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CHAPTER I.

INTRODUCTION

In the operation of future manned space vehicles
there is always a finite probability that an accident
will occur which results in uncontrolled tumbling of
a spacecraft. This uncontrolled motion creates a
hazardous environment to the crew, which would experience
oscillating accelerations. The structural integrity of
the disabled veﬁicle may be jeopardized by prolonged
tumbling presenting additional danger. An earth-launched
rescue vehicle may not-arrive for approximately twenty-
four hours due to fueling, launching, and rendezvous
operations. Hard docking by a manned rescue craft with
the disabled vehicle is not possible because of the
hazardous environment to which the rescue crew would be
exposed and the excessive accelerations and fuel usage
required of the rescue vehicle. Detumbling would then
have to be accomplished by an external means using a-
remotely controlled tele-operator or by impinging fluid
jets on the disabled craft. Therefore, it is desirable
to develop an internal autonomous control system to
either completely detumble the vehicle or lessen the
tumbling motions until the rescue craft arrives. Such a

device would become active upon loss of control.



Mass expulsion devices require onboard storage of
propellant and, hence, may not be reliable for this
application on a long term basis. Momentum exchange
devices, such-as control moment gyros, may require con-
tinuous operation since startup of the gyros would .be
difficult once a tumbling situation has occurred. Power
requirements for continuous operation of this safety
device may be prohibitive. Control moment gyros exper-
ience a marked increase in gimbal loading in a tumbling
vehicle and would be subject to gimbal failures. These
devices also have a tendency for saturation in large
corrective maneuvers. Passive energy dissipation devices
such-as viscous ring and pendulum dampers are reliable
and simple but have relatively low energy dissipation:
rates, and therefore, require a long time for stabiliza-
tion. These devices seem most appropriate for vehicles
which have a high nominal spin rate about one axis. For
this application passive devices can effectively damp
out. relatively small transverse rates. However, an
emergency detumbling system should be capable of stabiliz-
ing a disabled vehicle with arbitrary tumbling motions
where all angular velocities may be of the same order of
magnitude.

The development of a movable mass.control system to
convert the tumbling motions of 'a disabled vehicle into

simple. spin is presented here. A simple spin state would



greatly facilitate crew evacuation and final despinning
by an external means. The system moves a control mass,
according to a selected control law, in the acceleration
environment created by the tumbling motion. By moving
the mass properly, the rotational kinetic energy of. the
system may be increased or decreased creating simple spin
states about the minimum or maximum moment of-inertia
axis, respectively. The control system is designed for
the latter case due to its associated stability in the
presence of perturbing forces.

The complete equations of motion of a rigid space-
craft with attached control mass are formulated making no
assumptions concerning vehicle symmetry or magnitude of
the transverse angular rates. A control law relating
control mass motions to vehicle motions is selected
based on Liapunov stability theory. A method of determin-
ing control system parameter values, baéed on an estimate
of the worst case tumble state, is .also presented. For
-a large space station and realistic initial conditions,
it is shown that the movable mass control system is
capable of decreasing the kinetic energy of the system
to its minimum state, establishing a simple spin about
the .maximum moment of inertia axis, in several hours.

An additional application of a movable mass control
system as a wobble damper for an artificial-g mode. space
station is also presented. Finally, comparisons with

competitive passive devices for this application are made.



CHAPTER II-

PREVIOUS INVESTIGATIONS-

The effect of internal moving parts on the attitude
motions of a space vehicle has been investigated by
Roberson (1) and Grubin. (2). Both of - these authors have
developed the equations of motion of a rigid main body
carrying an arbitrary number-of -moving rigid bodies.
These studies are primarily concerned with analytically
describing the result of: internal mass motion so that
possible destabilizing effects may be determined.
Roberson chose the composite center of mass of the
system as the reference point for the equations of motion.
For this choice of reference point, the formulation leads
to time varying moments of inertia of the main vehicle
since the reference point is moving relative to the
vehicle due. to mass motion. Grubin circumvented this
problem by choosing the center of mass of the vehicle as
the, reference point for the equations of motion. For
this choice, the. moments of inertia of the vehicle are
constant relative to a body fixed coordinate system. As:
noted by Grubin, the formulation may produce. equations
of motion which are no simpler than those produced by
Roberson's method. However, the selection of the vehicle
center of mass as the reference point seems more natural
since the rotational motions of the spacecraft may be

referred directly to the vehicle center.of mass rather



than the moving composite center of mass of the system.
In addition, the motion of the moving mass may be ex-
pressed relative to the vehicle axes which is of some
practical advantage.

Kane and Sobala (3) investigated the possibility of
using the effect of internal mass motion to provide atti-
tude stabilization. The system.considered was a sym-
metric satellite and two particles performing prescribed
oscillations. The particles were constrained to move
along the axis of symmefry. In a later~papér Kane and
Scher (4) discussed the possibility of moving the.parts
of a connected system relative to each other to convert
undesirable tumbling or nutation into simple spin. The
proposed concept exploits the. following facts. When the
system.is constrained to move as a single rigid body, the
rotational kinetic energy is constant and bounded between
two limits. These limits .are determined by the angular
momentum and the maximum and minimum moments$s of inertia.
of the system. If the parts-of the system are moved
relative to each other and again . constrained to form a
rigid body, the rotational kinetic energy of the new
configuration will, in .general, be different from the
initial value. Therefore, the control scheme presented.
by Kane and Scher is to move the parts relative to each
other in such a way that the .rotational kinetic energy

changes to its maximum. or minimum value. The system



would then be in a simple spin state about either the
minimum or maximum moment of inertia axis. However,

Kane and Scher do not present a general control law to
accomplish this stabilization technique. It is suggested
that a catalog of control laws be compiled for use with
various tumble states. Then, once a tumble state has
been identified, the proper control law may be selected
for this case.

Childs (5) developed a movable mass control system
for an artificial-g space station. Therénalysis is not
dependent on vehicle symmetry but the assumptions of a
high nominal spin rate about one axis and small trans-
verse rates are made. This allows Childs to linearize
the equations of motion and formulate a relatively simple
control law. However, the control sysfem does not damp
the transverse rates to zero but only to a constant value.
This does not completely detumble the vehicle but does
reduce the disturbance that crew members would experience.

Beachley (6) suggested another application for
movable masses. He has shown that the inversion of a
spin-stabilized spacecraft may be accomplished using
movable masses. The concept involves moving the masses
to make the spin axis unstable by changing the moments
of inertia of the system. This will cause the cone angle

between the angular momentum vector and the line of



symmetry to increase. As the spacecraft completes the
inversion phase the control masses are returned to their
original position. The inverted spacecraft will again
be spinning in a stable manner.

Lorell and Lange (7) have proposed using two pairs
of movable masses to provide an automatic mass trim
system for a spinning spacecraft. For an active control
system, the accuracy of the pointing control depends on
knowledge of the relative location of the spin axis and
the sensor axis. If the spin. axis shifts and the spin
and sensor axes are not correctly aligned, a pointing
error arises which is difficult to eliminate. Therefore,
Lorell and Lange propose a movable mass system to trim
the location of the spin axis to align the sensor and
spin axes. The analyses presented is limited to the
assumption of a symmetric vehicle and.small transverse
rates.

These previous investigations have used movable
masses for a variety of applications. However, most of
these applications have been developed for vehicles
which are symmetric or experience only small transverse
rotation rates which permits some degree of linearization.
Available literature indicates that a movable mass control
system has not been developed for the general case of an
asymmetric vehicle with arbitrarily large rotation rates

about each axis.



