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SUMMARY 

F l u t t e r  charac te r i s t i cs  f o r  yaw angles between 15" and 90" were 

determined experimentally f o r  two types of corrugation-stiffened panels: 

those with weak twis t ing s t i f f n e s s  and those with strong twis t ing s t i f fne s s .  

By mounting the  panels on a remotely controlled turntable ,  good de f in i t i on  

of t he  f l u t t e r  boundaries was obtained by ro t a t i ng  the  panels i n to  and out of 

f l u t t e r .  F l u t t e r  t e s t s  were conducted a t  M = 2 and M = 1.6 i n  the  Langley 

Unitary Plan Wind Tunnel. Before f l u t t e r  t es t ing ,  v ibrat ion t e s t s  and analyses 

were a l s o  performed. The experimental f l u t t e r  data  is compared with f l u t t e r  

theory f o r  or thotropic  panels u t i l i z i n g  quasi-steady aerodynamics. I n  t o t a l ,  

f i v e  d i f f e r en t  corrugated panels were t e s t ed  consist ing of one s ing le  sk in  

panel having a length-to-width r a t i o  of 5 on clamped supports and four  

d i f f e r en t  square double skin  panels on d i s c r e t e  f l ex ib l e  supports. The 

invest igat ion indicated t ha t  f l u t t e r  speed f o r  corrugated panels is  highly 

dependent on yaw angle. Reasonable f l u t t e r  corre la t ion between ana lys i s  and 

t e s t  was obtained f o r  moderate yaw angles but  extreme s e n s i t i v i t y  t o  

s t r u c t u r a l  parameters made the  corre la t ion a t  la rge  yaw angles uncertain. 



A candidate f o r  the  thermal protection system of high speed reentry  and 

hypersonic vehicles is t he  corrugated metal l ic  panel constructed of high 

temperature a l loy .  Such a panel may be idealized as an orthotropic p l a t e  with 

e i t h e r  f l e x i b l e  o r  r i g i d  supports. Flexible  supports a r e  of ten necessary t o  

accommodate thermal expansion without creating la rge  thermal s t resses .  

Ideal ly ,  such a panel would be al igned on the  vehicle with the  corrugations 

p a r a l l e l  t o  the  air  flow. However i n  a typ ica l  f l i g h t  t r a j ec to ry  various 

degrees of cross flow w i l l  be encountered which, analys is  indicates ,  may 

reduce f l u t t e r  margins d r a s t i c a l l y  ( r e f .  1 ) .  Since ava i lab le  wind tunnel data  

were i n su f f i c i en t  t o  subs tan t ia te  these  ana ly t i c a l  predictions,  a t e s t  program 

was conducted t o  provide such data.  Specif ical ly ,  various types of orthotropic 

panels were designed, analyzed, fabr icated,  and tes ted  i n  t h e  Unitary Plan Wind 

Tunnel a t  the  NASA Langley Research Center. The r e s u l t s  of t h i s  t e s t  program 

and t he  comparison with theory a r e  t he  bas i s  of t h i s  repor t .  

Many individuals a t  Grumman contributed t o  the  work reported herein.  

The author wishes t o  acknowledge the e f f o r t s  of M r .  John Valentine i n  designing 

t he  panel models, M r .  Edward Leszak f o r  supervising the  manufacture of the  

panels, and Messrs. Edward Ham, Timothy Foley, Anthony Longano and Paul Chase 

f o r  t e s t i n g  the  panels. The author is a l s o  g r a t e fu l  t o  M r .  John Smedfjeld 

f o r  advice and suggestions. 

