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ABSTRACT

"•r .VThe synthesis of autopilots for rotary-wing VTOL (vertical takeoff

and landing) aircraft is more complicated than for conventional air-

craft due to the added degrees of freedom of the rotor. In previous

reports (see References) we have shown that improved aircraft response

to disturbances can be obtained by considering rotor dynamics when de-

signing the autopilot. These conclusions were based on feeding back

perfect information on all rotor and fuselage state variables (angles,

angular velocities and translation velocities). This report considers

the practical situation where imperfect information on only a few state

variables is available. Filters are designed to estimate all the state

variables from noisy measurements of fuselage pitch/roll angles and

from noisy measurements of both fuselage and rotor pitch/roll angles.

The mean square response of the vehicle to a very gusty, random wind is

computed using various filter/controllers and is found to be quite

satisfactory although, of course, not so good as when one has perfect

information (idealized case).

The second part of the report considers precision hover over a

point on the ground. A vehicle model without rotor dynamics is used

and feedback signals in position and integral of position error are

added. The mean square response of the vehicle to a very gusty, random

wind is computed, assuming perfect information feedback, and is found

to be excellent. The integral error feedback gives zero position error

for a steady wind, and smaller position error for a random wind.
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NOMENCLATURE

A matrix of state weighting coefficients (i.e., weighting

of 0p = A0 )
F

C matrix of control gains

F open loop (controls fixed) dynamics matrix

G control distribution matrix

H measurement scaling matrix

K matrix of Kalman filter gains

P covariance of error estimate

Q power spectral density of process noise

R power spectral density of measurement noise

X mean square response matrix of state responses

A*
X mean square response matrix of state estimates

p roll rate

q pitch rate

u,v longitudinal and lateral velocities of vehicle e.g.

in vehicle axes

u control vector

x,y longitudinal and lateral position of vehicle e.g.

T) integral of lateral position

9 pitch angle

9 lateral cyclic pitchc

9 longitudinal cyclic pitch
s

| integral of longitudinal position

T time constant
c
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Subscripts

( JR

( F

Superscripts

roll !rate

process noise distribution matrix

rotor state

fuselage state

estimated state

error in estimated state

matrix of 'augmented system

matrix transpose (rows and columns interchanged)
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1. SYNTHESIS OF AUTOPILOTS TO MAINTAIN NEARLY ZERO VELOCITY IN HOVER
USING FUSELAGE ANGLE MEASUREMENTS WITH AND WITHOUT ROTOR ANGLE
MEASUREMENT

1.1 Introduction

In a previous report [BR1], we discussed the synthesis of hover

autopilots by a new, more efficient, quadratic synthesis technique. We

assumed, in that work, that perfect measurements of all the vehicle

states were available. In a subsequent report [BR2] we gave a detailed

description of this new technique for "Optimal Control and Filter Syn-

thesis by Eigenvector Decomposition." In this report, we use the eigen-

vector decomposition technique to synthesize filters to estimate the

vehicle states for the tenth order system of [BR1] from measurements

containing random errors. These filters are then combined with the

"perfect-state-information controller" developed in [BR1] to form a

dynamic compensating network. Finally, the mean-square response of the

controlled vehicle to a random horizontal wind is determined.

1.2 A Tenth Order Model of Roll-Pitch-Horizorital Velocity for a Rotary-
Wing VTOL Aircraft Near Hover

A two-rigid-body model (TRBM) of a typical rotary-wing VTOL air-

craft near hover was derived in [HA1]. The fuselage is regarded as one

rigid body and the spinning rotor is modeled as another (axially symme-

tric) rigid body that can be tilted with respect to the fuselage by the

controls (longitudinal and lateral cyclic pitch)(see Fig. 1). This

leads to a 16th order mathematical model since there are 3 translatiohal

degrees of freedom (DOF) for the mass center, 3 angular DOF for the

fuselage, and 2 angular DOF for the rotor (assuming constant rotor spin

velocity). If we disregard horizontal position of the mass center, the

model reduces to 14th order; near hover, vertical motion and yaw motion

are both virtually uncoupled, and the model reduces to one 10th order

system and two uncoupled 2nd order systems (collective pitch controlling

the vertical motion and tail rotor controlling the yaw motion).
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Our attention in this section, as in [BR1], is focused on the 10th

order system. Using the results of many previous investigators for

rotor-fuselage aerodynamic forces and torques, we constructed the fol-

lowing constant-coefficient linear model for the roll-pitch-horizontal

translation motions (linearized about equilibrium hover):

where

x = Fx + Gu

- = (0R'CPR'qR'PR'9F'CpF'qF'PF'U'V)

u = (0 ,Q ) = control vector,
~~ c s

(1)

vector'

and



(u,v) are velocity components of the mass center along the (x,y) fuse-

lage axes. (9 ,Q ) are longitudinal and lateral cyclic pitch perturba-
s c

tions, respectively. A feedback controller, u = Cx , was designed in

[BR1] for this system, assuming perfect measurements of the ten vehicle

state variables.

