

Items Problem Causes

Thin film element cut dur-

ing trimming.

Excessive stress on cores

during capping. Glass sub-

strates cracked after

thermal cycling. Resistors

failed open, intermittent

open.

Reduction of fused

palladium oxide-silver-

glass in hydrogen

atmospheres caused large

decreases in resistance.

Electrostatic charge

developed by resistors

in plastic bags caused

resistance to decrease.

Inadequate support of

wires by potting, stress

on lead wire connection

to resistance wire by

improperly centered

bobbin, improper weld

of wire to end cap.

Aluminum contamination of

bobbin and inadequate cure

of coating caused opens and

resistance increase due to

galvanic action.

Faculty insulation on

Bifilar wound resistor

caused short between

turns and decrease in

resistance.

Conventional Screens

Burn-in, short time overload,

D.C. resistance.

D.C. resistance, temperature

cycling, overload, D.C. resist-

ance, tap test (X-ray & visual

inspection as applicable)

D.C. resistance, burn-in

D.C. resistance, temperature

cycling, D.C. resistance.

D.C. resistance after

removal from package.

D.C. resistance, short-

time overload, temperature

cycling, twist test.

D.C. resistance, burn-in,

temperature cycling, D.C.

resistance, visual inspection.

D.C. resistance, burn-in short-

time overload, thermal cycling,

D.C. resistance.

Remarks

Conventional screens are

adequate to detect resist-

ance elements with

inadvertent small thin

film widths.

Conventional screens are

adequate to detect devices

with cracked cores or

cracked or excessively

stressed substrates.

Conventional screens are

adequate to detect incom-

patibility of encapsul-

ants when palladium

oxide resistors are used.

Mechanism causing resist-

ance change is little

understood. Prevention

of charge build-up may be

desirable.

Conventional screens are

effective in detecting

marginal wirewound

resistors with these

defects.

Conventional screens may

degrade contaminated wire-

would resistors without

failing them. Process

control and effective

cleaning steps are import-

ant.

Conventional screens are

adequate to detect

insulation defects when

bifilar would resistors

are used.
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Table 4 V_uL, te ]{eslst.oz_ I'z'c)L [ e_,:G

No. Of

Alerts/

Problem Items Problem Causes

Parameter 3

Deviation

Loss of

Wiper

Adjustment

Canted 1

Shaft

Inadequate 2

Connection

Coil contamination caused

intermittent opens to ro-

tor, metallic chips caused

internal shorts, potting

compound outgas reaction

caused increased resistance.

Eccentricity between drive

gear and resistor, defec-

tive gear caused by defec-

tive gear casting mold.

Retainer ring improperly

instaied causing canted

shaft and loss of wiping

action.

Weak solder bridge on

butt joint between

resistance element and

terminal pin failed

causing open. Inter-

mittent caused by poor

center to end shaft joint.

Conventional Screens

D.C. resistance, burn-in,

temperature cycling, D.C.

resistance, peak noise,

continuity.

D.C. resistance, peak noise,

continuity.

D.C. resistance, temperature

cycling, D.C. resistance,

peak noise, continuity,

visual examination.

D.C. resistance, temperature

cycling, D.C. resistance,

peak noise, continuity.

Remarks

Conventional screens nlay

not eliminate all con .-

tamination problems.

Conventional screens are

adequate except where

wear-out modes exist.

Conventional screens are

adequate.

Conventional screens are

adequate.
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Table 5 Capacitor Problems

Problem

No. Of

Alerts/

Items

Solder 4

Reflow

Mechanical

Anomaly

Slug

Separation

Parameter 2

Deviation

Electrolyte

Leakage

Parameter 1

Deviation

Intermittent 3

Open

Problem Causes

Application of heat required

to connect ceramic capacit-

ors into circuit caused the

internal lead-attach solder

to melt resulting in opens

and shorts.

Ceramic capacitor leads

cracked due to residual

stresses retained after

cold working. Thus

causing cracked welds.

Cracked cases caused by

incorrect resin and epoxy

mixture.

Poor solder bond between

slug and base of solid

tantalum capacitor.

Solid tantalum capacitor

shorted due to dielectric

breakdown. Poor solder

bonds caused high dis-

sipation factor.

Incompatible expansion

coefficients, elastomer

defects, degradation of

elastomers by solvents,

and improperly cured

materials caused

electrolyte leakage in

wet slug, TA foil, and

AI. Electrolytic

capacitors.

Voids between end cap and

element caused high series

resistances in glass

capacitor.

Inadequate bonds of lead to

foil in mylay and paper

Capacitors caused inter-

mittents. Poor resistance

weld in polystyrene capac-

itor caused intermittents.

Conventional Screens

None. Conventional screend do

not reach solder reflow temp-

erature.

Visual examination.

Temperature cycling, burn-in,

seal test, capacitance,

dissipation factor, insula-

tion resistance.

Temperature cycling, burn-in,

seal test, capacitance,

dissipation factor, insula-

tion resistance.

Temperature cycling, burn-in,

seal test, capacitance, dis-

sipation factor, insulation

resistance.

Temperature cycling, insulation

resistance, capacitance, and

dissipation factor.

Temperature cycling, burn-in,

seal test, capacitance, dis-

sipation factor, insulation

resistance.

Remarks

High temperature solder

should be utilized in

ceramic capacitors.

Excessive soldering heat

should be avoided during

assembly in equipment and

thermal shunting utilized.

Conventional screens are

adequate.

Conventional screens are

adequate. Radiographic

inspection is also import-

ant.

Conventional screens are

adequate.

Seal leak problems may

be time dependent and

not immediately detectable

by conventional screens.

Conventional screens are

adequate.

Conventional screens are

adequate.
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Cable 6 f_tc, rat_# C'_rc_dt Prcbi_,-,s

No. Of

Alerts/

Problem Items Problem Ca us,_s

Microcra_ks

at Window

Cutout

Lifted Chips

and Cracked

Die

Wire 1

Corrosion

Voids and i

Overetched

Metalization

Open 5

Bonds

Open 5

Metalization

Bulk 3

Shorts

Metalization 9

Shorts

Steep oxide steps cause thin

metalization at contact

windows and metalization

tends to separate.

Pyroceram bonding of silicon

chip to package provided

poor adhesion. Proper

pyroceram mix may not have

been used. Cracked die

resulted from temperature

coefficient mismatch be-

tween silicon die and

pyroceram.

Glass splatter from

sealing hardglass flatpack

to kovar lid deposited on

aluminum lead, possibly

reacting with contamin-

ants and moisture in the

package and corroding

the wire to an open condi-

tion.

Conventional Screens

Minimum of 30 cycles temperature

cycling, 100% electrical tests.

Scanning electron microscope scan

on sample

100% precap visual, temperature

cycling, variable frequency

vibration, constant acceleration.

100% electrical testing, radio-

graphic inspection.

100% recap visual, gross

leak test.

Remarks

Marginal devices may not

be screened.

Conventional screens are

adequate.

Conventional screens are

adequate.

Holes in photoresist 100% electrical tests Conventional screens are

permitted etchant to adequate.

penetrate masked area.

100% precap visual,

stabilization bake,

mechanical shock, thermal

shock, constant acceler-

ation random vibration,

sample bond pull tests.

Precap visual, stabilization

bake prior to seal, hermetic

seal tests, temperature cycling,

power burn-in at elevated

temperature. Sample scanning

electron microscope scans.

Preeap visual, thermal bakes,

operating life tests.

Precap visual, radiographic,

electrical tests.

Improper alloying schedule

causing poor aluminum

adhesion to silicon, for-

mation of gold-aluminum

intermetallic, overbonding

with excessive tamp/

pressure, improperly

placed bonds, rebonding

after silicon is exposed.

Corrosion of aluminum in

presence of moisture

(Hydrated alumina),

scratches during handling

and assembly, thinning over

oxide steps, aluminum

pulling toward alloyed

contact, faulty oxide

removal.

Dopant spikes during

diffusion, dendritic

growths caused by silicon

crystal imperfections and

pinholes, diffusion

anomalies resulting in

isolation junction break-

down.

Unetched metalization and

smears, extraneous con-

ductive material from leads,

bonds, eutectics, or solders

from bonding die attach, or

package sealing procedures,

carbonized material on die

surface.

Conventional screens are

adequate, however tight

process controls and high

quality standards are

important.

Tight process controls and

handling procedures re-

quired. Processes and

designs should be reviewed

for adequate metalization

thickness and grain size.

Devices prone to migration

failure may not be screened

Process controls required

in addition to conventional

screens.

Conventional screen may

not detect all potential

shorts. Improved process

controls and cleaning pro-

cedures required. Die pas-

sivation should be required.
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Table 6 (eoncl)

Problem

Metalization

or bond to

Silicon

Shorts

Lead

Shorts

Operational

Degradation

Operational

Degradation

External

Anomaly

No. Of

Alerts/

Items Problem Causes Conventional Screens Remarks

Oxide pinholes, metaliza-

tion mask mlsalignment,

lead bond at edge of die,

bond made over oxide step,

poor scribing and dicing,

stress cracks in oxide.

Leads too long, improper chip

orientation, sagging leads,

leads touch edge of die,

loops shorting to package.

glass seal precipitating

lead between leads.

Design deficiencies,

inversions caused by

phosphorous glass pa&siva-

tion, reaction of output

transistor with plastic

case material, missing

diffusion.

Overfritting of glass

during die bonding causing

glass to extend up the side

and onto chip surface,

cracked die, photoresist

residue, pyroceram voids.

Package identification

obliterated by solvents,

chip bond eutectic

overflowed to aluminum

bond on substrate

forming intermetallics.

Precap visual, temperature

cycling, overvoltage test,

electrical tests.

Precap visual, vibration tests,

shock tests, radiographic

inspection, electrical tests.

Electrical tests at ambient

and extreme temperatures.

Precap visual, radiographic

electrical tests, environ-

mentals per MIL-STD-883-

Method 5004.

Precap visual, radiographic,

high temperature storage,

thermal cycling, shock,

acceleration, variable

frequency vibration.

Conventional screens are

adequate. Most problems

of the type can be eliminated

by better processing stand-

ards and controls.

Conventional screens are

adequate.

Conventional screens are

adequate. Avoid use of

plastic devices.

Conventional screens are

adequate. Avoid glass

frit bonding approach.

Conventional screens are

adequate.
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Table 7 Relay Problems

Problem

Contacts

Fall to

Make

Contacts

Fail to

Make

Contacts

Fall to

Make

Contacts

Fail to

Break

Contacts

Fall to

Break

Contact

Shorts

Shorts to

Case

Decreased

Insulation

Resistance

Mechanical

Anomaly

No. Of

Alerts/

Items Problem Causes

Contamination between

contacts of iron particles,

weld splatter, header

silvers, cracked getters,

solder flux, fibers, flaked

plating, teflon and frozen

moisture on contacts.

Improper heat treating

resulted in deformation of

contact blades, teflon

spacer cold flowed, and a

bent torsion spring held

up an armature due to

omitted shim, fractured

armature arm, improper

armature/pole alignment,

oversize/undersize parts.

Open coil caused by poor

pigtail-to-coil solder

connection, shorted coil

due to insulation break-

down.

Solder flux contaminant in

relay eventually caused

sticking and high resistance

contacts.

Misdrilled bearing hole,

galling between armature

and spring, actuator touching

relay case when slight pres-

sure is applied, fractured

actuator arm, oversize/

undersize parts.

Conductive contamination

including metallic particles,

slivers, solder, splash, weld

splash, and solder plugs.

Armature retainer came off

shaft and welded between the

28V terminal and case,

retaining nut backed off

armature shaft and shorted

terminal to case.

Ammonium chloride contam-

ination and electrolytic

corrosion causing short

to case, defective insula-

tion, inadequate contact

gap, improper lead posi-

tioning.

Cracks in terminal leads

due to hydrogen embritt-

lement, cracks in header

glass, dents in case, poor

terminal plating.

Conventional Screens

High and low temperature run-

in, sinusoidal vibration, par-

ticle impact noise detection,

contact resistance, pickup

voltage, dropout voltage.

High and low temperature run-

in, sinusoidal vibration, par-

ticle impact noise detection,

contact resistance, pickup

voltage, dropout voltage.

High and low temperature run-

in.

High and low temperature run-

in, contact resistance, pickup

voltage, dropout voltage.

High and low temperature run-

in, contact resistance, pickup

voltage, dropout voltage.

High and low temperature run-

in, sinusoidal vibration, par-

ticle impact noise detection,

contact resistance, coil re-

sistance, pickup voltage dropout

voltage.

High and low temperature run-

in, sinusoidal vibration, par-

ticle impact noise detection,

contact resistance, pickup

voltage, dropout voltage.

High and low temperature run-

in, delectric withstand voltage,

insulation resistance.

Visual examination.

Remarks

Conventional screens may

not detect all potential

failures.

Conventional screens are

adequate. Good process

control is important.

Conventional screens are

adequate. Good process

control is important.

Conventional screens may

not detect all potential

failures.

Conventional screens are

adequate. Good process

control is important.

Conventional screens may

not detect all potential

failures.

Conventional screens are

adequate. Good process

control is important.

Conve_tional screens are

adequate. Good process

control is important.

Conventional screens are

adequate. Good process

control is important.
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Table 8 Switch Problems

Problem

Open

Short

Sho r t

No. Of

Alerts/

Items Problem Causes

Contaminants of epoxy,

sealing cement, oxide and

sulfide films, and solder

flux caused open and high

resistance contacts.

Conductive contamination

including solder balls

and other debris caused

shorts and intermittents.

Switch contact improperly

swaged at mounting point

came ]oose, a switch

activating pin weld failed

and loose conductive parts

caused shorts and inter-

mettent operatiop.

Conventional Screens

Electrical and mechanical

characteristics.

Temperature cycling, run-in

test, sinusoidal vibration,

visual examination, radio-

graphic inspection, electrical

and mechanical characteristics.

Sinusoidal vibration, tempera-

ture cycling, run-in test,

electrical and mechanica]

characteristics.

Remarks

Conventional screens may

not detect all potential

failures. Tight cleaning

and process controls are

important.

Conventional screens may

not detect all potential

failures. Tight cleaning

and process controls are

important.

Conventional screens are

adequate.

Mechanical 1 Cracked cases and corrosion Visual examination. Conventional screens are

Anomaly of cadmium plated switches, adequate.
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Table 9 Circuit Breaker ProbZems

No. Of

Alerts/

Problem Items Problem Causes

Open i

Latching

Difficulty

Undesirable

Tripping

Defective plunger assembly

chipped because of inter-

ference and plastic chip

between contacts caused

bending and permanent open

condition on attempt to

close breaker.

Chips from defective plunger

assembly and/or a loose

plunger guide caused diffi-

culty to latch and inability

to latch.

Launch environment shock

and vibration.

Conventional Screens

Mechanical and electrical

characteristics.

Mechanical and electrical

characteristics.

Mechanical and electrical

characteristics.

Remarks

Conventional screens are

adequate.

Conventlonal screens are

adequate.

Conventional screens are

adequate. Circuit breakers

in shock and vibration

environment should be

rigidly mounted, pinned,

and exercised prior to

vibration periods to

guarantee mechanical

trigger is in full-on

position.
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The other failure mechanisms which are not adequately detected

by conventional screen tests are semiconductor bond heel cracks,

integrated circuit microcracks at contact windows, and seal leaks

of wet tantalum capacitors. (See Tables 5 and 6.) These mech-

anisms may also be advanced by conventional screens such that

failure could be potentially imminent in service life. Reference

2 discussses integrated circuit contamination and microcrack prob-

lems experienced in 1971 at MSFC. It also discusses difficulty

in screening and preventing these mechanisms.

Process controls and proper designs must be relied upon to minimize

these problems. Cleanliness and inspections during carefully per-

formed assembly and a final inspection just prior to sealing could

minimize most contaminants except those derived from the sealing

operation itself. Neutron radiography may be a useful supplement

to X-ray inspection of relays and capacitors. Design utilizing

splash shields and passivation of chips make semiconductors less

susceptible to contamination. Metalization and wire systems other

than aluminum could eliminate microcracks in windows and at bond

heels. Control of oxide step steepness is also helpful.

In-depth discussions of screening, process control requiremen+s,

and design approaches for each part type including recommendations

are included in the individual electronic part studies in Volume

II.
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DI LINEAR DISCRIMINANT ANALYSIS SCREENING

In the conventional screen test approach, all parts meeting the

requirements of parameter measurements, environmental tests, and

burn-in are defined acceptable by means of the criteria to which

they are tested. However, within any group of acceptable parts,

variations in quality will always exist regardless of stringencies

imposed in process controls, inspections, and screening tests.

It is not expected that all acceptable parts, even of the highest

quality, will fail or wear out simultaneously. The acceptable

group will always contain certain parts which are superior to the

others in life c_pability. Superiority in life capability can

also be viewed as stability. The desired life or stability char-

acteristics required of a part are often application dependent.

For examples, stability of resistor temperature coefficient over

a long period of time may be important in one application, while

stability of resistance value at given temperature important in

another. The Linear Discriminant Analysis approach is an attempt

to select, from a group of conventionally screened high quality

parts, those parts which are superior in regards to stability of

the desired characteristic.

The parameters and limits used for parts acceptability during the

usual screen tests are those which by experience or judgment are

known to provide the required quality. The data obtained in these

tests, such as parameter measurements and delta shifts during

burn-in, are also utilized in the Linear Discriminant Analysis.

However, the measurement values are inserted in a mathematical

function of the parameters called the linear discriminant function.

The linear discriminant function has the general form:

Z = kiX I + k2X 2 + . . + k X
nn

where the k's are constants and the X's are values of the param-

eters. For example X I may be initial leakage current in microamps,

X 2 percent change in gain during burn-in, etc. The numerical value

Z of the discriminant function is known as the Z-value. Once the

discriminant function has been established a Z-value can be com-

puted for each part. The parameters X can be any measured or
n

calculated parameter of the part. The approach assumes that an

indication of future part performance can be had from a relation-

ship between certain parameters measured initially. These param-

eters are known as indicator parameters. However, all parameters

are not indicators of future performance or independent of one

another. The quantity n in equation [i] is usually 2 or 3.

[1]
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The application of this method is illustrated in Figure i. Z-

values are calculated for each acceptable part after burn-in data

is accumulated. Parts which are not superior are indicated as

inferior, although they are good parts, meeting the requirements

of a conventional screen. It is assumed in Figure 1 that the

discriminant function is designed so that the Z-values of the

inferior and superior parts will form two distinc_ distributions.

Z. is the mean Z-value of the inferior parts and Z is the mean
i s

Z-value of the suprior parts.

Z-value distribution _'_ i _ Z-value distribution

of superior p/ i 2_pIP _inferior parts

Z Z* Z.
s i

Z-Value

Figure I Z-Value Distributions

The value Z* is called the critical value and is the criterion

used for classification of parts into superior and inferior cate-

gories. In practice, the Z-value of each part is computed and all

parts with Z-values greater than Z* are classified inferior while

those with Z-values less then Z* are classified as superior. If

the distributions of inferior and superior part Z-values are as

shown in Figure i, then the area P1 represents the percentage of

superior parts which will be misclassified as inferior, and the

area P2 represents the percentage of inferior parts which will be

misclassified as superior. The critical value Z* can be chosen

to reduce one of the areas at the expense of the other.

Assuming that indicator parameters exist for the part under con-

sideration, and that a linear function of these parameters as in

equation [i] will form distributions as shown in Figure i, the

basic problem is to determine the value of k • From equation [i],n

the mean Z-value of the inferior parts is seen to be:

Z = + + .+kX
i klXli k2X2i n ni

[2]
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and that of the superior parts is:

= -- + -- + . . +kXs klXls k2X2s n ns

where the subscripts i and s refer to data obtained from the in-
ferior and superior parts respectively. The difference between
these Z-value means is :

From Figure i it may appear desirable to make this difference as
large as possible to increase the ease and efficiency of discrim-
inating between superior and inferior parts. This could be ac-
complished easily, as seen from equation [4], by merely increasing
the values of k . However, increasing the k values will increasen
the dispersion of Z-values obtained from equation [i], and the
resulting overlap shownin Figure I may give higher probabilities
of misclassification. It is there fore required that values of
k be determined which maximize equation [4] relative to its stan-
dard deviation, or to maximize the ratio:

which is equivalent to maximizing the ratio:

By taking the partial derivatives of equation [6] with respect
to each of the k's and equating to zero, it can be shownthat the
values of k which maximize this ratio satisfy the following setn
of linear equations:

Xli - Xls = klSll + k2s12 + . . . + knSln

-- u

X2i - X2s = klSl2 + k2S22 + • . + knS2n

Xni - Xns = klSln + k2S2n + . . + knSnn

where the S's are sums of products similar to those used in least

squares analysis and are defined by:

Stun = _(Xm i -%i 1 (Xni- %i) + _(Xms- Xms)(Xns- %s I

[3]

[4]

[5]

[6]

[7]

[8]
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From the considerations associated with equation [4] through [8],
the following procedure (Ref 3) is used to derive the linear dis-
criminant function of equation [i]:

i) A set of parts is chosen for testing simulated use conditions.

