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CHAPTER I,

INTRODUCTION

In the operation of future manned space vehicles

there is always a finite probability that an accident

will occur which results in uncontrolled tumbling of

a spacecraft. This uncontrolled motion creates a

hazardous environment to the crew, which would experience

oscillating accelerations. The structural integrity of

the disabled vehicle may be jeopardized by prolonged

tumbling presenting additional danger. An earth-launched

rescue vehicle may not arrive for approximately twenty-

four hours due to fueling, launching, and rendezvous

operations. Hard docking by a manned rescue craft with

the disabled vehicle is not possible because of the

hazardous environment to which the rescue crew would be

exposed and the excessive.accelerations and fuel usage

required of the rescue vehicle. Detumbling would then

have to be accomplished by an external means using a

remotely controlled tele-operator or by impinging fluid

jets on the disabled craft. Therefore, it is desirable

to develop an internal autonomous control system to

either completely detumble the vehicle or lessen the

tumbling motions until the rescue craft arrives. Such a

device would become active upon loss of control.



Mass expulsion devices require onboard storage of

propellant and, hence, may not be reliable for this

application on a long term basis. Momentum exchange

devices, such as control moment gyros, may require con-

tinuous operation since startup of the gyros would .be

difficult once a tumbling situation has occurred. Power

requirements for continuous operation of this safety

device may be prohibitive. Control moment gyros exper-

ience a marked increase in gimbal loading in a tumbling

vehicle.and would be subject to gimbal failures. These

devices also have a tendency for saturation in large

corrective maneuvers. Passive energy dissipation devices

such as .viscous ring and pendulum dampers are reliable

and simple but have relatively low energy dissipation

rates, and therefore, require a long time for stabiliza-

tion. These devices seem most appropriate for vehicles

which have a high nominal spin rate about one axis. For

this application passive devices can effectively damp

out relatively small transverse rates. However, an

emergency detumbling system sho.uld be capable of stabiliz-

ing a disabled vehicle with arbitrary tumbling motions

where all angular velocities may be of the same order of

magnitude.

The development of a. movable mass.control system to

convert the tumbling motions of a disabled vehicle into

simple.spin is presented here. A simple spin state would



greatly facilitate crew evacuation and final despinning

by an external means. The system moves a control mass,

according to a selected control law, in the acceleration

environment created by the tumbling motion. By moving

the mass properly, the rotational kinetic energy of the

system may be increased or decreased creating simple spin

states about the minimum or maximum moment of inertia

axis, respectively. The control system is designed for

the latter case due to its associated stability in the

presence of perturbing forces.

The complete equations of motion of a rigid space-

craft with attached control mass are formulated making no

assumptions concerning vehicle symmetry or magnitude of

t-he transverse angular rates. A control law relating

control mass motions to vehicle motions is selected

based on Liapunov stability theory. A method of determin-

ing control system parameter values, based on an estimate

of the worst case tumble state, is -also presented. For

a large space station and realistic initial conditions,

it is shown that the movable mass control system is

capable of decreasing the kinetic energy of the system

to its.minimum state, establishing a simple spin about

the maximum moment of inertia axis, in several hours.

An.additional application of a. movable mass control

system as a wobble damper for an artificial-g mode, space

station is also presented. Finally, comparisons with

competitive passive devices for this application are made.



CHAPTER II

PREVIOUS INVESTIGATIONS

The effect of internal moving parts on the attitude

motions, of a space vehicle has been investigated by

Roberson (1) and Grubin.(2). Both of these authors have

developed the equations of motion of a rigid main body

carrying an arbitrary number of moving rigid bodies.

These studies are primarily concerned with analytically

describing the result of'internal mass motion-so that

possible destabilizing effects may be determined.

Roberson chose the composite center of mass of the

system as the reference point for the equations of motion,

For this choice of reference point, the formulation leads

to time varying moments of inertia of the main vehicle

since the reference point is moving relative to the

vehicle due.to mass motion. Grubin circumvented this

problem by choosing the center of mass of the vehicle as

the,reference point for the equations of motion. For

this choice, the moments of inertia of the vehicle are

constant relative to a body fixed coordinate system. As •

noted by Grubin, the formulation may produce.equations

of motion which are no simpler than those produced by

Roberson's method. However, the selection of the vehicle

center of mass as the reference.point seems more natural

since the rotational motions of the spacecraft may be

referred directly to the vehicle center.of mass rather



than the moving composite center of mass of the system.

In addition, the motion of the moving mass may be ex-

pressed relative to the vehicle axes which is of some

practical advantage.

Kane and Sobala (3) investigated the possibility of

using the effect of internal mass motion to provide.atti-

tude stabilization. The system considered was a sym-

metric satellite and two particles performing prescribed

oscillations. The particles were constrained to move

along the axis of symmetry. In a later paper Kane and

Scher (4) discussed the possibility of moving the parts

of a connected system relative to each other to convert

undesirable tumbling or nutation into simple spin. The

proposed concept exploits the following facts. When the

system.is constrained to move as a single rigid body, the

rotational kinetic energy is constant and bounded between

two limits. These limits .are determined by the angular

momentum and the maximum and minimum moments of inertia.

of the system. If'the parts-of the system are moved

relative to each other and again constrained to form a

rigid body, the rotational kinetic energy of the new

configuration will, in .general, be different from the

initial value. Therefore, the control scheme presented,

by Kane and Scher is to move the parts relative to each

other in such a way that the'rotational kinetic energy

changes to its maximum or minimum value. The system



would then be in a simple spin state about either the

minimum or maximum moment of inertia axis. However,

Kane and Scher do not present a general control law to

accomplish this stabilization technique. It is suggested

that a catalog of control laws be compiled for use with

various tumble states. Then, once a tumble state has

been identified, the proper control law may be selected

for this case.

Childs (5) developed a movable mass control system

for an artificial-g space station. The analysis is not

dependent on vehicle symmetry but the assumptions of a

high nominal spin rate about one axis and small trans-

verse rates are made. This allows Childs to linearize

the equations of motion and formulate a relatively simple

control law. However, the control system does not damp

the transverse rates to zero but only to a constant value.

This does not completely detumble the vehicle but does

reduce the disturbance that crew members would experience.

Beachley (6) suggested another application for

movable masses. He has shown that the inversion of a

spin-stabilized spacecraft may be accomplished using

movable massesi The concept involves moving the masses

to make the spin axis unstable by changing the moments

of inertia of the system. This will cause the cone angle

between the angular momentum vector and the line of



symmetry to increase. As the spacecraft completes the

inversion phase the control masses are returned to their

original position. The inverted spacecraft will again

be spinning in a stable manner.

Lorell and Lange (7) have proposed using two pairs

of movable masses to provide an automatic mass trim

system for a spinning spacecraft. For an active control

system, the accuracy of the pointing control depends on

knowledge of the relative location of the spin axis and

the sensor axis. If the spin axis shifts and the spin

and sensor axes are not correctly aligned, a pointing

error arises which is difficult to eliminate. Therefore,

Lorell and Lange propose a movable mass system to trim

the location of the spin axis to align the sensor and

spin axes. The analyses presented is limited to the

assumption of a symmetric vehicle and small transverse

rates.

These previous investigations have used movable

masses for a variety of applications. However, most of

these applications have been developed for vehicles

which are symmetric or experience only small transverse

rotation rates which permits some degree of linearization.