CHAPTER IIT

ANALYTICAL INVESTIGATIONS

Development of Equations of Motion -

The  complete equations of motion of a rigid space-.
craft with an attached mass are developed in this section.
In -the following analyses‘é implies differentiation with
respect to an inertial reference frame and [3] implies
differentiation relative to a body fixed reference frame.

The generalized equation of motion for a system of

connected rigid bodies is given by Grubin (2) as
3
M=H+3x3 (1)

where‘ﬁ, ﬁ; and 3 denote the external moment, angular
momentum, and first moment of mass of the system, re-
spectively. The quantities are specified with respect
to an arbitrary reference point moving in an arbitrary
manner. The inertial acceleration of the reference point:
is a. This. equation reduces to the standard form, M = ﬁ,
when: the reference point is fixed (3 = 0) or is the
center of mass of the system (3 = 0).

The system under consideration consists of a rigid
main body and attached control mass shown in Figure 1.
The reference point for the equation of motion is selected

as the center of mass of the main body. The body fixed

coordinate system is aligned with the principal axes of
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Figure 1. Main Body and Attached Mass System Geometry
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the vehicle, X XZ’ and X3, and have associated unit.

1’
vectors i, j, and k, respectively.
With the assumption of no applied external torques,

Equation 1 becomes.

3

H+$x3a=0 (2)
where H is the total angular momentum of the system.

.ﬁ ='ﬁb + ﬁ (3)
m

The angular momentum of the main bedy, ﬁb’ is

> A A o
H, =1 i+ Iyw,j + Iaugk (4)

b 1%

where I I, and I3 are the principal moments of inertia

1’
of the vehicle without the control mass and Wy Wy and
w, are the rotation rates about the Xl’ X2, and X3 axes,

respectively. Differentiating this equation yields

1"
—
jan
—

+
€

X
Y

i
b b

= [Ilwl + w2w3(13 - I2)]i

+ [I,0,) + wwa (I - I3

+ [13&3 + wlw2(12 - Il)]k (5)

The angular momentum of the control mass relative

to the vehicle center of mass, ﬁm’ is

ﬁm = mp x ; (6)
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It has been assumed that the control mass is essentially
a point mass so that the angular momentum of the mass
about its own axes may be neglected. The rate of change

of angular momentum of the mass.is: then

o= omp x o, (7)
m

The term r is the acceleration of the control mass rela-
tive to the main body center of mass. From Thomson (8),

this acceleration may be written as
. s s .
r=0x (@xp)+wxop+ 20 x ]+ [Pl (8)

The first term is the centripetal acceleration, the second
is the tangential acceleration, the third is the Coriolis
acceleration, and the last term is the acceleration rela-
tive to the body fixed reference frame.

The first moment of mass of the system is given by
S = mp = mixi + yj + zk). (9)

Note that the main body does not contribute to this term
since. the reference point is the center of mass of the
vehicle.

The inertial acceleration of the reference point is

10

and, from Figure 1, may be written as

d=R_ -7
c (e}
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The term ﬁc,is the inertial acceleration of the composite

center of mass of the system and is given as

.

o] M+ m

Here.? is .the resultant of the external forces acting on
the system, M is the mass of the-main body, and m is
mass of the control mass. With the assumption of no
external forces acting on the system, ﬁc = 0, Also,

from the definition of center of mass of the system

> m -+
S (10)

so that the acceleration of the reference point becomes

-> ->
= - r.
a m+ M

Inserting these relations into Equation 2 yields

ﬁ + mM

> x P =0 (11)
b TmFmMET*T =L

Defining the reduced mass of the system as

A mM
L
and identifying
T =y (12)

as the force applied to the control mass and reacted to

by. the vehicle, Equation 11 becomes

ﬁb = -p x f, (13)
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For prescribed motions of the control mass, this relation
gives, in vector form, the equation of motion of the
vehicle. It is evident that the dynamics may be con-
sidered to be those of a rigid body being acted on by a-
reaction moment of - x ¥ which is a result of mass
motion.

Expanding Equation 13 yields a set of three coupled,
non-linear differential equations for the vehicle dynamics
in terms of the vehicle angular rates (wl, W, 5 w3), and
the movable mass position (x, y, z), velocity (%, ¥y, 2),
and acceleration (X, ¥y, Z). All of these quantities are
with respect to the body fixed principal axes (Xl, Xy
X4, respectively). The equations are:

[Il + u(y2 + 22)]&1 + [13 - I+ u(y2 - 22)]w2@3

. . . . 2 2
+ ul-xyb, - xzd5 + (2y§ + 2z2)w; + yz(uy - w))

- 2>'<zw3 - XZW W, + Xyw,w, + yZ - 2yl

2. 1 1
= 0 (1u)
2 2. 2 2 )
[I2 +-u(z” + x )w2 + [Il - I+ u(z® - x )]w3wl
+ [ () [ . o L] 2 2
ul-yzdy - yxa, + (2z2 + 2xx)w2 + zx(wl - w3)

- 2yzw, - 29xwln- YXWyWg + yZWywy + zX - xZ]

- (15)
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(I, + nx? + yDag + [T, - I, + ux? - y9)luw,

2 1

+ u[—zx&l - zyd)2 + - (2x% +,2y3’7)w3 +;xy(w§ - wi)

22xw, - 2Zyw, - Zywsw; + zXWaw, *+ X§ - y¥]
= 0 (16)

These equations are.valid irrespective of the physical

mechanism whereby the control mass executes its motions.
Similarly, the force, T, applied to the control mass

and reacted to by the vehicle, given by Equation 12, may

be expanded in component form. The result is

£y = ulX - 29wy t+ 22w, - yh, t zZd, + yw w,
+ ZW. W, - x(w2 + w2)] (17)
173 2 3
f2}= uly - 2zwl.+ 2xw3 - z2hy * Xby + Zwyug
+ XWAW, - (w2 + wz)] (18)
W1 T Yiug 1
f3,= ulZ - 2xw2 + 2yw1 - X, +_ywl +,xw3wl
+ yWL W, - 2(w? + wz)] ' (19
372 1 2 *

The kinetic energy of the system is
M

T=~lféo§dm+-%mﬁm-§. (20)

m

From Figure 2 the following relations are evident.
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Mass Element
of Vehicle

dm

Composite Control Mass
Center of Mass

Vehicle
Center of
Mass

Inertial Origin

Figure 2. System Geometry for Determination of Syétem
Kinetic Energy
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c
R =R +71
m c m
Inserting these relations into Equation 20 yields
M
1 3 . 1 s 1+ |3
T = 3 + MR ﬁcf‘z o+ pdm + pmr_ - T )

3
+ ﬁ (J[ p dm + mrm);

The first term may be identified as the kinetic energy
associated with the motion of the composite center of

mass of the system. The second grouping of terms is the
rotational kinetic energy about the composite center of-
mass. The final terms are zero from the definition of
center -of mass of the system. Since only attitude motions
of the system are of interest, only the rotational kinetic

energy will be considered further.