NOMENCLATURE 

panel length (x-direction, f i g .  8) 

panel width (y-direction, f i g ,  8) 



Dx9 Dy 
panel bending stiffnesses in x- and y- directions, respectively 

D panel twisting stiffness 
xy 

f frequency 

fcr flutter frequency 

$,,%,KT deflectional, rotational, and torsional 
spring constants, respecCively, per unit length 

% 
3 

- 
D (:) non-dimensional deflectional spring constant 
1 

- 
K~ 

a 
non-dimensional rotational spring constant 

D7 rr 

7 4p, 
K~ D 

l n  
non-dimensional torsional spring constant 

M Mach number 

my n number of half -waves in x, y directions, respectively 
P pressure 

P 
% 

pressure of center of turntable 

Cl dynamic pressure of airstream 

qcr dynamic pressure of airstream at flutter 

X, Y Cartesian coordianates of panel (fig. 8) 

A yaw angle 

2 qa3 
h dynamic pressure parameter, - 



dynamic pressure parameter a t  f l u t t e r  

Poisson's r a t i o  associated with curvature i n  y- and x- 
d i rect ions ,  respect ively  

TEST APPARATUS 

Panels 

The t e s t  panels (aluminum) were designed t o  simulate various s t i f f n e s s  

parameters and support conditions. The summary of panel types i s  given i n  

t ab l e  1. The s ingle  skin  panel is  representa t ive  of the  to rs iona l ly  weak 

construction, and the  double skin  panel of t he  to rs iona l ly  strong construction. 

The s ing le  skin  panel w a s  formed from a 0.0254 cm (0.01 i n . )  sheet ,  and was 

bolted d i r e c t l y  t o  a 1.27 cm (0.5 i n . )  th ick  aluminum supporting p l a t e  a s  

shown i n  f i gu re  1. The b o l t  spacing was 2.54 cm (1.0  i n . ) .  The double sk in  

panels were formed from 0.0203 cm (0.008 in .  ) sheets,  and joined by spot 

welding along t h e i r  lengths a t  the  f l a t  pa r t  between corrugations. Except f o r  

the  d i f f e r en t  cross-sections, t he  double skin  panels were i den t i ca l  i n  

construction and were s imi la r ly  supported. These panels were bolted d i r e c t l y  

t o  the  c i rcu la r  supporting p l a t e  on two opposite s ides  and mounted on d i s c r e t e  

f l e x i b l e  c l i p s  on the  other  two s ides ,  as shown i n  f igure  2. The c l i p s  were 

at tached t o  the  supporting p l a t e  (fig. 3) with e i t h e r  both t he  inner and outer 

screws o r  with j u s t  t he  outer screws. This provided two d i f f e r en t  support 

s t i f fnesses .  Since the  c l i p s  were manufactured i n  two thicknesses, 0.0595 cm 

(0.024 i n . )  and 0.0457 cm (0.018 i n . ) ,  a t o t a l  of four d i f f e r en t  spr ing 

s t i f fne s se s  were avai lable .  I n  order t o  evaluate the  e f f ec t  of beading on 

panel  f l u t t e r  the  double skin  panel with the  f l a t  cover sheet  was t e s t ed  twice, 

once with the  f l a t  s ide  exposed t o  the  flow and t he  second time with the  

corrugations exposed t o  the  flow. 

As shown previously, the  t e s t  panels were mounted on a c i r cu l a r  p l a t e  

which was at tached t o  a turntable .  For the  double skin  panels, f a i r i n g s  were 



provided t o  smooth the air flow over the panel. The s ing le  skin  panel 

corrugations were closed out a t  the ends and thus t h i s  panel d id  not require 

f a i r i ngs .  The turntable  i t s e l f  was  mounted i n  the  s p l i t t e r  p l a t e  which was 

projected i n to  the a i rs t ream from the  tunnel sidewall so  t h a t  the  t e s t s  were 

conducted f r e e  of the  tunnel boundary layer.  The whole arrangement (with a 

double skin  panel i n s t a l l ed )  i s  shown i n  f igure  4. The cavity pressure behind 

t h e  panel was controlled manually by a 2.54 cm (1.0 i n . )  diameter l i n e  at tached 

t o  a vacuum pump. 

Instrumentation and Data Acquisition 

Each panel specimen was  instrumented with e ight  single-arm s t r a i n  gages 

and f i v e  iron-constantan thermocouples. The locat ions  of t he  s t r a i n  gages 

and thermocouples a r e  shown i n  f i gu re  5 f o r  the  s ing le  skin  panel and f o r  a 

t yp i ca l  double skin  panel. I n  addit ion,  two f l ex ib l e  supports of each 

thickness were instrumented with s t r a i n  gages. 