Available literature indicates that a movable mass control

system has not been developed for the general case of an

asymmetric vehicle with arbitrarily large rotation rates

about each axis.



CHAPTER III

ANALYTICAL INVESTIGATIONS

Development of Equations of Motion

The complete equations of motion of a rigid space-,

craft with an attached mass are developed in this section.

In-the following analyses v implies differentiation with

respect to an inertial reference frame and [v] implies

differentiation relative.to a body fixed reference frame.

The generalized equation of motion for a system of

connected rigid bodies is given by Grubin (2) as

ft = H" + § x a (1)

where. M, H, and S denote the external moment, angular

momentum, and first moment of mass of the system, re-

spectively. The quantities are specified with respect

to an arbitrary reference point moving in an arbitrary

manner. The inertial acceleration of the reference point,

is a. This equation reduces to the standard form, M = H,

when the reference point is fixed (a•= 0) or is the

center of mass of-the system (3 = 0).

The system under consideration consists of a rigid

main body and attached control mass shown in Figure 1.

The reference point, for the equation of motion, is selected

as the center of mass of the main body. The body fixed

coordinate system is aligned with the principal axes of



ehicle
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Figure 1. Main Body and Attached Mass System Geometry
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the vehicle, X, , X~ , and X~ , and have associated unit.
/\ /N /\

vectors i, j, and k, respectively.

With the assumption of no applied external torques ,

Equation 1 becomes

+ x a.= 0 (2)

where H is the total angular momentum of the system.

H = 5. + 3 (3)
b m

The angular momentum of the main body, H, , is

/s, S\ /\

Hb = Ila)li + I2W2^ + I3w3k (4)

where I- , !„, and I3 are the principal moments of inertia

of the. vehicle without the control mass and w, , to2 , and

to,, are the rotation rates about the X, , X~ , and X3 axes,

respectively. Differentiating this equation yields

H, = [g. ] + u x H
D D

(5)

The angular momentum of the control mass relative

to the vehicle center of mass, H , ism

S = mr x r ( 6 )
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It has been assumed that the control mass is essentially

a point mass so that the angular momentum of the mass

about its own axes may be neglected. The rate of change

of angular momentum of the mass is then

f ••

H = mr x r . ( 7 )m
• •

The term r is the acceleration of the control mass rela-

tive to the main body center of mass. From Thomson (8),

this acceleration may be written as

~* •*• t~*~ •*• » •$• •*• -"*• r̂ n r~*-i ,**r = co x (u) x r) + to x r + 2to x [r] + [r]. (8)

The first term is the centripetal acceleration, the second

is the tangential acceleration, the third is the Coriolis

acceleration, and the last term is the acceleration rela-

tive to the body fixed reference frame.

The first moment "of mass of the system is given by

_^ * * *
S = mr = m(xi + yj + zk) . (9)

Note that the main body does not contribute to this term

since the reference point is the center of mass of the

vehicle.

The inertial acceleration of the reference point is

aa - RQ

and, from Figure 1, may be written as

a = R - r .c c
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The term £ is the inertial acceleration of the composite

center of mass of the system and is given as

c " M + m*

Here.? is the resultant of the external forces acting on

the system, M is the mass.of the:main body, and m is

mass of the control mass. With,the assumption of no
• »

external forces acting on the system, 5 =0. Also,

from the definition of center of mass of the system

so that the acceleration of the reference point becomes

a - m
a " m + M >

Inserting these relations into Equation 2 yields

Defining the reduced mass of the system as

A mM
•m + M

and identifying

? = .yr (12)

as the force applied to the control mass and reacted to

by,the vehicle, Equation 11 becomes

H"b = -r x .J. (13)
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For prescribed motions of the control mass , this relation

gives, in vector form, the equation of .motion of the

vehicle. It is evident that the dynamics may be con-

sidered to be those of a rigid body being acted on by a

reaction moment of -r x f which is a result of mass

motion.

Expanding Equation 13 yields a set of three coupled,

non-linear differential equations for the vehicle dynamics

in terms of the vehicle angular rates (u, , w,-, , Wo ^ s an(3

the movable mass position (x, y, z), velocity (x , y, z),

and acceleration (x , y, z). All of these quantities are

with respect to the body fixed principal axes (X, , X2 ,

X3 , respectively). The equations are:

Ll^ + y(y2 + z2)]̂  + [I3 - I2.+ y(y
2 - Z2)]w2w3

2 2
+ (2yy + 2zz)w,+ yz(&3 - co2 )

- 2xyco? - 2xzto.~ - XZOKW,., + xyco^w,,. + yz - zy]

= 0

y(z2 + x2)w + LI - I + y(z2 - x

2 2w - yxw, + (2zz + 2xx)co2 + zx(co, - io3

- 2yzw3 - 2yxoj,. - yxcu2<i)3 + yzo)2w-, + zx - xz]

= 0 (15)



[Ig + y(x2 + y2)o>3 + [I2 - II + y(x
2 -

+ yC-zxa^ - zy<I>2 + (2xx + :2yy)(i>3 + .

- 2zxaj, - 2zyu2 - zyw-co, + zxu-w^ + xy - yx]

= 0 (16)

These equations are . valid irrespective of the physical

mechanism whereby the control mass executes its motions.

Similarly, the force, f" , applied to the control mass

and reacted to by the vehicle, given by Equation 12, may

be expanded in component form. The result is

f-y = y[x - 2y

+ zw^^Ug - x ( w 2 + W 2 , ) ] (17)

f 2 . = yCy - 2zw, + 2xw3 - zcb-, + xJ>3 + zw2co3

+ xw2to1 - y ( w 2 + a) 2 ) ] (18)

f3 = y[2 - 2xto2 + 2yco, - xd)2 + yd), + ,xw 3 (o ,

+ yoo3w2 - z ( w 2 + to 2 ) ] . (19)

The kinetic energy of the system is

A
T = j J | • f dm + imtm • Jm. (20)

From Figure 2 the following relations are evident.
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Mass Element
of Vehicle Composite

Center of
Mass

Inertial Origin

Figure 2. System Geometry for Determination of System
Kinetic Energy
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I • «c

Inserting these relations into Equation 20 yields

M

dm + imr • r"m)T = 7J-(m + M)Rc ' ̂ c +• (^ / p • p

M

+ RC • ( / p dm + mrm ) .

The first term may be identified as the kinetic energy

associated with the motion of the composite center of

mass of the system. The second grouping of terms is the

rotational kinetic energy about the composite center of

mass. The final terms are zero from the definition of

center of mass of the system. Since only attitude motions

of the system are of interest, only the rotational kinetic

energy will be considered further.

M

Trot = P ' P dm + * • (21)= -S- / p • p dm + ^mr • r.£ j z m .

Again from Figure 2

?m = ? - ?c.

and
- > • - * • - * •
P = n -.rc.

Using these relations and Equation 10, the rotational

kinetic energy of the system becomes

.M
L -i T ™M _S. J.

(22)
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The first term of this equation is the rotational kinetic

energy of the rigid body about its own center of mass.

The second term is the kinetic energy of the reduced mass

about the vehicle center of mass. Therefore, the rota-

tional kinetic energy of the system about the composite

center of mass may be written as

Trot = ̂  ' * ' " + 7^ ' * ' (23)

where I is the inertia dyadic of the rigid body. It is

interesting to note that the rotational kinetic energy

of the system given by Equation 23 is valid irrespective

of the choice of a body fixed principal axis coordinate

system.