M
! + % 1.3 3
Trot =5 J[ p *.p dm + e - (21)
Again from Figure 2
> > ->
r = -r
m c
and
> > -
p"‘n-,rca

Using these relations and Equation 10, the rotational

kinetic energy of the system becomes

M

_ 4.4 . 1 mM 4.4
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The first term.of this equation is the rotational kinetic
energy of -the rigid body about its own center of mass.
The second term is the kinetic energy of the reduced mass
about the vehicle center of mass. Therefore, the rota-
tional kinetic energy of the system about the composite

center of mass may be written as

T = %& e T -0+ %ur . (23)

rot

where ; is the inertia dyadic of the rigid body. It-is-
interesting to note that the rotational kinetic energy
of the system given by Equation 23 is valid irrespective
of the choice of a body fixed principal axis' coordinate
system. |

The expression fér the angular momentum of the system
with respect to the composite center of mass may be

developed similarly. The result is, from Roberson (1),
> =
H =1« w+ ur x p, (24)

It should be remembered that H in Equation 3 is the
angular momentum with respect to the vehicle center of
mass, whereas ﬁc in EQuation 24 is the ahgular momentum
with respect_té the composite center of mass4of the system.

The equation of motion would be

o= o0 (25)
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if the .composite center of mass were selected as the:
reference point for Equation 1. Since Equation 25 indi-
cates - that HC is constant, the accuracy of.a numerical
solution of the equations of motion may be determined
using Equation 24,

Since the movable mass control system is to decrease:
the rotational kinetic energy of the system, the rate of
change of this energy will be developed.. Differéntiating
Equation 23 yields

P f. (26)

"
ey
Hn

rot
Partially expanding Equation 13 gives

é‘ . ; = —; X f

[m R 1]

>
+ w X

Hn
.

so that

Eve
+

It may be noted that the first term on the right hand
side of this equation is zero. Using this relation,

Equation 26 becomes

> . > 3
' rot T -w e I X f + r - fm

Noting that

B
3
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this equation simplifies to the.result-

"
—
By
et
g2

(27)

Thus, the rate of change of rotational kinetic energy of
the system is found to be independent .of the vehicle.
inertia properties and -dependent only on the relative
velocity of the control mass and the force applied to the
mass. It may be noted that this result is valid irrespec-
tive of the assumption of a principal axis coordinate
system- since Equationé 13 and 23 are general.

The equations of motion of-a rigid spacecraft with
attached control mass have been formulated in this section:
The result-is a set of three coupled, non-linear differen-
fial equations for the rotation rates of the vehicle in
terms of the control mass position, velocity, and accelera-
tion. The motion of the control mass will be specified
by the control law which is selected. The expression for
the -angular momentum of the:system about the composite
center of mass has been presented. to determine the ac-
curacy of a numerical solution of the equations of motion.
Since the movable mass control system is to provide energy
dissipation, the expressions for the rotational kinetic
energy of the system and the rate of change of this
quantity have been developed. The derived relation for
the rate of change of rotational kinetic energy will be

used to develop a control. law in the next section.
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Selection of Control Law

Equations 14-16 determine the attitude motions of
the spacecraft for specified motions of the control mass.
It is the function of the control law to relate the mo-
tions of the.control mass to measurable vehicle parameters
so that - the control mass may respond to vehicle motions
in an appropriate manner to lessen tumbling. A satis-
factory control law should not be unnecessarily compli-
cated and should not have excessive power or sensor re-
quirements.. It should, however, require determination
of only measurable vehicle parameters, produce stable
responses, and result in a final state of a simple spin

about either the maximum or minimum moment of inertia-

axis. In the following analysis, the vehicle is assumed
to have three distinct moments of inertia, Il’ 12, and I3,
and the relationship I, > I, > I. is assigned to these

3 2 1
quantities.

By inspection of Equations 1l4-16, the equations of
motion for an asymmetric vehicle with attached movable
mass are extremely complicated -due to their highly coupled
and non-linear nature. Since the initial tumble rates
may be large about all three axes, the equations of motion
cannot be simplified by linearization. However, several
simple cases were identified and will be discussed before

considering the general case.
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The first special case requires that the motion of:
the mass be along a line parallel to and offset.a distance

b from the X, axis and passing through the X, axis. For

3 2

this case, Equation 14 becomes

[z, + u(b2 + 29, + [I; - I, + u(b2 - 22)]w2w3

1 1 3 2

+ 2uziw +-ubz(w§ - wg) + ubZ = 0. (28)

1

Suppose the control law is chosen such that

z = cwy. - (29)
With the assumption, I, >> 3u02w§, Equation 28 becomes
[I, + ubZ]
B o+ —% B, + (w2 - wdu,
1 ubc 1 3 2°71
[I, - I, - ub?] |
- -2 3 W, (30)
ubc 273"

This equation indicates that for the case Wy > Wy,
Equation 29 will result in damping of w, to zero produc-
ing a stable spin about the maximum moment of -inertia
axis. The control law would be easy to implement, re-
quiring measurement of 2z and wq only. The mass would
oscillate about its equilibrium position with decreasing
amplitudes since w, would be damped. The control mass
would return to its zero position when w; equals zero
and a simple spin is reached. For the case of an arbi-

trary tumbling spacecraft, the assumption Wy > W cannot-

2
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be made and Equation 29 does not provide a satisfactory
control law for the general case. However, the result may-
be useful in designing a control system for a space sta--.
tion . which has an artifical-g mode where the spacecraft
has-a large rate about one axis, say Was and the control

system is to damp out the small transverse rates w and,wz.

1
Since a simple spin about the maximum moment of
inertia axis is the minimum energy state of the system,
it is evident that Equation 29 produces energy dissipation
for this case.. The second specialized case demonstrates
that a movable mass control system may increase the energy
of the system to the maximum energy state. The vehicle
would then be in a simple spin about its minimum moment of
inertia axis. For this case the ‘control mass motion is to
be along a line oriented parallel to and offset by some

distance a from the X, axis' and passing through the X

1 2
axis. For this configuration Equation 16 becomes
2 249 , 2 2.
[13 + u(x” + a )]w3 + [12" Il + p(x® - a )]w1w2
L) 2 2 .e
+ 2uxXw, + pax(w, - w;) - pax = 0, (31)
3 2 1
Suppose the control law is now chosen to be
X = . Cug. (32)

With this choice of control law and the assumption Iz >>

uczwg, Equation 31 becomes
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[z, + ua2]
B, - — by + W - wdie
3 yac 3. 1 2773

2
[12 - I, + ua ]

TETE Wy Wy (33)

This -equation . indicates that if the product ac is chosen
such that ac < 0, for the special case wy > w, Equation 32
will result in damping of wy to zero and produce a simple
spin about the minimum moment of inertia axis, Xy The
properties of the control law are similar to those of
Equation 29.

The two preceding examples have demonstrated that
the- movable mass control system may increase or decrease
the energy of the system and produce a simple spin about
either the.minimum or maximum moment of inertia axis
for certain specialized cases. They also indicate that
possibly the proper orientation for the direction of
motion of the control mass is parallel to the desired
final spin axis. However, since the initial tumble
state of the vehicle is not known, the necessary assump-
tions may not be made for the general case of tumbling.
The control laws given by Equations 29 and 32 are there-
fore attractive but inadequate in their simplicity. The
formulation of a control law which will produce a simple
spin. for an arbitrary tumble state is the subject of
the remainder of this section. Although the movable mass

control system could possibly force a simple spin about
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the minimum moment of inertia axis, the control law will
be developed te produce spin about the maximum moment .
of inertia axis. Spin about this axis is stable in the
presence of perturbing forces.