In Table 1, the elements of the 10x10 matrix F , the 10x2 matrix

G , and the 2x10 matrix C , are given for the Sikorsky S-61 helicopter.

For controls fixed (0 = 0 = 0) , the characteristic roots of this
s c

model are quite close to those of a model used by Sikorsky engineers

(see [BR1]).

1.3 A Wind Model

The wind components (u ,v ) along the (x,y) fuselage axes arew w
modeled by independent exponentially-correlated Gauss-Markov processes

(cf. Mil). We took the components of the wind (u and v ) to be
w w

independent Gauss-Markov processes defined by:

u = u + q
W T W Uc

v = v + q
W T W V

C

(2)

where

;[qu] = E[qvJ = 0

qu(t)qu(t')

, qv(t)qv(t')

w
S(t-t')

and

2a
w

is the correlation time of the wind. In the statistical steady

state Eq. (2) gives E[u ] = E[v ] = 0 , E[uf] = E[v2] = a2
w w

= 0 . For the simulations here, we took T

sec , which is a very strong, gusty wind.

3

w " w"
=3.2 sec

w
and

E[u v ]
w w

a = 20 ftw



Table 1-1 - Elements of the Open-Loop Dynamics Matrix, the Control
Distribution Matrix, and a Feedback Gain Matrix for a
Mathematical Model of the Sikorsky S-61 Helicopter

x = Fx + Gu ; xT = [0R'
CpR'qR'PR'eF'CpF'VPF'U'V]

T
u = C x ; u = [0 ,0 ] = lateral, longitudinal cyclic pitch
—— —T- — C S

0 = pitch angle, cp = roll angle, ( ) = fuselage, ( ) = rotor
r K

u,v are longitudinal, lateral velocity components

All units in feet, seconds; angles in radians.

F =

0 0 1 0 0 0

0 0 0 1 0 0

-41.3 -601 -30.2 -42.6 0 0

599 -56.7 42.6 -29.4 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4.97 -.94 -.044 .0034 0

3.53 18.7 -.013 -.166 0 0

0 0 0

0 0 0

-30.4 -50.1 .126

50.2 -30.2 -7.283

1 0 0

0 1 0

0 -.0521 .0281 .00124 -

-15.0 21.9 1.03 -.045 -32.2 0

-.105 -.196 -.00076

4.37 1.44 -.0166

21.9 15.0 -.045 -1.03 0 32.2 1.44 -4.37 -.0072 -

0

0

-.284

-.122

0

0

.00020

.00467

.0072

.0166

GT • =
0 -601 5.52

0 -1.47 -599

0 0 -.938 -4.97 21.8 -16.8 ~|

0 0 1.32 -3.52 -16.8 -21.8 J

C =
T.26 , .31 , .007 , -.001, .27 , .97 , .112 , .272, ...0000.83,-.00.00.5.8J*

[j.16 , .17 , .001 , .004 ,-.97 , .27 ,-.535 , ,041,-.000031,-.000079J

These gains correspond to the performance index, J =
p p



Equation (2) is called a "shaping filter" for the wind; using this

approach, u and v become additional (eleventh and twelfth) state
W W

variables of the system. They enter into Eqs. (l) only through the

aerodynamic terms where u is replaced by u + u and v is replacedw
by v + vw The augmented equations are then:

X
—
u

w
V

w )

—

F f fu v
0 -1/T 0c
0 0 -1/Tc

„ , V. -~

X

u
w

V
wj

+

G

0

0

u +
—

0

1 0

0 1

v _> v ; V J
x' F' x' GT T

(3)

where f =
V

(i = 1,...10) .
i,10 '

The perfect-information-controller now contains four additional

feedback gains on u and v
w w

0
= Cx + C

w

u
w

(4)

The other twenty gains, C , are not changed by addition of these two

state variables, since Eq. (2) is coupled only one-way to Eq. (1). In

fact, the four additional gains, C , may be determined in terms of
W

T and the steady state Riccati matrix corresponding to Eq. (1), which
c
is shown in Appendix A. For the numerical values used here, the four

additional gains are:

C =
w

.00021 , -.00051

-.00050 , -.00020
(5)

1.4 Measurement Error Models

Measurements of fuselage roll angle, cp , and fuselage pitch
F

angle, 9 , have been used for some time as basic inputs to autopilots,
r

They are readily obtained from the vertical reference system of the air-

craft which usually consists of a two-degree-of-freedom gyro with two

electrolytic bubble levels. We have assumed that these measurements

contain additive white noise with zero mean. For one system we assumed



C Q

a power spectral density of 2.8 X 10 rad sec , which was estimated by

considering an RMS error of .22° with a correlation time of 0.1 second.