The expression for the angular momentum of the system

with respect to the composite center of mass may be

developed similarly. The result is, from Roberson (1),

It should be remembered that H in Equation 3 is the

angular momentum with respect to the vehicle center of

mass, whereas H in Equation 24 is the angular momentum

with respect, to the composite center of mass of the system.

The equation of motion would be

= 0 (25)
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if the 'Composite center of mass were selected as the

reference point for Equation 1. Since. Equation 25 indi-

cates -that H is constant, the accuracy of a numerical

solution of the equations of motion may be determined

using Equation 24.

Since the movable mass control system is to decrease

the rotational kinetic energy of the system, the rate of

change of this energy will be developed. . Differentiating

Equation 23 yields

T , = o o ' I » u ) + r « f " . (26)rot

Partially expanding Equation 13 gives

so that

-»•• ~ 4 - - » • • > = - > - » • - » • - >
w • I • U = -co • w x I • to — cj • r x f .

It may. be noted that the first term on the right hand

side of this equation is zero. Using this relation,

Equation 26 becomes

Noting that

- » • • - > - * 4- •*
Trot = -u ' * x ? + r • £..

4- -4... -> -»-
r = [r] + oj x r
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this equation simplifies to the result

T .=[£]•?. (27)rot

Thus, the rate of change of rotational kinetic energy of

the system is found to be independent.of the vehicle,

inertia properties and dependent only on the relative

velocity of the control mass and the force applied to the

mass. It may be noted that this result is valid irrespec-

tive of the assumption of a principal axis coordinate

system since Equations 13 and 23 are general.

The equations of motion of a rigid spacecraft with

attached control mass have been formulated in this section;

The result is a set of three coupled, non-linear differen-

tial equations for the rotation rates of the vehicle in

terms of the control mass, position, velocity, and accelera-

tion. The motion of the control mass will be specified

by the control law which is selected. The expression for

the angular momentum of the system about the composite

center of mass has been presented to determine the ac-

curacy of a numerical solution of the equations of motion.

Since the movable mass control system is to provide energy

dissipation, the expressions for the rotational kinetic

energy of the system and the rate of change of this

quantity have been developed. The derived relation for

the rate of change of rotational kinetic energy will be

used to develop a control.law in the next section.
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Selection of Control Law

Equations 14-16 determine the attitude motions of

the spacecraft for specified motions of the control mass.

It is the function of the control law to relate the mo-

tions of the control mass to measurable vehicle parameters

so that the control mass may respond to vehicle motions

in an appropriate manner to lessen tumbling. A satis-

factory control law should not be unnecessarily compli-

cated and should not have excessive power or sensor re-

quirements. It should, however, require determination

of only measurable vehicle parameters, produce stable

responses, and result in a final state of a simple spin

about either the maximum or minimum moment of inertia

axis. In the following analysis, the vehicle is assumed

to have three distinct moments of inertia, I , I0 , and IQ,
.L £ O

and the relationship ! „ > ! _ > I... is assigned to these

quantities.

By inspection of Equations 14-16, the equations of

motion for an asymmetric vehicle with attached movable

mass are extremely complicated due to their highly coupled

and non-linear nature. Since the initial tumble rates

may be large about, all three axes, the equations of motion

cannot be simplified by linearization. However, several

simple cases were identified and.will be discussed before

considering the general case.
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The first special case requires that the motion of

the mass be along a line parallel to and offset a distance

b from the X3 axis and passing through the X,, axis. For

this case, Equation 14 becomes

2 2 2 2 '
[I, + y(b + z )]to, + [Iq ~ Io + ^k ~ z ̂ W2W3

2 2 . .+ 2yzzto, + ybz(to~ - to0) + ybz = 0. (28)1 3 2

Suppose the control law is chosen such that

z = cw1. (29)

2 2
With the assumption, I, » 3yc u,, Equation 28 becomes

- I3 - yb
2]

(30)yb^ W2W3'

This equation indicates that for the case to0 > u)0 ,• 3 2

Equation 29 will result in damping of to, to zero produc-

ing a stable spin about the. maximum moment of inertia

axis. The control law would be easy to implement, re-

quiring measurement of z and to, only. The mass would

oscillate about its equilibrium position with decreasing

amplitudes since u-, would be damped. The control mass

would return to its zero position when to, equals zero

and a simple spin is reached. For the case of an arbi-

trary tumbling spacecraft, the assumption toQ > io0 cannot
O £. .
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be made and Equation 29 does not provide a satisfactory

control law for the general case. However, the result may

be useful in designing a control system for a space sta-

tion :which has an artifical-g mode where the spacecraft

has a large rate about one axis, say w-, and the control

system is to damp out the small transverse rates w, and co^ •

Since a simple spin about the maximum moment of

inertia axis is the minimum energy state of the system,

it is evident that Equation 29 produces energy dissipation

for this case. The second specialized case demonstrates

that a movable mass control system may increase the energy

of the system to the maximum energy state. The vehicle

would then be in a simple spin about its minimum moment of

inertia axis. For this case the control mass motion is to

be along a line oriented parallel to. and offset by some

distance a from the X, axis and passing through the X~

axis. For this.configuration Equation 16 becomes

[I3 + y(x + a )]&3 + [I2 - I, + y(x - a )]o):,w2

2 2
+ 2yxxto3 + yax(w 2 - co,) - yax = 0. (31)

Suppose the control law is now chosen to be

x = . co>3. ( 3 2 )

With this choice of control law and the assumption !„. »

2 2yc o)», Equation 31 becomes
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2
[!„ + ua ] 9 9

• O • . t £. L. \
)- - - — — - - a)- + (WT ~ WO)O)Q3 yac o . 1 2. o

[I, - In + pa2]

< (33)

This equation indicates that if the product ac is chosen

such that ac < 0 , for the special case w-, > to- Equation 32

will result in damping of o>3 to zero and produce a simple

spin about the minimum moment of inertia axis, X,. The

properties of the control law are similar to those of

Equation 29.

The two preceding examples have demonstrated that

the movable mass control system may increase or decrease

the energy of the system and produce a simple spin about

either the minimum or maximum moment of inertia axis

for certain specialized cases. They also indicate that

possibly the proper orientation for the direction of

motion of the control mass is parallel to the desired

final spin axis. However, since the initial tumble

state of the vehicle is not known, the necessary assump-

tions may not be made for the general case of tumbling.

The control laws given by Equations 29 and 32 are there-

fore attractive but inadequate in their simplicity. The

formulation of a control law which will produce a simple

spin, for an arbitrary tumble state is the subject of

the remainder of this section. Although the movable mass

control system could possibly force a simple spin about



the minimum moment of inertia axis, the control law will

be developed to produce spin about the maximum moment .

of inertia axis. Spin about this axis is stable in the

presence of perturbing forces.