The development of the.control law starts with:the
theory of Liapunov stability. From LaSalle (9), the
system of differential equation given by Equations 14-16
and the mass equation of motion:produced by the contrel
law will be completely stable and approach its minimum
state if there exists a scalar function V(u) with certain
properties. The:variable u is the state vector of the
system. The conditions which the Liapunov function must"
satisfy are

a) V(u) > 0 for all u # 0

b) V(u)

A

0 for all u

c) V(u) » » as jjull > =
where juil is the Euclidean norm of the state vector. For
the physical system considered here, a convenient scalar
function to use as a Liapunov function is the rotational.
kinetic energy of the system. Due to the nature of
kinetic energy, conditions (a) and (c¢) will be automatic-
ally satisfied. Thus, if a control law is. chosen such
that condition (b) is satisfied, the system will be

completely stable and approach its minimum state.
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Consider the case where the control mass is re-
stricted to move aleng a track parallel to the X3 axis,
and offset from this axis as shown in Figure 3. For this
case, the rate of change of rotational kinetic energy
given by Equation 27 simplifies to

rot = zf3, (3y4)
Thus, if the force applied to the control mass is
selected  as o
f3 = ~ucz (35)
Equation 34 becomes
T = -pez? (36)
rot

which satisfies condition (b). Using Equations 19 and 35,

the resulting equation.of motion for the mass is

Z + 02 - (w2

1 - bw

+ wg)z = alb, - ba, - aw,w (37)

2 1 3¥1 ¥z

This equation has .been written in a form which suggests
that the mass dynamics are those of a second order system:
being forced by the motions of the tumbling vehicle. It
should be noted, however, that the vehicle motions

which produce the forcing function of Equation 37 are
determined by differential equations which are themselves
functions of control mass dynamics. If the effect of

mass motion over one cycle is small, the dynamics of the
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vehicle are essentially those of a free uncontrolled body.
With this assumption the forcing function of Equation 37
may be considered to be dominated by vehicle motions

over one cycle. This form of the mass equation of motion
may then be used to determine the effect of the control
law on mass dynamics.

The control law given by Equation 35 satisfies condi-
tion (b) and decreases the rotational kinetic energy of
the system. Also, the forcing function vanishes when a
final spin about the X4 axis is established. However,
due to the negative, decaying coefficient of the z term,
the mass would not. necessarily return to its initial
position (z = 0). Therefore, it isvdesirable to modify
the control law to ensure the return of the control mass
to its zero position once a simple spin state has been
reached. This would restore the full control capability
of the control system should another tumbling situation
arise.

If the force applied to the control mass is modified

such that
f, = ~pc.2 - u(ec, + w2 + wz) (38)
3 1 2 1 2
the equation of motion for the mass becomes

7.+ c 2 + C,z = ab, - bwl - awgwy. - bw2w3. (39)
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The control law has been modified to cancel the undesir-
able negative coefficient of the z term and to provide a
positive coefficient. With this control law, the mass
equation of motion becomes a conventional second order
differential equation which will provide damped motion
of - the ﬁaSS'and return the control mass to its zero
position once a simple spin state is established.

The rate of change of rotational kinetic energy

for this selection of control law is

I —uclfa2 - uzz(c, + wi + mg). (40)

rot = 2

Here the formulation departs from the Liapunov method

since Tfot is not necessarily negative semi-definite.
The first. term will decrease the rotational kinetic
energy of the system while the second term will be
oscillatory in nature, increasing and decreasing the
energy. If the control system constants cq and c, are
chosen propérly the secular negative semi-definite term
will dominate over the complete mass cycle. If every

mass cycle has a net negative value for T the system

rot’
will approach its minimum energy state and a simple spin.
about the maximum moment of inertia axis. From the mass
equation of motion, the mass .would return to its zero

position once this state has been reached. The physical

significance of the control law given by Equation 38 will

be discussed in Chapter IV.
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Selection of Control System Parameters

For the selected control law, the rate of change of
rotational kinetic energy is given by Equation 40 as a
function of two control system parameters, cq and Cyhe.
The parameter values should be chosen to yield a large
value of energy dissipation rate and, hence, a fast ap-
proach to simple spin, subject to mass amplitude and
power limitations. It is the purpose of this section
to develop some guidelines for the selection of these
parameter values.. — i

Before proceeding with this' development some -
qualitative observations will be made concerning the
effect of cy and ¢, on control system performance. The
" right hand side of Equation 39 is again considered as

the forcing function of mass dynamics so that
z-= F (41)
where the forcing function due to vehicle motion is

- bwl - awswy - bw2w3 (42)

F = aé2

To investigate the effect of ¢, and ¢, on control

1 2
system performance, an analogy is established between
mass dynamics and a simple spring-mass-damper system.
In this analogy, ¢y corresponds to the damping constant

of the damper and C,H corresponds to the spring constant

of the spring.



Considering the expression for T only, it may

rot
appear that the value of ¢, should be selected to be
large since the negative semi-definite term is propor-

1

the relative velocity of the control mass so that the

tional to ¢,. However this .term is also a function of

effect of a large value of ¢, on mass dynamics must-be
investigated. Referring to. the spring-mass-damper

analogy, a large value of ¢, corresponds to a strong

1

damper which would limit the velocity of the mass.

Since the negative semi-definite term of Trot is the

product of ¢, and the relative mass velocity squared,

1

an.increase in c, may result in a net decrease in the-

magnitude of this term. The proper value of c, must
be determined considering both the direct effect of

this parameter on Tr and the indirect effect on the

ot
mass dynamics. A similar tradeoff results when the

parameter c, is considered. The second term of T

2 ot
is oscillatory in nature and results in energy addition
over part of the mass cycle. This term is necessary
to ensure the return of the control mass to its zero
position once a simple spin state is reached. To limit
the magnitude of the energy addition portion of the
mass cycle, it may appear, from Equation 40, that c,

. should be selected to be a small value. However, again

considering the spring-mass-damper analogy, a small

30
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value of ¢, corresponds to a weak spring which would

2
allow a relatively large amplitude of mass oscillation.
These general considerations suggest that an optimum
set of control system parameters may exist which maximize
the energy dissipate rate while limiting the -mass
amplitude to a specified value. The remainder of this
section presents some quantitative guidelines to aid in
the selection of these parameter values.

An analytic solution of the mass equation of motion
would provide control mass positionrand velocity his-

tories as functions of the parameters c, and c¢,. Using

1 2

these solutions, the rate of change of rotational kinetic
energy could be maximized  subject to the condition of a
selected maximum mass amplitude. This optimization could .
be performed using a Lagrange multiplier technique.
Clearly, this is not possible since the forcing func-
tion, F, contains angular rates and accelerations of

the vehicle. The solution of the mass equation of

motion would therefore require the simultaneous solu-
tion of the.vehicle equations of motion. This system

of differential equations does not readily lend itself

to an analytic solution due to the coupling and non-
linearities of these equations. On the other hand, a
completely numerical solution of the systém of equations

provides no analytic information concerning the effect

of the control system parameters. Therefore, a partially
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analytical, partially numerical method was developed to
provide some insight into the effect of the parameters
on the performance of the control system.

The approach adopted is based on the assumption
that the net change in the rotational kinetic energy
over one mass cycle is small. With this assumption,
the dynamics of the system are approximately those of
a free, uncontrolled vehicle over one cycle. For a
selected tumbling state, the free dynamics may be solved
numerically. From results of the uncontrolled case, the
forcing function of control mass dynamics, F, may be
constructed using Equation 42. Although F will change
as the control system reduces the tumbling, the ini-
tial tumble state will provide .a design point which
may be used to size control system parameters.