The test group is assumed to present the propulsion to be

screened. The test gnerally consists of a load life test of

a duration equal to the required life. (For example, the test

to be performed on resistors may be operation for 2000 hours

at rated power and at an ambient temperature of 125°C.)

2) Indicator parameters are selected which by experience of judg-

ment are believed to be significant in indicating future per-

formance of the part type to be analyzed. Measurements of

selected parameters are taken initially and after burn-in as

required. If doubt exists regarding the status of a parameter

as an effective indicator, it should be included, as later

analysis will reveal its significance. (For resistors, the

initial measurement parameters which have been used are voltage

coefficient of resistance, temperature coefficient of resis-

tance, and current-noise voltage.) Initial resistance mea-

surements are made for the purpose of determing delta shift

during burn-in. The post-burn-in measurement is resistance

only. This constitutes four candidate indicator parameters,

or n = 4 in equation [I]. The indicator parameters, X 1 through

X_, are values of a) voltage coefficient of resistance; b)

temperature coefficient of resistance; c) current-noise voltage;

d) percent change of resistance during burn-in.

3) The load life test is performed after the post-burn-in mea-

surements of step 2) are taken. After performance of the load

life test, measurements of the parameter which is required to

be stable are taken. All test parts are classified as infer-

ior or superior as a result of these measurements. (for re-

sistors, the criterion may be a required minimum percent re-

sistance change during the 2000-hour load life test. An alter-

nate approach is to order the values of percent change and

identify resistors with the largest delta values as inferior.

For example, it may be desired to select 30% of the most stable

resistors in a given lot for critical use. The top 70% of the

ordered list would be classified inferior while the most stable

30% of the test group would be classified superior.)
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4) The indicator parameter data obtained in step 2) are separated

into two sets corresponding to the classifications made in

step 3). One set is the data of parts classified inferior

and the other set is the data of parts classified superior.

5) From the two data sets of step 4) the products of equqtion

[8] are calculated. The set of linear equations [7] is then

solved for the values of k which maximize equation [5]. The

k values thus obtained provide optimum separation and minimum

overlap between the Z-value distributions of inferior and

superior parts shown in Figure i.

6) The linear discriminant function is established by inserting

the values of k, determined in step 5) into equation [i].

Z-values for each of the test parts are then calculated from

the data obtained in step 2). The Z-values are ordered and

a values of Z* chosen, which provides the discrimination be-

tween superior and inferior classifications predetermined in

step 3).

If proper discrimination of the test group is obtained by the

above procedure, it is assumed that use of equation [i] with the

values of k determined in step 5), and use of the value of Z*

determined in step 6), will discriminate between inferior and

superior parts in the remainder of the lot and possibly in future

lots. Many options are open to the investigator. For instance,

the data obtained in step 2) may be analyzed in various combina-

tions to determine the optimum 2-parameter, 3-parameter, etc,

discriminant function. These analyses indicate the effective-

ness of various parameters as indicators, and the optimum com-

bination of indicators that may be used. Also, analysis of the

Z-value distributions obtained may indicate that transformations

of the data may be required to obtain normality. Analysis of

the distributions can also be made to determine values of Z*

required to minimize costs resulting from misclassification (Ref

3), or to obtain a set of superior parts with a given probabil-

ity of containing inferior parts.

An example of the linear discriminant analysis approach is given

in Reference 4. A group of 501M Minutemant transistors were

tested and a discriminant function developed to identify parts

capable of meeting unusually tight limits and delta changes of

leakage and gain parameters. Analysis of the Z-value distribu-

tions showed that a maximum of 2.84% inferior parts should be
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misclassified as superior (95%confidence) whenusing the partic-
ular critical value of Z* chosen. Of 3100 parts classified as
reliable by the linear discriminant function and the chosen Z*,
87 parts (2.8%) failed the tightened limits after 600 hours of
test. It was concluded that a linear discriminant function can
be used effectively to screen out inferior parts from a produc-
tion lot.

The principal advantage of this approach is that the systematic

method provides assurance that no other linear or transformed

combination of parameter measurements will yield a criterion with

smaller probabilities of misclassification.

The main disadvantage of this method is that a load life test

duplicating the actual load conditions and life durations is re-

quired to establish the discriminant funtion. Extended tests

duplicating long life mission times and stress profiles are ob-

viously impractical. Also, it is expected that the discriminant

function will vary with the particular part tested. The approach

is purely statistical, and unless a physical explanation can be

established relating the indicator parameters with superior part

performance, no universality can be expected in the parameters

of the discriminant function. The k values may indeed vary from

type to part type within the same part class. Also, the discrim-

inant function may vary with test conditions and criteria for

superiority. Even successive lots of the same part from the same

manufacturer could require different discriminant functions due

to gradual unintentional process changes, as well as process and

material variabilities.

Because of these uncertainties and difficulties, it is recommended

that the Linear Discriminant Analysis method be considered inap-

propriate as a general approach to the long life electronic part

problem. However, it is recommended that the method be held in

reserve and tested for appropriateness when occasion demands se-

lection of the more stable parts from the particular group. In

this event, it is also recommended that short term accelrated

tests be performed in lieu of the long term life tests normally

prescribed for establishment of the discriminant function.
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E. PARAMETER DRIFT SCREENING

The basic premises in the Parameter Drift Screen (PDS) approach

are that all of the parts in a given lot of a specific part type

are not identical, that the parts which will fail first are pre-

determined to a certain extent, and that, as in the Linear Dis-

criminant Analysis approach, certain parameters exist which are

"critical" in indicating which parts will fail first. In the

PDS approach, however, each critical parameter is considered

separately, whereas, in the Linear Discriminant Analysis approach

they are considered in linear combinations. It is assumed that

the mechanism which causes one part to fail first, rather than

another, is taking place gradually, and is evidenced by the gradual

change or "drift" of the critical parameters.

Parts subjected to burn-in often exhibit a normally expected param-

eter drift due to various stabilizing processes. Initially,

these stabilization processes usually exhibit wide variations in

drift of the critical parameters and mask the more subtle changes

which may be occurring simultaneously due to material or material-

processing defects. These more subtle changes are therefore gen-

erally undetectable during a short term burn-in, particularly when

initial and final parameter measurements only are made. However,

delta shift limits during burn-in are useful in eliminating parts

with grosser defects.

The simplest PDS approach to detect the more subtle indicators of

part failure is to perform a power aging test subsequent to the

standard screen tests of temperature cycling, burn-in, high tem-

perature bake, and constant accelration. Tight drift limits of

the critical parameters during the power aging test are used to

assure that parts which continue to drift excessively subsequent

to the initial burn-in are rejected. It is these parts (other

than "random" failures) which are expected to fail first in a

long-life application. It is assumed that drifts due to stabiliz-

ation processes have been completed during the initial standard

screening burn-in.

An example of this approach is given in Reference 5 where ap-

proximately ii,000 semiconductors were tested. Before starting

the PDS power aging test, the parts were subjected to standard

screening tests which included a 250-hour burn-in at rated junc-

tion temperature. The successfully screened parts were then

placed into a 500-hour PDS power aging test and the critical par-

ameters measured every i00 hours. The critical parameters and

drift criteria for each part type were as shown in Table i0.
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Table 10 Critical Parameters and Drift Limit

Type of Part

Diodes and

Rectifiers

Varactor

Diodes

Silicon-

Controlled

Rectifiers

Zener

Diodes

Transistors

Critical Parameter

i. Forward voltage drop

2. Reverse leakage current

i. Junction capacitance

2. Quality factor

3. Reverse leakage current

i. Forward leakage current

2. Reverse leakage current

3. Forward voltage crop

i. Zener voltage

2. Reverse current

3. Zener impedance

i. Collector-emitter saturation voltage

2. Collector-base leakage current

3. Collector-emitter leakage current

4. Emitter-base leakage current

5. Direct current gain

Drift

Limits

±0.05 Volt

±20%

±i0%

±10%

±i0%

±20%

±20%

±0.i Volt

± i%

±20%

±i0%

±0.05 Volt

±20%

±20%

±20%

±10%

The general drift criteria were adjusted for special cases to ac-

commodate test equipment repeatability and accuracy limitations.

For example, the drift limits for planar transistor leakage cur-

rents were the larger of _20% or 2.0 nanoamperes. Of the parts

which successfully passed initial screen tests, a further 12%

were rejected by the PDS tests.

One of the interesting results of this test program was measure

of effectiveness on the 2N2512 NPN epitaxial planar transistor.

No rejects occurred in initial screening during burn-in, which

did not include a delta limit criteria. However, of 1092 parts

which were subjected to the subsequent PDS test, 97 were rejected.

An extended life test was then performed on 94 of the PDS rejected

parts and i00 of the PDS accepted parts. The extended life test

consisted of 1500 additional hours of operation at maximum rated

junction temperature. None of the PDS accepted parts exceeded

specification parameter limits during this test. However, 15 of

the PDs rejected parts exceeded rated leakage current limits dur-

ing the extended life test.
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An indication of the continuing gradual operation of the non-sta-
bilizing degradation process was achieved on the 2N930planar
silicon transistor. One lot of these parts had a high percentage
(20%) of PDSrejects due to surface inversion leakage. The leakage
current continued to increase on the rejected parts throughout
the PDS,while it stabilized on the accepted parts. Comparison
of leakage current of the rejected and accepted parts is shown
in Figure 2. It is significant to note that neither leakage cur-
rent limits nor a one nanoampereleakage current delta shift cri-
terial during the pre-PDS screen test is capable of detecting the
rej ects.

On somepart types, the PDSrejects occurred during the first i00
hours of testing. On others, rejects occurred during later 100-
hour intervals. The cumulative rejects for all transistors (nine
types tested) is shown in Figure 3. This curve indicates that
sometransistors mayrequire more than 500 hours of PDSpower
aging to detect all the rejects.

In Reference 6 it is reported that TRWutilized an 832-hour power
conditioning test following a 168-hour burn-in on Intelsat III
semiconductors. The power conditioning test was an extension of
the burn-in test. Parameter measurementsduring the 1000-hour
combined test were taken at O, 168, 600, 750, and i000 hours,
providing five data points for parameter drift calculations. As
this was a 100%test of the lot, no Group B 1000-hour lot sample
life tests were performed. Identification of all data was main-
tained with the serialized part from which it was derived. In a
refinement of the PDSapproach the performance stability of each

part was evaluated rather than merely rejecting all parts exceed-

ing specified drift limits. Thus, in the group of parts which

passed the PDS delta shift criteria, further rejection of specific

parts with suspect drift patterns was made. On Inteisat Iii,

part acceptability was based on review of the parameter data for

each part. Parts whose parameter drift patterns were erratic,

differed significantly from the norm of a lot, or exhibited a

degradation toward failure, were rejected for flight use.

In reviewing results of the 27 semiconductor lots subjected to

this program, the impact of the 832-hour power conditioning test

was of primary interest. Two lots were totally rejected because

of failures during this portion of the test. Only four lots were

failure-free. It was concluded that:

.

.

The two lots which were rejected would probably have passed

a Group B lO00-hour sample life test.

The 168-hour burn-in is not sufficient to eliminate every

defective part. Extended power conditioning PDS tests are

needed for this purpose.
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Another variation of the PDS approach, called Degration Analysis

by Hughes Aircraft Company, is described in Reference 7. The

degradation analysis approach, similar to the others described

above, requires a period of extended power aging on 100% of the

parts. A mandatory prerequisite to the power aging test is an

effective screen test to eliminate parts with assembly defects.

The screen test includes a 168-hour burn-in at maximum rated condi-

tions. The power aging test is usually a 504-hour extension of

the burn-in test. However, other aging conditions have been used

(Ref 8), such as power on-off cycling for periods of up to 1500

hours to simulate a normal use schedule.

Figure 4 shows typical degradation paths that may be followed by

the critical parameters during burn-in and power aging. All the

paths shown remain within specification limits throughout the

test, but exhibit distinctly different kinds of drift and stabil-

ization behavior. Path A shows the normal type of stabilization

process that might be expected in semiconductors. It consists of

a relatively large early drift and very little change after stab-

ilization. Path B, however, is one which cannot be expected to

stay within specification limits for an extended period of time.

It may be indicative of a material or material-processes defi-

ciency. A comparison between Paths A and B illustrates the im-

portance of the path in revealing future behavior of the part

as opposed to specification limits or delta shift limits. Both

A and B have the same delta changes and are within limits, but

parts following Path B would be considered unacceptable for long

term missions. The erratic behavior of Path C may be the result

of several weaknesses within a part. It cannot be depended upon

for reliable performance even through measured values and delta

shift may be within the acceptable limits for good parts. Path

D shows very little drift with respect to the others. Although

the final value is closest to the lower specification limit, it

may represent the most reliable of all the parts. Another impor-

tant consideration is the drift behavior of a part in comparison

to others in the same group or population. If the behavior de-

viates appreciably, its reliability is open to suspicion.
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The degradation analysis approach utilizes four sets of parameter
measurementsmadeduring the burn-in and power aging tests. These
are madeinitially, after 168 hours of burn-in, and after 168 and
504 hours of power aging. Data from these measurementsare uti-
lized in computer programs to assess the behavior of each individ-
ual part and to compute lot statistics. The stabilization path
followed by each individual part during test is evaluated quantita-
tively by meansof a numberknownas the degradation figure of
merit (DM). Figure 5 illustrates the meaning of this figure of
merit as it applies to a part parameter following path type B.
The values of the indicator parameter at the four measurementtimes
are shownconnected by straight lines with slopes S1 and S2 during
power aging. The drift limits shownare the parameter values which
will not meet typical circuit requirements. Another straight line
of slope S is a projection which continues the trend of change.
The figure of merit DMis the time after power aging that the pro-
jected trend of slope S intercepts the drift limit. The model
used for estimation of slope S is based on the radio of S2 to SI.
It is computedalgebraically as follows:

s : s2"Is21s I

The time DM cannot be treated as an expected time to failure, but

is a measure of the stability behavior of the part. It is weighted

by the proximity of the final reading to ultimate failure. As a

figure of merit it can be used to compare parts against each other

or against the populations from which they come or against known

good devices. A minimum figure of merit can be used as one of the

criteria for selection of parts to be used in long-life missions.

For a part parameter following degradation path A, the figure of

merit DM is conservative with a constantly decreasing slope.

An application of this approach on the Early Bird satellite is re-

ported in Reference 8. Over 19,000 parts were tested including

transistors, diodes,resistors, and capacitors. Degradation analysis

data was obtained during lO00-hour and 1500-hour on-off power aging

tests. Parts were graded into three categories on review of the

computer outputs which included figures of merit for each part.

Potentially unreliable parts were graded as rejects. The best parts

were graded flight quality. The rest were graded flight residual

to be used for non-flight usage. Although the parts were the high-

est quality parts which could be obtained against special controlled

specifications, 30% were screened out by this method as being un-

suitable for flight use, even though the operational parameters

were still within specification limits.

[9]
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All of the PDS approaches have the advantage of assuring a degree

of parameter stability in the parts screened. The more refined

methods, such as Degradation Analysis, provide a further benefit

of permitting selection for flight use of the specific parts in-

dicating superior long-life stability characterstics.

Parts screened with PDS are more costly due to the extended power

aging tests, the additional parameter measurements and the preci-

sion required, the data analysis effort, and the higher selectivity

which results in a greater reject rate. For the OGO satellite

containing approximately 80,000 parts, it was estimated that (Ref

6) a comprehensive PDS program for electronic parts would cost in

excess of two million dollars. Reliability tradeoffs resulted

in screening only diodes and transistors on a i00 percent basis

at a cost of $250,000.

It is recommended that the PDS approach be utilized in a parts

screening program where long-life stability is a necessity. As

opposed to imposition of this approach as a general requirement

for all parts, it is recommended that the PDS method used, the

degree of refinement implemented, and the parts which it is ap-

plied, be determined by means of program tradeoff studies.
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F. CURRENT-NOISE ANALYSIS SCREENING

Current-noise analysis screening has received considerable atten-

tion as a technique to detect unreliable parts because it is

relatively inexpensive and has little impact on schedule. This

technique is one of the "zero-time" screening tests which attempts

to forecast future part performance on the basis of noise charac-

teristic measurements made in early life. Reference 9 states that

some investigations have concluded that there is significant cor-

relation between noise measurements and long term performance.

However other investigations have concluded that the correlation

is too weak for screening purposes.

All parts exhibit a "thermal" noise as a result of random electron

movement within the conducting medium. The RMS value of the noise

voltage is a function of temperature and resistance. Current

noise is the increase in noise level, over thermal noise, which

occurs when a current is passed through the conducting medium.

For resistors (Ref i0) current noise is generally the greatest

in carbon composition types, less in deposited carbon types, still

less in metal film types, and unmeasureable in wire wound types.

As in mechanical hardware, where excess audio noise may be an in-

dication of impending malfunction, an abnormality in the current

noise of apparently identical resistors may be an indication of

defects. Although thermal noise has a flat distribution of power

through the frequency spectrum, current noise exhibits an inverse

power versus frequency characteristic. The effect is, therefore,

more pronounced in the lower frequencies, largely below i00 kHz.

A correlation between noise and defects in tin-oxide film resis-

tors is reported in Reference i0. The resistors tested utilized

a transparent film of tin-oxide on a cylindrical glass substrate.

They were adjusted to value by cutting a helix into the film.

The resistors were uncoated to facilitate examination. On visually

examining resistors exhibiting abnormally high noise levels, de-

fects causing current constrictions were observed which could

reasonably cause the noise due to higher than normal current den-

sities. The resistors were then powered while under observation

with a binocular microscope. A shorting probe was used to divert

the resistor current from the defect. By probing the part in

this manner, the source of noise production could be located with

precision. On diverting the current from the defect, a distinct

reduction in noise is reported. One group of defects, called

series-type defects, consisted of film scratches, wide chips,
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film porosity, cracks or checks in the substrates glass, and ex-
cessive cap to film contact resistance. These were called series-
type defects because the entire resistor current pa_sed through
the region with abnormally high density. Shunting defects were
also observed which consisted of foreign material bridging the
spiral cut, and bridges of undisturbed film across the cut path.

A correlation between current noise level (using the system of
measurementin Ref ii) and load life test results was then inves-
tigated. Standard tin-oxide resistors were selected for test
wherein the possibility of defects was high. The general purpose
resistors were 1/2 watt, 150,000 ohmconstructed with high resis-
tivity film, high turn-per-inch helixing, and small size. Noise
measurementswere madeon 4000 units and results ranged from -35
dB to +25 dB. One hundred samples, with noise values evenly dis-
tributed throughout this range, were selected for i000 hour-cycled-
load-life-testing. It was determined from the load life test,
by meansof the drift and temperature coefficient data obtained,
that a noise index of -21.3 dB would have eliminated all resistors
with erratic or abnormal performance. Although all resistors ex-
hibiting substandard performance were noisy, not all noisy resis-
tors were substandard. If all 4000 resistors in the original
group were screened to this noise index, rejecting all units with
an index greater than -21.3 dB, there is indication that most of
the substandard units would be eliminated. However, a significant
number (approximately 16%)of apparently good resistors would also
be rejected. None of the "quiet" resistors showedabnormal per-
formance during the load life test.

The tests performed do not necessarily show that noisy resistors
are poorer than quiet resistors, but that units exhibiting current
noise characteristics greater than other devices of their family
are reliability suspects. Carbon composition resistors exhibit
a total lack of correlation. Carbon deposition resistors, however,
have exhibited a correlation between abnormal behavior in load
life and higher value of noise.