The development of the control law starts with the

theory of Liapunov stability. From LaSalle (9), the

system of differential equation given by Equations 14-16

and the mass equation of motion:produced by the control

law will be completely stable and approach its minimum

state if there exists a scalar function V(u) with certain

properties. The-variable u is the state vector of the

system. The conditions which the Liapunov function must

satisfy are

a) V(u) > 0 for all u i 0

b) V(u) < 0 for all u

c) V(u) -»• oo as Hull -»• °°

where HUH is the Euclidean norm of the state vector. For

the physical system considered here, a convenient scalar

function to use as a Liapunov function is the rotational

kinetic energy of the system. Due to the nature of

kinetic energy, conditions (a) and (c) will be automatic-

ally satisfied. Thus, if a control law is, chosen such

that condition (b) is satisfied, the system will be

completely stable and approach its minimum state.
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Consider the case where the control mass is re-

stricted to move along a track parallel to the X3 axis,

and offset from this axis as shown in Figure 3. For this

case, the rate of change of rotational kinetic energy

given by Equation 27 simplifies to

= ±f' (34)

Thus, if the force applied to the control mass is

selected as

Equation 34 becomes

f3 = -ycz (35)

= -ycz2 (36)

which satisfies condition (b). Using Equations 19 and 35,

the resulting equation of motion for the mass is

2 2z .+ cz - (w, + u)2)z = aw2 - b(L, - aco-to-, - bci^w^. (37)

This equation has-been written in a form which suggests

that the mass dynamics are those of a second order system

being forced by the motions of the tumbling vehicle. It

should be noted, however, that the vehicle motions

which produce the forcing function of Equation 37 are

determined by differential equations which are themselves

functions of control mass dynamics. If the effect of

mass motion over one .cycle is small, the dynamics of the
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X.

Control Mass

-Control Mass Track

Figure 3. Orientation of Control Mass Path
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vehicle are essentially those of a free uncontrolled body.

With this assumption the forcing function of Equation 37

may be considered to be dominated by vehicle motions

over one cycle. This form of the mass equation of motion

may then be used to determine the effect of the control

law on mass dynamics.

The control law given by Equation 35 satisfies condi-

tion (b) and decreases the rotational kinetic energy of

the system. Also, the forcing function vanishes when a

final spin about the X3 axis is established. However,

due to the negative, decaying coefficient of the z term,

the mass would not necessarily return to its initial

position (z = 0). Therefore, it is desirable to modify

the control law to ensure the return of the control mass

to its zero position once a simple spin state has been

reached. This would restore the full control capability

of the control system should another tumbling situation

arise.

If the force applied to the control mass is modified

such that

2 2f3 = -yc,z - y(c2 + W-, + co2) (38)

the equation of motion for the mass becomes

z + c,z + c«z = a<i)2 - t><I>, - aojoto-, - bu^w-. ( 3 9 )
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The control law has been modified.to cancel the undesir-

able negative coefficient of the z term and to provide a

positive coefficient. With this control law, the mass

equation of motion becomes a conventional second order

differential equation which will provide damped motion

of the mass and return .the control mass to its zero

position once a simple spin state is established.

The rate of change of rotational kinetic energy

for this selection of control law is

Trot = -vtc.̂
2 - yzz(c2 + coj + u)

2,). (40)

Here the formulation departs from the Liapunov method
•

since T is not necessarily negative semi-definite.

The first•term.will decrease the rotational kinetic

energy of the system while the second term will be

oscillatory in nature, increasing and decreasing the

energy. If .the control system,constants c, and c? are

chosen properly the secular negative semi-definite term

will dominate over the complete mass cycle. If every

mass cycle has a net negative value for T . , the system

will approach its minimum energy state and a simple spin

about the maximum moment of inertia axis. From the mass

equation.of motion, the mass.would return to its zero

position.once this state has been reached. The physical

significance of the control law given by Equation 38 will

be discussed in Chapter IV.
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Selection of Control System Parameters

For the selected control law, the rate of change of

rotational kinetic energy is given by Equation 40 as a

function of two control system parameters, c, and c-..

The parameter values should be chosen to yield a large

value of energy dissipation rate and, hence, a fast ap-

proach to simple spin, subject to mass amplitude and

power limitations. It is the purpose of this section

to develop some guidelines for the selection of these

parameter values.

Before proceeding with this development some

qualitative observations will be.made concerning the

effect of c, and c2 on control system performance. The

right hand side of Equation 39 is again considered as

the forcing function of mass dynamics so that

z + GIZ + c2z = F (41)

where the forcing function due to vehicle motion is

F = a<I)2 - boo, - aoj-oj-, - bu)2w3 (42)

To investigate the effect of c, and c2 on control

system performance, an analogy is established between

mass dynamics and a simple spring-mass-damper system.

In this analogy, c, corresponds to the damping constant

of the damper and c- corresponds to the spring constant

of the spring.
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Considering the expression for T only, it may

appear that the value of c, should be selected to be

large since the negative semi-definite term is propor-

tional to c,. However this.term is also a function of

the relative velocity of the control mass so that the

effect of a large value of c, on mass dynamics must be

investigated. Referring to:the spring-mass-damper

analogy, a large value of c, corresponds to a strong

damper which would .limit the.velocity of the mass.

Since the negative semi-definite term of T , is therot

product of c, and the relative mass velocity squared,

an.increase in c, may result in a net decrease in the

magnitude of this term. The proper value of c, must

be determined considering both the direct effect of
•

this parameter on T and the indirect.effect on.the

mass dynamics. A similar tradeoff results when the
•

parameter c~ is considered. The second term of T

is oscillatory in nature and results in energy addition

over part of the mass cycle. This term is necessary

to ensure the return of the control mass to its zero

position once a simple spin state is reached. To limit

the magnitude of the energy addition portion of the

mass cycle, it may appear, from Equation 4-0, that c~

should be selected to be a small value. However, again

considering the.spring-mass-damper analogy, a small
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value of c9 corresponds to a weak spring which would

allow a relatively large amplitude of mass oscillation.

These general considerations suggest that an optimum

set of control system parameters may exist which maximize

the energy dissipate rate while limiting the mass

amplitude to a specified value. The remainder of this

section presents some quantitative guidelines to aid in

the selection of these parameter values.

An analytic solution of the mass equation of motion

would provide control mass position and velocity his-

tories as functions of the parameters c, and c^. Using

these solutions, the rate of change of rotational kinetic

energy could be maximized subject to the condition of a

selected maximum mass amplitude. This optimization could

be performed using a Lagrange multiplier technique.

Clearly, this is not possible since the forcing func-

tion, F, contains angular rates and accelerations of

the vehicle. The solution of the mass equation of

motion would therefore require the simultaneous solu-

tion of the.vehicle equations of motion. This system

of differential equations does not readily lend itself

to an analytic solution due to the coupling and non-

linearities of these equations. On the other hand, a

completely numerical solution of the system of equations

provides no analytic information concerning the effect

of the control system parameters. Therefore, a partially
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analytical, partially numerical method was developed to

provide some insight into the effect of the parameters

on the performance of the control system.

The approach adopted is based on the assumption

that the net change in the rotational kinetic energy

over one mass cycle is small. With this assumption,

the dynamics of the system are approximately those of

a free, uncontrolled vehicle over one cycle. For a

selected tumbling state, the free dynamics may be solved

numerically. From results of the uncontrolled case, the

forcing function of control mass dynamics, F, may be

constructed using Equation 42. Although F will change

as the control system reduces the tumbling, the ini-

tial tumble state will provide .a design point which

may be used to size control system parameters.