The nature of the forcing function may be investi-
gated by considering the analytic solution of the free
vehicle dynamics. From Synge and Griffith (10), the
angular rates of a free asymmetric body may be expressed

in terms of Jacobian elliptic functions. The result is

wy =y en [p(t - to)]
w, = B sn (plt - to)] (43)
wy = o dn (p(t. - to)]
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for the condition_H2 > ZI2T which corresponds to motion

about the maximum moment of inertia axis, X For the

3°
T, which corresponds to motion about

condition H2 < 2I2

the minimum moment of inertia axis, X the solution is.

1°?
wy = y' dn [p'(t - to)]
w, = B' sn [p'(t - to)] (44)

wy = a' cn [p'(t - to)l-

The amplitudes, a, B, and y, and the precession fre-
quency, p, for the case Hz > 2I2T and the corresponding
quantities for the case of H2 < 2I2T may be found in

Synge and Griffith (10). The expressions for these
quantities are not of direct concern here since it is only
the form of the forecing function which is being investi-

gated. Using these elliptic solutions, the forcing

function will be in one. of the following forms:

F = a(pBR - aylenlp(t - to)]dn[p(t - to)]

(u5)
+ b(py - aB)snlp(t - to)]dn[p(t - to)]
for H’ > 2I,T, and
F = a(p'B' - a'y"enlp'(t - to)]dn[p'(t - ty)]
‘ (46)

+ b(p'Y'kz - a'8")snlp'(t - to)]cn[p'(t - to)]

for H® < 2I2T,
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The parameter k is the modulus of the elliptic functions.
The functions sn u and cn u oscillate between 1 and -1
at the precession frequency p. The function dn u
oscillates between 1 and (1 - kz)% at twice the pre-
cession frequency.

From these considerations, it is evident that F
will be oscillatory in form. Therefore, using the tab-
ulated form of F obtained from the uncontrolled case
results, a Fourier series may be fit to the data points.
The forcing function expressed as a Fourier series
will provide an analytical expression which can be used
to solve the mass equatioh of motion. This solution
will provide information concerning the relationship
between control parameters and system performance.

The forcing function of the mass equation of motion

expressed as a Fourier series is

F =-A0 + ¥ (A_ cos Znmt B_ sin 2nwt)
n=1 n T n T

where Tt is the period of the function F. Since the
forcing function, expressed as either Equation 45 or 46,
contains no secular terms, A0 = 0. Also, since F is a
smooth function, the Fourier series may be terminated
with a finite number term with sufficient accuracy.

The Fourier expansion of the forcing function then be-

comes



m
F= I (A_ cos
n
n=1

" 2nTt + B sin 2nﬂt).
T ’n T

The Fourier coefficients, An and Bn’ are determined
numerically using a standard routine which generates
Fourier coefficients for a tabulated function.

The Fourier expansion may be rewritten as:

m
- . -1 "n
F = § Dn sin (snt + tan §_)
n=1 n
where
D= /a2 + B2
n n n
and
g = 321,
n T

The equation of motion of the mass then becomes

m : -1 An
Z +c.z2+c,z2= D sin (s t. + tan ).
2 _an n B

n=1 n

The particular solution of this equation may be readily

obtained as

m
z_ = Z,En.sin ¢
P n=1
where
D
En = — 3
\/(c2 - sy ) + (clsn)
and
A, c. s
¢ = st + tan~t Eﬂ - tan” ;——%———7.
2 n

Differentiation yields the control mass velocity as

35

(47)
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m
z_ = I E_s_cos ¢_.
P n=] nn n
These solutions for control mass position and velocity

histories may be used to determine the rate of change

of rotational kinetic energy. The result is

. m m
= -y I I [E.E s, {c,s. cos ¢. cos ¢
rot. 321 k=1 77k"k" 7173 ] k
¥ (e, + wl o+ wz)sin ¢. cos ¢, 1] (48)
2 T Wty 3 k4

Noting that

1
cos ¢j cos ¢, 7[cos(¢j f ¢k} + cos(q)j + ¢k)]

. 1 . .

sin ¢j cos ¢, 7[51n(¢j + ¢k)‘+ 51n(¢j - ¢k)]

the secular part of Equation 48 may be identified as
the terms for which j = k. Thus, the secular part of
the rate of change of the rotational kinetic energy may

be written as,

Rewriting this equation to show the dependence of the

control system parameters yields

2 2. 2
: o ? cl(An + Bn )sn
- 77

sec (49)
n=1 [(c2 - s
n
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which may be used to determine the effect of control
system variables 'on the secular part of the energy
dissipation rate. This equation  indicates that an in-
crease in.the weight of the control mass, and hence an
increase in the reduced mass, p, will linearly effect

Tsec' Increasing the Fourier coefficients An and,Bn

will increase %sec quadradically. This may be accomp-
lished by increasing the amplitude of the forcing func-
tion which corresponds to increasing the mass offset
distances a and b. Thus, the control mass' track should
be placed at the maximum- allowable distance from the
center of mass of the vehicle.

The effect of-ci and c, is more difficult to obtain
but it is evident that c, should be of the order of-s_-.

With this assumption Equation 49 becomes

. m 2 2
oo * -7%- L (A + B (50)
: 1l n=1.
and Equation 47 becomes
, m An2 + B 2
P €1 n=1 Sn n

Equation 50 indicates that ¢y should be selected to be

a small value. However, from Equation 51 decreasing Cq.

results in increasing the maximum amplitude of the mass

motion. These observations agree with the conclusions
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drawn when the spring-mass-damper analogy was discussed.

It can therefore be concluded that.cl should be the

smallest value which limits control mass amplitude to
its maximum allowable value.

Equations 47 and 49 may be used to generate a
nomograph for selection of control system parameters,

c, and ¢,. Once the control mass weight, track position,

1
and an estimate of initial tumble state are obtained,

TSec may be calculated for various values erpl and Cye

Using Equation Y47 the corresponding maximum mass ampli-
tudes may be determined. Figure 4 shows a typical nomo-
graph which will result. This particular nomograph was
generated for an example case which will be discussed

in Chapter IV. The figure_shows a family of curves for

T as a function of the control system parameters c

sec 1

and Cye Also shown in the nomograph is another family

of curves which connect sets of ¢ and~c2 values which

1
result in a particular mass amplitude. As shown in

Figure 4, each selected maximum mass amplitude has an

and ¢, values which corres-

1 2
ponds to a maximum energy dissipation rate. Thus, once
the maximum allowable mass amplitude has been determined
the proper values of cq and‘c2 may be selected from

the generated nomograph.
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The control system parameter selection procedure
is simplified if the main vehicle is axially symmetric.
For .a symmetric vehicle the modulus of the elliptic
functions, k, is zero and the Jacobian elliptic func-
tions may be replaced with trigonometric functions.

For this case

sn Tp(t - ty)] sin p(t - t;)

cn [p(t - tg)] = cos p(t - ty)

dn [p(t - 1:0)] 1.

The forcing function of mass dynamics then becomes
F = a(pB - ay) cos p(t - to) + b(py - aB)
sin p(t - to)
or

F = D sin(pt + §)

where

o
"

\/az(pB - ay)2 + b2(py - aB)2

_ -1 a(pB - ay)
§ = tan 5(py = BT " pty-

The equation of motion of the mass may then be written as

Z +c 2 + c,z =D sin (pt + §).
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The particular solution of the mass equation of motion

is then obtained as

D

/A =
P 2.2
JQCZ - 5% 4 (clp)2

sin (pt + §

- tan-l ——————7)- (52)

By noting the similarity between Equations 47 and 52,
the secular part of the rate of change of rotational
kinetic energy may be determined immediately from

Equation 49 by setting m = 1 and s, =.P: Performing

this yields

. »c.D2p2
sec —; % T 75" (53)
[Cc, = P7)° + (c.p)°]
2 1
The maximum mass amplitude may be readily obtained from
Equation 52 as
D (54)

Z = -
max
vkcz - pH? + (ep)?