For another, more accurate, system, we assumed an RMS error of .09°,

still with a correlation time of 0.1 second. Actually, vertical gyro

measurements are sensitive to lateral accelerations since the bubble

levels measure the "apparent vertical." Thus our white noise error

model is really more appropriate to angle measurements from an inertial

measurement unit (IMU) with a stable platform.

Measurements of the roll angle, cpn , and the pitch angle, 8 , of
K it

the rotor tip-path-plane are more difficult and more expensive. Direct

rotor angle measurements for articulated rotors have been made with

potentiometers or strain gauges on the blade flapping hinge. The prin-

cipal drawback of this technique is the required resolution of the

measurements from rotating to non-rotating axes. This complexity and the

extra weight are justified only for flight tests and not for operational

use. Other direct methods could be based on directly linking the blade

tips to a shaft mounted sensor or on electromagnetic (possibly optical)

techniques. For example, small electromagnetic radiators at the rotor

tips could be detected at the hub by direction-sensitive receivers, two

in pitch and two in roll.

Indirect rotor angle measurements have been made by sensing hub

moments. The AH-56 helicopter originally used a shaft mounted gyro

which was torqued by moments proportional to the hingeless blade flap-

ping. The difficulties of this system lie in the added complexity, the

poor drag characteristics of the gyro assembly, and in the problem of

isolating the moment sensors from vibrations.

We have assumed that measurements of CD and 9 contain additive
K K

white noise with zero mean, and we have considered two levels of power
-6 2

spectral density. One of these levels is high (7.1 x 10 rad sec),

corresponding to inaccurate measurements, and the other is low (7.1 x
—8 2

10 rad sec), corresponding to very accurate measurements. These levels

were estimated by considering a correlation time of 0.1 second and RMS

errors of 1.0 deg and 0.1 deg, respectively. The latter is probably



more accurate than can be expected but serves to tell us whether or not

an attempt to develop very accurate measurements would be worthwhile in

terms of improving vehicle response.

We did not consider the use of measurements of the fuselage angular

velocities, p and q . They are easily obtained with rate gyros but

would have to be supplemented either with angle measurements (cp ,0 )

or velocity measurements. Measurements of fuselage velocity (u,v)

could be obtained directly from a Doppler system or indirectly from an

IMU. Airspeed measurements are not very accurate at the low velocities

corresponding to hover and, of course, are not measurements of ground

speed but speed with respect to the air. The combination of velocity

measurements from a Doppler system with rate gyro measurements would be

an interesting one to consider.

1.5 A Filter to Estimate Vehicle States From Measurements of Fuselage
jloll/Pitch Angles

Two steady-state Kalman filters corresponding to the twelfth order

model of Eq. -(3) were designed using the eigenvector decomposition tech-

nique of [BR2] for measurements of 0 and cp , assumed to contain
F F

additive white noise. Numerical values for F' were obtained from

Table 1 and below Eq. (2); two values for the power spectral density of

the measurement noise were used, 2.8 X 10 rad sec for Filter A, and

.48 x 10 rad sec for Filter B. The filters have the form

:' .= F'x' + G'u + K(z-Hx')

where

z =
d + noise
r

CD,., + noise
r

= measurements, H =

(6)

_

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

(x')1 = Qi , p ,u ,v ,u ,v ] = estimates of the
TF _ w . .w gtate variables>



The gains, K , are given in Table 2, the eigenvalues of the filter

estimates, x' = (x'-x') are given in Table 3, and the RMS errors in

the filter estimates are given in Table 4.

Some of the gains change sign in going from Filter A to Filter B.

Such sign changes with measurement accuracy are not uncommon.

The eigenvalues of the filter error, Table 3, indicate the response

decay of the error relative to the uncontrolled and controlled modes of

the vehicle. The smallest eigenvalues are real and indicate rather slow

error decay for that filter mode.

The RMS values of the estimate errors are given in Table 4. These

are the square roots of the diagonal terms of the error covariance ma-

trix. The effect of these errors on the vehicle response is discussed

in Section 1.7. The rotor estimate errors and the wind velocity errors

are not significantly changed by increased fuselage measurement accuracy,

but the fuselage estimate errors are substantially reduced.