The nature of the forcing function may be investi-

gated by considering the analytic solution of the free

vehicle dynamics. From Synge and Griffith (10), the

angular rates of a free asymmetric body may be expressed

in terms of Jacobian elliptic functions. The result is

w-ĵ  = y cn Cp(t - tQ)]

u)2 = 3 sn [p(t - tQ)] (43)

to,, = a dn [p(t. - t.)]
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2
for the condition H > 2I-T which corresponds to motion

about the maximum moment of inertia axis, Xg . For the

2
condition H < 2I2T, which corresponds to motion about

the minimum moment of inertia axis, X, , the solution is

o^ = Y* dn [p1 (t - tQ)]

u»2 = e
1 sn [p'(t - t0>] (44)

Uo = a1 en [p'(t - t)].

The amplitudes, a, 3, and y> a"d the precession fre-
2

quency , p, for the case H > 2I_T and the corresponding

2
quantities for the case of H < 2I»T may be found in

Synge and Griffith (10). The expressions for these

quantities are not of direct concern here since it is only

the form of the forcing function which is being investi-

gated. Using these elliptic solutions, the forcing

function will be in one. of the following forms:

F = a(p3 - ay)cn[p(t - tQ)]dn[p(t - tQ)]

(45)

+ b(py - oB)snCp(t - tQ)]dn[p(t - tQ)]

for H2 > 2I2T, and

F = a(p'B' - a!Y')cn[p'(t - tQ)]dn[p'(t - tQ)]

(46)

+ b(pVk2 - a'B')sn[p'(t - t0)]cn[p'(t - tQ)]

for H2 < 2I2T.



The parameter k is the modulus of the elliptic functions.

The functions sn u and en u oscillate between 1 and -1

at the precession frequency p. The function dn u

2 ̂oscillates between 1 and (1 - k ) at twice the pre-

cession frequency.

From these considerations, it is evident that F

will be oscillatory in form. Therefore, using the tab-

ulated form of F obtained from the uncontrolled case

results, a Fourier series may be fit to the data points.

The forcing function expressed as a Fourier series

will provide an analytical expression which can be used

to solve the mass equation of motion. This solution

will provide information concerning the relationship

between control parameters and system performance.

The forcing function of the mass equation of motion

expressed as a Fourier series is

F =- AQ + Z (An cos iBIl + Bn sin ^^)
n=l

where T is the period of the function F. Since the

forcing function, expressed as either Equation 45 or 46,

contains no secular terms, AQ = 0. Also, since F is a

smooth function, the Fourier series may be terminated

with a finite number term with sufficient accuracy.

The Fourier expansion of the forcing function then be-

comes
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F = ? (A cos + B sin ) .
n=l n T . n T

The Fourier coefficients, A and B , are determinedn n

numerically using a standard routine which generates

Fourier coefficients for a tabulated function.

The Fourier expansion may be rewritten as

m A
F = Z Dn sin (s t + tan" g^O

n=l n

where

D = - /T5n \j n

and

2mr
sn ~'

The equation of motion of the mass then becomes

m . A
z + c,z + c0z = Z D sin (s t + tan" «£•).

1 2 n=l n n ^

The particular solution of this equation may be.readily

obtained as
m

z = E E sin <t> (47)
P n=l n n

where
D

E = n

and

Differentiation yields the control mass velocity as
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m
i; = Z E s cos <j> ,p T n n nv n=l

These solutions for control mass position and velocity

histories may be used to determine the rate of change

of rotational kinetic energy. The result is

m m
T .. = -v Z Z [E.E.s.{c,s. cos $. cos <j>

-i=l k = I - ' - ' - ^

+ (c0 + u2 + o>?)sin <(> . cos <f>v}]. (48)
L. JL £ ^ JC

Noting that

cos <f> . cos <f>, = T5-[cos(4). -<{),)+ cos(<|>. + <)),)]
D K ^ ] K ] K

sin <j) . cos $, = Tj-CsinCtf). + <|>, ) + sin(tj). - 4>,)]
D K Z ] K . ] K

the secular part of Equation 48 may be identified as

the terms for which j = k. Thus, the secular part of

the rate of change of the rotational kinetic energy may

be written as,

T - y v n F 2 2
Tsec - -2 n?1

cl?n Sn '

Rewriting this equation to show the dependence of the

control system parameters yields

„ m c..(A 2 + B 2)s 2

T p = -H. Z -
 1 n . , n - 2 - (49)

S6C 2 22 2n=l C(c2 - sn)
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which may be used to determine the effect of control

system variables on the secular part of the energy

dissipation rate. This equation- indicates that an in-

crease in. the weight of the control mass, and hence an

increase in the reduced, mass , y, will linearly effect
•

T~Q,,' Increasing the Fourier coefficients A and Bs GC • n n
•

will increase T quadradically . This may be accomp-

lished by increasing the amplitude of the forcing func-

tion which corresponds to increasing the mass offset

distances a and b. Thus, the control mass' track should

be placed at the maximum allowable distance from the

center of mass of the vehicle.

The effect of c, and c2 is more difficult to obtain

2
but it is evident that c0 should be of the order of si n

With this assumption Equation 49 becomes

and Equation 47 becomes

9 9
m A ^ + B z

' ^ Bin

Equation 50 indicates that c^ should be selected to be

a small value. However, from Equation 51 decreasing c,

results in increasing the maximum amplitude of the mass

motion. These. .observations agree with the conclusions



38

drawn when the spring-mass-damper analogy was discussed.

It can therefore be concluded that .c, should be the

smallest value which limits control mass amplitude to

its maximum allowable value.

Equations 47 and 49 may be used to generate a

nomograph for selection of control system parameters,

c, and Cy- Once the control mass weight, track position,

and an estimate of initial tumble state are obtained,
•

T may be calculated for various values of c, and c_.sec J - - - - - - 1 - 2

Using Equation 47 the corresponding maximum mass ampli-

tudes may be determined. Figure 4 shows a typical nomo-

graph which will result. This particular nomograph was

generated for an example case which will be discussed

in Chapter IV. The figure shows a family of curves for
•

T as a function of the control system parameters c,sec • j . r j_

and c2. Also shown in the nomograph is another family

of curves which connect sets of c, and. c^ values which

result in a particular mass amplitude. As shown in

Figure 4, each selected maximum mass amplitude has an

'associated optimum set of c, and c? values which corres-

ponds to a maximum energy dissipation rate. Thus, once

the maximum allowable mass.amplitude has been determined

the proper values of c, and c» may be selected from

the generated nomograph.
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Figure 4. Control System Parameter Nomograph



The control system parameter selection procedure

is simplified if the main vehicle is axially symmetric,

For.a symmetric vehicle the modulus of the elliptic

functions, k, is zero and the Jacobian elliptic func-

tions may be replaced with trigonometric functions.

For this case

sn DpCt - tQ)] = sin p(t - tQ)

en [p(t - tQ)] = cos.pCt - tQ)

dn Cp(t - tQ)] = 1.

The forcing function of mass dynamics then becomes

F = a(p3. - ay) cos p(t - tQ) + b(py - ot$)

sin p(t - tQ)

or

F = D sinCpt + 6)

where

D =ya2(p3 - ay)2 + b2(py - a8)2

6 = tan'
1 - - ptn.- a&) K 0

The equation of motion of the mass may then be written as

z + cz + cz = D sin (pt + 6).