Signals from the  s t r a i n  gages were used during t e s t i n g  t o  de tec t  t he  onset 

of panel f l u t t e r  and t o  measure f l u t t e r  frequency. They were monitored on an 

oscil lograph and a dual beam oscilloscope. The s ignals  from the  thermocouples 

were recorded on a Brown multi-point recorder, and observed during t e s t  t o  

assure  t h a t  temperature d i f f e r e n t i a l  was a minimum during measurement of the  

f l u t t e r  threshold. A l l  monitoring and recording was done a t  the  s ide  of the  

wind-tunnel t e s t  sect ion containing the  viewing window, so t h a t  yaw angle could 

be measured v i sua l ly  and the  observation of the  specimen could be maintained 

throughout the  t e s t s .  High speed 16 rnrn movies were a l s o  taken t o  record panel 

motion. 

I n  addi t ion t o  panel instrumentation, a ca l ib ra t ion  p l a t e  (similar t o  

panel  supporting p l a t e s )  with eleven pressure taps was i n s t a l l e d  i n  the  

tu rn tab le  t o  measure pressure var ia t ion  over the  panel. Seven pressure taps 

were located along the cen te r l ine  of the  turntable  i n  the  d i rec t ion  of the  

flow. Spacing of these taps  w a s  8.89 cm (3.5 i n . ) .  Pressures were recorded 



on a scanivalve system f o r  M = 2 and M = 1 , 6  and f o r  the  wind-tunnel range of 

dynamic pressures.  

Wind Tunnel 

F l u t t e r  t e s t s  were conducted i n  the  Langley Unitary Plan Wind Tunnel a t  

Mach numbers 2 and 1-6. The dynamic pressure i n  t ha t  tunnel is  continuously 

var iable .  The maximum l eve l s  a t t a ined  a t  Mach numbers 2 and 1.6 were 85.1 

l i ~ / t . n ~ ( 1 7 ~ ~  *sf)  and 70.6 kN/m2(1475 ps f )  , respectively.  The wind tannel  

s t a t i c  temperature varied between 311aK and 328°K (100 t o  1 3 0 " ~ ) .  

TEST PROCEDURE 

Vibration and S t a t i c  Tests 

Vibration surveys and s t a t i c  t e s t s  were performed t o  check panel and 

support s t i f f ne s se s .  For the  vibrat ion surveys, the  panels were mounted i n  

the  c i r cu l a r  supporting p l a t e  and excited by one o r  two a i r  shakers. Node 

l i n e s  were determined using a deflectometer mounted on a movable a r m .  These 

t e s t s  were conducted without simulating the e f f ec t  of the  cavity. Once the 

panels were i n  the  turntable  on the  s p l i t t e r  p la te ,  the  shake t e s t s  were 

repeated at ambient pressure t o  determine t he  e f f e c t s  of the  ac tua l  cavity.  

No appreciable change i n  frequencies w a s  observed. Cl ip  f l e x i b i l i t i e s  were 

a l s o  checked s t a t i c a l l y  by loading the  c l i p  with forces  and moments and 

measuring the resu l t ing  displacements and rota t ions .  

F l u t t e r  Tests 

Before the  t e s t  models were inser ted i n to  the airstream, the  ca l ib ra t ion  

p l a t e  with the  pressure taps was i n s t a l l ed  i n  the turntable .  Steady-state 



pressure d i s t r ibu t ions  were measured over the  turntable  a rea  where panel models 

were t o  be located. These pressures were used t o  determine pressure loading on 

t h e  panels, and t h e  cavi ty  pressure s e t t i n g  which would r e s u l t  i n  zero average 

d i f f e r e n t i a l  loading. The measured pressure d i s t r i bu t i ons  f o r  four  d i f f e r en t  

dynamic pressures l eve l s  a t  M = 2 and M = 1.6 a r e  shown i n  f igure  6. A 1 1  

values a r e  r e l a t i v e  t o  the  pressure a t  t h e  center of t he  turntable.  Low 

pressure var ia t ions  over the  panel were obtained a t  M = 2 at low and i n t e r -  

mediate dynamic pressures.  However, large  pressure var ia t ions  exis ted a t  

M = 1.6 and M = 2 a t  high dynamic pressure l eve l s .  