Table. 1-2 .,- Gain Matrices for Filters A and B
(All units in seconds, feet;
angles in radians)

2.58

.37

7.60

.19

.12

1.47

.71

5.36

Filter A - Less Accurate

-3.02

1.80

-.80

-6.54

5.75

.10

.10

8.44

16.90

1.15

Filter B - More Accurate

-7.40

3.30

-2.08

-17.8

8.0

.20

.20

11.92

32.2

1.91

Measurements

.22

35.60

-86 1 5.35 7550. 1320.

2.89 37.10 1430. -8060.

Measurements .

2.0

71.3

-172.

-2.82

3.56 19450. 3360.

89.4 3510. -20500.



Table 1-3 - Eigenvalues (sec"1) of Estimate Errors for Filters
A and B Compared with Open-Loop and Closed-Loop
Eigenvalues

Open-
Loop

*Closed-
Loop

Filter
A

Filter
B

-14. lj;38. 2j

-14.1±38.2j

-14.1±38.2j

-14.1±38.2j

-13.2+5.2J

-13.2+5.2J

- 13. 3+5.2 j

-13. 3+5. 2 j

-1.20± .21j

-3. 60+3. 40 j

-2.54±4.35j

-3. 4 9+5. 90 j

+.11 + .36j

-1.85+1.83J

-1.62+2.83

-2.13.K3.82

+. 04±. 50 j

-.02.+.. 0005 j

-5. 05, -3. 40

-6. 65, -4. 62

-.31*

-.31*

-.0011f

-.00044*

*Closed-loop means with feedback gains of Table 1 on "perfect" state
measurements.

Double roots.

Table 1-4 - RMS Error in Filter Estimates for Filters A and B
(Units in seconds, feet; angles in degrees)

Filter A

Filter B

*R

.27

.24

*R

.18

.17

5R

1.63

1.62

PR

1.65

1.62

*F

.23

.11

$F

.28

.14

F̂

.85

.56

PF

1.44

1.02

u

1.65

1.05

V

1.65

1.05

u
w

10.7

10.4

V
w

9.9

8.8

1.6 A Filter to Estimate Vehicle States from Measurements of Fuselage
Roll/Pitch Angles and Rotor Roll/Pitch Angles

Two other steady-state Kalman filters were designed for the model

of Eq. (3); these filters have four measurements as inputs, 0r,)9r>>01-,>R R F
and cp . Both filters assumed the less accurate fuselage angle measure-

fi 2
ments (noise power spectral density 2.8 X 10~ rad sec). Two values for

the noise power spectral density of the rotor angle measurements were
- 6 2 - 8 2

used, 7.1 x 10 rad sec for Filter C, and 7.1 x 10 rad sec for

Filter D. The filters have the same form as (6) except that now



Z —

6 -H noiseK

K
= measurements

H =

+ noise

0_, + noiser
cpp + noise

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
o o o o o i o o o o o o

The gains K are given in Table 5, the eigenvalues of the error

estimates, x' = x1 - x1 , are given in Table 6, and the RMS errors of

the estimates are given in Table 7.

A comparison of the RMS errors of the estimates for Filter A

(Table 4) with those of Filter C (Table 7) shows only a slight reduc-

tion by adding the less accurate rotor measurements.

When the more accurate rotor measurements are used (Filter D), sig-

nificant changes in the eigenvalues of the estimate errors occur (Table

6). The gains on the rotor states for this Filter D are significantly

increased (Table 5). Reduction of the rotor state estimate errors is

accompanied by reduction of the fuselage angle and wind velocity estimate

errors, but the velocity errors are not reduced at all (Table 7).

Table 1-5 - Gains for Filters C and D
(All units in
feet; angles

Filter C - Less Accurate

VT
1.99
.13
1.16
.19

.13
1.21
.006
1.06

2.28
-3.42
-1.62
1.67

3.82
.96

-.50
-5.26

.47
.002
4.51
.01

.08

.42

.01
7.71

3

seconds,
in radians)

Rotor Measurements

68
28

10.5

Filter D - More Accurate

T
~

20.9
.05
.007
.001

.05
19.8

-.003
.013

218.
-152.
-.10
.04

154.
196.
-.04
-.56

.27
-.10
1.68
-.006

.40

.53
-.006
3.63

.54

•

5.
-

17
90
26

30.2

-5.10
-.07 -

-66.5
3.91

.86 <•
2.32
3.38 C
36.2

1560. 610.
635. -3160.
5890. 704.
794. -6650.