A typical application of this approach is reported in Reference
12, where 909 tin oxide resistors were tested using a noise index
rejection limit of -15 dB. Twenty-three resistors were rejected.
It is stated that there was no apparent correlation between either
resistance value and current noise or between applied voltage and
current noise. Also, different manufacturing lots of the same
resistance value exhibited different current noise characteristics.
It is observed that resistors which are outliers of the lot should
be rejected even when they are well within the noise index speci-
fied.
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Excess noise of transistors at i000 Hz was investigated as a func-
tion of lifetime in Reference 13. In order to reduce test time,
an aging temperature of 350°Cwas used for silicon devices 2N697,
2N914and 2N1565. It was found that the low frequency noise for
individual parts remained fairly constant throughout most of the
test, while other parameters such as base current changedgrad-
ually. As failure of the part was approached, the excess noise
changedvery rapidly, increasing by two to three orders of magni-
tude, well before other!parameters evidenced a marked change.
It was concluded that low frequency excess noise can provide a
warning of impending failure in transistors that is more sensitive
than other parametric measurements.

In Reference 14, excess noise was considered to consist of two
components. One is called "clean" noise which is statistically
regular and the other irregular componentis called burst noise.
It was postulated that burst noise is closely associated with
parameter drift and results from nonstationary processes arising
from irreversible breakdownsand chemical actions. Burst noise
was investigated on tin-oxide film resistors, diodes, lead sul-
phide photoconductive cells, tantalum capacitors, silicon tempera-
ture sensing resistors, germaniumtransistors, dry cell batteries,
and carbon film resistors. Noise from items such as carbon film
resistors, diodes, and transistor junctions showedthe inverse
power versus frequency characteristics. However, noise from elec-
tro-chemical processes such as in the dry cell battery showed
that the power varied inversely as a function of the frequency
raised to a power between 1 and 2. Tests were performed to de-
termine correlation between noise and parameter drifts of germa-
nium transistors. Parameters investigated were gain and leakage
current. No such correlations were able to be established as a
result of these tests.

In Reference 15, an evaluation of radio frequency noise in the
range of 2 to 30 megahertz was madeon IN645 silicon diodes and
on solid tantalum capacitors. The intent was to establish and
validate RF noise measurementsas a technique for screening these
parts. In the course of perfoming RF interference tests required
for military equipment, Honeywell had occasionally observed high
noise levels which resulted from intermittent faults within the
equipment. Mechanical shock at times would aggravate the condi-
tion, and faulty parts on a subassembly could be located by tapping
each part with a phenolic rod to determine which one caused the
highest noise. The evaluation program included a study to opti-
mize the techniques for measuring RF noise. To evaluate RF noise
measurementsas a screening test, conventionally screened diodes
and capacitors were subjected to noise measurementsand then placed
on life test. Correlation between noise level and life perfor-
mancewas attempted, and an investigation into failure mechanisms
which cause RF noise was made.
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Of 20,200 diodes screened conventionally and subjected to RF noise
measurements,86 passed all specifications and exhibited excessive
noise. Of 9,808 capacitors screened, 67 noisy parts were detected
which passed all other requirements. The percentage of noisy
parts was, therefore, relatively small. Oneof the sources of
diode RF noise was determined to be microplasma. One sectioned
diode was examined in a darkroom and it was noted that light in-
tensity of the discharges and the RF noise intensity behaved
similarly as temperature and applied voltage was varied. Sec-
tioning of 20 noisy diodes at the end of test provided no other
definite conclusions regarding noise sources and causes of poor
operation. RF noise in the capacitors was in the form of spikes,
rather than of a sustained nature. It was believed that the noise
was generated from variations in the oxide film thickness due to
irregularities in the tantalum surface. Breakdownand subsequent
healing at irregularities would result in current impulses and
noise.

The results of life tests are shownin Figures 6 and 7. Seventy-
eight noisy diodes and forty noisy capacitors were placed on life
test, the diodes for 3000 hours and the capacitors for 2000 hours.
Failure criteria were the specification limits for diode leakage
current and forward voltage drop, and capacitor dissipation factor
and leakage current. Quiet capacitors and diodes were simulta-
neously placed on test at maximumrated conditions for comparison
purposes. It is seen from Figures 6 and 7 that the noisy diode
failure percentage was almost twice that of the quiet diodes. The
noisy capacitor failure percentage was almost three times that of
the quiet capacitors. It was concluded that parts containing high
RF noise have a higher incidence of failure than parts that do not
exhibit such noise.

On completion of the life test, all diodes that were still operat-
ing were re-measured for RF noise. It was found that almost all
diodes were quiet. Of 49 initially noisy diodes still operating,
44 had becomequiet. On the other hand, three of the initially
quiet diodes had becomenoisy. It was postulated that the noisy
diodes defects, once they survived life test, had cured themselves,
and that quiet diodes becomenoisy before failure.

From the various investigations and test results published, it is
concluded that defects in manytypes of parts exhibit themselves
by excess current noise and/or RF noise. However, very little
correlation has been established between noise level and type of
defect or device life. It is recommendedthat noise testing be
utilized only for detecting mavericks in a production lot, such
that parts which have outlier noise indices are considered re-
liability risks.
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G. THIRD HARMONIC ANALYSIS SCREENING

Harmonic analysis screening is similar to current-noise testing

in that it is also a "zero time" test which is economical to per-

form and has little schedule impact. It utilizes the principle

that normally linear devices, such as resistors and capacitors,

will exhibit non-linearities when containing defects such as poor

connections, film discrepancies, or small movements caused by

electrostatic forces. In Electronics Magazine, of 4 April 1966,

it is reported that the L. M. Ericsson Telephone Co. of Stockholm

found a close correlation between the noise in a linear component

and the harmonic distortion the component causes when a pure sine

wave is applied. The third harmonic technique was implemented

to improve the speed of screening which was previously performed

by wide band noise testing. Noise testing typically consumed

about one-half second per resistor, while the third harmonic

equipment could process resistors at a rate of 20 per second.

Non-linearities are indicated by third harmonic content when a

sinusoidal i0 kilohertz wave is applied to the part. As this is

applied to batch processing, a sorting device is coupled to the

tester to separate rejects. Similar to current noise testing,

further reliability of a batch can be achieved by eliminating

parts whose non-linearity is an outlier of the batch.

Although third harmonic testing has received relatively little

attention in this country, it was investigated as a promising

technique for detecting surface related defects in integrated

circuits (Ref 16). Fifty integrated circuit packages (i00 gates)

from each of four manufacturers were used in the principal experi-

ment. These represented two logic configurations and two fabrica-

tion technologies. An additional 15 packages (30 gates) from

each manufacturer served as controls and spares. Two of the cir-

cuit types were TTL dual four-input gates and the other two were

DTL dual four-input gates. All circuits were initially subjected

to a stabilization bake for 20 hours at 250°C to erase past his-

tory and stabilize characteristics. Initial data was taken after

stabilization bake. Devices were checked for normal switching

action. Sundry parameters, including second and third harmonic

distortion, were measured. Although some distortion is always

present in any integrated circuit biased in the Class A linear

mode, it had been previously postulated and verified that excess

distortion could result from surface inversion layers, especially

when they occur over active regions of the device. Harmonic con-

tent of the circuit output was measured when driven with a pure

sinusoidal fundamental signal.
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All specimens, except the control samples, were then exposed to
a preconditioning environment of 5 x 104 roentgen cobalt-60. The
purpose of preconditioning was to accelerate formation of inver-
sion layers in the devices with such defects. A second set of
measurementdata, including harmonic distortion, was then taken.
A comparison of the pre- and post-radiation data revealed no pa-
rameter trends or correlation between parameter changes and the
exposure. It was assumedthat the surface passivation of the
circuits was very good.

Following preconditioning, all specimens, except the control sam-
ples, were put on life test for 4080 hours at a temperature of
165°C. The specimenswere biased, unloaded, and driven by a
1.0 kHz square wave generator. A final set of data was obtained
to identify failures and to determine the changeswhich occurred
in harmonic distortion. There were eleven pertinent failures.
No correlation was found to exist between failures and high har-
monic distortion. It was noted that specimens, which exhibited
large harmonic distortion, generally had more obvious deficiencies.
It was concluded that harmonic distortion measurementsare of
little practical value for screening integrated circuit surface
defects.

From these results, it is concluded that the value of third har-
monic analysis screening is limited to linear passive parts and
is unsuitable for active parts. Also, the value of this approach
probably lies in the detection of mavericks in a production lot
as exhibited by above average distortion values. Further inves-
tigation of this approach should be madebefore implementation
as a screening requirement.
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H. SHORT-TIME OVERLOAD TESTING

Overload testing is cormnonly performed on resistors to enhance

detection of defects such as contamination, thin spots in wires

and films, termination problems, and to detect weaknesses that

may cause failure under circuit transient conditions. A large

variation in voltages, durations, and power levels used exists

among the various types of resistors, and also between users of

a given type. Generally, all discrete resistors have a voltage

and power capability in excess of their ratings. At times, when

resistors are used under continuous transient conditions, such as

in pulse applications, there may be little relationship between

normal ratings and the transient capability. Conventions such

as pulse power rating of i0 times DC power rating and pulse volt-

age rating of i000 volts per inch may not be realistic. Such

conventions may handicap a design by unnecessarily requiring a

physically large component. An interesting study (Ref 17) which

was performed by Sandia Corporation demonstrated the short time

capability of various resistors. For instance, it was found that

wire wound resistors could withstand from 8 to 48 kV. of 20 micro-

second pulse voltage, depending on wattage rating and resistance.

Metal film resistors varied from 200 volts to 50 kilovolts, and

carbon composition resistors varied from 200 volts to 20 kilovolts.

Pulse power capability varied from 500 times rating for carbon

composition, to i000 times rating for metal film, to 5000 times

rating for wire wound resistors. The larger resistance values

and power ratings had the greatest capability. In viewing these

results, it must be considered that during the tests, average

power was always within the resistor rating, the duty factor was

less than 1%, and the criteria for success was the capability to

withstand a minimum of i00 pulses without catastrophic failure.

The results illustrate, however, the general increase in capability

with reduced test time.

The more conventional sho=t time tests are those utilized in con-

junction with military specifications such as MIL-R-39017, MIL-R-

39005, and MIL-R-55182. They are variously referred to as power

conditioning, overload, or short time overload tests. The power

levels may be from 1-1/2 to 5 times rated power and the durations

from lO minutes to 24 hours, depending on type of resistor and

user. Power conditioning tests are designed to stabilize the re-

sistor. Overload tests are designed to precipitate defectives to

failure. The overstresses should be high enough to eliminate "bad"

parts but within the capability of "good" parts. A common criteria

for rejection is an allowable percent resistance change during

overload. This requires resistance measurements before and after

test.
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Another approach, not as widely used, was developed by Dale
Electronics, Inc. for use on wirewound resistors they supplied
for Minuteman. It is called the GARDsystem, which is an acronym
for Graphic Analysis of Resistance Defects. In this approach,
resistance measurementsare not made, but a recording of percent
resistance change is madeduring the application of a controlled
pulse of maximumnon-destructive power. The power level is se-
lected to bring the resistance element temperature up to a point
which is just below that which would damagethe resistive mate-
rial. It is generally 5 to 20 times the rated power applied for
a period of 5 seconds or less. It is claimed that since the tem-
perature rise is effected in such a short time period, the dif-

ferential expansion creates higher stresses than would be encoun-

tered in normal operation. As resistance changes are recorded,

the graph not only provides a record of the total delta shift

during test, but also displays the time variation of resistance

changes. Good resistors of the same type and value display smooth

parallel curves. A deviant resistor shows up as a ragged curve

or a smooth curve with a different slope. Defects such as shorted

turns, bad welds, conductive contamination, and poor terminations

show up as ragged curves. Wire which will exhibit excessive shift

over extended load life or has an excessive temperature coeffi-

cient of resistance will show up as a smooth curve with a deviant

slope.

It is claimed that a 5 second GARD test can supersede the stan-

dard burn-in approach which is usually i00 hours. Test results

have indicated that (I) in no case has the GARD system failed

to detect defects which would result in catastrophic failure,

(2) in no case has the GARD system failed to detect a defective

part which would fail the load lift test of Established Reliabil-

ity Specifications, (3) in all cases the GARD test has been more

sensitive and screened out more defects than the i00 hour burn-in

test, and (4) good correlation has been achieved with failure

analysis. Substitution of GARD testing for burn-in will also

reduce cost and cut delivery time by about a week.

Reference 18 describes typical results of tests which were per-

formed to verify the effectiveness of GARD. These included the

manufacture of parts with built-in defects, large quantity GARD

testing of standard production units and analyzing rejects, com-

paring results of GARD tests with standard burn-in tests, and

relating results of long term life tests with GARD test predic-

tions. It is reported that all units manufactured with intentional

defects were detected in GARD tests. From continuous production
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GARDtests, a total of 2,095 parts were rejecte/ in one period of
time. All were failure analyzed. Physical or material defects
were verified in 97%of the units. It was believed the other 3%
contained metallurgical or stress induced anomalies difficult to
detect by analysis. As the GARDtest is non-destructive to good
parts, burn-in was also performed subsequent to GARDon manysam-
ples. A typical result reported on a sample of 1400 resistors
is that GARDdetected all burn-in rejects and an additional 4.3%
which passed burn-in. A typical i000 hour load life test on
1,824 resistors showedthat GARDdetected all units which exceeded
a 0.15% resistance change. On another test of 2,800 resistors,
GARDdetected all outliers of the group distribution after i000
hours of overload. On another group of 25,000 resistors, GARD,
momentaryoverload, and i00 hour burn-in tests were performed in
that sequence on all resistors. The GARDtest rejected 102 units,
the momentaryoverload rejected 27 units, and the burn-in test
rejected ii units. The GARDtest detected all burn-in rejects
but only 23 of the momentaryoverload rejects. Another 19 units
rejected by GARDwould have been rejected by momentaryoverload
if an outlier criteria had been used.

Shallcross and Sage have also utilized this approach to a lesser
extent. The users have included JPL and BTL. Autonetics, for
Minuteman, has been the major user. JPL presently uses GARDon
Dale resistors only, but also requires a 168 hour burn-in because
it is believed that GARDdoes not provide stabilization or strain
reliefs that are derived from longer term tests. The approach
has been used to a lesser extent on film resistors. Gross defects
such as bridging or thinned metalizations have been detected, but
in general the power must be brought to levels which are damaging
to good parts in order to detect more subtle defects.

In Reference 19, the effectiveness of various screening tests
for thin film resistors is analyzed. The tests considered were
i00 hour burn-in, current noise, short time overload, and power
conditioning. The approach used was to subject a group of parts
to the particular screen test being evaluated, note the rejects,
and then submit both accepted and rejected parts to a 1000 hour
load life test. Tightened limits (±0.25% resistance change) were
used to classify load life failures. The burn-in consisted of
full rated load at 125°C, 1 1/2 hours power on, 1 1/2 hours power
off. Reject criteria was ±0.10%delta change. The current noise
criteria was -20 dB at rated load. The short time overload con-
sisted of 2.5 times continuous working voltage for 5 seconds.
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Reject criteria was ±0.10%delta change. The power conditioning
test consisted of four times rated load for six hours, and reject
criteria was ±0.25%delta change in resistance. The results of
test data analysis is shownin Table ii:

i"able 11 Resistor Screen i'est _ffectiveness anJ _fficiency

Screen Test

Burn-In

Current Noise

Short Time

Overload

Power

Conditioning

% of Parts

Rejected

by Screen

3.4

67.6

11.4

8.9

% of Rejects

Which Passed

Load Life Test

58

91

50

77

% of Load Life

Failures Detected

in Screen

92

74

71

69

On the basis of this data, the burn-in tests as performed appears

to be the most effective as 92% of the load life failures were

detected. The other three screens were about equally effective,

but the current noise test used was very inefficient as 91% of the

rejected parts did not fail load life testing. It is possible

that a different current noise reject criteria coupled with out-

lier detection may have been more effective and efficient. The

power conditioning and sh_rt time overload tests are both similar

overstress tests, the difference being in level and time duration.

Outlier detection may also have increased the efficiency and/or

effectiveness of the other screens.

The short time overload tests can be roughly categorized by time

duration. The very short term tests such as GARD are in the order

of seconds, overstress power conditioning tests or overload tests

are in the order of hours. Tests in the order of seconds are

performed at 5 to 20 times rating, tests in the order of hours

are performed at 1 1/2 to 5 times rating. Bell Telephone Labo-

ratories utilizes a one hour overload test on thin film resistors

for some high reliability applications. These are conducted at

4 to 5 times rating and the usual i00 hour burn-in is not required.

Wirewound resistors are tested for 1 to 2 1/2 hours at 1 1/2 to

2 times the power rating.
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The large variety of short time overload tests used indicates
the need to tailor such tests to individual parts. A universal

short time overload test does not appear feasible. The very short

tests such as GARD appear to be effective on wirewound resistors

but not suitable for thin film resistors. It is recommended that

GARD tests be used only on those wirewound resistors where data

e_sts to support its effectiveness, such as on the Dale product.

Evaluation of effectiveness on other products is necessary before

implementation. To assure the highest quality product, burn-in

or a longer term overload test is also necessary (i) to eliminate

defects which require a time under stress and (2) to provide stab-

ilization. For both wirewound and thin film resistors, overload

tests in the order of one to two hours can probably be used ef-

fectively in lieu of either the GARD approach or a long term burn-

in approach. It is recommended, however, that elimination of

burn-in and use of such overload tests be implemented only where

data exists which justifies this approach. Where data does not

exist, evaluation must be performed to determine the maximum over-

load temperatures desired and the optimum time at these tempera-

tures.
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I° OPTIMIZATION OF STRESS SCREENS

The variations that exist between manufacturers in designs, mate-

rials, processes, and controls result in corresponding variations

in reliability grades for each part type. Screening will not

improve the lifetime of any individual part, but can remove the

incipient failures so that the life distribution of the survivors

has a greater mean value then the original group. It is to be

expected that with a given screen, the mean life and the disper-

sion will vary from manufacturer to manufacturer and to a smaller

degree from lot to lot. The variation from lot to lot will be

minimal where high quality, well controlled processes are utilized

such as in "hi-rel" lines.

The conventional standard screen tests are related to life capa-

bility only in that the most unreliable parts are eliminated.

However, these tests do not determine the longevity or reliability

grade of the survivors. Considerable variation in life capability

could exist therein. Emphasis must be placed on identifying time

dependent failure mechanisms, minimizing them by proper part de-

sign, and establishing means of detecting them in early stages of

their activation. In Volume II of the RADC Reliability Notebook

it is pointed out that constant failure rates for most parts does

not exist. Physical and chemical degradation laws require the

failure rate to increase with time. Some semiconductor failure

rates have continued to decrease with time, indicating the "wear-

out" period or the right hand rise in the bathtub curve is consider-

ably beyond experience accumulated to date and may be in excess of

hundreds of years for many parts. Where the failure rates have been

observed to decrease with time, investigation has shown that the

situationis in reality extended debugging or screening-in-service

on the left hand side of a bathtub curve with a gradual negative

slope.

Figure 8 shows the comparison between a lower and an upper grade

reliability product.

Wide variations in distributions can be expected from a manufac-

turing line producing the lower grade parts, while distributions

from a line producing upper grade parts will be similar from lot

to lot. It is much more difficult to discriminate between the

low and high reliability parts of the lower grade distribution.

Stress screens (such as burn-in, constant acceleration, overload,

thermal shock, etc.) attempt to perform this discrimination on
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the basis of part strength. The lower reliability parts presum-
ably contain weaknessesor defects which can be precipitated to
failure (or to a detectable change) by a stress level and dura-
tion which does not adversely affect the higher reliability parts.
If the strength distributions of good and bad parts are markedly
distinct, as in Figure 9, then any stress in the range separating
the two distributions will be effective as a screen.
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The situation illustrated in Figure 9 occurs when abrupt uninten-

tional changes in materials, processes, or workmanship happen. A

portion of wire welds, for example, may be weak due to corroded

or contaminated materials in combination with schedule variables.

Pull tests in the effective stress range would eliminate such

bonds, but would not adversely affect good bonds. Each stress

must be oriented to detect a specific weakness or failure mech-

anism. The distributions of Figure 9 are not separated so markedly

when processes/materials fluctuate considerably (lower grade pro-

duct) and the margin of the part varies widely from time to time.

In this case, a screen stress level may well indeed degrade the

low margin product. The effectiveness of screen test stress levels

is enhanced by adequate product margin.