For the f i r s t  th ree  panels t es ted ,  f l u t t e r  boundaries were obtained f o r  

Mach numbers 2 and 1.6. However, it w a s  determined from the  data  t h a t  t h e  

e f f e c t  of Mach number on f l u t t e r  speed corresponded t o  the  wel l  known f a c t o r  

of 1 / B .  Thus, t e s t s  a t  M = 1.6 were abandoned, s ince  a t  M = 2.0 the tunnel 

was smoother and t he  cavi ty  pressure could be b e t t e r  controlled. The usual  

t e s t  procedure consisted of es tabl ishing constant temperature, dynamic pressure, 

and Mach number, and then ro ta t ing  the panel away from the  s t i f f e s t  d i rec t ion  

u n t i l  f l u t t e r  was i n i t i a t e d .  During t h i s  time, cavity pressure was manipulated 

t o  maintain zero average pressure loading on the  panel. A t  a pa r t i cu l a r  

dynamic pressure, a f l u t t e r  point  was  defined as the  smallest  angle a t  which 

f l u t t e r  could be induced by changing cavity pressure. Once the f l u t t e r  point  

w a s  reached, the  panel w a s  ro ta ted back toward the  s t i f f e s t  d i rect ion,  and the  

dynamic pressure increased by a ce r ta in  increment. This procedure w a s  

continued u n t i l  t he  maximum wind-tunnel dynamic pressure w a s  a t ta ined.  I n  

t h i s  way the  f l u t t e r  boundary as a function of yaw angle was obtained. 

Addit ional  check points were obtained by lowering the  dynamic pressure by 

increments and repeating the  above procedure. Since t he  turntable  w a s  power- 

driven,  quick excursions i n t o  and out of f l u t t e r  were possible.  A t yp i ca l  

t r a c e  of a s t r a i n  gage response before and a f t e r  i n i t i a t i o n  of f l u t t e r  i s  

shown in  f i gu re  7. 



RESULTS AND DISCUSSION 

Experimental and Analytical  Frequency Comparisons 

The combinations of panels and support s t i f f ne s se s  studied are l i s t e d  i n  

t ab le  2, and the  corresponding measured and calculated frequencies a r e  given 

i n  t ab le  3. The coordinate system and the  various panel and support parameters 

a r e  defined i n  f igure  8. Panel s t i f f n e s s  proper t ies  were computed using the 

method of reference 2, and c l i p  s t i f f n e s s  proper t ies  were calculated using 

s t r a i n  energy methods. Natural frequencies were then obtained using a Galerkin- 

type solut ion ( r e f .  3). 

For panel 1, measured frequencies i n  the  long direct ion,  m, f a l l  between 

the  simple-clamped and clamped-clamped calculated values. This indicates  t h a t  

although the  panel is  e s sen t i a l l y  clamped along i ts  long s ides  (x-edges), i t s  

shor t  s ides  (y-edges) have a f i n i t e  r o t a t i ona l  r e s t r a i n t .  Unfortunately, a t  

t he  present time, t he  theory i s  incapable of analyzing flexible-clamped p la tes ,  

and the  ac tua l  degree of f i x i t y  was not determined ana ly t ica l ly .  I n  the shor t  

d i rect ion,  the  poor corre la t ion is  due t o  the  d i f f i c u l t y  i n  obtaining t e s t  

modes and t o  t he  add i t iona l  s t i f f n e s s  provided by the  beads. 

For panels 2 through 5, except f o r  the  fundamental mode, the  i n i t i a l  

comparison of frequencies between t e s t  a d  analysis  was poor. Since the  

measured individual  c l i p  def lect ion spring constant compared very wel l  with 

t h e  calculated value, the more doubtful values of r o t a t i ona l  and t o r s iona l  

spring constants were changed t o  improve corre la t ion.  Cl ip  s t i f f n e s s  proper t ies  

corresponding t o  the  "best  f i t "  with the  measured frequencies a r e  l i s t e d  i n  

the  last column of t ab l e  2, and the  resu l t ing  frequencies i n  t he  l a s t  four  

columns of t ab l e  3. 