Rotor Measurements

10 2
-.67
1.42
.09

2.68
34 9
-.12
6.62

119.7
-36. 1
-33.8
1.7C

' -38.:
j -124
5 .92
! 29.:

2 57000. -9510.
-9510. -56500.
392. 4.32

2 -75.6 -1117.

TO



Table 1-6 - Eigenvalues (see"*) of Estimate Errors for Filters C and D

Filter C

Filter D

-14.2±38.2j

-15.0±41.5j

-13.2+5.6 j

-22.2+1.21J

-1.78±2.42j

-12.1±10.9j

-4. 58± ,31j

-1.49+1.42J

-.27+4.10J

-.76± .74j

-.ooii+
-.OOll1"

^Double roots.

Table 1-7 - RMS Errors of Estimates for Filters C and D
(Units in feet, seconds; angles in degrees)

Filter C

Filter D

0~R

.22

.06

^R

.17

.07

5H

1.62

1.43

PR

1.62

1.40

*F

.20

.13

*F

.27

.19

F̂

.62

.12

PF

1.34

.44

u

1.65

1.65

V

1.65

1.65

u
w

9.50

4.95

V
w

9.20

5.10

11



1.7 Mean Square Response of Controlled Vehicle to a Random Wind

Combining any one of the filters of Tables 2 or 5 with the feedback

gains of the perfect information controller of Table 1, produces a

dynamic compensator, shown schematically below:

Measurement Dynamic
noise Compensator —p

Random

Wind
Vehicle

X v

1

Sensors
z

>

-ru

Filter

/ i

Hc

Fig. 1-2. BLOCK DIAGRAM OF FIL-
TER-CONTROLLER-AS A
DYNAMIC COMPENSATOR

x = augmented state vector
z = measurement signal
u = control signal

The steady-state, mean-square response of the vehicle, X = E(xx ) ,

using such an autopilot can be predicted by solving a set of 66 =
^ - »TI

(12) linear equations for the elements of X = E(xx ) and adding this

matrix to P = E(x-x)(x-x) i.e. ,

X = X + P

where

(F-GC)X + X(F-GC)T = -KRKT

(7)

(8)

and F is the augmented (11x11) open-loop dynamics matrix, G is the

augmented (11x2) control distribution matrix, C is the augmented

(2x11) feedback gain matrix, K is the augmented filter gain matrix

(11x2 or 11x4) , R is the measurement error power spectral density
T

matrix = E(z-Hx)(z-Hx) , and P is the covariance matrix of the

estimate error. In addition, the steady-state mean-square control

activity can be predicted from

T ^ T
E(uu ) = CXC (9)

These computations were done using the OPTSYS computer program

described in [BR2] and the root-mean-square (RMS) responses of the ten

*See, e.g., [BR3], pp. 416-418.

12



vehicle states and the two controls* are shown in Table 8 for autopilots

using Filters A, B, C, and D. For comparison the RMS responses of the

perfect information controller are also shown in Table 8; in this latter

case, we assume perfect measurements of all twelve state variables; and

the mean square response is obtained from

(F-GC)X + X(F-GC) = -FQ TT (11)

E(uuT) = CXCT (12)

where F is defined in Eq. (3), and Q = power spectral density of
Yf

q , defined in Eq. (2).

As expected, the RMS responses are smallest when perfect information

on all states is fed back; however, this is an idealized situation we

can never realize. Using Filter A in the autopilot (the less accurate

measurements of fuselage roll/pitch angles) still produces surprisingly

small responses to such a strong, gusty lateral wind.

Using Filter B in the autopilot (the more accurate measurements of

fuselage roll/pitch angles) shows some reduction in RMS responses over

the use of Filter A, as/expected. The interesting point is that this

system is better than the system using Filter C which uses the less ac-

curate measurements of both fuselage and rotor roll/pitch angles. In

other words, Filter B estimates the rotor states more accurately than

they are measured for Filter C!

Filter D uses limiting, almost unattainably accurate measurements of

rotor pitch and roll angles along with the less accurate measurements of

fuselage pitch and roll angles. Using Filter D in the autopilot pro-

duces a substantial improvement in RMS response over the use of Filter A.

rp

* These are the square roots of the diagonal elements of X and E(uu ) .
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Table 1-8 - Predicted RMS Responses of Vehicle to
Random Wind Using Various Filter/Controllers
(Units in feet, seconds; angles in degrees)

Filter A

Filter B

Filter C

Filter D

Perfect
Info.