Figure i0 illustrates the effect of screen test stress level on

a group of parts which have stress strengths as shown in Figure

9. Very low stress levels are ineffective because of the inabil-

ity to detect bad parts. Levels which are too high are damaging

to good parts. An effective stress range is shown for this situ-

ation which will accomplish the screening objective. For long-life

purposes, the optimum stress level is defined as the screening

stress level which provides survivors having the maximum average

life in service. The optimum stress level should lie within the

effective stress range and, from the definition, close to the upper

boundary. For long-life purposes it is important that weak or

defective parts be eliminated with maximum efficiency.
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An optimum screen stress level which is suitable for the product
from one manufacturer may not be suitable for the product of
another, even if the parts are interchangeable. To a lesser
extent, optimumlevels may vary from lot to lot within a given
manufacturers product. Variations will cause shifts and changes
in the shape of the reject curve of Figure i0. If a single screen
test level is required for all the variations, the optimum level
will be a compromiselying, insofar as possible, within the effec-
tive stress range of all products. The optimum level will provide
the degree of weak part acceptance and good part damagewhich
still results in maximumaverage survivor service life. If these
considerations are extended to classes of parts, it is difficult
to visualize an optimum level existing for all parts within the
class, such as for all silicon transistors or for all film resis-
tors. Manyof the standard screen tests and levels which have
evolved, however, are justified by a huge amount of data and ex-
perience testifying to their adequacy.

The consideration of screen stress level to obtain maximumlife
has been centered on the part capability and not on its use. It
is assumedthat for any set of service conditions, the survivors
of an optimum screen will have a longer average life than the
survivors of a non-optimal screen. This assumption maynot be
valid if parts are subjected to use stress types or environments
(such as radiation) that were not utilized in the screens. In
general, it is desired that the good part capability be greater
than the screen stress level, the bad part capability be less than
the screen stress level, and the screen stress level be greater
than the usage stress level.

Although the conventional standard screens maybe adequate for
most parts, there may be specific occasions when it is desirable
to optimize them. For example, such as when defects are known to
be passing these screens, or whena new part containing unique
metallurgical or process systems is being considered for use. The
simplest approach is a qualitative one. FromFigure i0 it is
implied that the optimum screen stress level is near the upper
limit of the effective stress range.

Another way of vewing this situation is that the optimal screen
is close to the level which would degrade good parts. Then merely
finding the highest stress level which a good part can withstand
without degradation should be an approximation of the optimum
level. This level can possibly be economically determined by means
of step stress testing, as described in Chapter III, "A Study of
Accelerated Testing Techniques," included in this volume. Verifi-
cation of the stress level determined can be madeby submitting
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groups of parts to a 1000-hour life test. Onegroup should be
screened to conventional levels and another group screened to
the optimum level. To obtain failures during this period, the
1000-hour life test can be performed at an accelerated stress
level. An approach similar to this is reported in Reference 20
where the effects of higher screen stresses on integrated circuits
is evaluated. Although an optimum screen level was not being
investigated, a set of more stringent (non-optimized) temperature
cycling, mechanical shock, constant acceleration D high temperature
bake, and burn-in screens were found to reduce the failure rate
by 0.03%/1000hours as opposed to the conventional screens pre-
viously used. This reduction was estimated by comparing lO00-
hour maximumrated stress test results on two groups of parts.
Onegroup was screened to the conventional levels, and the other
group was screened to the higher levels.

An example of a more quantitative method to determine optimum
screen test levels is illustrated by Figure ii. This shows a
hypothetical reject curve, similar to Figure i0, which maypertain
to an actual part. The shape of this curve maybe obtained by
step stress tests to 100%failure on a single group of parts
which represents the population to be screened. Quantities of
parts are shownsubjected to six stress levels within the destruc-
tive range so that the quantity which passes each stress level is
30 pieces. The quantities and approach shownare intended only
to be illustrative of the technique. The minimumtest level S1
can be chosen near the maximumrating of the part. The maximum
test level in this instance is shownas the 75%reject level.
As S1 (minimumtest level) and S6 (maximumtest level) have been
determined, then intermediate stress levels can be selected de-
pending on the desired numberof test groups, in this example six.
After performing the stress levels shownin Figure ii, the 30
survivors from each group are then placed in a life test as shown
in Figure 12. If greater confidence is required, the quantity in
each initial test group could be increased accordingly. The test
samples should be unscreened to the particular stress being eval-
uated.
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The failure distribtuions of each surviving group in Figure 12 are
shownfor a case in which the screen stress type and level can be
optimized. The S1 and S6 groups from the lower and higher stress
levels, respectively, demonstrate the obverse aspects of ineffe-
tiveness. The meanlife of group one is shorter because stress
level SI was too low to remove all defectives while the meanlife
of group six is shortened because stress level S6 was high enough
to degrade the survivors. The optimum level lies between S2 and
$5, and for the test levels illustrated, is S4. A curve drawn
through the meansof each distribution is an effectiveness indi-
cator. If this indicator can be generated to approximate continu-
ous increases in stress level, then obviously the peak of this
curve is the optimum screen test level.

Figure 13 illustrates various indicator curves that maybe expected
from such optimization stress level investigations.

>

_J

L M

@ ® ®

LM Max. safe
stress level

iEffectiveness

Indicators

Figure 13 Effectiveness Indicators

Indicator type i is similar to that shown in Figure 12 and repre-

sents and effectiv_ screen stress, with a definable optimum level.

Type IA is similar to type I except that effective levels exist

over a broad range. Indicator type 2 shows a totally ineffective

screen stress, and type 3 shows a stress that may be applied safely

to a level L . Optimization investigations of this nature would
m

be prohibitively expensive and time consuming if carried to the

extreme of each stress on each part type from each manufacturer,

particularly if sequential screen stress and/or synergistic screen

stresses are considered..

If accelerated tests are acceptable, the time to perform the life

tests in Figure 12 can be reduced. The failure distributions ob-

tained under accelerated conditions must be the same as under normal
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conditions. Fortunately for manyfailure mechanisms, (particularly
those operating in accordance with the cumulative damageand the
Arrhenius rate models,) this situation apparently does exist. When
effectiveness curves, such as shownin Figure 13 are obtained, a
valuable relationship between screen stress level and longevity
of the parts is established.

The success reported by Bell Laboratories with high stress screen-
ing (Chapter III) indicates that the stress levels used are possibly
close to the upper limit of the effective stress range shown in
Figure i0. These high stress levels (300°C junction temperature
for transistors) make the conventional burn-in levels seembenign
in comparison. The question arises as to the effectiveness of
conventional burn-in levels and the relative location on the stress
curve of Figure i0. These iQwer stress levels maylie either in
the lower portion of, or possibly below an effective stress range.
The implication is obvious. With such a large difference in stress
levels, it is doubtful that both approaches could have even ap-
proximately the samedegree of effectiveness. Also, if the high
stress approach does not provide damageor significant consumption
of life, it should be the superior and therefore preferred approach
for screening long-life parts. The likelihood of a defective or
"maverick" part escaping the high stress screen should be signif-
icantly reduced.

It is recommendedthat the Bell Laboratories high stress screen
approach be investigated further. Correspondencewith Mr. D. S.
Peck of Bell Laboratories was madeduring the course of this
screening study. The transmittal letter and his reply are repro-
duced in Section K, herein. The conviction is expressed that the
lower stress levels are not as effective as the high stress levels
as justified by their experience. This approach is attractive as
a potentially economical and effective meansof improving long-life
reliability, providing that minimal evaluation effort is involved.
It is suggested that investigation of this approach be pursued to
definitize the meansof implementing high stress screening as op-
posed to performing research regarding the basic validity or the
precise physical models involved. The implementation should take
maximumadvantage of experience obtained by others previously,
thus minimizing the duplication of costly learning curves which
may include false starts and initial errors. The implementation
approach should consider the following:

i) Identification of specific parts wnich have been successfully

high stress screened. Collection and review of back-up data

which was used to justify or establish the screen.

2) Inclusion of the screen requirement directly in specification

for those parts in i) which are to be used in high reliability

applications.
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3) Determine the feasibility of applying the high stress screen

to entire classes of parts such as silicon, planar, aluminum
metallized transistors.

4) Identify the minimum evaluation effort required prior to high

stress screen implementation on transistors and integrated

circuits.

In Reference 21, eleven integrated circuit types were subjected

to step stress limit tests in power, centrifuge, and thermal shock.

All devices, except one type, were tested through 150,000 g's

without significant failure. The one device type had 50% failure

at 120,000 g's, which were die bond failures. It was determined

that insufficient heating failed to create a good joint between

the glass frit and package bottom. Again, on thermal shock limit

tests, the circuits showed a marked resistance to extreme limits.

Six of the eleven types had no failures after 150 cycles from

-195°C to +200°C. Failures occurred primarily on an obsolete glass

and metal flatpack and on ceramic devices. The limit tests were

not performed to optimize screens, but to provide insight into

failure mechanisms and to examine the relationships of stress

environment to failure rate in conjunction with deriving an inte-

grated circuit reliability prediction model. However, high tem-

perature storage tests on unstressed parts and survivors of the

centrifuge and thermal shock limit were performed. Of 22 com-

parative groups (two temperatures, 300°C and 350°C for each of

ii part types), three of the unstressed samples were superior,

ten of the limit tested samples were superior, and the other nine

comparative samples were approximately equal in failures after

i000 hours of test. The implication is that for many of these

parts, higher levels of centrifuge and thermal shock may provide

a more effective screen test.
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J. UNCONVENTIONAL SCREENING TECHIQUES

i.

In this section some unconventional electronic part screening

techniques are briefly reviewed. They are unconventional in that

they have found little or no industry use, to date. Some are new

and in the process of development. As they are not in wide use,

they may be controversial. The particular techniques considered

may have applicability to the pressing problems of contamination

and complex integrated circuit testing.

Neutron Radiography

The advantage of neutron radiography is that the attenuation of

a neutron beam is proportional to scattering cross-section and

is independent of atomic number while X-ray attenuation increases

with atomic number. Hydrogenous materials have high neutron at-

tenuation coefficients and are therefore particularly suited for

neutron imaging. Materials, such as lead, iron, titanium, and

aluminum have low coefficients. This has made neutron radiography

particularly suited for inspection of items such as metal enclosed

explosives and epoxy bonded honeycomb. Hydrogen embrittlement of

titanium welds shows easily, and it is possible to determine mois-

ture content in ceramics with this method.

The basic neutron radiographic systems are described in Reference

22. They each consist of a source, a collimator, a conversion

screen, and an image recorder. Neutrons eananating from the source

are generally is,tropic. The collimator is used to extract a

nearly monodirectional beam from the source. The collimated beam

passes through the specimen being radiographed, is spatially modu-

lated by the attenuation characteristics of the specimen, and

activates the conversion screen accordingly. An activity image

is created on the conversion screen which is transferred to the

image recorder by ionizing radiation from the conversion screen.

The image recorder can be X-ray film. If the neutron beam con-

tains no gamma radiation component, direct exposure of the X-ray

film can be made. The best resolution with the film placed in

contact with a thin conversion screen is approximately _ne mil

(Ref 23).

Many of the contaminants common in electronic parts, particularly

the non-metallics, cannot be detected by X-ray inspecton. Neutron

radiography may have applicability as a supplement to X-ray in

detecting such contaminants. In Reference 24 it is stated that

lint between relay contacts can be imaged. Also, parts such as
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2.

barium titanate capacitors, which show up opaque on X-ray, are

easily inspected for construction detail with neutron radiography.

Application of neutron radiography to aerospace inspection problems

such as 0-ring seating within steel flanges is briefly discussed

in Reference 25.

The major drawback is the requirement for a source, which can be

isotopic, and accelerator, or a reactor. Obviously, wide-spread

neutron radiographic capability at electronic part manufacturing

facilities cannot be anticipated. Such inspection will have to

be performed by the user, either in his own facility, or by use of

available existing facilities.

Combined Shock and Vibration, Monitored

Reference 26 reports that observation of deliberately induced con-

ductive particles into integrated circuit packages showed that the

particles would bind to certain locations. Presumably, a bound

particle may cause no trouble during vibration or parametric test-

ing, but may be torn loose by a subsequent shock and cause a short.

A combined shock and vibration approach was developed to improve

on existing conductive particulate contamination detection methods.

A rotary vibrating polisher was modified with a mounting plate;

the combined assembly provided a maximum acceleration of 6 g's at

20 Hz. Shock is provided by a solenoid hammer which imparts 150-

200 g's to integrated circuits mounted on the plate. It was de-

termined that a shock of less than one millisecond duration in

excess of 50 g's is required every few seconds to release a bound

particle and maintain it in an unbound state. The low frequency

vibration is designed to impart a high velocity to the particle

and cause it to traverse the package and induce a short between

susceptible conductors within a few minutes of vibration/shock.

Analysis showed that the minimum collision momentum exchange time,

or shorting event, was 10 -7 seconds. The test circuit therefore

required a bandpass of i0 MHz to detect all shorting events. The

integrated circuit is monitored by the test circuit for the oc-

currence of shorts during vibration/shock testing. The test time

required for a short to occur is dependent on particle dimensions,

package volume, and circuit terminal configuration.

This approach appears to provide an improvement over existing

particle detection techniques, but may not be 100% effective. In

Reference 27, high speed movies (5000 frames per second) were

taken of particle behavior in components with glass cases to de-

termine detection circuit requirements and optimum particle excita-

tion conditions. It was found that the monitored test does not

provide 100% effectivity and both X-ray and acoustical methods

are needed at times depending on component conditions.
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Laser Scanning

The laser scanning system described in Reference 28 has the dis-

tinct advantage that mechanical probing is minimized. A laser

beam is directed to a mirror which scans the beam horizontally at

a 600 Hz rate and vertically at a frame rate variable from 1 to

i0 Hz. A standard microscope focuses the beam to a one micron spot

size on the device being scanned, usually an integrated circuit

chip. Two mechanical probes are used to sense the effects of scan-

ning, one on the power supply line and the other on the ground pad

of the chip. As the beam scans the chip, it penetrates the semi-

conductor material depending on the chip structural features at

the location of the beam. In the region where metalization exists,

the laser will not penetrate. In other areas, the beam changes

the conductivity of the material and the effect can be seen as a

varying current on the power supply line. A scope synchronized to

the laser scan is used to display the current variations and obtain

a picture of the chip structure. Both structural faults and elec-

trical characteristics of internal devices can be evaluated. In

Reference 28, both optical and laser scan photographs are shown

of a chip, for instance, which has an open in the metalization.

Diffused resistors, metalization, transistors, and isolation junc-

tions can be shown with variable enhancement by means of changing

the supply voltage and laser intensity. For many digital inte-

grated circuits, nearly all transistors can be forced into the

on state, either by the laser light acting as a pseudo base current

or by an appropriate setting of the supply voltage.

In Reference 29, it is reported that a second laser has been added

to the system which can be directed to any area of the chip and

activate any transistor. The second laser can overcome base im-

pedances of i to 2 kilohm and in effect exercise the integrated

circuit through all possible states with near probeless testing.

Transistor gains have been measured using the video pulse data,

with 2 to 3% accuracy, and internal base resistances and leakage

currents have been analyzed.

Automatic Inspection

Automatic inspection techniques are attractive from the standpoint

that human judgment and error can possibly be eliminated, rapid

check of close dimensional tolerances may be feasible, and the

automatic inspection system should not develop fatigue. One of

the otpical approaches investigated recently (Reference 30) projects

a production part image onto a photographic negative of the master.
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If the production part is illuminated properly and if the proper
range of densities and contrast exist on the master negative, the
resultant composite image will be a uniform gray in all areas
where the production part is identical to the master. Depending
on the relationship between the negative and the part being in-
spected, areas of difference will result in bright and dark areas.
The resultant image is scannedwith a television camera and dis-
played if desired. The video signal from the camera contains
pulses corresponding to the dark and bright areas, the pulse width
being proportional to dimensional differences between the master
and the part being inspected. The information in these pulses can
be used to provide automatic accept or reject decisions if the
pulse widths correspond to dimensional mismatches beyond acceptable
tolerances. This type of system requires accurate positioning of
the inspected parts, but again the pulse signals themselves may
be used to provide the positioning. It is reported in Reference
30 that inspection accuracies of 2-1/2 microns have been demon-
strated and that this can possibly be improved. The speed of in-
spection is determined by the speed of mechanically handling the
parts.

Another approach consists of comparing the part to be inspected
against a master part rather than photographic negative. A flying
spot scanner provides a dot of light which sweeps the inspected
area. A beamsplitter divides the light between the inspected
part and the master. The light reflected from each is detected
by photomultipliers and the outputs are electronically subtracted.
Again, where the parts are identical, the difference is zero, but
where they differ, the signal contains pulses.

Gross inspection requirements, such as checking printed circuit
boards for missing parts or for accurate patterns is entirely fea-
sible with these techniques. However, it is claimed that they can
be used to inspect detailed features of integrated circuits. A
rapid, accurate, automatic inspection to criteria, such as MIL-
STD-883,would certainly be desirable.
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Ke BELL LABORATORIES CORRESPONDENCE

Included herein are reproductions of a transmittal letter to Mr.

D. S. Peck of Bell Laboratories and his reply. This correspon-

dence was entered into as a part of this study in investigation

of high stress screening for improved long-life reliability of
semiconductors.
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MARTIN MARI£TrA CORPORA TION
DEN VER
DIV/S/ON

POST OFFICE BOX 179, DENVER, COLORADO 80C_1 TELEPHONE (303) 794-5211

28 June 1972

Mr. D. S. Peck

Bell Telephone Laboratories
555 Union Boulevard

Allentown, Pennsylvania 18103

Dear Mr. Peck:

Attached is a listing of transistors by 2N number which is used as a

basic selection guide by our circuit designers. This is a preferred type list-

ing and, while it does not cover all requirements, approximately 90% of our

procurement volume is with these types.

As I indicated in our telephone conversation on Monday, we are perform-

ing a study for the Manned Spacecraft Center (MSC, Houston) related to Shuttle.

The study will include recommendations for screening various electronic parts.

In the constrained cost environment that exists in the aerospace industry today,

we feel that our recommendations must provide the most cost effective approach

obtainable. The methods which you have been advocating for some time are very

attractive in this respect, particularly in the area of burn-in levels. The

high junction temperatures under reverse bias and/or forward power conditions

make conventional test levels appear benign in comparison.

The performance of high stress screening is assumed to be relatively

straight forward and economical to implement once stress levels and durations

are identified. It may even be possible to effect savings on screened parts

due to shorter test durations. The problem is primarily one of justification

and minimizing the amount of evaluation testing to determine levels and dura-

tions. It is hoped that your extensive experience with high stress screening

can be utilized as a basis for recommending it to NASA.

The attached transistor list is anticipated to be nearly identical to

that which will be used for Shuttle. It should serve as a typical example to

evaluate feasibility of this approach. It would be very desirable if you have

used many of the parts (or equivalents) on this list and have subjected them to

high stress screens. Your thoughts and comments on the approach we are con-

templating would be appreciated. It would be particularly valuable if it is

possible for the following questions to be addressed:

i. Which pa_ts on the list have been successfully high stress

screened in your usage?
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Mr. D. S. Peck 28 June 1972

2. What type of evaluation tests (if any) would you suggest for
those parts on the list you have not used?

Be Are there further evaluation tests you foresee on parts which

you have previously used and which you have previously high
stress screened?

o Do you think it feasible to specify, without further evaluation

testing_a universal test level and duration on certain classes

of parts? (Such as silicon, planar, passivated, aluminum
metallized transistors.)

e Do you foresee any technical or legal barriers to utilization

of your past experience as either the basis for general justl-

ficatlon of the approach, or for minimizing evaluation testing

by NASA on specific parts?

6. What method of implementing high stress screening would be most

mutually beneficial to Bell Telephone Laboratories and NASA?

If you wish to discuss any of these items in further detail, my telephone

number is (303) 794-5211, extension 4327. Thank you very much for your courtesy

and cooperation in returning my call.