The values ofvc1 and c, which yield the maximum energy
dissipation rate with the side condition of a selected
maximum mass amplitude may be determined using a Lagrange

multiplier technique.
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Before proceeding with this formulation, Equation 41

will be written in standard second order form as

.. 2
z + 2;wn2_+ W,z = F
where ¢ is the damping ratio and W, is the natural

frequency of the system.. Comparing this standard form

with Equation 41 the following relations are evident.

"
()
A
€

c1 n

C2=U.)

Applying these relations te Equation 53 and rearranging
yields

w
2 e L)
_ D z( p)

sec 2p W w
(_%)u + 2022 - 1)(—3)2 + 1

=K

A w
Defining the parameter, v = —%, this equation becomes
P D’ cy .
sec. 2Pyt 4 20227 - VP 4 1

Similarly, the maximum mass amplitude becomes

.- D 1 .

max ~ _2
PT /WM e 202z - 12 + 2

The maximum value of T corresponding to a selected

secC

maximum mass amplitude is determined by constructing the

function
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G = -uDz C\). -
2P Wty 2(2c? S v? 41

2
z P
+ A5 \/\)l-‘L + 20222 - 1)v? + 1],

Taking the partial derivatives of G. with respect to Z,.
v, and A, setting these expressions equal to zero and
solving the resulting system of' equations yields the
optimum values of ¢ and v. Performing these operations

yields three values for v.

Obvieously, v = 0 corresponds to a minimum, sinceyTSec =0
for.v = 0, and v = -1 corresponds.to a maximum which results
in an increase in rotational kinetic energy. The desired

value as v = 1 which corresponds to

w o =P
or 2

c, = p. (55)
Thus, the natural frequency of the control system should
be selected to equal the driving frequency of the forcing
function for -maximum energy dissipation. For v = 1, the

maximum- mass amplitude is
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and, hence,
D

Vi
2P Zpax

Thus, parameter cq should be chosen such that

c. = 2, (56)

1 P2nax

For these values of ¢, and c¢

1 2

| _MPPZhay

.Tséé -7-——-1'.—-—- - -

From this equation, the energy dissipation rate may be
increased by increasing the control mass weight, moving
the mass track away from the center of mass which in-
creases D, or by allowing the mass.a larger amplitude.
These observations agree with the results obtained for
the general case discussed previously. As can be seen
the selection of control system parameters cq and c, is
simplified for a symmetric vehicle. Once the initial
tumble dynamics have been analyzed, the parameter values
may be calculated directly using Equations 55 and 56 in-
stead of generating a nomograph as was done for the
general case.

Although the methods presented for the selection of
control system parameters may be.in error due to the

assumptions and approximations made, the procedures out-

and c;

lined will provide "ballpark" estimates of ¢y >
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values. Final selection-of ¢, and cy values must be based
on the actual dynamics of the system obtained by solving

the complete vehicle and mass equations of motion.

Sensor and Power Requirements

The sensor and power requirements of the'movable mass
control system with the selected control law will be dis-
cussed briefly in this section.

For the control law expressed as Equation 38 it is
evident that the following quantities must be sensed:
f3? the force applied to the control mass; z, the control
mass velocity relative to the vehiclej; z, the control

2

mass position; and the combination (w 2 4+ w,%). The

1 2
quantity f3 may be determined using a linear accelerometer
mounted on the control mass. If the accélerometer is
mounted to detect the ﬁ-component of mass acceleration,
the sensed acceleration will be proportional to f3.

The mass position and velocity may be easily sensed using

any of a number of simple devices. The combination

2
1

mounted on: the X3 axis. The acceleration of a fixed

(w + w22) may be determined with a linear.accelerometer

point, P, located by a vector d. from the vehicle center
of mass is

kY .
L=0x @xd +bxd
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If d = dk the k-component of ;P is

2

9 ).

_ 2
(aP)3 = -d(wl + W

Thus, an accelerometer placed at this point and oriented

to sense the k-component of the acceleration at that

point,will. sense a quantity propertional to,(wl2 + w22)

The sensor requirements for the implementation of the
control law appear to be modest.

The force requirements of the. control system may be
determined bwaquation-lg sinﬁe this is the force applied
by the control system to the control mass. The instant;
aneous power required by the control system is, by defini-
tion, the force applied'to the mass times the relative
velocity. This definition is equivalent teo Equation 27
which gives the rate of change of rotational kinetic
energy of the system. As noted in the second section

of this chapter Tr will be oscillatory, the negative

ot

resulting in energy dissipation. Thus,

portions of Trot

the ‘power input to the mass corresponds to the positive

portions of T In fact, if a power generation system

rot’

would be implemented with the control system, energy

could be stored during the energy dissipation portions

.

of the mass cycle and be used to power the positive T ot
portions of the cycle. This possibility is not considered
further since. the primary function of the control system

is- to aid in crew rescue and not generate power. For
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this case, the energy input required is just the integral.
of the positive portions of the Trot curve. The force,
power, and energy requirements for two example cases

will be discussed in the next section.
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CHAPTER IV

RESULTS

To demonstrate the feasibility of a movable mass
control system using the control law given by Equation 38,
the space station shown in Figure 5 was chosen as an
example vehicle. The geometric axes shown in Figure 5
are assumed to be the principal axes for demonstration
purposes. " The proPefties of this Modular Space Station

(MSS) are given below.

I, = 5.15 x 10° kg-n?(3.80 x 10° slug-ft®)
I, = 6.28 x 10° kg-m’(4.63 x 10° slug-ft°)
I, = 6.7% x 10° kg-m*(4.97 x 10° slug-ft?)

4 5

M= 9.98 x 10" kg(2.20 x 10" 1bm)

The space station shown in Figure 5 was selected
since it is a relatively large vehicle and does not
have an artificial-g mode. Thus, a passive damping
system such as a viscous ring or pendulum damper would
not be practical for this application.

The tumble state used for this example was obtained

from Kaplan (11). The initial rates are

wl(O) = -2.86 x 10'” radians/sec
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-0.199 radians/sec

m2(0)

w3(0)~ 0.103 radians/sec.

These values are based on a realistic worst case analysis
of the tumble state produced by a.collision of a shuttle
orbiter and the MSS. Since the resultant tumble state
is dependent on the amount of -kinetic energy trans-
ferred by the orbiter to the MSS, the initial tumble
conditions are given by Kaplan for 10, 50, and 100 per-
cent kinetic energy. transfer. Although the 100 p;féeﬁt
case corresponds to a perfectly elastic collision which
would not be the case, it does produce the highest tumble
rates and was, therefore, selected to test the movable
mass control system.

For an uncontrolled vehicle, the selected initial
conditions result in the tumble state shown in Figure 6.
As can be seen, this tumble state is fairly severe and
by no means lends itself to the assumption of small
transverse rates since the amplitudes of the angular
velocity oscillations are all of the same order of
magnitude.