0R

.69

.54

.53

.19

.08

^R

.59

.47

.53

.22

.08

QR

7.21

5.79

6.06

3.19

.16

PR

7.62

6.10

6.78

3.49

.19

9F

.71

.47

.55

.20

.05

*F

.73

.48

.66

.29

.05

QF

1.28

.85

.85

.21

.04

PF

2.30

1.71

2.13

.85

.04

u

3.15

2.35

2.67

1.91

.84

V

2.69

2.01

2.56

1.96

.82

e
c

.89

.80

.85

.68

.65

0
s

.95

.84

.84

.65

.65

Filter A - Less accurate fuselage measurements.
Filter B - More accurate fuselage measurements.
Filter C - Less accurate fuselage measurements and

rate rotor measurements.
Filter D - Less accurate fuselage measurements and

rate rotor measurements.
Perfect Info. - Perfect measurements of all states

unrealistic case).
RMS longitudinal and lateral winds 20 ft.sec."1

correlation time.

less accu-

more accu-

(limiting,

with 3.2 sec.
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2. SYNTHESIS OF AUTOPILOTS TO HOVER OVER A POINT ON THE GROUND

2.1 Introduction

In Part 1, the object of the controller was to keep the vehicle

erect (roll and pitch angles small) and keep the rotor tilt angles small.

In this part of the report, we design controllers that go further and

keep the vehicle close to a specific point on the ground (longitudinal

and lateral displacements small) in the presence of a random wind. A

well known controller design technique for constant (but unknown) input

disturbances is "integral control"; we combine this technique here with

quadratic synthesis, and show that it is also useful when the input dis-

turbances (wind in this case) are exponentially-correlated random pro-

cesses.

2.2 A Sixth Order Model of Roll-Pitch-Horizontal Velocity for a Rotary-
Wing VTOL Aircraft Near Hover

The controller designs here are based on a sixth order roll-pitch-

horizontal velocity model of [BR1], which treats rotor-tilting as in-

stantaneous. Table 1 gives the 6x6 open-loop dynamics matrix, the

6x2 control-distribution matrix, and the open-loop eigenvalues of the

model.

This model will be augmented here by four more states x,y,|,r) de-

fined by

x = u , | = x ,
(1)

Y = v , f| = y ,

where (x,y) are longitudinal and lateral displacements of vehicle mass

center from a specified hover point on the ground, and (£,?]) are inte-

grals of these displacements.

As in Part 1, first-order shaping filters are used to simulate in-

dependent random wind components, which raises the system order to 8.

15



Table 2-1 - Roll-Pitch-Horizontal Velocity Model of Sikorsky
S-61 Helicopter for Instantaneous Rotor Tilting

6 = fuselage pitch angle, cp = fuselage roll angle; (u,v) =

(longitudinal, lateral) velocity components; (0 ,0 ) = (la-
c s

teral, longitudinal) cyclic pitch = (-cp ,6 ) = (-roll, pitch)
K K

tilt angles of rotor. All units in feet, seconds; angles in

radians.

_d_
dt

u

v

0

0

0

0

-32.2

0

0 1 0 0 0

0 0 1 0 0

0 -.415 .318 .00338 .00116

0 -1.23 -1.58 .00415 -.0124

0 4.70 -1.02 -.0198 -.0059

32.2 -1.02 -4.70 .0059 -.0198

u+u
w

v+vw

0 0

0 0

-.295 6.27

-23.1 -1.08

.977 -32.2

.-32.2 -.977

Open Loop Eigenvalues are: (-1.2,-l.1,.ll±.36j,.04±.50j)sec-1

2.3 Equilibrium State for Constant Wind; Feedback of Integral of Error

For constant wind (u = constant, v = constant) and constant
w w

control deflections (0 and 9 ) , the vehicle has an equilibrium
• • c s

state with constant values of 0 ,cp ,u, and v , determined by the last1 F F
four equations of Table 1 with '6 = cp = 9 = cp = u = v = 0 . There

F F F F
are particular values of 9 and 9 that produce u = v = 0 , namely

c s

.00021,-.00053

-.00053,-.00021
w

w
(2)

which correspond also to particular values of 0 and 9
F r

-.000059,.000018

.000016..000056

u
w

w
(3)

Hence, if u and v were known, additional feedback terms propor-
w w '

tional to u and v could, in principle, bring the vehicle to
w w ' '

equilibrium with u = v = 0 .