Very truly yours,

R. A. Homan

Staff Engineer

Electronic Test and Analysis

RAII:II

Attachment
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Bell laboratories

555 UnnonBoulevard

Allentown, Pennsylvania 18103
Phone (215) 439-6011

AIR MAIL July 28, 1972

Mr. R. A° Homan

Staff Engineer

Electronic Test and

Analysis

Martin Marietta Corporation

Post Office Box 179

Denver, Colorado 80201

Dear Mr. Homan:

This is in response to your letter of June 28, 1972,

regarding the high stress screening of transistors for

NASA applications. Your interest in this technique is

very much appreciated since we feel that the data which

we have indicates clearly that the retention of freak

devices is very probable when screens are used at lower

stress levels, and these devices will cause failure

rates considerably above those that the product is

capable of providing. Although we have had very little

opportunity to compare actual field reliability of pro-

duct bought to our specifications with the usual commer-

cial or military product, we do have the experience of

obtaining failure rates below 10-8/hour with transistors

made to similar specifications.

I can address the specific questions in your letter as

follows:

• The parts on your list which we have screened

at high stress are the 2N2222A, 2N2369A, 2N3251A,

2N2905A, and 2N3467.
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•

•

•

The type of evaluation tests which we would

suggest for the parts we have not used would

be, first, the establishment of the actual

thermal resistance and from that a power

condition which would result in a junction

temperature of 300C; second, the establishment

of a life distribution to confirm that the

product can take a 16-20 hour screen at this

condition without generation of unusual failure

modes and that the main life distribution is at

a time consistent with the reliability objectives.

This would accomplish an evaluation for failure

modes related to the movement of ionic charges at

the silicon surface with resultant inversion of

the surface• Other evaluations, to determine

design suitability for hermeticity, strength

under shock or vibration, etc. would presumably

be no different than what might be in the present

program.

With regard to the parts which we have previously

used, I do not expect that further evaluation

tests would be required but it would probably be

desirable that we review the specification and

the earlier test results, an exercise which I

have not done yet.

The data which we have available on a large

number of planar silicon transistors with

aluminum metallization suggests a common

screening condition required to eliminate

freak devices with respect to the surface

inversion failure mechanism• This would be

the 20 hours at 300C junction temperature

indicated above, or an equivalent time at

lower temperature according to the l-eV acti-

vation energy of this mechanism• I believe,

on the other hand, I would be somewhat re-

luctant to specify a current and voltage

condition assumed to attain dlatjunction

temperature without at least evaluating that

the devices will not have other problems such
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as, for example, second breakdown. The answer
for integrated circuits is considerably more
complicated; although the same failure mechanism
can be expected and must be screened for, the
choice of (i) operating certain obtainable
junctions to the 300C level, (2) reverse-biasing
obtainable junctions at a high oven temperature
or (3) operating the circuit in some dynamic
condition at high temperature, may be a difficult
one to make without some degree of evaluation.
Even at high temperature and reverse bias, the
high leakage currents developed at high tempera-
ture could change the circuit condition into some
different operating mode, losing the value of the
intended reverse bias. Hence, measurements of
the integrated circuit characteristics with in-
creasing temperature are necessary in order to
determine the maximum stress which is appropriate.

• I would assume that our past experience with

specifications of this type would be of technical

value to NASA, although we recognize that we have

looked at a relatively small portion of the parts

of interest. The legal question of utilization

of our past experiences to minimize NASA testing

should, I believe, be taken up with the Western

Electric Company, 195 Broadway, New York City,

and I am told that an appropriate contact by

NASA could be through Mr. D. Allen, Manager of

Government Communications Contracting.

• It is difficult to foresee if there is any

particular method of implementing high-stress

screening to be most beneficial mutually to

Bell Telephone Laboratories and NASA. I would

presume, for example, we would not necessarily

be interested in the same list of part types.

Perhaps this question could be discussed more

completely if NASA wishes to explore with

Western Electric any further details regarding

what assistance we could provide•
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Mr. R. A. Homan - 4

I hope that these above comments provide the answers
you are looking for, at least for the immediate present.
You are probably aware that I have published information
regarding the handling of test data from high-stress
screening, the extrapolation to normal application
stresses and evaluation of the expected failure rate.
Such information, of course, is readily available to
NASA. I would hope that our long experience with this
kind of treatment could be of benefit to the space program.

Very truly yours,

D. Stewart Peck
Head
Transistors, Electron Tubes
and Device Reliability
Department
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V. INDUSTRY SURVEY OF ELECTRONIC PART DERATING PRACTICES

Ao INTRODU CT I ON

It is generally recognized, in accordance with the laws of chemical

and physical degradation, that increasing the electrical, thermal,

and mechanical stresses on electronic parts will decrease either

the time to failure or the time required to accumulate a given

amount of degradation. Conversely, decreasing these stresses will

prolong the time to achieve degradation, reduce the probability of

catastrophic failure, and thus improve reliability. Derating is

defined as the practice of limiting these stresses on electronic

parts to levels well within their specified or proven capabilities,

in order to enhance reliability. The need to derate parts in ap-

plication is clearly established (Reference i). Even the best parts

when operated at maximum rated stress levels do not have low enough

failure rates for highly reliable complex systems. A major con-

tributing factor in the success of many space programs has been a

conservative design approach incorporating substantial derating of

parts (Reference 2).

Reliability prediction models such as those contained in Reference

3 recognize the effect of stress and environment on reliability.

Once reliability requirements are established, the maximum stress

level can be determined from curves of reliability versus stress.

A dilemma exists, however, when such curves are established by past

history and applied to new parts. As parts are improved, the

curves will become conservative. As pointed out in Reference i,

curves of reliability versus stress are generally not well-proven.

Historical information based on field data obtained from various

equipments operating under conditions similar to those of interest

must be used. In this chapter, twelve derating policies used on

various space programs are reviewed and compared. From this re-

view, a composite derating is derived for each electronic part in-

vestigated and is presented as a recommended guideline.

Derating will compensate for variability of part longevity among

parts which comprise a purchased lot. It provides a margin of

safety should questionable devices survive incoming inspection and

screening tests (Reference 2). It also provides added protection

from system anomalies unforeseen by the designer (Reference 4).
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Although the time to achieve a given level of degradation is pro-

longed, failure rates in applications will vary widely depending

on the tolerance of each circuit to part drift. To assure low

failure rates, the designer should strive to achieve the greatest

possible circuit tolerance (Reference i). Therefore, in addition

to derating guidelines, application notes similar to those pro-

vided in References 5 and 6 are also listed herein as recommended

guidelines for each part type.
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B , DERATING PRACTICES

In some respects, derating practices are somewhat subjective in

that either the manufacturers' ratings or the users' procurement

specification ratings are used as the basis from which to derate.

The published ratings always contain margins of safety. These mar-

gins are within the limiting values of stress conditions which will

result in permanent impairment of the serviceability of individual

parts. The safety margin of a part to a given stress is a function

of the manufacturers' design as well as the uniformity and repeat-

ability of his production. It is expected, therefore, that these

margins will not only vary considerably between part numbers of a

given part type, but will vary between interchangeable parts sup-

plied by different manufacturers. In general, these margins, re-

lated to the ultimate capabilities of the parts are unknown. De-

rating of specification values results in variations of the true

safety margin in an application, depending on the conservativeness

of part design and manufacturers' production uniformity. Although

the actual safety margin of each part to both threshold and time

dependent stresses is generally unknown, they will be increased by

derating. It behooves the user, lacking knowledge of these mar-

gins, to derate to the maximum extent possible.

It would be a formidable task to determine the margins existing for

each part type from each manufacturer for each specification value.

It is also unnecessary, since considerable experience with success-

ful derating practices is available to serve as a guide. Using

this experience to establish a minimum derating policy, and ad-

vocating further derating where feasible, is the approach taken

herein. Derating practices utilized by the following agencies or

programs are reviewed:

i) Ames Research Center (Pioneer)

2) TRW (Pioneer, 777, Vela)

3) Philco-Ford (ATS)

4) Philco-Ford (Skynet)

5) Martin Marietta (Skylab)

6) Motorola (SGLS Transponder)

7) Jet Propulsion Laboratory (Mariner)

8) George C. Marshall Space Flight Center (Shuttle)
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9) Manned Spacecraft Center (Skylab)

i0) Grumman (Spacecraft Policy)

ii) Goddard Space Flight Center (PPL ii)

12) Hughes (Intelsat)

Summaries of these practices are shown for the various part types in

Tables i through 6. The values shown for Hughes Aircraft Company

are typical for their spacecraft usage and an ambient temperature

of 0°C. Their general practice is to derate in accordance with

the reliability prediction models of Reference 3. The required

failure rate to meet a reliability goal in the usage environment

determines the various quality and stress factors (as required by

the model) that must be utilized for each part. The stresses thus

identified are maximum permissible values and do not preclude

further derating. For example, higher ambient temperatures would

require further derating of low power and switching transistors;

the power dissipation typically following a curve to zero at 55°C.

The information in Tables 1 through 6 is presented in scatter dia-

gram form in Figures i through 6 for critical parameters of each

part type. It is obvious from these figures that the most strin-

gent approach to derating was generally taken by Philco-Ford on

ATS and SKYNET. However, their approach has since been relaxed

somewhat in more recent proposals, which shifts their values closer

to the center of gravity of the scatter diagrams.

The derating guidelines included in Reference 4 are a composite of

the derating policies employed by the Jet Propulsion Laboratory,

Grumman Aircraft Corporation, Manned Spacecraft Center, Goddard

Space Flight Center, and Marshall Space Flight Center. From Fig-

ures i through 6, it is seen that these composite values are close

to the average or on the conservative side of the scatter. It is

recommended that these values be used as guidelines for minimum

derating of parts and that further derating be used whenever pos-

sible. These guidelines, for the parts included in this study,

are included in Section C of this report.
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Phllco

Ames TRW ATS

Ceramic

Ceramic Disc

(<i000 Volts) 70% V

Ceramic (Low

Voltage)

Ceramic Disc

(.I000 Volts) 50% V

Ceramic (High

Voltage)

Low Voltage Cer-

amic (<O.l_f) 70% V

Low Voltage Cer-

amic ('0.1_f) 60% V

Glass 60% V

Porcelain 70% V

Mica (Low

Voltage)

Mica (<I.0 kv.) 70% V

Mica (High

Voltage)

Mica (>I.0 kv.) 50% V

Mica, Dipped

Mica, Molded

Mica

Tantalum

Solid

Tantalum, Solid

18 & 2L.f, 50V

39 & 47bf, 35V 50% V

82 & 100_f, 20V

All Others 70% V

Tantalum, Wet

Slug 75% V

Tantalum, Foil 50% V

Variable, Air

Variable, Glass

iVarlable,

Ceramic

Paper

IMylar

Philco

Skynet Martin

50% V

10% v

60% v

75% V

lO% v

6o% v

30% V 75% V

75% V

40% V 50% V

lO% v

50% V

60% V

Motorola

50% V

50% v

50% V

35% V

3 _:IV

= 60% v

0.I _/V

= 40% v

70% V,

TA (flax)
- 70:C

70% V,

T A (Max)

= 70°C

50% V

45% V

JPL MSFC MSC

50% V, 70% I 70% V, 70%1

70% v

50% V

70% V

60% V

CYFRIO & 15,

70% V

CYFR20 & 30,

60% V

70% v

70% V

50% V

50% V

70% v

70% v

70% v

80% V

50% V, 70% I

50% V, 70% I

60% V, 70% I

50% V, 70% I

TA(Max. ) - 50°C

Use 3 i?/V Res.

50% V, 70% I

TA(Max. ) - 70°C

50% V, 70% I

TA(Max. ) - 70°C

30% V, 70% I

50% V, 70% I

90% V. 70%1

90% V, 70% I

0-35 V, 70% V,

70% I

35-50 V, 65% V,

70% I

50-75 V, 60% V,

70% I

70% V, 70% I

30% V, 70% I

50% V, 70% I

50% V, 70% 1

Grum_an

50% V

50% V

7O% V

0-15 V,

B0% V

15-35 V,

70% V

35-50 V,

65% V

50-75 V,

60% V

70% V

30% V

50Z V

50% V

GSFC Hughes

50% V, 40% V TA = 0°C

TA(Max) 0% V T A = 42°C
. 85°C

50% V,

TA(Max)

. 850C

50% V,

TA(Max)

. 85©C

60%,V,

TA(Max)

= 85°C

40% V,

TA(Max)

. 85°C

3 _/V, 60% V, 34% V, TA

TA(Max) . 0°C

- 85°C 30% V, TA
0.i _/v,

= 6O°C
40% V,

TA(Max ) 0% V, TA
= 90°C

= 5O°C

70% V, TA(Max)

. 70_C

70% V

TA(Max)

70°C

50% V, TA(Max)

" 85°C I

60% V, TA(Ma_)

" 85°C I
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Table I Capacitor Derating (concl. )

Philco Phllco

Ames TRW ATS Skynet

Plastic Film

Plastic Film

(<l.O_f)

Plastic Film

(>l.O_f)

Metalllzed Film

(_i.0 f)

Metallized Film

(>I.0 f)

Film Types

All Others 50% V

Martin Motorola

50% v

75%

Surgl

Volt

200%

Leak,

age

JPL

70% v

50% V

60% V

50% V

MSFC MSC Grumman GSFC

50Z V, 70Z I 90% V, 70Z I 50% V

Hughes
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C. DERATING GUIDELINES, ELECTRONIC PARTS

.

.

.

Introduction

The following guidelines give basic information for the derating

of parts. The guidelines are a composite of the derating policies

employed by the Jet Propulsion Laboratory, Grumman Aircraft Corpo-

ration, Manned Spacecraft Center, Goddard Space Flight Center, and

Marshall Space Flight Center as presented in Reference 4. The

specified derating percentages and applicable notes will assist

the designer in obtaining reliable operation of parts. It must

be emphasized that the user should evaluate all parts to the re-

quirements of his applications, since he is responsible for assur-

ing that adequate deratings are accomplished. The recommended

derating factors are based on the best information currently

available.

Purpose

Derating is the reduction of electrical, thermal, and mechanical

stresses on a part to decrease the degradation rate and prolong

the expected life of the part. By derating, the margin of safety

between the operating stress level and the actual failure level

for the part is increased, providing added protection from system

anomalies unforeseen by the designer.

Derating Guideline Factors

The following derating factors indicate the maximum recommended

stress values and do not preclude further derating. When derat-

ing, the designer must (I) take into account the specification

environmental and operating condition rating factors, (2) consider

the actual environmental and operating conditions of the appli-

cation, and then (3) apply the recommended derating factor con-

tained herein. Parts not appearing in these guidelines are lack-

ing in empirical data and failure history. Since the operating

characteristics for such parts cannot be guaranteed, it is a good

policy to derate generously to provide an additional margin of

safety. Where parts are listed, but are not given a specific

derating value, a good general practice should also be to de-

rate generously.
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a. Capacitors - Derating guideline factors for capacitors are

tabulated below,.

Type

Fixed

Ceramic .50

Mica Dipped .60

Glass .50

Porcelain .50

Paper .50

Plastic .50

Tantalum

Foil .50

Wet Slug (Hermetic) .50

Solid (3 ohms/volt

limiting resistor) .50

Adjustable

Air .30

Ceramic .50

Glass .50

NOTES:

Derating Applicable

Factor Parameter Notes

voltage i, 2

voltage i, 2

voltage i, 2

voltage i, 2

voltage i, 2

voltage i, 2

voltage i, 2, 4

voltage i, 2, 4

voltage i, 2, 3

voltage i, 2

voltage i, 2

voltage i, 2

i. The current derating factor is 70 percent of manufacturer's

specified limit.

2. Manufacturer's derating factors shall be applied before using
the factors of this document.

3. Ambient temperature shall not exceed 50°C.

4. Ambient temperature shall not exceed 70°C.
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b. Diodes - Derating guideline factors for diodes are tabulated
below.

Derating Applicable

Type Factor Parameter Notes

General purpose .50 Power

.50 PIV

.50 Surge current

.50 Forward current

Rectifier .30 Power 1

.50 PIV

.50 Surge current

.50 Forward current

Switching .30 Power i

.50 PIV

•50 Surge current

•50 Forward current

SCR .30 Power i

.50 PIV

.50 Surge current

.50 Forward current

Varactor .50 Power i

.75 PIV

.75 Forward current

Zener .50 Power i, 2
•50 Forward current

(2) Zener current

Reference .30 Power i, 2

.50 Forward current

(2) Zener current

NOTES:

i. Junction temperatures for all diodes shall not exceed II0°C.
2. Zener current should be limited to no more than

Iz )IZ = .5 ( max + IZnom
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c. Microcircuits - Derating guideline factors for microcircuits

are tabulated below.

Derating Applicable

Type Factor Parameter Notes

Digital .80 Output current i, 2

.75 Operating

frequency

Linear .70 Bias voltage 1

.70 Input signal

voltage

.75 Output current

.75 Operating

frequency

Voltage .80 Input voltage 1

(rated maximum)

.75 Output current

(rated maximum)

.60 Power dissipation

(rated maximum)

NOTES :

i. All microcircuits shall be used at ambient temperatures less

than 85°C.

2. This derating factor is not to be used when fan out would be

reduced to less than one.
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d,

and switches are tabulated below.

Relays and Switches - Derating guideline factors for relays

Type of Derating Applicable
Load Factor Parameter Notes

Contact current

Contact current

Contact current

Contact current

Contact current

Capacitive .75

Resistive .75

Inductive .40

Motor .20

Filament .i0

Note:

lJ

1

Capacitive peak in rush current should not exceed the derated

limit.
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e. Resistors - Derating guideline factors for resistors are

tabulated below :

Type

Fixed

Carbon

Composition

Insulated

Film

Wirewound,

Precision

1.0%

O. 1%

Wire wound,

Power

Thermistor

Ad_ us tab le

Wirewound

Nonwirewound

NOTES :

i.

2.

3.

4.

Derat ing App li cab le

Factor Par ame ter No tes

•50 Power i, 2

•50 Power i, 2

•50 Power i, 2

•25 Power i, 2

•50 Power i, 2

•50 Power i, 2, 3

.70 Rated Current i, 2, 4

.70 Rated Current i, 2, 4

The maximum voltage for all resistors shall be no more than

80% of the MIL-ratings.

High density packaging may require further derating if am-

bient temperatures are increased•

Thermistors used in other than zero power applications should

also have minimum wattage specified for the application•

Rated current is defined as:

T max

and by limiting the current to .70 rated current, power is

limited to .5 maximum power.
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f. Transistors - Derating guideline factors for transistors

are tabulated below:

General Purpose

Derating Applicable
Factor Parameter Notes

.50 power

.75 current

.75 voltage

l, 2

Power .30 power i, 2
.75 current

.75 voltage

Switching .50 power i, 2
.75 current

.75 voltage

NOTES :

i. Junction temperatures for all transistors shall not exceed

II0°C for any combination of parameters.

2. Worst-case combination of dc, ac, and transient voltages shall

be no greater than the derated limit.
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D° DESIGN PRACTICE GUIDELINES

l.

Part derating is one aspect of a conservative design approach to

improve reliability. Although it provides increased safety margins,

reduces the probability of catastrophic failure, and increases

the time to achieve degradation levels, each particular circuit

will have a different tolerance to part drift which is a function

of lifetime, complexity, application, and failure criticality.

The user must consider all aspects of his application and utilize

all additional practices which will tolerate degradation and

enhance success. Included in this section are some design prac-

tice guidelines which are recommended for use in conjunction with

derating guidelines to achieve reliable circuit design.

Worst Case Analysis

A worst case analysis should be performed concurrently with the

design, beginning in the early stages of development. The analy-

sis should consist of a circuit description with schematic, a

summary, a functional analysis, a stress analysis, and test re-

sults. The summary should include both a tabulation of all func-

tional requirements versus the functional capabilities, and a

tabulation of part applied stress levels versus the derated

stress limits. No deviations from requirements or deratings

should be allowed without justification, review, and approval.

The functional analysis is performed to assure the circuit has

the capability to satisfy all functional requirements within the

required performance and safety margins, under the most unfavor-

able combination of realizable conditions. Included are input,

output, environmental, and packaging conditions, as well as part

parameter dispersions including aging and life tolerances. Suit-

able computer programs (ECAP, SCEPTRE, TRAC) should be used to

the maximum extent for efficiency and reliability of design.