The improvement i n  frequency corre la t ion i s  shown graphically i n  f igure  9, 
where the  calculated frequencies f o r t h e  i n i t i a l  and "best f i t "  support 

s t i f f ne s se s  and measured frequencies a r e  p lo t ted  against  weak d i rec t ion  mode 

numbers. The t o r s iona l  spring constant KT was found t o  be the only e f f ec t i ve  



parameter influencing higher modes. The ro t a t i ona l  spring constant zR 
influenced only low modal frequencies. 

As seen i n  f i gu re  g ( c ) ,  the  i n i t i a l  calculated frequencies f o r  panel 4 
( c l i p s  at tached t o  the  panel only by the  two outer  screws) compared reasonably 

t o  measured frequencies. This reinforced the assumption t h a t  the  calculated 

panel s t i f f ne s se s  were correct ,  and t h a t  f o r  c l i p s  at tached by three  screws, 

frequency discrepencies were due t o  t he  underestimation of support s t i f f ne s se s .  

Panels 2 and 3 were i den t i ca l  except t h a t  d i f f e r en t  s i d e s  were exposed 

t o  t he  flow. One would'expect i den t i ca l  frequency responses. However, the  

v ibra t ion  t e s t s  have indicated consistently d i f f e r en t  behavior, e spec ia l ly  

f o r  second and higher modes and is  re f lec ted  i n  t he  d i f f e r en t  "best  f i t "  

s t i f f n e s s  values of supports. These differences a r e  not  f u l l y  understood but 

a r e  a t t r i bu t ed  t o  panel warpage and t o  s l i g h t  var ia t ions  i n  support attachments. 

Similar  d i f f i c u l t y  i n  na tura l  frequency corre la t ion f o r  corrugated panels 

was experienced previously by other invest igators  ( r e f .  4) .  

Experimental F l u t t e r  Results  

F l u t t e r  boundaries as a function of yaw angle f o r  a l l  panels l i s t e d  i n  

t a b l e  2 a r e  presented i n  f igures  10 through 15. Because of wind tunnel dynamic 

pressure l imi ta t ions ,  no f l u t t e r  points were reached between 0" and 15", and 

i n  most cases f l u t t e r  was obtained only between 30" and 90". An unusually 

small amount of data  s c a t t e r  was encountered. This i s  a t t r i bu t ed  to: (1) the  

ease  of i n i t i a t i n g  and stopping f l u t t e r  by ro t a t i ng  the  turntable;  and (2 )  the  

small temperature e f f ec t s  due t o  the  type of panel design, i n  which thermal 

expansion was  accommodated by beads and d i s c r e t e  f l e x i b l e  supports. 

As can be seen i n  f igures  10 through 15, yaw angle has a considerable 

e f f e c t  on the f l u t t e r  speed of each of the  panels t es ted .  For example, i n  

f i gu re  13, the  ro ta t ion  of panel 3 from 90" (flow i n  the  weak d i rec t ion)  t o  



35' r e s u l t s  i n  a threefold increase i n  f l u t t e r  h. I f  the yaw angle i s  

decreased fu r ther ,  g rea te r  increase i n  f l u t t e r  speed may be real ized.  

I n  add i t ion  t o  the  panels l i s t e d  i n  t ab l e  2, an attempt was made t o  

obtain f l u t t e r  boundaries f o r  two i so t rop ic  panels having a length-to-width 

r a t i o  of f i ve .  These panels, of 0.0305 cm (0.012 in .  ) and 0.0406 cm 

(0.016 in .  ) thicknesses, were mounted i n  the  same supporting p l a t e  as used 

fo r  t he  s ing le  corrugation panel. No consistent  f l u t t e r  points were obtained, 

however, due t o  the  constantly changing temperatures which induced buckling 

of the  panels. 