However, such a feedback scheme is not practical for a steady wind

16



since it is very sensitive to knowledge of u ,v and the elements of
w w

F, G, and C. Small changes (or inaccuracies) in any of these quantities

would produce a steady-state with u and v constant but not equal to

zero. A well-known remedy for this situation is the addition of feed-

back proportional to the integral of the errors (in this case u and

v). It is also quite natural in this case since the integral of velocity

error is position, i.e.,

x = u

y =
(4)

[Note position (x,y) does not have to be measured to utilize this idea;

the measured velocity components can be integrated and these "integrated

errors" fed back. Of course, it is the measured velocity that is brought

to zero in this case, not the true velocity.] Now, in equilibrium, x =

y = 0 = ^ u = v = 0 , and the equilibrium values of the six quantities

(0 ,9 ,x,y,6 ,0 ) are determined by the last four equations in Table 1

and the two feedback relations:

0
L s.

, Cccp '

» c

, C , C
ex cy

, C , C
sx sy_

0
F

0

0

0

0

x

(5)

Thus, a "hang-off error" in (u,v) has been eliminated and there is no

sensitivity to small changes (or inaccuracies) in u ,v , and elements

of F, G, and C.

Obviously, the same idea can be used again to eliminate the hang-

off error in (x,y) if this is deemed necessary. We simply add two

more states (|»TJ) defined by

17



I = x , T] = y

and feedback (|,TJ) with four additional feedback gains C ,C ,C ,C
G£ CTJ s^ ^n

In this case (x,y) have to be measured. As long as the twenty gains in

the feedback gain matrix C are chosen so that the tenth order system is

stable, the vehicle will come to equilibrium with x = y = u = v = 0 for

a constant wind, with no sensitivity to small changes in u ,v ,F,G, or
w w

c.

2.4 Integral Controller Design by Quadratic Synthesis

The OPTSYS computer program was used to determine feedback gains

for three models of the Sikorsky S-61 helicopter with and without inte-

gral error feedback. Model A is the model of Table 1 with six states

(0 ,9 ,S ,Cp ,u,v) . Model B is the same as A with the addition of posi-
r r r r

tion states (x,y) where x = u , y = v . Model C is the same as B

with the addition of integral position states (£,T)) where | = x ,

TI = y .

Table 2 gives the feedback gains obtained by using the following

quadratic performance indices:

Model A: J = I I ( d^-Kp^-tf

04£

Model B: J = * I F V S
 + j_ :d.t

9o

Modal C: J = F F

where 0 = 1.0 deg., x = 10.0 ft., | = 50.0 ft.sec.

When the longitudinal and lateral wind, u and v , are added as
w w

states (see Section 1.3), the gains in Table 2 are unchanged but gains

on the wind are added. These are shown in Table 3 for the wind correla-

tion time of 3.2 sec.

If a filter-compensator is used with Model C, one does not "estimate'

(ifT)) since these are simply integrals of the position estimates (or

position measurements) (see Section 1.5).
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Table 2-2 - Feedback Gains for Sikorsky S-61 Helicopter
with and without Integral Error Feedback

(u = Cx , uT = [6. ,61)
— — C S

Model A: x = [e^cp^Q^cp^,

.16 .
C =

-1.0 .

Model B: Position

.17 1.03 .02
C =

-1.05 .17 -.50

Model C:

.19 1.16 .013 .23
C =

-1.28 .19 -.49 .08

99 .02<

16 -.50

States i

2 .23 •

.011

Integra

-.0023

.016

\ .234

.011

\dded

-.00034

.0028

L Posit

.014

-.0022

.00012

-.000024

T

.0028

. 00035

ion Stat

-.00053

.0033

u,v]

- . 000024

-.00012

,9F,0F,9F,u,v,x,y]

-.000028 .00017

.00017 .0000298

es Added

.0033 -.000056 .00035

.00053 .00035 .000056

Table 2-3 - Additional Gains on Wind. Components with
3.2 sec Correlation Time

Model A:

Model B:

Model C:

e
C

es_

C =
w

C =
w

C =
w

u
w

= C
w

V
_ w_

.00020 , -.00049

-.00049 , -.00020

.00020 , -.00055

-.00055 , -.00020

.00021 , -.00057

-.00057 , -.00021
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2.5 Mean Square Response of Controlled Vehicle to a Random Wind

Using the part of the OPTSYS program described in Section 1.7,

Eqs. (11) and (12), for perfect information feedback, the RMS responses

of the vehicle were computed for several different controllers.

Table 4 shows the RMS vehicle responses to independent random longi-

tudinal and lateral winds, each with RMS velocity of 20 ft.sec. and

correlation time 3.2 sec., for Models A, B, and C of Section 2.4, using

the gains of Tables 2 and 3. Note the reduction in RMS position errors

through the addition of integral control (Model B to Model C), with no

increase in RMS control activity.