The control mass track is placed at the farthest
allowable point from the vehicle center of mass and
oriented parallel to the maximum moment of inertia axis
as shown in Figure 5. For this positioning, the mass

track offset distances are
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a 13.7 meters (45 feet)

b

5.5 meters (18 feet).

For these offset-distances and the uncontrolled
dynamics shown in Figure 6 the forcing function of the
mass' equation of motion, given by Equation 42, may be
constructed. The result is shown in Figure 7. It is
interesting to note that, comparing Equations 19 and 42,
F is the negative of the-force on a unit mass attached
to the tumbling vehicle with coordinates (a, b, 0).
Thus, Figure 7 shows a typical acceleration profile that
a crewman would experience inside the tumbling vehicle.
As shown in Figure 7 the acceleration would be constantly
changing magnitude and direction and would create an
extremely hazardous environment for the crew. A éimple
spin, on the other hand, produces constant forces with
constant directions which would greatly aid the crew in
evacuation operations.

Using the forcing function shown in Figure 7, the
coefficients of the Fourier series representing the
forcing function were determined. Then, using Equations 47
and 48, the secular part of the rate of change of the
rotational kinetic energy and the maximum mass amplitude
were determined for various values of cy and c,. The
resulting nomograph was discussed in Chapter III and is
shown in Figure 4. A control mass of 99.8 kg (200 1bm)

which corresponds to 0.1 percent of the vehicle weight
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was used to generate the nomograph. Different values.
of control mass weight will shift the curves up or down
but will not affect the shape of the curves. The dotted
lines on the nomograph gives the secular rate of change
of rotational kinetic energy as a function of control

system parameters c, and c,. From Figure 4, smaller

1 2
values of cq give larger values of isec' Also shown
on the nomograph by solid lines are points which result
in the same maximum mass amplitude. For each selected
max imum ailowaﬁlé mass . amplitude there appears to be an
optimum set of cq and c2,which results in the optimum
value of Tsec' Thus, once the maximum mass amplitude
has  been determined, the proper control system parameters
may- be chosen using the nomograph. This nomograph is
dependent on the initial tumble state selected as the
design point.

Although the nomograph shows relatively large energy

dissipation rates for c, = 0, the assumptions under which

2
the nomograph was generated must be kept in mind. It

was assumed that the forcing function would be purely
oscillatory so that it could be approximated by a Fourier
series. TFor the actual case, however, the forcing func-
tion will not be purely oscillatory, in general, since

the system is being damped. A value of c, = 0 corresponds

to having no spring in-the spring-mass-damper analogy dis-

cussed previously. Therefore, the non-oscillatory nature



55

of the forcing function will cause the control mass
oscillations to migrate away from its initial position

for ¢, = 0. Thus, a non-zero value of ¢, is required- to

2 2
prevent this and insure the return of the contrql mass
to its initial position.

Once the control system parameters have been
selected, the mass and vehicle equations of motion may
be solved. This was done using a fourth-order Runge-
Kutta algorithm to numerically solve the system of dif-
ferential equations with_an IBM 370-165 computer. The:
accuracy of the algorithm was checked using the fact
that the angular momentum of the system about the com-
posite center of mass is constant in the absence of
external moments.

Before stating the results, the physical signifi-
cance of the control law given by Equation 38 will be
discussed briefly. Figures 8a and 8b show typical cycles
of control force acting on the control mass, f3, and
velocity relative to the body fixed axes, Z, respectively.
Comparing Figures 8a and 8b it is evident that the
control law causes the control force to be generally
opposite to the relative velocity. Figure 8c shows
the rate of change of rotational kinetic energy of the
system which is the product of total force and relative

velocity. It can be seen that T ot is generally negative
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which corresponds to energy dissipation. The positive

portions of T correspond to energy addition. These

rot
portions are due to the second term of Equation 40 which
was selected to insure that the control mass oscillates
about its zero position and returns there after simple
spin is established. In general, energy addition is

not desired but from Figure 8c it'can be seen that

over a complete cycle there is a large energy dissipa-
tion and only a relatively small energy addition over
each cycle. Therefore, it was determined th;t this
energy addition-was acceptable to insure return of the:
control mass to its zero position. The situation is
further clarified by Figure 9 which shows typical cycles
of control mass position over the same time period as
the quantities shown. in Figure 8. Superimposed on the
mass cycle is a schematic of the control mass with the
directions of the mass velocity and the force acting on
the mass shown. It is evident that the force given by
the control law is generally a retarding ferce. In

the first half cycle the mass is moving "up" and the ap-
plied control force is directed "down" which produces
energy dissipation. Eventually this force will overcome
the velocity and the force and velocity will be in the
same direction resulting in energy addition as shown. in

Figure 8c. This situation occurs only over a small part .
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of the mass cycle, however. After this portion of the
half cycle, the force and velocity will again be directed
oppositely producing more energy dissipation. A similar
process occurs during the second half cycle and produces
a net decrease in the rotational kinetic energy of the
system over the complete mass cycle. A net decrease in
the energy over every mass.cycle allows the system to
approach its minimum energy state produciﬁg a simple
spin about the maximum moment of inertia axis.r

If é maximum mass amplitude of three meters is.
selected, the proper values of cq and ¢, are, from

2
Figure U4

0
1]

1 3.2 radians/sec

c, 0.02 radians/sec2

For a control mass weight of 998 kg (2,200 1bm), the
stated initial conditions, and the selected parameter
values, the resultant angular velocity histories are
shown in Figure 10. Since it is not the oscillations
themselves but the decay of the oscillation amplitudes
which is important,; only the envelopes-formed by the
oscillations are shown. in Figure .10. The control system
effectively collapses the wlvand P envelopes to zero.
As this is being done the mean value of the g oscilla-
tion increases to its steady spin value as it must do

to keep the angular momentum of the system constant.
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Thus, the control system eliminates the transverse angular
rates and produces a simple spin about the maximum moment
of inertia axis.

Figure 11 shows the envelope formed by the control
mass oscillations. Figure 11 indicates that the maximum
mass amplitude exceeds the predicted value of three
meters slightly. This may be attributed to the homo-
geneous solution of the mass equation of motion which
was neglect.in determining the nomograph shown in
Figure 4. The results indicate that this overshoot
occurs only during the first mass cycle and, since the
overshoot is small, the neglect of the homogeneous solu-
tion is justified. It may also be noted that during the
first part of the control period the mass oscillations
are not symmetric about the zero position. This may
also be attributed to the homogeneous solution since
the oscillations become Symmetric as the homogeneous
solution decays. The homogeneous solution corresponds
to the transient response of the control system.

Figure 12 shows the time history of the rotatio#al
kinetic energy of the system. The figure indicates that
the rotational kinetic energy is oscillatory due to the
slight energy addition during each cycle but due to the
dominant energy dissipation portion of the mass cycle

the system approaches its minimum energy state.
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Figures 10, 11, and 12 indicate that for the stated
initial conditions, a maximum mass amplitude of approxi-
mately three meters, and a control mass weight of 998 kg
(2,200 1bm), a movable mass control system using the con-
trol law given by Equation 38 is capable of converting the
tumbling motions of the MSS into simple spin within two
hours. To investigate the effect of various parameters
on control system performance a time constant will be
defined. The time constant,ftc, is defined_as the time.

required for the control system to collapse the w, or w,

1
oscillation envelope to a value of 1/e times its initial

value. Since the general shape of the performance curves
corresponding to other parameter values will be similar
to those shown in Figures 10-12 this time constant will
be used to compared control system performance for various
cases.