Other d i f f i c u l t i e s  encountered during t e s t i ng  were with the  cavi ty  

pressure control  and pressure var ia t ions  over the  panels. A t  M = 1.6, and 

a t  M = 2.0 a t  low dynamic pressures, leakage around the  turntable  was too 

high t o  permit sa t i s fac tory  manual control  of the  cavity pressure.  For t h i s  

reason, t he  normalized f l u t t e r  dynamic pressures (q/$) shown i n  f i gu re  10 

a r e  higher a t M  = 1.6 than a t M  = 2.0, despi te  the  f a c t  t h a t  reference 5 

suggests t h a t  the  M - 1.6 boundary should be below the  M = 2.0 curve. Also, 

due t o  higher pressure var ia t ions  over the  panels a t  high dynamic pressures 

( see  f i gu re  6) ,  experimental f l u t t e r  trends a t  low yaw angles were more 

d i f f i c u l t  t o  define.  This was especia l ly  t r ue  f o r  panel 4, which had the  

lowest support s t i f f ne s s .  (see  f igure  14).  

Considering a l l  of the  above fac tors ,  the  M = 2 r e su l t s  were judged 

superior t o  the  M = 1.6 r e su l t s ,  and accordingly the  former were used f o r  

cor re la t ion  with theory. 

Correlat ion with Theory 

The f l u t t e r  analys is  used f o r  comparison with the  experimental data  is  a 

general izat ion t o  account f o r  flow angular i ty  of the  procedure due t o  

reference 3. This i s  a Galerkin-type solut ion f o r  an or thotropic  panel on 

continuous def lect ional ,  ro ta t iona l ,  and t o r s iona l  springs along two opposite 



edges, and simply supported along t he  other  two s ides .  Pressure loading is  

obtained using s t a t i c  aerodynamics. F l u t t e r  is  defined as the  lowest dynamic 

pressure corresponding t o  a coalescence of any two modes. Numerical r e s u l t s  

presented here represent converged values using a s  many a s  t h i r t y  modes. 

A t  t h i s  point ,  it should be emphasized t h a t  the above analysis  requires  

two opposite s ides  of the panel t o  be simply supported, whereas, f o r  the  t e s t  

panels these s ides  were clamped. For the square panels ( ~ a n e l s  2 through 5 ) ,  

t h i s  approximation i s  ce r ta in ly  val id ,  s ince  the  e f fec t ive  length of the  panel 

i n  t h e  y d i rec t ion  i s  extremely large ,  and the  x edges do not influence e i t h e r  

the  panel na tura l  frequencies o r  panel f l u t t e r  dynamic pressures. For panel 1, 

which has four  clamped s ides ,  it was found t h a t  the  bes t  f l u t t e r  r e s u l t s ,  a t  

l e a s t  f o r  t he  range of yaw angle where t e s t  data  was avai lable ,  were obtained 

by making the  shor t  r a the r  than the  long s ides  simply supported. These r e s u l t s  

a r e  presented i n  f i gu re  11, where i n  addit ion,  f l u t t e r  points a t  A = 0" and 

90" f o r  a clamped-clamped analysis  (reference 6) a r e  shown. A t  A = go0, h 
c r  

i s  the  same whether the  y-edges a r e  simply supported or  clamped. 

For panel 4, f o r  which i n i t i a l l y  good frequency corre la t ion was obtained, 

good f l u t t e r  comparisons between t e s t  and analysis  a r e  a l s o  evident ( f i gu re  14) 
f o r  t h e  very l imi ted range of yaw angle. The deviation of t e s t  values a t  

lower angles can be a t t r i bu t ed ,  as s t a t ed  previously, t o  the  buildup of 

pressure loading a t  these dynamic pressure l eve l s  (see  f igure  6(a)) .  