Table 5 shows the effect of wind correlation time, i , on con-

trolled vehicle response for Model C. For T « 3.2 sec., the wind is
c

effectively white noise but has a very small power spectral density
2

(2cr T ) , so it produces only small vehicle responses. For T » 3.2
w c c

sec., the wind is effectively constant, so with the integral control x

and y .-»0 . The largest RMS (x,y) response occurs for T =3.2 sec.,
C

since this is in the range of time constants of. the controlled vehicle.

Table 2-4 - Predicted RMS Responses of Vehicle to Random
Wind with and without Integral Control (Units in feet,
seconds; angles in degrees)

Model A

Model B

Model C

SF

.05

.07

.07

<PF

.04

.07

.07

QF

.03

.01

.04

PF

.04

.01

.05

u

.83

.14

.05

V

.82

.14

.04

X

-

3.8

.18

y

-
3.8

.16

£

-

-
1.31

T)

-

-

1.15

e
c

.64

.65

.65

e
s

.64

.65

.65

Model A - Feeds back p »q_,p ,u, v
F F F

Model B - Feeds back eF,9F,qF,pp,u, v,x,y

Model C - Feeds back 0F,CpF,qp,PF,u,v,x,y,| ,r\

Perfect measurements of all states assumed.

RMS longitudinal and lateral wind 20 ft. sec.
3.2 sec. correlation time.

-1 with
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Table 2-5 - Predicted RMS Responses of Vehicle to
Random Wind with Integral Control for
Various Wind Correlation Times (Units in
feet, seconds; angles in degrees)

00*

(steady)

32

3.2

. 00034
(white)

0F

-.05

.07

.07

.02

*F

.08

.07

.07

.02

X

0

.02

.18

.04

y

0

.02

.16

.04

6

-19.3

.17

1.3

.25

n
-13.8

.11

1.2

.25

0s

-.84

.65

.65

.03

0c

.37

.65

.65

.03

Model C with perfect measurements of all states
assumed.

RMS longitudinal and lateral wind 20 ft. sec." .
*This case is calculated by solving the 10 linear
equations x = (F-GC)"1? w where w = (uw v ) .

21



as

APPENDIX

Determination of Feedback Gains on Wind

The system equations with exponentially-decaying wind may be written

x = Fx + fw + Gu

w = -aw

where x = system state vector , w = wind vector , u = control vector .

There is only a one-way coupling since x depends on w but w does

not depend on x .

If the performance index to be minimized is of the form

J =
T T

(x Ax + u Bu)dt ,

then the Hamiltonian is

rp rr\ rp rp

H = £(x Ax + u Bu) + X (Fx + fw + Gu) + X (-aw) .

The adjoint equations become

= -Ax - F X

T T
* + a

and the minimizing control is given by

-1 T
u = -B G X .

If we let

X

_v
s s ~

w
T

S 0w

X

w

and differentiate this expression with respect to time, it is straight-

forward to show t:

ential equations:

forward to show that S,S , and a must satisfy the following differ-
W
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T -IT
S = -SF - F S - A + SGB G S

S = -(F-GB~1GTS)TS + S a - Sf
w w w

• T T T T -1 Ta = a a + a a - f S - S f + S G B G S
W W W W

The matrix Riccati equation for S is the same as if there were no

wind. The equation for S is linear but depends on S , and the equa-
W

tion for a is also linear but depends on S . The feedback law may

be written as

u = -Cx - C w ,w

where

C = B~1GTS , C = B~1GTS ,
w w

so, in principle, the gains C , which depend on S , may be calculated

separately after C has been determined from S .

For the steady-state case, it is easier to use OPTSYS to compute C

and C together by eigenvalue decomposition. Nonetheless, it is im-
W

portant to note that C is not changed by addition of a wind model.

23



REFERENCES

[BR1] Bryson, A. E., Chasteen, L. H., Hall, W. E., and Mohr, R. L.,

"Studies of Control and Guidance for Rotary Wing VTOL Vehicles,"

Stanford University, SUDAAR No. 419, March 1971.

[BR2] Bryson, A. E., and Hall, W. E., "Optimal Control and Filter Syn-

thesis by Eigenvector Decomposition," Stanford University, SUDAAR

No. 436, December 1971.

[BR3] Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Xerox-

Blaisdell, Waltham, Mass., 1969.

[HA1] Hall, W. E., "Computational Methods for the Synthesis of Rotary-

Wing VTOL Aircraft Control Systems," Ph.D. Dissertation, Stanford

University, August 1971.

[Mil] Miller, D. P., and Vinje, E. W., "Fixed Based Flight Simulator

Studies of VTOL Aircraft Handling Qualities in Hovering and Low-

Speed Flight," AFFDL-TR-67-152, January 1968.

24