The particular solution of the mass equation of motion

is then obtained as

z = sin (pt + 6
P / ^9 9

2 - p
2)2 + (clP)

2

i ciP
_ tan'1 - i — j-). (52)

c - P

By noting the similarity between Equations 47 and 52,

the secular part of the rate of change of rotational

kinetic energy may be determined immediately from

Equation 49 by setting m = 1 and s =.p. Performing

this yields

^u GiD P
T = -| - - T-f—~ - 2— (53)
SeC 2 C(c - pV +.(cP)

2]

The maximum mass amplitude may be readily obtained from

Equation 52 as

- p2)2

The values of-c, and c2 which yield the maximum energy

dissipation rate with the side condition of a selected

maximum mass amplitude may be determined using a Lagrange

multiplier technique.



Before proceeding with this formulation, Equation 41

will be written in standard second, order form as

z + 2£o>nz + o>n
2z = F

where £ is the damping ratio and to is the natural

frequency of the system.. Comparing this standard form

with Equation 41 the following relations are evident.

cl =

C2 = %2

Applying these relations to Equation 53 and rearranging

yields
w_

2 c(— )
T = -Hgl _ —P- _ .sec 2p . .w u 0

 w o
(Jl)4 + 2(2c - 1)(— ) + 1
P P

A wnDefining the parameter, v = — , this equation becomes

_ _ _

sec " " 2P v4 + 2(2C2 - Dv2

Similarly, the maximum mass amplitude becomes

_ Dz = — «-max 2

The maximum value of T corresponding to a selecteds sc

maximum mass amplitude is determined by constructing the

function



G =
2p 4 2 - l)v2

2

2(2g2 - l)v2 + 1]

Taking the partial derivatives of G. with respect to £,

v, and X, setting these expressions equal to zero and

solving the resulting system of' equations yields the

optimum values of ? and v. Performing these operations

yields three values for v.

v = 0, v = ±1

•

Obviously, v = 0 corresponds to a minimum, since T =0

f or • v = 0, and v = -1 corresponds, to a maximum which results

in an increase in rotational kinetic energy. The desired

value as v = 1 which corresponds to

or 2
c = p . (55)

Thus , the natural frequency of the control system should

be selected to equal the driving frequency of the forcing

function for maximum energy dissipation. For v = 1, the

maximum mass amplitude is

zmax
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and, hence,

2p2z^ max

Thus, parameter c, should be chosen such that

c, = -—. (56)1 pzK max

For these values of c, and c~

yDpzi _ F max
" s e c ~ ' ~4" " " " '

From this equation, the energy dissipation rate may be

increased by increasing the control mass weight, moving

the mass track away from the center of mass which in-

creases D, or by allowing the mass, a larger amplitude.

These observations agree with the results obtained for

the general case discussed previously. As can be seen

the selection of control system parameters c.. and c~ is

simplified for a symmetric vehicle. Once the initial

tumble dynamics have been analyzed, the parameter values

may be calculated directly using Equations 55 and 56 in-

stead of generating a nomograph as was done for the

general case.

Although the methods presented for the selection of

control system parameters may be.in error due to the

assumptions and approximations made, the procedures out-

lined will provide "ballpark" estimates of c, and c~



values. Final selection of c, and c» values must be based

on the actual dynamics of the system obtained by solving

the complete vehicle and mass equations of motion.

Sensor .and Power Requirements

The sensor and power -requirements of the movable mass

control system with the selected control law will be dis-

cussed briefly in this section.

For the control law expressed as Equation 38 it is

evident that the following quantities must be sensed:

f~, the force applied to the control mass; z, the control

mass velocity relative to the vehicle; z, the control

2 2mass position; and the combination (to, + w2 ). The

quantity f, may be determined using a linear accelerometer

mounted on the control mass. If the accelerometer is
/\

mounted to detect the k-component of mass acceleration,

the sensed acceleration will.be proportional to f«.

The mass position and velocity may be easily sensed using

any of a number of simple devices. The combination

2 2(co, + co2 ) may be determined with a linear. accelerometer

mounted on the X« axis. The acceleration of a fixed

point, P, located by a vector d. from the vehicle center

of mass is

-> -> ,-»• -*•. -5- -*••
ap = to x (co x d) + w x d



-*. -».
If d = dk the k-component of ap is

(ap)3 = -dCu^2 + u2
2).

Thus, an accelerometer placed at this point and oriented
>̂

to. sense the k-component of the acceleration at that

2 2
point ,will, sense a quantity proportional to , (w-, + o>2 ) •

The. sensor requirements for the implementation of the

control law appear to be modest.

The force requirements of the control system may be

determined by Equation 19 since this is the force applied

by the control system to the control mass. The instant-

aneous power required by the control system is, by defini-

tion, the force applied to the mass times the relative

velocity. This definition is equivalent to Equation 27

which gives the rate of change of rotational kinetic

energy of the system. As noted in the second section
•

of this chapter T will be oscillatory, the negative
•

portions of T resulting in energy dissipation. Thus,

the'power input to the mass corresponds to the positive
•

portions of T .. In fact, if a power generation system

would be implemented with the control system, energy

could be stored during the energy dissipation portions

of the mass cycle and be used to power the positive T

portions of the cycle. This possibility is not considered

further since the primary function of the control system

is to aid in crew rescue and not generate power. For



this case, the energy input required is just the integral

of the positive portions of the T curve. The force,

power, and energy requirements for two example cases

will be discussed in the next section.



CHAPTER IV

RESULTS

To demonstrate the feasibility of a movable mass

control system using the control law given by Equation 38,

the space station shown in Figure 5 was chosen as an

example vehicle. The geometric axes shown in Figure 5

are assumed to be the principal axes for demonstration

purposes. The properties of this Modular Space Station

(MSS) are given below.

1^ = 5.15 x 106 kg-m2(3.80 x 106 slug-ft2)

12 = 6.28 x 10
6 kg-m2(4.63 x 106 slug-ft2)

13 = 6.74 x 10
6 kg-m2(4.97 x 106 slug-ft2)

M = 9.98 x 101* kg(2.20 x 105 Ibm)

The space station shown in Figure 5 was selected

since it is a relatively large vehicle and does not

have an artificial-g mode. Thus, a passive damping

system such as a viscous ring or pendulum damper would

not be practical for this application.

The tumble state used for this example was obtained

from Kaplan (11). The initial rates are

a)-,(0) = -2.86 x 10 radians/sec
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u) (0) = -0.199 radians/sec

o)Q(0)-= 0.103 radians/sec.
O

These values are based on a realistic worst case analysis

of the tumble state produced by a collision of a shuttle

orbiter and the MSS. Since the resultant tumble state

is dependent on the amount of kinetic energy trans-

ferred by the orbiter to the MSS, the initial tumble

conditions are given.by Kaplan for 10, 50, and 100 per-

cent kinetic energy transfer. Although the 100 percent

case corresponds to a perfectly elastic collision which

would not be the case, it does produce the highest tumble

rates and was, therefore, selected to test the movable

mass control system.

For an uncontrolled vehicle, the selected initial

conditions result in the tumble state shown in Figure 6.

As can be seen, this tumble state is fairly severe and

by no means lends itself to the assumption of small

transverse rates since the amplitudes of the angular

velocity oscillations are all of the same order of

magnitude.

The control mass track is placed at the farthest

allowable point from the vehicle center of mass and

oriented parallel to the maximum moment of inertia axis

as shown in Figure 5. For this positioning, the mass

track offset distances are
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a = 13.7 meters (45 feet)

b = 5.5 meters (18 feet)..