For a l l  other panels, corre la t ion is  not a s  good. The d i s c r e t e  f l e x i b l e  

supports introduce an add i t iona l  s e t  of var iables  having a la rge  influence on 

f l u t t e r .  Calculated f l u t t e r  speeds a t  high yaw angles a r e  pa r t i cu l a r l y  

s ens i t i ve  t o  the  to rs iona l  s t i f f n e s s  of the  supports. This is  i l l u s t r a t e d  i n  
- 

f igure  13, where t he  calculated f l u t t e r  parameter A i s  p lot ted f o r  % = 0.016 
- - c r  

and I(T = 0.30. I(T = 0.016 is the  value calculated using s t r a i n  energy methods 

f o r  one c l i p  and dividing the  value by c l i p  spacing. = 0.30 represents  the  

"best  f i t "  value based on t e s t  natural  frequencies. The Acr a t  A = 90" i s  
7 - 

s i x  times g rea te r  f o r  % = 0.30 than f o r  % = 0.016. Because of t h i s  wide 

range of possible calculated values, it w a s  f e l t t h a t  a more r e a l i s t i c  



approach t o  corre la t ion would be t o  present both of the  cal.culated f l u t t e r  

boundaries with the  t e s t  r e su l t s .  Thus f o r  panels 2, 3 and 5,  two ana ly t i c a l  

f l u t t e r  boundaries and one experimental boundary a r e  given i n  f i gu re s  12, 13, 

and 15, respectively.  

Test  r e s u l t s  f o r  panels 3 and 5, i n  f igures  13 and 15, f a l l  between t he  

two ana ly t i c a l  f l u t t e r  points a t  A = 90' and approach the upper boundary a t  

lower yaw angles. Thus corre la t ion improves a t  small and moderate yaw angles 

where the  e f f e c t  of to r s iona l  spring supports is  smaller. Repeatabi l i ty  of 

t e s t  r e s u l t s  is very evident f o r  these  two s imilar  panels. It should be noted 

t h a t  f o r  both panels corrugations a r e  exposed t o  the  flow. 

The configuration of panel 2 i s  i den t i ca l  t o  panel 3 except t h a t  the  f l a t  

sheet  i s  exposed t o  the  air flow. The t e s t  f l u t t e r  boundaries ( f i g s .  12 and 

13) a re ,  however, qui te  d i f ferent .  her values f o r  panel 2 a r e  l e s s  than a t h i r d  

of those f o r  panel 3. Some of the  difference can be explained by t he  d i f f e r en t  

"best f i t "  s t i f f n e s s  charac te r i s t i cs  as shown i n  t ab l e  2. However, it should 

be noted t h a t  panel 2 i s  t he  only one f o r  which the  t e s t  f l u t t e r  boundary f a l l s  

below the  lower ana ly t i c a l  boundary. This implies t h a t  panel beading i s  

bene f i c i a l  f o r  panel f l u t t e r .  

A poss ible  reason f o r  t he  "best f i t "  f l u t t e r  boundaries f a l l i n g  above the  

t e s t  data  f o r  large  yaw angles is the  overestimation of D f o r  t he  double 
12 

skin  panels. Reference 2 indicates  t h a t  t he  corre la t ion of the  calculated D 
12 

with t e s t  values i s  highly dependent on the  type of cross-section. Furthermore, 

cross-sections of the  t e s t  panels i n  t h i s  invest igat ion a r e  open a t  the  ends 

and accordingly t h e i r  f u l l  to r s iona l  s t i f f n e s s  i s  not developed u n t i l  some 

dis tance from the  supports. 

F l u t t e r  frequencies were measured concurrently with the  f l u t t e r  dynamic 

pressures. The comparison of experimental and t heo re t i c a l  f l u t t e r  frequencies 

i s  shown i n  f i gu re  16 f o r  panels 1, 2 ,  4, and 5. A s  expected, good corre la t ion 

w a s  obtained f o r  panel 1. For t he  other  panels good corre la t ion only e x i s t s  

where the  t e s t  h is  close t o  the  calculated kc, This re inforces  the  c r  



contention t h a t  mode coalescence i s  the  f l u t t e r  mechanism. 