The input program and output data should be included in the re-

port. The worst case stress analysis should verify proper ap-

plication of parts such that the applied stresses do not exceed

the derated values of voltages, currents, power dissipation, etc.

under worst case conditions. Worst-case conditions include power-

up and power-down under all phases of circuit operation includ-

ing manufacturing and system/subsystem test. The results of

tests performed to insure satisfaction of performance require-

ments and existence of required margins should be included in

support of the analysis.
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Test Points

A sufficient number of protected test points should be provided to

facilitate checkout and troubleshooting. As a minimum, redundant

circuits require unambiguous checkout provisions to verify full

operation at the component acceptance test level. Protection of

test points should be provided to insure: (i) system operation

will not be impaired by normal functioning test equipment, and

(2) degradation will not result from short circuits between the

test point and ground, power, or adjacent test points. This may

be accomplished by use of either protective parts within the

assembly or by protective circuitry within external test equipment.

Transient and Power Sequence Protection

Turn-on and turn-off transient protection should be provided to

prevent damage from inductive kick-back or high capacitive charg-

ing currents. The circuit should be designed or otherwise pro-

tected so as not to be damaged from any sequence of power appli-

cation or removal. In addition, no erroneous output conditions

should be created in critical functions from power application or

removal.

Grounding

The single point ground approach should be used to the maximum

extent possible to minimize common impedances between circuits.

This is accomplished by selective grouping of individual circuit

returns prior to returning to the component grounds. Typical

groupings are: AC power returns, DC power returns, returns for

signals below 50 KHz, and returns for signals above 50 KHz.

All ground conductors should be chosen for minimum length and

maximum practical cross sectional area to minimize inductance

and resistance. This also applies to printed wiring, especially

when the interconnected circuits have rise and fall times of

less than i0 microseconds. Ground planes are to be considered

where minimum ground return inductance is necessary.

Shielding and Isolation

Shielding and isolation should be used within the assembly to

control signal environments and thereby minimize cross-coupling.

Separable noise generating functions within the assembly such

as DC/DC converters and switching type pre-regulators should be

in electrostatic enclosures wherever possible.
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• Analog Circuit Design

Amplifiers and any combination of feedback loops and function gen-

erators should individually and collectively conform to the follow-

ing paragraphs.

a. Operating Point - Operating or bias point should be selected

such that the following functional requirements are satisfied:

Full scale input and output range;

Input impedance;

Output impedance;

Common mode range and rejection level;

Noise level;

Gain and phase limits;

Linearity and/or distortion;

Offset limits.

b. Feedback - In additon to providing the required closed loop

transfer function and the required closed loop parameter control,

open loop characteristics should also be determined to insure

stability. Open loop gain and phase determination should in-

clude the effects of input source impedance, output load im-

pedance, and any significant interconnecting cable or wiring

reactance.

c. Negative Feedback - The gain and phase margins of the loop

should be such that transient overshoot and ringing requirements

are met. In no case, however, should the phase margin at unit

gain crossover be less than 30 ° nor should the gain margin at

180 ° phase shift be less than i0 dB.

d. Non-saturating Positive Feedback - This type of feedback

loop is most commonly used in sine wave oscillator circuits and

requires adequate phase shift control in the positive feedback

loop to meet the required frequency tolerance. Gain control

should be provided to maintain loop gain of unity over the oscil-

lation period. The subsidiary loop maintaining unity gain around
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the positive feedback loop should comply with the gain and phase
margins of paragraph 6c. Greater than unity gain should be pro-
vided in the positive feedback loop follow_ng power-up to insure
self starting.

e. Relaxation Feedback - This type of feedback loop incorporates

reactive components and is typified by the astable multivibrator.

The circuit should be biased for a non-oscillating positive loop

gain greater than unity to guarantee self starting. The minimum

value of oscillating loop gain selected should be sufficient to

meet the rise and/or fall time requirements of the output waveform.

The total positive feedback loop should be demonstrated to meet

the accuracy requirements for output frequency control.

f. Stable (D.C. Regenerative) Feedback - This type of positive

feedback should be used in analog comparator and power switching

to improve a known hysteresis level. The loop gain in the switch-

ing or transition region should be sufficient to meet the thresh-

old and speed requirements. Hysteresis level should be a minimum

of 1% as referred to the signal threshold level in order to reduce

the susceptibility to high frequency oscillations and noise when

operated at the critical input threshold point. Wherever system

requirements permit, larger percentages of hysteresis should be

used.

g. Decoupling - Decoupling should be provided to eliminate un-

wanted feedback loops and to prevent conducted noise from being

transferred to sensitive areas.

h. Decoupling of Discrete Circuits - Cascaded circuit stages

should have power line decoupling by sections having gains no

higher than 200 per section. The decoupling must be effective

from the lowest frequency of concern to at least two octaves

above the open loop unity gain crossing of the circuit being

decoupled. Determination of network effectivity at high fre-

quencies must include the reactive effects of the applied parts

and interconnections.

i. Decoupling of Integrated Circuits - Integrated circuits

normally contain inter-stage isolation and are insensitive to

low and mid frequency power supply noise, For high frequencies,

external decoupling must be provided for each integrated circuit

package. As a minimum, decoupling with 0.i _f ceramic capacitors

from the B+ and B- terminals to signal ground is required,
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The effective lead length _rom the capacitor to the B+ and B- of

the integrated circuit terminals and the ground terminal must be

kept to a minimum.

j. Bandwidth Limitation Requirement - Bandwidth, rise time, and

slew rates should be no greater than that value required to meet

input-output performance requirements. Excessive bandwidths and

rise times should be limited to reduce noise susceptibility and

sensitivity to parasitic oscillations. Excluded from this re-

quirement are integrated circuits where limiting the bandwidth

would void the guarantee for required phase margin.

Pulse_ Logic_ and Low Level Switching Circuit Design

Low level bi-level circuits and/or groups of such circuits should

conform to the following paragraphs.

a. Functional Verification - All logic systems should be broken

into functional blocks, small enough in size, such that a logical

verification can be made by using analytical techniques (truth

tables, Karnaugh maps, state tables, computer programs, etc.).

b. Fanout Verification - Fanout should never exceed the derated

maximum (current or normalized fanout) for the logic part and

must be reduced from that level where greater noise immunity or

corrections for higher than specified circuit differential tem-

peratures are needed. Fanout utilization for each logic part

must be tabulated.

c. Timing Verification - Timing studies must be made for every

logic component. All circuits should operate within the speci-

fied minimum and maximum propagation delay limits. Factors which

should be used in determining timing margins are the specified

logic part delay including capacitive loading effects, through

delay of counter gating, the effect of clock skew, and the ef-

fect of time delay.

d. Time and Data Correlation - All systems requiring time cor-

relation for the logic operation such as flip-flop gating or se-

quential data handling should be implemented as a synchronous

(clocked) system. Any signal received into a synchronous sys-

tem should have a single point of clocking to prevent logic

ambiguities due to skewing effects. The preferred methods for

achieving delay or time correlation are clocked counters or

delay lines. No race conditions should exist which can cause
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an undetermined or erroneous output. In general, multivibrators
("one shots") and capacitors (placed on gate outputs) should not
be used for delays or time correlation of logic.

Multivibrators maybe used if the following conditions are met:
(i) no spurious signals or noise can cause false triggering which
would be detrimental to the logic componentoperation, and (2)
detailed timing studies associated with the "one shot" should in-
clude the effects of derated external components (R and C), plus
a 25%margin on minimumand maximumpulse width and retriggering
capability.

Capacitors maybe used on gate outputs when the following condi-
tions are met: (i) a current limiting resistor is added to limit
the discharge and charge rate of the capacitor, (2) system noise
immunity is not degraded, and (3) detailed timing studies show the
maximumand minimumpulse delay caused by the capacitor.

e. Counters and Shift Registers - Counters and shift registers

should be analyzed to determine the effects on the logic system

when an unused state is entered. Provisions should be made to

insure that such a logic function cannot either lock up in an un-

used state or generate a catastrophic function when an unused

state is entered. The selection of the counter type should be

scrutinized to minimize the total logic required to provide proper

decoding and minimum unwanted states.

f. Flip-Flops - The worst case setup and release time for data

inputs must be determined for a worst case timing analysis. In

general, all data lines must remain stable during the enable

portion of the clock, including the rise period and the fall

period, to insure against logic ambiguities. In cases where data

lines are not stable during the enable portion of the clock, the

logic component should be analyzed to determine the overall ef-

fect when an ambiguous state is entered. To insure against logic

ambiguities, the clock of a flip-flop must be inhibited before

the trailing edge of a direct preset or clear pulse. To reduce

the coupling of reflected signals into logic circuitry, flip-flops

should never be used as line drivers. Unused inputs should be

terminated as defined in the part control package. The follow-

ing flip-flops require special precautions:

l) RS flip-flops should be arranged so that both data inputs

(R and S) are never high at the same time during an enabled

clock thus causing a logically indeterminant condition.
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2) JK master-slave flip-flops should be arranged so that no tran-

sient on an input can cause the "master" portion of the flip-

flop to be "set" such that it may be subsequently transferred

to the "slave." To avoid this problem the enable duty cycle

of the clock should be minimized.

g. Gates - Unused gates or unused inputs of gates should be ter-

minated as specified in the part control package. Increased fan-

out capability may be obtained by paralleling gates/buffers of

the same package. "Wired-Or" connections impose loading on the

output in addition to the normal fanout load. This loading should

be included in the loading analysis. "Wired-Or" conditions are

not permitted with circuits having a push-pull output stage.

h. Clock Signal Generation and Distribution - The inhibit time

duty cycle of the clock should be maximized in order to (i) con-

tain all of the clock triggered switching transients which may

cause ambiguous states during decommutating/decoding, and (2)

minimize noise susceptibility. The rise and fall times of clocks

should be minimized to keep from degrading noise immunity. Shielded

or physically separated wiring should be used to distribute clock

signals in order to minimize noise coupling into critical signal

paths. Clock lines should have protection against negative over-

shoot. Oscillators should be gate buffered before using as clock

signals for flip-flops.

i. Power Up and Power Down Transients - During loss of power at

power transfer, circuits which have a memory requirement should

be able to maintain the memory capability for a period of 1.25

times the maximum transient specified. Analysis should show that

no catastrophic outputs are generated during power up or power

down conditions. Logic circuits with separate power supplies or

"dormant modes" should be analyzed to determine the effects of

power down conditions on logic interface circuits.

j. Logic Compatibility - All logic levels should be compatible.

All interfaces of discrete to discrete circuitry, discrete to

I.C. circuitry, and l.C.'s of a different family should have both

a margin of 10% or .5 volts (whichever is greater) in the high

state and 6 dB in the low state when both are referenced to ground

and to the receiver logic levels. Logic circuitry must be in-

sensitive to spurious signals, particularly to those generated

outside the component. To facilitate this requirement, inter-

face circuits which do not receive information from controlled
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impedancetransmission lines (i.e., coax, twinax, twisted pair,
etc.) should provide meansfor rejecting or filtering transients.
Whensignals are transmitted over controlled impedance lines, line
characteristics such as RCdistortion, attenuation, and propaga-
tion delays should be determined and their effects used in the
worst case analysis.

k. Internal Component Interfaces - When using a common ground for

internal interfaces, the following receiver logic level margins

are acceptable: either 5% or .3 v (whichever is greater) in the

high state and 3 dB in the low state where both states are ref-

erenced to ground. A ground plane is mandatory for single wire

interconnections greater than i0 inches but not to exceed 20

inches. Twisted pair or coax (with or without ground planes)

must be used on interconnections exceeding 20 inches, and they

may be used in lieu of ground planes on interconnections less

than 20 inches.

_. Component to Component Interfaces - Arrange logic such that

interface signals between components use that state (high or low

level) which offers the greatest noise immunity for the safe or

unarmed condition of that function.

m. Packaging and Decoupling - Self-induced switching transients

should be suppressed by adding capacitance to each printed wiring

board or module. The total amount of capacitance required is to

be calculated to keep B+ and ground line voltage changes at a safe

level, cutting into the specified noise margin by no more than

6 dB. It is necessary to use capacitors that are effective at

the relatively high frequency present in the switching current

spikes. For integrated circuit boards, 0.i _f ceramic capacitors

should be used for this purpose to optimize both high capacitance

per size and good RF properties. Capacitor leads should be held

to a minimum length and the required capacitance should be dis-

tributed over the PC board or module. The number of capacitors

required should be based on the printed-wiring-board-lead in-

ductance existing between the capacitor and the switching elements.

This inductance must be determined and minimized to realize the

benefit provided by the added capacitors. Additional decoupling

capacitors should be provided for any driving/receiving devices

and multivibrators. Multilayer printed wiring boards, with B+

and ground planes as internal layers, closely spaced, should be

considered for minimum inductance when using TTL logic or any

other logic element with an active pull-up. In all other cases

make the ground bus or ribbon as wide as possible.
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. Power Switching Circuit Design

Switching of power, control, and signal functions should prefer-

ably be accomplished with solid state devices. _4here the subsys-

tem requirements cannot be met with solid state devices, electro-

mechanical devices may be used. A detailed justification should be

provided for the electromechanical devices chosen. Items to be

considered in determining the optimum switching circuit are:

Circuit isolation;

Load characteristics;

Switch voltage drop and power dissipation;

Cycle requirements;

Response time;

Transients (generation and susceptibility);

Operating environments;

Volume and weight.

a. Power to Signal Ground Isolation - Isolation should be suf-

ficiently high in impedance such that DC and AC ground loop

currents are minimal.

b. Solid State Switching - The secondary breakdown limits of

transistors should be met under the actual imposed reactive

switching loadlines. Regenerative feedback techniques and de-

coupling should conform to the applicable requirements of sec-

tion 6. Input interface requirements should conform to the

applicable requirements of section 6.

c. Electro-Mechanical Switching - No single contact or driving

function failure should cause loss or erroneous actuation of a

critical function. Redundancy may be used to meet this require-

ment. Where redundancy is utilized, techniques must be provided

for circuit checkout. Contacts may not be paralleled to provide

total load current needs. It should be verified that the driven

circuitry will tolerate the specified discontinuities due to

contact bounce and resultant noise generation. Where magnetic

latching type relays are used, the minimum coil energizing or

V-33



.

i0.

de-energizing pulse periods should exceed the maximum relay pull

in or pull out requirement by a factor of 2.5. Transients or

stimulus applied to the individual energizing or de-energizing

coil should neither exceed 10% of the voltage-time product of

the minimum transfer pulse specified, nor 5% where applied simul-

taneously to both coils.

Power Supplies

Power supply systems should have over-voltage limiting set to

levels safe for the circuits being supplied. Power supply fail-

ure must not cause damage to the loads. It should also accommo-

date capacitive loads which may be imposed and which may affect

the gain phase margin of negative feedback regulation. The gain

and phase margins of section 6 should be met by the power supply

under all load conditions. Overload protection should be provided,

and the power supply must be able to withstand continuous short

circuits. Under worst case conditions, the power supply should

provide less than 90% of allowable ripple voltage and less than

90% of allowable regulation limits. The dynamic response should

meet all load requirements.

Capacitors

Capacitors have an equivalent circuit that contains an ideal

capacitor, inductor, leakage resistance, and equivalent series

resistance. These effects should be determined and included in

analysis of the circuit design. In addition to guideline derat-

ings and as a minimum, surge and ripple current should be derated

to 70% of rating and leakage current to twice rated. Circuits

should operate properly over the complete voltage range with the

variation in capacitance due to age and temperature. The effect

of maximum temperature excursions should be added algebraically

to life tolerances of capacitance. The drift capacitance changes

to be utilized for five year (or less) life applications are as

follows:

Type Capacitor Capacitance Chanse

Glass

Tantalum foil

Solid tantalum

Ceramic

Plastic

Silver mica

±0.5% or ±0.5 pf, whichever is larger.

±10%

±3%

±15%

±0.05% to +0.5%, depending on MIL-C-5

letter designation

+3% under controlled environment
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ii.

Capacitance values cannot be guaranteed for back biased polarized
capacitors. The most suitable type material and capacitor con-
struction should be chosen for each circuit use. Electrolytic
capacitors, when used for bypassing and filtering, should be ap-
plied with a minimumof RF current flowing. The peak voltage
should be lower than the derated dc working voltage. Foil t_-

talon capacitors may be safely charged from low impedance sources,

other types of electrolytic capacitors should have at least three

ohms per volt source impedance to limit surge current to a safe

value. Paper capacitors are good for low frequency current appli-

cations. The current rating depends on the temperature rise pro-

duced by the dissipation factor and by the current flowing through

the ohmic resistance. The low dissipation factor and high insula-

tion resistance makes plastic film capacitors suitable for use up

to 1 MHz for Mylar and up to i GHz for Teflon, Polystyrene and

Polycarbonate capacitors in coupling and bypass applications.

Plastic film capacitors have low dielectric absorption. Their

use is almost mandatory in operational amplifiers used as integ-

rators. The only other dielectric that competes with plastics in

this area is mica. The characteristics of ceramics can be tailored

to many applications, with the temperature coefficient of Temper-

ature Compensation Ceramics capable of close control. Stable

ceramics and glass compete strongly with mica in high frequency

applications. #_cas are often used as plate bypass capacitors

for transmitters. Silver-micas may be subject to silver ion

migration which is accentuated by humidity, high temperature, and

constant dc potentials. For long term applications, this migra-

tion effect through the dielectric will reduce dielectric strength,

insulation resistance, and capacitance. Consequently, silver-mica

capacitors should not be used where these environmental conditions

exist.

Res is tors

Resistors have an equivalent circuit that contains an ideal

resistor, inductance, and capacitance. These effects should be

determined and included in analysis of the circuit design. In

addition to guideline deratings, designs should provide for all

tolerance_ and resistance changes caused by processing, environ-

ments, and life drift.

Metal film resistors used in a humidity controlled environment

require a +0.37% and a -0.17% delta design tolerance if never

operated in an ambien_ temperature in excess of 70°C and a wattage
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12.

dissipation more than 50% rated. For uncontrolled humidity appli-

cations, the delta design tolerance should be +0.46% and -0.26%.

The effects of temperature and the initial tolerance should be

added to these values, including the effects of self-heating.

Design tolerances for carbon composition resistors should be ±19%.

For 1% RWIO to RW69 wire wound resis_rs, the design tolerance

should be ±12.2%. For 0.1% RWIO to RW69 resistors, the design

tolerance should be ±11.3%. For 1% RW70 to RW80 wire wound re-

sistors, the design tolerance should be ±2.4%. For 0.1% RW70

to RW80 resistors, the design tolerance should be ±1.5%. Carbon

composition resistors have the least inductance. Carbon and metal

film resistors, still relatively useful at high frequencies, have

slightly more inductance, but not as much as non-inductive wire

wound. Inductive wire wound resistors should be avoided except

for dc and very low frequency circuits.

Transistors

In addition to guideline deratings, bipolar transistor minimum

current gain should be derated 10% for aging and the leakage

current derated to 200%. When applying devices below the gain

temperature coefficient crossover point, the gain should also be

decreased 7% fQr each IO°C below the specification temperature.

For circuits sensitive to high gain, assure that maximum gain is

specified, that it will not allow thermal runaway, and that closed

loop margins are met. When operating the device below the gain

temperature coefficient crossover point, the maximum gain should

be increased for temperature at the rate of 7% for each 10°C rise

above the specified temperature. Also, correction of gain for

collector to emitter voltages above the value used in gain speci-

fications should be made. Circuits should be designed to accom-

modate an open ended ft specification _{use of minimum ft as

£

but allowing for infinite ft)" Field effect transistorspecified

transmittance should be derated 15% for aging and -4% for each

10°C above the specification temperature. The transmittance

should be increased 4% for each 10°C below the specification

temperature. The effects of a positive temperature coefficient

of _SS and a corresponding negative temperature coefficient of

IDS S should be included. The temperature coefficient varies

slightly with the semiconductor doping level. However, at a chip

temperature of IO0°C, _SS and IDS S will be no more than 1.7
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14.

times the 250C values. Linear proportions may be assumed for

other temperatures. The effect of the actual gate to source

voltage on _SS should be included. The substrate potential

and its effect on _SS for MOSFETS must also be considered. The

effects of secondary breakdown in all switching circuits with in-

ductive or capacitive loads should be determined and devices

specified accordingly. No general rule, such as constant 12t,

will hold for transient capability of all devices. 12t allowable

is a strong function of voltage. Under no condition should the

voltage rating be exceeded.