For these offset distances and the uncontrolled

dynamics shown in Figure 6 the forcing function of the

mass equation of motion, given by Equation 42, may be

constructed. The result is shown in Figure 7. It is

interesting to note that, comparing Equations 19 and 42,

F is the negative of the-force on a unit mass attached

to the tumbling vehicle.with coordinates (a, b, 0).

Thus, Figure 7 shows a typical acceleration profile that

a crewman would experience inside the tumbling vehicle.

As shown in Figure 7 the acceleration would be constantly

changing magnitude and direction and would create an

extremely hazardous environment for the crew. A simple

spin, on the other hand, produces constant forces with

constant directions which would greatly aid the crew in

evacuation operations.

Using the forcing function shown in Figure 7 , the

coefficients of the Fourier series representing the

forcing function were determined. Then, using Equations 47

and 49, the secular part of the rate of change of the

rotational kinetic energy and the maximum mass amplitude

were determined for various values of c, and c_. The

resulting nomograph was discussed in Chapter III and is

shown in Figure 4. A control mass of 99.8 kg (200 Ibm)

which.corresponds to 0.1 percent of the vehicle weight
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was used to generate the nomograph. Different values

of control mass weight will shift the curves up or down

but will not affect the shape of the curves. The dotted

lines on the nomograph gives the secular rate of change

of rotational kinetic energy as a function of control

system parameters c, and c». From Figure 4, smaller
*

values of c, give larger values of T . Also shown1 ° ° sec

on the nomograph by solid lines are points which result

in the same maximum mass amplitude. For each selected

maximum allowable mass.amplitude there appears to be an

optimum set of c,. and c,, which results in the optimum

value of T . Thus, once the maximum mass amplitudesec '

has been determined, the proper control system parameters

may. be chosen using the nomograph. This nomograph is

dependent on the initial tumble state selected as the

design point.

Although the nomograph shows relatively large energy

dissipation rates for c» = 0, the assumptions under which

the nomograph was generated must be kept in mind. It

was assumed that the forcing function would be purely

oscillatory so that it could be approximated by a Fourier

series. For the actual case, however, the forcing func-

tion will not be purely oscillatory, in general, since

the system is being damped. A value of c2 = 0 corresponds

to having no spring in the spring-mass-damper analogy dis-

cussed previously. Therefore, the non-oscillatory nature
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of the forcing function will cause the control mass

oscillations to migrate away from its initial position

for c_ = 0. Thus, a non-zero value of c« is required to

prevent this and insure the return of the control mass

to its initial position.

Once the control system parameters have been

selected, the mass and vehicle equations of motion may

be solved. This was done using a fourth-order Runge-

Kutta algorithm to numerically solve the system of dif-

ferential equations with an IBM 370-165 computer. The

accuracy of the algorithm was checked using the fact

that the angular momentum of the system about the com-

posite center of mass is constant in the absence of

external moments.

Before stating the results, the physical signifi-

cance of the control law given by Equation 38 will be

discussed briefly. Figures 8a and 8b show typical cycles

of control force acting on the control mass, f^j and

velocity relative to the body fixed axes, z, respectively.

Comparing Figures 8a and 8b it is evident that the

control law causes the control force to be generally

opposite to the relative velocity. Figure 8c shows

the rate of change of rotational kinetic energy of the

system which is the product of total force and relative

velocity. It can be seen that T is .generally negative
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which corresponds to energy dissipation. The positive
•

portions of T correspond to energy addition. These

portions are due to the second term of Equation 40 which

was selected to insure that the control mass oscillates

about its zero position and -returns there after simple

spin is established. In general, energy addition is

not desired but from Figure 8c it can be seen that

over a complete cycle there is a large energy dissipa-

tion .and only a relatively small energy addition over

each cycle. Therefore, it was determined that this

energy addition was acceptable to insure return of the

control mass to its zero position. The situation,is

further clarified by Figure 9 which shows typical cycles

of control mass position over the same time period as

the quantities shown in Figure 8. Superimposed on the

mass cycle, is a schematic of the control mass with the

directions of the mass velocity and the force acting on

the mass shown. It is evident that the force given by

the control law is generally a retarding force. In

the first half cycle the mass is moving "up" and the ap-

plied control force is directed "down" which produces

energy dissipation. Eventually this force will overcome

the velocity and the force and velocity will be in the

same direction resulting in energy addition as shown in

Figure 8c. This situation,occurs only over a small part
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of the mass cycle, however. After this portion of the

half cycle, the force and velocity will again be directed

oppositely producing more energy dissipation. A similar

process occurs during the second half cycle and produces

a net decrease in the rotational kinetic energy of the

system over the complete mass cycle. A net decrease in

the energy over every mass.cycle allows the system to

approach its minimum energy state producing a simple

spin about the maximum moment of inertia axis.

If a maximum mass.amplitude of three meters is

selected, the proper values of c, and c- are, from

Figure 4

c.. = 3.2 radians/sec

2
c» = 0.02 radians/sec •

For a control mass weight of 998 kg (2,200 Ibm), the

stated initial conditions, and the selected parameter

values, the resultant angular velocity histories are

shown in Figure 10. Since it is not the oscillations

themselves but the decay of the oscillation amplitudes

which is importantj only the envelopes formed by the

oscillations are shown.in Figure '10. The control system

effectively collapses the ui.. and u)9 envelopes to zero.

As this is being done the mean value of the to- oscilla-

tion increases to its steady spin value as it must do

to keep the angular momentum of the system constant.



60

CO
C
O

•H
-P

•H
O
CO
O

-H
•H
O
O

bO

tn
O

W
0)
ft
O
i-H
CD
>
C
w

a

cu
fc
3
M



61

Thus, the control system eliminates the transverse angular

rates and produces a simple spin about the maximum moment

of inertia axis.

Figure 11 shows the envelope formed by the control

mass oscillations. Figure 11 indicates that the maximum

mass amplitude exceeds the predicted value of three

meters slightly. This may be attributed to the homo-

geneous solution of the mass equation of motion which

was neglect.in determining the nomograph shown in

Figure 4. The results indicate that this overshoot

occurs only during the first mass cycle and, since the

overshoot is small, the neglect of the homogeneous solu-

tion is justified. It may also be noted that during the

first part of the control period the mass oscillations

are not symmetric about the zero position. This may

also be attributed to the homogeneous solution since

the oscillations become symmetric as the homogeneous

solution decays. The homogeneous solution corresponds

to the transient response of the control system.

Figure 12 shows the time history of the rotational

kinetic energy of the system. The figure indicates that

the rotational kinetic energy is oscillatory due to the

slight energy addition during each cycle but due to the

dominant energy dissipation portion.of the mass cycle

the system approaches its minimum energy state.
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Figures 10, 11, and 12 indicate that for the stated

initial.conditions, a maximum mass amplitude of approxi-

mately three meters, and a control mass weight of 998 kg

(2,200 Ibm), a movable mass control system using the con-

trol law given by Equation 38 is capable of converting the

tumbling motions of the MSS into simple spin within two

hours. To investigate the effect of various parameters

on control system performance a time constant will be

defined. The time constant, T , is defined ,,as__the .time .
s_.

required for the control system to collapse the co, or o)«

oscillation envelope to a value of 1/e times its initial

value. Since the general shape of the performance curves

corresponding to other parameter values will.be similar

to those shown in Figures 10-12 this time constant will

be used to compared control system performance for various

cases.