It should be noted t h a t  t he  ana ly t i c a l  f l u t t e r  point  a t  A = 0" i s  the  

coalescence of t he  f i r s t  two modes i n  the  strong (x)  d i rect ion,  and as such 

represents  per fec t  alignment of the  a i r  flow with the  corrugations. Any 

devia t ion w i l l  involve modes i n  the  weak (y )  d i rec t ion  ( m = 1, n = 1,2,3),  

and w i l l  lower the  f l u t t e r  speed and f l u t t e r  frequency. Therefore, it is  

u n r e a l i s t i c  t o  expect t o  reach experimentally the  ana ly t ica l  h a t  A = 0" 
D c r  

f o r  or thotropic  panels with l a rge  12 r a t i o s .  - 
D2 

CONCLUSIONS 

F l u t t e r  charac te r i s t i cs  of two types of corrugation-st iffened panels a t  

various yaw angles were studied both experimentally and ana ly t ica l ly .  F l u t t e r  

t e s t s  were made a t  Mach number 2 and 1.6. Analyses were based on quasi-steady 

aerodynamics. I n  addit ion,  v ibrat ion t e s t s  and analyses were performed. 

The experimental pa r t  of the  study has shown t h a t  r e l i a b l e  panel f l u t t e r  

r e s u l t s  can be obtained i f  care is taken i n  eliminating thermal s t r e s se s  i n  

panel models. A unique fea ture  of t h i s  study was the  use of a remotely 

control led turntable  t o  ro t a t e  t e s t  panels. Rotating the  t e s t  panel t o  

i n i t i a t e  and s top  f l u t t e r  c lea r ly  delineated the  onset of f l u t t e r .  The r e s u l t s  

ind ica te  t h a t  f l u t t e r  speed f o r  corrugated panels is  highly dependent on yaw 

angle.  

For moderate yaw angles, when a la rge  component of the  flow is  along the  

corrugations, corre la t ion with theory was good, but  as the  flow became 

perpendicular t o  the  corrugations, l a rge  discrepencies between t e s t  and theory 

a r e  apparent. Since f o r  t h i s  configuration f l u t t e r  i s  extremely s ens i t i ve  t o  

boundary conditions, a b e t t e r  de f in i t ion  of the  s t ruc ture  is  needed. 



It can a l s o  be concluded t ha t  beaded surfaces have a s t a b i l i z i n g  e f f ec t  

on f l u t t e r ,  though t h e i r  exact  influence is  d i f f i c u l t  t o  determine because 

of the l a rge  e f f e c t  of o ther  parameters. 
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SECTION B-B 
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Figure 1 Single Skin Panel  
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Figure 2 Double Skin Panel 





Splitter Plate Fairing 

Figure 4 Double Skin Panel Mounted 
in the Splitter Plate 
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Figure 5 Instrumentation Locations 



Figure 6 Pressure Differential Along Centerline of Turntable for Zero Pressure  
Differential at Center of Turntable at M = 2 and M = 1.6 
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Spring 
Supported 

J Spring 
Supported 

X 

View in the y-direction View in the x-direction 

a 
Detail of Spring Support System at  x = k - edges 
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Figure 8 Schematic of Orthotropic Panel and 
Support System 
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Figure 9 Comparison of Experimental and Theore tical Weak-Direc tion Panel 
Natural Frequencies 
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Figure 10  Comparison of Experimental Flutter Boundaries 
at M =  2  a n d M = 1 . 6  for Panel 3 



@ Measured 

P Calculated 

0 Calculated 
- All Sides Clamped 

0 2 0 4 0 60 80 90 
A ,  degrees 

Figure 11 Comparison of Experimental and Theoretical 
Flutter Boundaries for Panel 1 at M = 2 . 0  
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Figure 12 Comparison of Experimental and Theoretical 
Flutter Boundaries for Panel 2 at M = 2.0  
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Figure 13 Comparison of Experimental and Theoretical 
Flutter Boundaries for Panel 3 a t  M = 2 . 0  



@ Measured 

Calculated 

Minimum Wind Tunnel 
Dynamic Pressure 

11 
0 20 4 0 60 80 90 

A ,  degrees 

Figure 14 Comparison of Experimental and Theore tical 
Flutter Boundaries for  Panel 4 a t  M = 2 . 0  
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Figure 15 Comparison of Experimental and Theoretical 
Flutter Boundaries for Panel 5 at M = 2 .0  
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