Diodes

In addition to guideline deratings, leakage currents should be

derated to 200% of specification value to compensate for aging

effects. No additional deratings above the guideline values are

required for life stability of Vf, VR, or V for diodes and zener
diodes, z

Transformers

For linear applications, either the combined effects of applied

voltage at minimum operating frequency, hysteresis offset due to

DC currents and operating temperature should cause flux excursions

less than 75% of total saturation level, or examination of the

hysteresis curve should be made to show acceptable performance

at this operating point. Environmental requirements of shock,

vibration, and temperature must be considered with regard to

magnet wire type, core construction, winding type, and encapsula-

tion requirements. Rise time and overshoot are affected by

leakage inductance and interwinding capacitance. Leakage in-

ductance may be reduced by using a small number of turns, toroid

construction, interleaved primary and secondary, short average

turn length, and bifilar windings. The interwinding capacitance

may be reduced with thick wire insulation, small number of turns,

interlayer insulation, winding of primary and secondary in

separate sections, and by electrostatic shielding. Center tapped

windings should be wound bifilar to reduce resistive and re-

active unbalance. In the selection of core material for audio

and power transformers, consideration should be given to core

loss in watts per pound over the frequency range of interest to

obtain maximum core efficiency and appropriate hysteresis loop

shape. For maximum efficiency, losses should be distributed

equally between core and copper.
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15.

The wire size should allow at least 850 circular mils per RMS
ampere. If these requirements are in conflict, the wire size
should govern. The insulation breakdownshould be derated to 50%
at maximuminternal temperature. The stray inductive and capaci-
tive effects should be negligible throughout the required passband.
The design should provide less than 50%of the required circuit
regulation limits. With open-circuited secondaries, a sufficient
number of primary turns should be assured by designing for a pri-
mary impedanceat least i0 times the reflected load impedance, for
the lowest frequency of interest. For pulse transformers, the
open circuit primary inductance should be specified to assure a
pulse droop margin of 10%of the allowable droop. The interwind-
ing capacitance should be low enough to allow the required rise
time in the circuit under consideration. A maximumDCwinding
resistance should be specified to provide the proper L/R time
constant. A 50%margin should be obtained of required peak pulse
voltage and a voltage-time product obtained to provide a 25%margin
on magnetic saturation. A 50%margin on voltage breakdownre-
quirements should be obtained for winding to winding, winding to
core, and winding to case voltages.

Relays

Switching of power, control, and signal functions should be ac-

complished preferably by the use of solid state devices. Where

electromechanical devices must be used, justification should be

provided for the electromechanical devices chosen. The areas to

be considered in determining optimum switching devices are re-

quirements of circuit isolation, switch voltage drop and power

dissipation, cycle requirements, qualification and operating

environments, generation and susceptibility to transients,

response time, load characteristics, volume and weight.

Where relays are used as the switching element, no single relay

contact failure should cause loss of a critical function. Re-

dundancy may be used to meet this requirement, but techniques

should be provided for circuit checkout. In addition to guide-

line deratings, a 20% margin should be provided for worst case

operate voltage and current. Residual voltage or leakage cur-

rent applied to the coil should not exceed 20% of the minimum

drop out value. Relay coil suppression should be provided

with consideration of suppression circuit failure modes, change

in relay response time, voltage capability of driving circuitry,

and EMI requirements.
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Wheremagnetic latching type relays are used, the minimumcoil
energizing or de-energizing pulse periods should exceed the maxi-
mumrelay pull-in or pull-out requirement by a factor of 2.5. Relay
contacts should not be paralleled to provide total load current
capability. Minimumcurrent should be provided to all contacts
which is at least 10%above the specified minimumratings. The
driven circuit should be designed to tolerate the specified dis-
continuities due to contact bounce and the resultant noise gener-
ation. Where relay contacts switch non-suppressed inductive loads,
contact voltage ratings and life cycling capability should be ade-
quate. Arc suppression maybe provided for contact protection.
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VI. VIBRATIONLIFE EXTENSIONOFPRINTEDCIRCUITBOARDASSEMBLIES

A. INTRODUCTION

With future reuseable space vehicles, such as the Space Shuttle,
the equipment must be designed and qualified to vibration of long
duration, as comparedto the usual single launch situation. For
example, the Shuttle Orbiter experiences 50 seconds of significant
vibration per flight. If a time safety factor of four is applied,
the duration of a vibration test to qualify the equipment for I00
missions is about 6 hours, and 28 hours for 500 missions. An al-
ternate approach would be to utilize an accelerated test approach
by increasing the level and shortening the time, but the trade-
off between level and time has not been sufficiently established
to define an acceptable accelerated test approach.

In future programs involving reusable hardware, it is always ad-
vantageous to utilize developed, off-the-shelf, hardware. In the
case of electronic equipment, the typical method of packaging is
conventional PCboards.

Whenconventional PCboard construction is considered, in the
light of anticipated Space Shuttle requirements, the following
questions arise:

i) Will conventional PCboard assemblies withstand 28 hours of
vibration, and at what levels?

2) What can be done in the packaging design to increase the vi-

bration capability, short of permanently encapsulating the

entire assembly which is extremely undesirable from the stand-

points of failure analysis, maintenance, and repair?

3) For accelerated test purposes, what is the trade-off between

vibration time and level?

4) What minimum modifications can be applied to existing, off-

the-shelf, hardware to significantly increase the vibration

capability?
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This study was conducted to gain preliminary answers to these

questions. To answer Questions i, 2 and 3, a brief vibration test

program was conducted on PC boards. To answer Question 4, a pre-

liminary study was conducted to determine what materials might be

employed as an encapsulent that is easily removable, to facilitate

repair and maintenance. The work of Sandia Corporation which has

successfully used loose phenolic microballoons is summarized.

Bo GUIDELINES

In the Space Shuttle Program, which will require Vibration Quali-

fication Tests of very long duration, possibly 28 hours, the

principal problem with most electronic equipment is failure of

the electronic part leads due to flexure of the PC boards at their

resonant frequency.

The tests summarized herein indicate that well-designed PC board

assemblies adequately damped, can survive 28 hours vibration at

levels under 15 or 20 g rms at the spectrum chosen to be repre-
sentative of the Shuttle Orbiter.

The tests show that edge clamping, the use of damping strips, and

conformal coating reduced the amplification from 80 to 15 and very

significantly extend vibration llfe. Two boards of different de-

sign, but not edge clamped, damped or conformally coated, were

vibrated at 17 g rms. The amplification was 80 and lead breakage

began at 26.5 hours and 13 hours. When the vibration level was

increased to 34 g rms to accelerate the test, lead breakage began

at 28 minutes and 20 minutes. However, when a board was conformally

coated, and damping strips applied, the amplification was reduced

to 35; the first failure at 34 g's was delayed to 2.5 hours. When

this configuration was also rigidly clamped at the edges, the ampli-

fication was further reduced to 15; and no failures had yet occurred

when the test was terminated at 5 hours, 40 minutes.

The vibration time acceleration factors obtained by increasing the

vibration level 6 db were highly variable, varying from 1.5 to

greater than 79. The mean of nine data points was 23.6. Although

the scope of this test program was not sufficient to substantiate

an accurate acceleration factor, the approach used could yield more

valid acceleration factors by applying the approach to a greater

number of hardware items. If the resulting acceleration factor

was, for example 20, then a 28-hour test could be conducted in 1.4

hours by increasing the qualification test level by 6 db.
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Due to the uncertainties involved in any accelerated vibration
test approach, it would be judicious to avoid excessive accelera-
tions. A 3 db increase, rather than 6 db, would introduce much
less uncertainty, but still provide a sufficient test accelera-
tion to effectively shorten a 28-hour test.

For high vibration levels, exceeding 15 or 20 g rms, encapsula-
tion of boards is desirable, but conventional encapsulents, such
as the polyurethanes and epoxies, render the electronic package
unrepairable. The Sandia Corporation has extended vibration life
by filling the entire cavity of an electronic package with loose
phenolic microballoons, reducing their PCboard amplification
from 28 to 6. For mannedmissions, the use of microballoons would
create crew safety and contamination concerns. Further evalua-
tion and development testing is recommendedto identify and select
other easily removable encapsulants which could be used in off-
the-shelf hardware to allow the utilization of such hardware in
future programs involving reusable vehicles and long vibration
exposures. The study described herein recommendsfour candidates.

C. VIBRATION TESTS

le Test Program

The primary failure mechanism of an assembled PC board under

vibration is the flexing of the board at its resonant frequency

which loosens, fatigues and breaks the leads of the mounted parts.

In a prior test program, it was found that the electronic parts,

which were broken from the PC boards, had not themselves failed.

Accordingly, in the test program described herein, the data was

evaluated on the basis of the time required to break the part

leads and connections. Electrical functional tests were not con-

ducted in order to maximize the test data with the limited re-

sources allotted to the test program.

The test specimens consisted of six printed circuit boards, four

of one configuration and two of a second configuration. The first,

identified as Configuration A in Table i, held one resistor, seven

capacitors, and 36 dual in-llne (DIP) integreted circuits (ICs).

The second board, identified as Configuration B in Table I, held

one resistor, four capacitors, II DIP ICs, and 18 ICs in TO-5

cans. Both types of boards measured 5.75 x 6.20 inches.
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Table i presents a summary of the configurations and parameters

tested. A sketch of mounting Configuration I is shown in Fig. i.

This mounting consisted of two one-half inch standoffs at two

corners, and clamped along the opposite, rear, edge of the board

(where the board normally is plugged into an electrical connector).

Mounting Configuration 2, as shown in Fig. 2, consisted of clamped

supports along all four edges of the board. As indicated in the

table, boards five and six were damped on the bottom with four

strips each of a damping material planned for use on the Viking

program, and identified as SMRD, a General Electric product. Also,

as noted, some of the boards were conformally coated and some were

not.

The basic random vibration level was as follows:

20 - i00 Hz at +3 dB/Octave

i00 - i000 Hz at 0.8 g2/Hz

i000 - 2000 Hz at -6 dB/Octave

Overall = 34.0 g rms

Some testing was performed at 17 g rms, but all testing was to

the same spectral shape. The maximum test duration scheduled was

28 hours.

Test Results

The following listing presents the physical failures noted and

the approximate times of occurrence. Refer to Table i for descrip-

tion of the particular specimen and test configuration. Also in-

cluded are the dominant resonance frequencies and amplifications

observed.

a. Specimen No. 1 - An amplication of 80 was observed at 160 Hz.

Note that testing was at 17 g rms, 6 dB below the reference level.

At 26.5 hours, loss of capacitor C-7 was observed due to failure

of the leads at the solder Joint.

b. Specimen No. 2 - An amplification of 80 was observed at 170 Hz.

Note that testing of this PCB was also at 17 g rms. At approxi-

mately 13 hours, individual TO-5 IC leads started breaking and

continued to accumulate until 26.5 hours, at which time IC AI9

completely separated from the board. At this time there were 14
additional leads broken on seven other IC's.
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c. Specimen No. 3 - Specimen and mounting configurations were

the same as Specimen No. i, so no resonance search was performed.

Testing was at the reference level, 34 g rms. At 28 minutes,

failure of capacitor C-7 was observed, due t¢ lead failure at the

bends in the leads. At 30 minutes, capacitor C-5 was lost by the

same failure mechanism. At 3 hours, 45 minutes, capacitor C-6 was

lost; one lead failed at the solder Joint and the other lead failed

at the bend. Between approximately 14 hours and 17.8 hours, six

leads broke on the DIP ICs. Testing was stopped at 17.8 hours.

d. Specimen No. 4 - Specimen and mounting configurations were

the same as Specimen No. 2, so no resonance search was performed.

Test level was the reference level of 34 g rms. At 20 minutes,

resistor R-I broke off due to failure of the leads at the solder

Joints. At approximately five hours, capacitors C-2 and C-3 broke

off at the solder Joints. Commencing at approximately six hours,

individual TO-5 IC leads started breaking, with 29 broken at 13.8

hours and 63 broken at 17.8 hours. Physical separation of IC

number A-3 occurred at 15.8 hours, A-4 at 16.4 hours, and A-19

at 17.1 hours. Testing was stopped at 17.8 hours.

e. Specimen No. 5 - An amplification of 15 was observed at 400

Hz. The test level was 34 g rms. At the end of testing, 5 hours,

40 minutes, no failures were observed.

f. Specimen No. 6 - An amplification of 35 was observed at 170

Hz. At 2.5 hours, capacitor C-5 was lost due to broken leads at

the bends. At 3 hours, i0 minutes, capacitor C-6 was lost, and

at 3 hours, 20 minutes, capacitor C-7 was lost. No further fail-

ures were noted when testing was stopped at 5 hours, 40 minutes.

Comparisons

Specimens No. 1 and No. 3 were identical except No. 3 was tested

at twice the rms level, 6 dB higher. Capacitor C-7, which failed

on PCB No. 3 at 28 minutes, failed on PCB No. i at 26.5 hours.

Thus, a 6 dB decrease in level resulted in an increase of time

before failure by a factor of 57. The same capacitor on PCB No.

6, which had a thin conformal coating and damping strips added,

lasted for 2 hours, 20 minutes, an increase of a factor of 7.

Capacitor C-5 which lasted 30 minutes on PCB No. 3, had not failed

at end of 26.5 hours during low level test, but failed at 2.5

hours on PCB No. 6, an increase of a factor of 5. Capacitor C-6,

which failed at 3 hours, 46 minutes on PCB No. 3, did not fall on

PCB No. i, but failed at 3 hours, i0 minutes on PCB No. 6, an in-

crease of a factor of only 1.2. However, the same printed circuit
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board configuration, when clamped on four sides, conformally

coated, and damped, did not experience any failures at 34 g rms

for 5 hours, 40 minutes. This indicates a minimum life increase

of 12X for C-7, IIX for C-5, and I.bX for C-6. In summary, con-

sider PCB No. 3 as the reference board. Decreasing the level by

6 dB extended the lives as follows:

57X for C-7

53X (minimum) for C-5: Did not fail at -6 dB

7X (minimum) for C-6

Adding conformal coating and damping strips extended the lives as

follows:

7X for C-7

5X for C-5

1.2X for C-6

Adding conformal coating, damping strips, and clamping all for

sides increases the lives a minimum as follows (parts did not

fail in this configuration):

12X (minimum) for C-7

1IX (minimum) for C-5

1.5 X (minimum) for C-6

For the "B" configuration board, consider PCB No. 4 as the refer-

ence board. Decreasing the level by 6 dB increases the lives as

follows:

79X (minimum) for R-I

5.3X (minimum) for C-2

5.3X (minimum) for C-3

2.2X (approximate) for initiation of TO-5 IC lead breakage

I.TX for loss of first IC

1.5X for loss of IC No. A-19
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o Conclusions

Based on the limited data from this test, only general conclusions

can be drawn. A 6 dB reduction in test level (one-half the g rms

level) resulted in an increased part llfe. That increase varied

for individual parts from a factor of 1.5X to in excess of 79X.

The mean of nine data points was 23.6X minimum. The addition of

conformal coating and damping strips also increased the part llfe;
this increase varied from 1.2X to 7X.

A further change to clamped on four sides (from clamped on one

side and standoffs on other two corners), with conformal coating

and damping, extended the part life even further; this increase

varied from "in excess of 1.5X" to "in excess of 12X."

The addition of conformal coating and damping strips reduced the

amplification by a factor of 2.3 (from 80 to 35). A further

change to clamped four sides provided an additional reduction by

a factor of 2.3 (from 35 to 15).

The most significant conclusion that can be drawn from these test

data is that test levels less than 15 or 20 g rms and long dura-

tions (28 hours for example) do not appear to present insurmount-

able problems using existing PCB design if proper precautions are

taken in board design, component layout, and mounting techniques.

The tests have indicated that damping material may significantly

reduce the amplifications at resonance, with inherent longer life.

Also noted was the fact that going to a more rigid mounting con-

figuration (clamped on four sides as compared to clamped one side

and two standoffs) not only increased the resonant frequency, as

expectedp but also resulted in a significant decrease in the am-

plificatlon at resonance. This decrease in Q apparently results

from a change to a "more complex" mode shape, one with more in-

flection points and more antinodes. Generalizing on this result,

the Q of a board may be reduced by any mounting change which re-

sults in excitation of a higher mode, or results in exciting a

different fundamental mode with a more complex shape. For example,

the addition of a center support will restrain the first mode and

force any resonance occurring to be at a higher mode with a lower

amplification. The data acquired does not permit a quantitative

evaluation of the reduction gained for any particular mode change.

At vibration levels higher than 15 or 20 g rms, or for off-the-

shelf hardware not currently designed to withstand long duration

exposure to 15 or 20 g rms, the use of encapsulation should be

considered. Removable encapsulents which provide a much greater

degree of maintainability than solid potting, are discussed in
the next section.
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Do CONTROL OF PC BOARD FLEXURE

The following information, directly abstracted from a paper by

D. E. Longmire (Ref i), confirms the benefits of edge clamping

and board dampening. It also presents other data.

"In PC boards it is mainly the displacement which caused

the failures, not the actual g loads. The repeated flex-

ure destroys the solder joints, the adhesion of the cir-

cuit lines to the boards, and fatigues component leads

until they break. So it can be said that most printed

circuit boards can stand high g's if flexure is not al-

lowed.

"To control flexure these things need to be done: size

and weight reduced, the board made thicker, board sup-

ports added or the edge supports improved, damping added,

or the board isolated. In any event, the control must

move the board natural frequency to one which is well

separated from the mounting structure natural frequency.

When isolators are used, the isolation frequency should

be less than half that of the structural f . If stiff-
n

ness is the route taken, then the f of the board assem-
n

bly should be twice the structural resonant frequency.

In this approach it is desirable to place the f of then

board higher than any expected range of input frequencies.

"Individual component g levels may be very high using

the last method, but unless these components are large,

or heavy, or definitely delicate, no failures should oc-

cur. Individual PC components in modern electronics are

very rugged and can generally withstand i00 to 200 g's or

more with ease.

"There are several schemes for damping PC boards. Visco-

elastic materials for this purpose are made by the Lord

Manufacturing Corporation. A layer of the visco-elastlc

material is bonded to a thin glass laminate which is ap-

proximately 0.03" thick. This assembly is sandwiched to

the soldered side of a single-sided PC board and the

sandwich then consists of PC board, visco-elastic layer,

and finally the fiberglass skin. The results of this

damping are dramatic. Reduction of the Q or amplifica-

tion by a factor of 4 or 5 may be expected. In addition,

the f of the board and damping assembly will rise by al-
n

most a factor of two, which is usually in the right direc-

tion.
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"The Korfund Corporation has developed several interest-

ing damping compounds which can be applied putty-llke to

the PC board. Again damping is very effective. Both of

the above materials share the common disadvantage of mak-

ing board repair difficult. For this reason, isolation

techniques are the most popular and successful method of

protecting PC boards.

"The Barry Corporation makes PC board edge guides which

incorporate flexibility and therefore isolation at the

very input to the PC board. Edge guides which have a

medium hardness of approximately 50 to 60 durometer set

up an isolation f of about 70 cps in a 4x6" moderately
n

loaded digital type PC board. We have made these guides

using polyurethanes and modified epoxies. Both of these

materials have good damping characteristics; however, at

this time it is too early to give complete results of

vibration testing. Vinyls are fine at room temperature,

but these do not exhibit particularly satisfactory ther-

mal or long term dimensional properties.

"The amount of damping which an electronic cabinet can

have is a function of the thought and detail put into the

factor by the designer. Riveted structures can be advan-

tageous in self-dampening as assembly. Damping materials
similar to those described earlier can also be used.

Think in terms of damping and isolation rather than rig-

idity and integrity and much less of the hostile outside

world of vibration will reach the inner sanctum of the

PC board."

Reference 2 also presents empirical design data derived from vibra-

tion tests, for calculating the PC board resonant frequency as a

function of board shape, size, thickness, material, and mounting

technique.

El STUDY OF REMOVABLE ENCAPSULANTS

This survey was accomplished to determine what mlnimummodifica-

tion, in the form of an easily removable encapsulant, could be

applied to existing off-the-shelf hardware to significantly in-

crease the vibration capability. The work of Sandia Corporation

is summarized together with a discussion of other possible ap-

proaches.
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i. Sandia Corporation's Microballoon Approach

Sandia has developed a system employing loose phenolic microbal-

loons and silicone rubber to improve vibration and shock capabil-

ity of electronic equipment. This work, reported by E. C. Neidel

(Ref 2), is described: An electronic package with PC boards in-

strumented with accelerometers was vibrated and a peak response

(Q) of 28 was measured at 84 cycles. Filling the unit with glass

microballoons reduced the peak response to 12, at 300 cps. It

was observed that the glass microballoons had a tendency to break

into small pieces, tended to act as an adhesive, and could consti-

tute a health hazard if they became airborne and were inhaled.