The effect of control mass weight on system per-

formance is shown in Figure 13. The figure shows that

an increase in control mass weight has a marked effect

on-the system time constant. The shape of the curve is

as expected since an extremely small mass produces very

little energy dissipation while an extremely large mass

produces a large energy dissipation rate and, hence, a

small time constant. However, the peak power and force

required also increases with increased control mass weight
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as shown in Figures 14 and 15. Thus, the control mass

weight should be selected as large as possible consistant

with :the imposed weight, power, and force limitations.

Surprisingly, the total energy required to operate the

control system does not vary appreciably with control

mass.weight. The energy requirements for the example

considered here are shown.in Table I for various con-

trol mass weights. Thus, for this case the control

system seems to damp the system quickly, requiring

high values of power and force, or damp the system

slowly, requiring lower'values of power and force, such

that the total energy required is approximately constant.

All of the cases discussed so far have been for

control system parameters of c, = 3.2 sec" and c~ =

_2
0.02 sec and a corresponding maximum mass amplitude of

3.7 meters (12 feet). To demonstrate the effect of

increased mass amplitude on control system performance

two other sets of c, and c^ values were selected from

Figure 4. The result is shown in Figure 16 which gives

the variation of the defined time constant, T , withc

maximum mass' amplitude for a control mass of-499.0 kg

(1,100 Ibm). Table II gives the values of c, and c_

that were used along with the resulting maximum amplitudes

during the first and second mass cycles and the predicted

values given by Figure 4. As can be seen from the table,
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Table I

Variation of Required Energy with
Control Mass Weight

Control Mass Weight Required Energy

199.6 kg (440 Ibm) 63.9 watt-sec

499.0 kg (1,100 Ibm) 68.7 watt-sec

725.8 kg (1,600 Ibm) 71.6 watt-sec

998.0 kg (2,200 Ibm) 74.6 watt-sec
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the predicted maximum amplitude falls between the actual

maximum amplitudes during the first and second mass

cycles. It may also be noted that the larger the mass

amplitude the larger the overshoot relative to the pre-

dicted value indicating the increased effect of the homo-

geneous solution.

An additional application of a movable mass control

system as a wobble damper was investigated. The example

vehicle used is the NASA 21 Man Space Station which is

a hexagonal shaped, spin stabilized, artificial gravity

space vehicle shown in Figure 17. The properties of

this vehicle are given below

I1 = I2 = 1.42 x 10
7 kg-meter2 (10.5 x 106 slug-ft2)

I3 = 2.03 x 107 kg-meter2 (15.0 x ,106 slug-ft2)

M = 6.21 x 104 kg (1.37 x 105 Ibm)

Nominal spin rate = 0.314 radians/sec (3 rpm)

This vehicle was the basis of a study by TRW Space

Technology Laboratories (12) to investigate the feasi-

bility of several passive damping devices for use as

wobble dampers. The devices studied were.a controlled

damping pendulum, a viscous ring damper, a pendulum

damper, and a Naval Ordinance Test Station (NOTS) mercury

ring damper. Selection of this vehicle as an example
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vehicle will permit comparison of the movable mass system

performance with the competitive devices identified by

TRW.

The best performing passive damper identified by

TRW is the controlled damping pendulum using three-pend-

ulum units, each with a tip mass of 272 kg (600 Ibm).

To match control system properties as closely as possi-

ble, the control mass weight for the movable mass system

was selected as 816 kg (l,800~lbm). The wobble state

considered by TRW was a wobble angle of five degrees

which corresponds to the following initial conditions.

w-j^CO) = 0.0391 radians/sec

(J2(0) = 0

to3(0) = 0.314 radians/sec

The location of the control mass track is selected

as shown in Figure 17. The values of track offset

distances are

a = 19.8 meters (65 feet)

b = 0

Based on these track offset distances and the stated

initial conditions the.control system parameters may be.

determined by the procedure given in the third section

of Chapter III. From an analysis of the uncontrolled

vehicle dynamics, the amplitude and frequency of the
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forcing function of the mass- equation of motion are

determined as

2
D = 0.136 radians/sec

p = 0.136 radians/sec

Then using Equations 55 and 56 the control system con-

stants may be determined.

2
c_ = 0.0185 radians/sec

c, = -—~— radians/sec
max

The performance of the control system was determined

for maximum mass amplitudes of three-six meters, which

were selected as typical values. Decay of the angle

between the angular momentum vector of the system and

the axis of symmetry of the vehicle is presented in

Figure 18 for these cases. The wobble angle, 9, is

defined as ~

The values of c, corresponding to the selected maximum

mass amplitudes and the resulting actual maximum ampli-

tudes are summarized in Table III. It is interesting

to note that the transient dynamics of the control

system causes the mass to undershoot the predicted values

of maximum amplitudes for these cases.
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Table III

Predicted and Actual Maximum Mass Amplitudes
for NASA 21 Man Space Station Simulation

z
c max

1 (meters)
(radians/sec) Predicted Actual

0.333 3.0 3.0

0.250 4.0 3.9

0.200 5.0 4.7

0.167 6.0 5.4
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The time constant, T , is defined for a symmetric

vehicle as the time required to reduce the wobble angle,

0, to a value of 1/e times its initial value. The re-

sultant time constants, peak power, force, and energy

requirements are summarized in Table IV for the cases

considered. Also shown in the table are the time con-

stants obtained by TRW for the passive devices they

considered. VJith the exception of the case of c, = 0.333

(z =3 meters), the movable mass control system pro-max

duces faster stabilization than the passive damping

devices identified by TRW. As shown in Table IV, the

power, force, and energy requirements of the control

system are modest. Thus, the feasibility of a movable

mass control system as a wobble damper for a large

artificial-g mode space station has been demonstrated.
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CHAPTER V

CONCLUSIONS

A movable mass control system has been conceived to

convert the tumbling motions of a disabled vehicle into

simple.spin. It has been shown that a control law re-

lating mass motion to vehicle motion may be formulated

using Liapunov stability theory. This technique is use-

ful for designing control systems where the governing

equations of motion cannot be linearized.

For a large space station which is tumbling as a

result of a collision with a shuttle orbiter, it has been

shown that the movable mass system is capable of de-

tumbling the space station within a period of two hours

for the assumptions used. This is accomplished using

a control mass weight of one percent of the vehicle

weight and a mass amplitude of approximately three meters,

The following conclusions were drawn concerning

control system design:

1. The mass track should be placed as far as

possible from the vehicle center of mass and

oriented parallel to the maximum moment of

inertia axis.

2. The control mass weight should be selected

as large as possible, consistant with peak

force, power, and energy limitations.
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3. The performance of the control system may be

improved by allowing the mass to travel with a

larger amplitude.

From the various cases considered, it can be concluded

that the parameter selection procedure employed is valid

and provides realistic estimates of parameter values.

As an additional application, it has been shown

that the movable mass control system may be used as a

wobble damper for a vehicle with an artificial-g mode.

It has been determined that the performance for this

system is better than competitive passive devices for

this application.

In summary, the movable mass control system can

effectively damp out unwanted-tumbling or nutation

motions of a large space vehicle with modest sensor,

force, power,, and energy requirements.
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