The effect of control mass weight on system per-
formance is shown in Figure 13. The figure shows that
an increase in control mass weight has a marked effect
on-the system time constant. The shape of the curve is
as expected since an extremely small mass produces very
little energy dissipation while an extremely large mass
produces a large energy dissipation rate and, hence, a
small time constant. However, the peak power and force

required also increases with increased control mass weight
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as shown in Figures 14 and 15. Thus, the control mass
weight should be selected as large as possible consistant
with:the imposed weight, power, and force limitations.
Surprisingly, the total energy required to operate the
control system does not vary appreciably with control
mass.weight. The energyurequireﬁents for the example
considered here are shown. in Table I for various con-
trol mass weights. Thus, for this case the control
system seems to damp the system quickly, requiring
high values of power and force, or damp the system
slowly, requiring lower 'values of power and force, such
that the total energy required is approximately constant.
All of the cases discussed so far have been for
1

control system parameters of cq = 3.2 sec”

0.02 s;ec-2 and a corresponding maximum mass amplitude of

and c2 =

3.7 meters (12 feet). To demonstrate the effect of-
increased mass amplitude on control system performance

two other sets of ¢, and c, values were selected from

2
Figure 4. The result-is shown in Figure 16 which gives
the variation of the defined time constant, Tgs with
maximum mass amplitude for a control mass of 499.0 kg
(1,100 1lbm). Table II gives the values of c, and c,

that were used along with the resulting maximum amplitudes

during the first and second mass cycles and the predicted

values given by Figure 4. As can be seen from the table,
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Table I

Variation of Required Energy with
Control Mass Weight

Control Mass Weight Required Energy
199.6 kg (440 1bm) 63.9 watt-sec
499.0 kg (1,100 1bm) 68.7 watt-sec
725.8 kg (1,600 1bm) ' 71.6 watt-sec

998.0 kg (2,200 1bm) : 74.6 watt-sec




loO‘l"
m = 0.005M
0.5 ¢
0 : + = +—
o - 2 4 6 8
2o (meters)
Figure 16. Variation of Time Constant with Maximum

Mass Amplitude

70
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the predicted maximum amplitude falls between the actual
maximum amplitudes during the first and second mass
cycles. It may also be noted that the larger the mass
amplitude the larger the overshoot relative to the pre-
dicted value indicating the increased effect of the homo-
geneous solution.

An additional application of a movable mass control
system as a wobble damper was investigated. The example
vehicle used is the NASA 21 Man Space Station which is
a hexagonal shaped, spin stabilized, artificial gravity
space vehicle shown in Figure 17. The properties of

this vehicle are given below

72

I. = I, = 1.42 x 10/ kg-meter? (10.5 x 10° slug-ft%).

17 5

7 2 6 2
I = 2.03 x 10" kg-meter” (15.0 x 10" slug-ft")
M= 6.21 x 10' kg (1.37 x 10° 1bm)

Nominal spin rate. = 0.31l4 radians/sec (3 rpm)

This vehicle was the basis of a study by TRW Space
Technology Laboratories (12) to investigate the feasi-
bility of several passive damping devices for use as
wobble dampers. The devices studied were.a controlled
damping pendulum, a viscous.ring damper, a pendulum
damper, and a Naval drdinance Test Station (NOTS) mercury

ring damper. Selection of this vehicle as an example
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vehicle will permit comparison of the movable mass system
performance with the competitive devices identified by
TRW.

The best performing passive damper identified by
TRW is the controlled damping pendulum using three- pend-
ulum units, each with a tip mass of 272 kg (600 1bm).
To match control system properties as closely as possi-
ble, the control mass weight for the movable mass system
was selected as 816 kg (1,800 1bm). The wobble state
considered by TRW was a wobble angle of five degrees

which corresponds to the following initial conditions.

wl(O) = 0.0391 radians/sec
w2(0) =0
w3(0) = 0.314 radians/sec

The location of the control mass track is selected
as shown in Figure 17. The values of track offset

distances are

a 19.8 meters (65 feet)

b=20

Based on these track offset distances and the stated.
initial conditions the control system parameters may be.
determined by the procedure given in the third section
of Chapter III. From an analysis of the uncontrolled

vehicle dynamics, the amplitude and frequency of the
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forcing function of the mass' equation- of motion are

determined as

D 0.136 radians/sec2

p = 0.136 radians/sec

Then using Equations 55 and 56 the control system con-

stants may be determined.

0.0185 radians/sec2

0
"

radians/éeé-
max-

The performance of the control system was determined
for maximum mass amplitudes of three-six meters, which
were selected as typical values. Decay of the angle
between the angular momentum vector of the system and
the axis of symmetry of the.vehicle is presented in
Figure 18 for these cases. The wobble angle, 6, is

defined as
A Il w 2-+ w 2
Tyug

The values of c, corresponding to the selected maximum

1
mass amplitudes and the resulting actual maximum ampli-
tudes are summarized in Table III. It is interesting
to note that the transient dynamics of the control

system causes the mass to undershoot the predicted values.

of ‘maximum amplitudes for these cases.
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Table III

Predicted and Actual Maximum Mass Amplitudes
for NASA 21 Man Space Station Simulation

Z

c max
1 : (meters)
(radians/sec) Predicted Actual
0.333 3.0 3.0
0.250 4.0 3.9

0.200 5.0 4.7

0.167 6.0 S.U4




The time constant, Tas is defined for a symmetric
vehicle as the time required to reduce the wobble angle,
8, to a value of 1/e times its initial value. The re-
sultant time constants, peak power, force, and energy
requirements are summarized in Table IV for the cases
considered. Also shown in the table are the time con-
stants obtained by TRW for the passive devices they
considered. With the exception of the case of ¢y = 0.333
(z = 3 meters), the movable mass control system pro-
duces fésterrstabilization than tﬁe passive damping
devices. identified by TRW. As shown in Table IV, the
power, force, and energy requirements of the control
system are modest. Thus, the feasibility of a movable
mass control system as a wobble damper for a large

artificial-g mode space station has been demonstrated.

78
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CHAPTER V

CONCLUSIONS

A movable mass control system has been conceived to
convert the tumbling motions of a disabled vehicle into
simple spin. It has been shown that a control law re-
lating mass motion to vehicle motion may be formulated
using Liapunov stability theory. This technique is use-
ful for designing control systems where the governing
equations of motion cannot be linearized.

For a large space station which is tumbling as a
result of a collision with a shuttle orbiter, it has been
shown that the movable mass system is capable of de-
tumbling the space station within a period of two hours
for the assumptions used. This is accomplished using
a control mass weight of one percenf of the vehicle
weight and a mass amplitude of approximately three meters.

The following conclusions were drawn concerning
control system design:

l. The mass track should be placed as far as
possible from the vehicle center of mass and
oriented parallel to the maximum moment of
inertia axis.

2. The control mass weight should be selected
as large as possible, consistant with peak

force, power, and energy limitations.
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3. The performance of the control system may be
improved by allowing the mass to travel with a
larger amplitude.

From the various cases considered, it can be concluded
that the parameter selection procedure employed is valid
and provides realistic estimates of parameter values.

As an additional application, it has been shown

that the movable mass control system may be used as a
wobble Qamper for a vehicle with an arﬁificial-g mode.
It has been determined that the performance for this
system is better than éompefitive passive devices for
this application.

In summary, the movable mass control system can

effectively damp out unwanted tumbling or nutation
motions of a large space vehicle with modest sensor,

force, power, and energy requirements.
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