Phenolic microballoons were then tested. These reduced the peak

response from 28 to 6.2, and did not break up. With a size range

of 0.0002 to 0.0050 inches in diameter, and an average particle

diameter of 0.0017 inches, no health problems were anticipated

by either the Sandia medical or safety departments. Consequently,

loose phenolic microballoons were chosen as the packing material

to fill the free volume of the unit.

During the vibration tests some component and lead wire failures

occurred, so silicone rubber was applied to provide additional

support. First, a viscous mixture with 2% silicon dioxide was

applied with a spatula to form large fillets between the larger

and heavier components and the circuit board. Then, silicone rub-

her, without the additive, was poured in the assembly and allowed

to run off freely. The result was a cocoon-like conformal coat-

ing about 1/16 inch thick. The silicone rubber used was formu-

lated to cure at room temperature in 24 hours. Both the conformal

coating and the thicker fillet mixture are readily peelable after

curing. The surface adhesion is low enough to allow easy removal

from all surfaces. As a result, the dynamic characteristics of

the unit have been improved with the only compromise on the ease

of repair being the addition of a readily peelable material.

Areas exposed during repair can be recoated with no difficulty.

In a mlcroballoon system, all components must be sealed includ-

ing those which penetrate the container. Also, the container

itself must be sealed to keep the mlcroballoons in, and to keep

moisture out.
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. Survey and Preliminary Evaluation of Other Removal Encapsulants

Several prerequisites exist for the "Ideal" potting material.

The material should be easily applied and easily removed to facil-

itate maintenance and repair. The material should be nonflammable

and not hazardous to the crew. The material should not impose

stresses on the parts. Heat conduction properties of the mate-

rial must be considered.

A survey, conducted to acquire suggestions, resulted in 12 sugges-

tions, four of which merit further consideration. These sugges-

tions, and their evaluation, are presented below:

i) Suggestion No. i - Process General Electric's SMRD (used as

damping strips in the previously described test program) into

small blocks, pellets, or granules, and pack them into the

assembly.

Reviewers Comments - A good suggestion worthy of further

evaluation by a test program.

2) Suggestion No. 2 - Fill the cavity with powdered alumina.

Reviewers Comments - No advantage over Sandia's phenolic

microballoons and has the disadvantage of being heavier.

Recommend no further consideration.

3) Suggestion No. 3 - Fill the cavity with a mixture of 3M

Fluorocarbon Fluid and Emerson and Cummings "Eccospheres."

Reviewers Comments - This combination provides fluid

dampening, and heat transfer better than natural convec-

tion. It is an inert fluid, is nonflsumaable, and has ex-

cellent dielectric strength. However, since it is a liq-

uid, a leak in the package would create a messy situation.

4) Suggestion No. 4 - Use a wax with a melting point high enough

to present a phase change at the highest required temperature.

This is usually 160°F.

Reviewers Comments - Waxes have reasonably good dielectric

strength and wide range of melting points. However, waxes

contract upon solidification rendering the filling opera-

tion more difficult. They are heavier than the Sandia ap-

proach and they may impose stress on parts at low tempera-

tures, although data on this facet has not been located.

Also, waxes are flammable and impose a potential crew

safety hazard.
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5)

6)

Suggestion No. 5 - Use General Electric RTV 602, which is fri-

able and thus easily removed. Thermal conductivity can be

maximized using large granules of alumina (AA203) in the pot-

ting. Microballoons could be added to the base resin to lower

the specific gravity.

Reviewers Comments - This material may not be as easily

removable as the above indicates. This should be deter-

mined before the material is considered a good candidate.

Suggestion No. 6 - Treat the printed circuit boards and the

package interior with a silicone mold release compound. Fill

the package with a very soft foamed silicone room-temperature-

curing material. The poor tensile strength would allow the

PCB's to be pulled out of their mounts.

Reviewers Comments - Believe the components on the PCB

boards would lock in the PCB boards so they could not be

easiZy removed, but the approach may be feasible with the

components having small vertical dimensions, like flat

packs. This approach is worthy of further evaluation.

7) Suggestion No. 7 - Fill the package with petrolatum.

s)

9)

Reviewers Comments - Inflammable, fairly heavy, and messy

in event of a leak in the package.

Suggestion No. 8 - Use resilent vlbratlon-energy dampening

blocks of silicone rubber molded to closely fit parts. Place

blocks (1-2 in. 2 area) at points of maximum vibration, cemented

to one surface, and in compression between adjacent PCB's.

Minimizes stressing of parts, low weight, easy repair (may be

sliced free), won't trap gas, and minimizes blocking of heat
flow.

Reviewers Comments - Worthy of further evaluation. Gen-

eral Electric's SMRD is superior to silicone rubber.

Suggestion No. 9 - Use Thiokol Chemical Company's Solithane

113/300 polyurethane, either unfilled as a clear, low viscosity

potting resin, or filled with Cab-O-Sil for a thixotropic,

clear, encapsulation coating. Is visco-elastlc and has good

damping properties. Is relatively easy to remove by attack
from chlorinated solvent and mehanical means. The filled

version is recommended for weight savings.

Reviewers Comments - This material may not be as easily
removable as the above indicates. This should be deter-

mined before the material is considered a good candidate.
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io) Suggestion No. i0 - Use low density polyurethane foam, such

as MMC-L721A, or CPR 1021. May be softened with alcohol,

followed by mechanical removal for repair. Excellent for

fabrication, weight and repair. Adequate heat transfer must

be accomplished through wide copper traces conducting to a

heat sink.

Reviewers Comments - This material is used on the Titan

program, where it has been found that the packages are

essentially unrepairable. The removal process is un-

wieldy, time consuming, and has a significant potential

for damaging the electronic parts.

ii) Suggestion No. ii - Fill the cavity with a mixture of phenolic

microballoons and SMRD granules.

Reviewers Comments - This combination could provide more,

or possibly less dampening, than Sandia's phenolic micro-

balloon approach. A test program would be required to

establish this.

12) Suggestion No. 12 - Pack the cavity with moist brown sugar

and harden the material by vacuum exposure at a slightly ele-

vated temperature. The potting can be removed by dissolving

in water. This approach is used by Sandia during prototype

development testing, where a removal potting material is
needed.

Reviewers Comments - An ingenious approach, useful in

development testing, but not desirable for production

hardware since the high modulus of the dried material

would severly stress the internal parts during tempera-

ture changes.

It is concluded that suggestions, numbers i, 6, 8 and ii, have

merit. It is recommended that a test program be initiated to

establish the comparative feasibility and effectiveness of these

suggestions, as well as further search for additional candidate

solutions for extending the vibration endurance of off-the-shelf

electronic hardware with minimum modification.
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VII. TOLERANCEFUNNELINGANDTESTREQUIREMENTSSTUDY
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Vll. TOLERANCEFUNNELINGANDTESTREQUIREMENTSSTUDY

A. INTRODUCTION

To reduce the incidence of extremely costly failures at the launch

complex, and at all other high levels of assembly, it is essential

that the functional test requirements for a given hardware item

be most stringent during the earliest stages of fabrication, and

progressively less stringent as the hardware is moved through suc-

cessive testing to the final countdown. This philosophy, referred

to as Tolerance Funnelling, or Triangular Tolerances, insures that

marginal hardware is detected early in the life cycle where cor-

rective action is least costly and most readily applied. It is

extremely costly and bad practice to employ the same functional

requirements throughout the life cycle, since small shifts or drift

in either the hardware or in the test instruments will cause equip-

ment to be rejected late in the life cycle. Where the philosophy

of tolerance funnelling is recognized and accepted, the problem

that then exists is that each different designer has his own ap-

proach to establishing the tolerance funnel. The purpose of this

study is to present a tolerance funnelling approach that can pro-

duce a more consistent and uniform approach within a given program.

Bo TOLERANCE FUNNELING TEST GUIDELINES

i.

.

End of Life Tolerances

End of life degradation tolerances of tested parameters as iden-

tified by worst case analysis should be excluded from the test

limits during all levels of test. A possible exception is that

during EMI susceptibility and voltage transient margin testing,

end of life limits can be included due to severity of the tests.

Test Equipment Uncertainties

Test equipment uncertainties must be defined and should fall in-

side of the test limits. It should not allow the acceptance of a

flight component with a tested parameter that exceeds the realiza-

able worst case limit in that test configuration.
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Test Limit Margins

Test limit margins should be relaxed with each level of test (mod-

ule to component to subsystem). This decreases the risk of having

a test failure as the impact of having a test failure increases.

For example, a test failure at the subsystem level represents a

greater impact than at the component or module level test.

Analysis

Test limits should be based primarily upon the worst case anal-

ysis to identify the worst case limits in the different hardware

configurations. These iterations are:

l) Manufacturing Acceptance test worst case limits at the module

level during pre-encapsulation tests. These worst case limits

should consider initial part tolerances plus self heating

caused by part application.

2) Manufacturing Acceptance test worst case limits at the module

level during post-encapsulation tests. These worst case lim-

its should consider initial part tolerances plus self heating

caused by part application and should consider effects of the

encapsulation techniques employed.

3) Acceptance, design development, and qualification test worst

case limits at the component level where tests are conducted

under bench conditions. These worst case limits should con-

sider initial part tolerances plus self heating caused by

part application and should consider effects of component case

internal temperatures.

4) Acceptance test worst case limits at the component-level

where tests are conducted under temperature extremes. These

worst case limits should be as determined in 3) plus any worst

case deltas due to temperature extremes.

5) Design development and Qualification test worst case limits

at the component levels under temperature extremes. These

worst case limits should be as determined in 4), plus any

worst case deltas resulting from the wider temperature range.

6) Component limits based on controlling interface requirements.

These limits should be total worst case variations, including

all environments and "end of life" degradation.
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i0.

Module Pre- and Post-Encapsulation Limits

Test limits for acceptable units should be 50% or Root Sum Square

(RSS) of worst case limits, whichever is greater during pre and

post encapsulation tests. Test limits for unacceptable units

during pre and post encapsulation tests should be the worst case

limits. Units with test values between the acceptable and unac-

ceptable limits should be analyzed individually for disposition

as to rework, retest, acceptable as is, or reject.

Component Design Development and Qualification Limits

Test limits for component design development and qualification

tests should be in accordance with Table i.

Component Acceptance Limits

Test limits for acceptable components should be 60% or Root Sum

Square (RSS) of worst case limits, whichever is greater for bench

operating conditions, dynamic environments (i.e., shock, vibra-

tion), and before and after heat compatibility. During tempera-

ture tests, the acceptable limits should be 60% or Root Sum Square

(RSS) of worst case limits, whichever is greater. Test limits for

unacceptable components should be worst case limits for bench

operating conditions, dynamic environments (i.e., shock, vibra-

tion), and before and after heat compatibility. During temperature

tests, the unacceptable limits shall be the worst case limits.

Components with test values between the acceptable and unacceptable

limits should be analyzed individually for disposition as to re-

work, retest, acceptable as is, or reject.

Subsystem Limits

Test limits for subsystem mock-up tests, ETC, PTC, etc. should be

in accordance with Table i.

Module Test Loads

Test loads for modules should be "end of Life" as identified in

the worst case analysis and should include margin verification.

The test loads should encompass all interface limits.

Component and Subsystem Test Loads

Component and subsystem test loads should encompass all controlling

interface requirements.
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Table 1 Test Type and Test Limits - Component DD/Qual Tests and

Subsystem Tests

Non OpT/Non

Test Oper. Oper. Op.

Proof Pressure X

Burst Pressure X

Seal X

Static Load X

Operating Life X

Beat Compat. X

Non Op. Pyro X

EMC X

Temp Humidity X

Prop. Comp. X

Asc. Pressure X

Launch Accel. X

Launch Acous. X

Launch Vibr. X

Cruise T/V X

Corona/Arcing X

Entry Thermal X

Entry Accel. X

Entry Acous. X

Entry Vib. X

Oper. Pyro X

Landing Shock X

Surface Thermal X

Sand/Dust X

Extended Level

Voltage X

Transients X

Vibration X

Temperature X

Extended Cycle

Longer duration X

Extended Life X

Specials

Nuc. Rad. X

Windbl. Dust X

Prelaunch Thermal X

Mag. Field X

Static Discharge X

* Limits

l)
l)
i)
i)
l)
l)
l)
z)
l)
l)
i)
l)
l)
l)
3)
I)
3)
i)
i)
i)
i)
l)
3)
l)

2)
2)
l)
3)

4)
l)

l)
l)
3)
I)
I)

I)

2)

Test limits should be

whichever is greater,

applicable.

70% or Root Sum Square (RSS) of worst case limits,

per paragraph 4(3) before, during and after test as

Test limits should be 70% or Root Sum Square (RSS) of worst case limits,

whichever is greater, per paragraph 4(3) before, during and after test,

except worst case limits of paragraph 4(6) should apply during all sus-

ceptibility testing (i.e., radiated, conducted, transients).

* 3)

4)

Test limits should be 70% or Root Sum Square (RSS) of worst case limits,

whichever is greater, per paragraph 4(3) before and after test. Test

limit should be 70% or Root Sum Square (RSS) of worst case limits, which-

ever is greater, per paragraph 4(5) during test as applicable.

Test limits should be 70% or Root Sun Square (RSS) of worst case limits,

whichever is greater, per paragraph 4(2) before and after test. During

test, use 70% or Root Sum Square (RSS) or worst case limits, whichever

is greater, per paragraph 4(3) for vibration; or 70% or Root Sum Square

(RSS) of worst case limits, whichever is greater, per paragraph 4(5) for

temperature, as applicable.

VII-4



ii.

12.

13.

Module Stimuli

Electrical stimulus for modules should be "end of life" as iden-

tified in the worst case analysis. The test conditions should

encompass controlling interface limits.

Component and Subsystem Stimuli

Component and subsystem external stimulus should encompass con-

trolling interface requirements.

Test Equipment Accuracy

Test equipment accuracy, by order of preference, should be as

follows:

i) An accuracy of at least an order of magnitude better than the

allowable tolerance of the measurement to be made.

2) Calibration of the test equipment by using standard signals

which simulate the expected range of signals in three or

more steps. The standard signal accuracy shall be at least

three times greater than the measurement tolerance.

3) Within state of the art limitations, the inaccuracy of the

test equipment shall be no greater than 25% of the allowable

tolerance of the measurement to be made.

C. DISCUSSION

io General

The worst case analysis determines if component/subsystem per-

formance requirements will be met under worst case electrical

and environmental conditions including end of life mission de-

gradation. A direct extension of this discipline is the total

test program which among other things establishes confidence,

by environmental and functional tests, that each flight system

is free of defects and capable of performing the mission. As

discussed in the following paragraphs, various test limits (tol-

_ance funneling) should be considered for all levels of test.

Considerations have been given to the effects of environments,

loads, stimulus and measurement uncertainties on test limit

selection.
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o Test Limit Considerations

If a module is a worst case design, it is generally accepted that

a worst casp unit will never be built. In other words, a test

parameter close to the worst case limit may be an indication of

a faulty unit, i.e., wrong part, damaged part, bad solder joint,

faulty test equipment, etc. In these situations, an evaluation

or disposition of the unit should be made.

This approach requires dual-valued test limits as shown in Figure
i.

m

Dt///////////J

WC Test Actual

Limit Test

(Lower) Limit

(Lower)

"Understand Why"Reglons --_

I YIIIIIIIIII2

Nominal Actual WC Test

Test Limit

Limit (Upper)

(Upper)

Figure 1 Dual-Valued Test Limits

The worst case test limit is the realizable test limit in the test

configuration and test environment and is determined by worst case

analysis. When the test parameters exceed these WC limits, the

module is rejected.

The actual test limit is a limit more representative of the actual

hardware considering the normalizing tendency of a test parameter
that is a function of several variables.

The "understand why" region is bounded by these two limits. Test

parameters falling into this region require evaluation and dis-

position. The evaluation might include the following:

i) Check part numbers for correct values;

2) Check PC board/module layout, solder joints, etc. Perform

continuity measurements;*

3) Measure the actual part values;*

4) Observe waveforms, currents and voltages;*

5) Verify supporting test equipment.
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*These measurements would be done to the extent possible without

lifting any part leads. Extreme care would be required during

these measurements to prevent part damage or degradation. Test

equipment must be suitable for the parts used in the circuits

being evaluated from the standpoint of applied voltage, current

and loading effect (transient and dc).

Test Limit Restraints

The selection of the actual test limit is difficult because of the

many restraints, some of which are identified as follows:

Items forcing the test limits to nominal are:

i) Nominal units allow maximum degradation for the mission;

2) All incorrect (wrong) parts should be identified;

3) All damaged parts should be identified;

4) All manufacturing defects (solder joints, etc.) should be

identified.

5) Proper test equipment implementation.

Items forcing the test limit to worst case are:

i) Good units should not be rejected;

2) Understand process is not cost effective;

3) "Understand" process can impair reliability if troubleshooting

becomes excessive or is done carelessly;

4) Reject of good hardware at the subsystem/system level is a

serious program impact;

5) Test parameter distribution is difficult to predict.

The impact of different test limits is illustrated by the following

example which considers two variables:

The parameter to be measured is a time constant, • = RC. The test

level is a PC board acceptance test at room temperature.
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The worst case tolerance on "R" is

initial = ±1%
Temperature = ±1% = ±3%total
aging = ±1%

The worst case tolerance on "C" is

initial = ±9%
Temperature = ±9% = ±27%total
aging = ±9%

The worst case limit, as a result of initial tolerances would be
±10%.

Case i. Assumea test limit = i10%

Then, the units falling in the "understand why" region
= 0. "R" could be any value from nominal ±i0 i9 = i19%
assuming "C" is in specification.

"C" could be any value from nominal ±I0 il = i11% as-
summing"R" is in specification.

Case 2. Assumea test limit = ± 5%

"R" could be any value from nominal ±5 i9 = ±14%

"C" could be any value from nominal ±5 ±i = ±6%

Case 3. Assumea test limit = 0%= nominal

Then, every unit would fall into the "understand why"
region and "R" could be any value from nominal ±9%.

"C" could be any value from nominal ±1%

The three different cases indicate the following:

Case i is the most cost effective

Case 2 is a compromiseand the most desirable

Case 3 allow maximummargin for end of life degradation but is not
cost effective.
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In no case, can a limit be selected that will guarantee that all

parts are within specified limits.

Test Limit Selection

The selection of the recommended test limits given in this report

is based upon the following:

Case i. Test limits are 50 % of worst case limits.

These limits would apply when the parameter to be mea-

sured is the composite or result of several variables (n)

that are equally weighted. Table 2 gives the worst case

limit, 50% worst case limit and the RSS limit for n = 1

to i0. The table indicates that for n > 4, the RSS limit

is < the 50% worst case limit.

For n greater than 4, the margin of 50% worst case limit

over the RSS limit should result in a minimum number of

"understand why" conditions even though it is recognized

that the distributions of the individual variables are

not normal distributions.

The 50% limit also provides a generous margin over the

worst case design limit.

Case 2. Test limits are RSS limits.

These limits would apply when n is small and/or when the

individual variables are unequally weighted. The ex-

ample given in Attachment 1 illustrates the predominant

effect of the largest variable in the RSS limit which

tends to minimize the significance of the initial dis-

tribution of the individual variables. Although the

margin over the worst case limit is not as great as for

Case i, the RSS margin should be more representative of

real life and result in a minimum number of "understand

why" conditions.

The test limits at higher levels of test (component, subsystem)

are increased to provide funneling, thereby tending to reduce the

risk as the level of the test increases.

Although test equipment uncertainties have not been considered in

this, they would naturally be included inside the test limits

selected. Care must be taken when using the RSS test limits such

that inverse funneling does not result from increasing test equip-

ment uncertainties as the level of the test increases.
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Table 2 Limits as a Function of n Variables -

Equally Weighted

n Worst Case RSS 50% WC

I 1% 1% .5%

2 2% i.4% i.0%

3 3% I. 73% i.5%

4 4% 2% 2.0%

5 5% 2.23% 2.5%

6 6% 2.45% 3.0%

7 7% 2.64?° 3.5%

8 8% 2 .82% 4 .0%

9 9% 3% 4.5%

i0 10% 3 .16% 5.0%
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