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LOUDNESS FUNCTION DERIVED FROM DATA ON ELECTRICAL
DISCHARGE RATES IN AUDITORY NERVE FIBERS
| by Walton L. Howes

Lewis Research Center

SUMMARY

Judgments of the loudness of pure-tone sound stimuli yield a loudness function, or
psychoacoustic ''law, ' which relates perceived loudness to stimulus amplitude. In this
report a loudness function is derived instead from physical evidence regarding the num-
ber of stimulated auditory nerve fibers and the electrical discharge rates in each fiber,
without regard to human judgments. The physical evidence is combined with the assump-
tion that loudness is proportional to the total ''phase-locked'* discharge rate above its
threshold value. The resultant loudness function is ¥ =K(q - qo), where ¢ is loudness,
q is effective sound pressure (specifically 9 at the loudness threshold), and K is gen-
erally a weak function of the number of stimulated fibers. The predicted function is in
good agreement with loudness judgment'data reported by Warren, which imply that, in
the suprathreshold loudness regime, decreasing the sound-pressure level by 6 decibels
results in halving the loudness.

As previously suspected, loudness is found to depend primarily on the total number
of active fibers rather than on variations of the discharge rate per fiber averaged over
the ensemble of active fibers as the stimulus amplitude is changed.

INTRODUCTION

It is well known that a sound stimulus (measured as pressure fluctuations) imposed -
on a listener induces impulsive electrical discharges (the ''action'* potentials) of constant
amplitude in many of the 30 000, or so, individual fibers of the auditory nerve. These -
discharges advance along successive neurons toward the higher nervous system wherein
an auditory sensation is induced. The magnitude of this auditory sensation is called
loudness.



It has often been proposed that the electrical discharge rate induceci in the auditory
nerve by the sound stimulus is a measure of its loudness (refs. 1; 2, p. 302; 3, pp. 112,
263-272). Fletcher made a numerical estimate of the relation between electrical dis-
charge rate and loudness level which yielded a function in fairly good agreement with

" contemporary psychoacoustic data relating loudness to loudness level (ref. 3, p. 271).

A subsequent' attempt by Zwislocki (ref. 4) was less successful. The fact that discharge
- rates in individual fibers, like the whole-nerve potential (the potential due to all fibers
as measured by a macroelectrode), become saturated within sound-pressure ranges con-
stituting only a small fraction of the total acoustic range has proved especially perplexing
(refs. 2, p. 146, and especially p. 196f; 5; 6, p. 79; and 7). However, as shown in the
following analysis, this phenomenon creates no difficulty in quantitatively relating psy-
choacoustic and electrophysiological observations.

Although the exact behavior of a given physiological system as it responds to phys-
ical stimuli might appear complex beyond the scope of any mathematical model, the es-
sential features of the behavior can be approximated. A simple model is proposed which
incorporates essential features of the relation between the physical (sound), electrophys-
iological (neural discharge), and psychoacoustic (loudness) observations for pure tones.
The best argument for any model is, of course, its ability to correlate observational data
while obeying known physical principles. It will be shown that, in this sense, the present
model appears more successful than its predecessors.’

LOUDNESS FUNCTIONS

Assume that a listener with '"normal'" hearing ability is exposed to a pure-tone
sound stimulus in a manner intended to minimize psychological biases in judging loud -
ness. The available data consist of the judged loudness £ and neural discharge rates r
for individual auditory nerve fibers as functions of the effective sound pressure (p2)
of the stimulus, where p is pressure and the time average, denoted by the tilde, is over
the auditory integration time (=0.2 sec). Subjective judgments of loudness as a function
of the stimulus sound pressure by listeners yield the well-known loudness function, or
psychoacoustic ''law, "’ '

~

¢ -xp?)" (b

for suprathreshold loudnesses, where k is a function of the tone frequency and 1/4 < o
=< 1/2 is a function of the experiment (e.g., refs. 7to 12). (All symbols are defined in
the appendix.) A more general, but less widely accepted, loudness function, which nev-
ertheless satisfactorily represents available data for both suprathreshold and near -
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threshold loudnesses and has some physical basis (ref. 7), is

e -]

where (p%) is the effective sound pressure at the loudness threshold (ref. 12).
In order to incorporate neural discharge rates in the model, mathematical relations

between sound pressure and neural discharge rates are needed.

PHYS IOACOUSTIC FUNCTIONS

The relations between sound pressure and neural discharge rates, namely the phys-
ioacoustic functions, are determined from measurements on animals since data for
human beings do not exist. The sound stimulus induces electrical impulses of constant
amplitude (action potentials) to be transmitted along the individual fibers of the auditory
nerve toward the brain. In general, the rate at which impulses are generated in each
fiber is a function of the imposed sound pressure. The electrical response threshold
and the dynamic response range (discharge rate strongly affected by stimulus magnitude)
vary among the fibers. In its inactive state (no external stimulus imposed), each fiber
may, or may not, conduct random spontaneous action potentials, which are often observed
in the absence of a stimulus (ref. 6, ch. 8, p. 93ff). If the fiber exhibits spontaneous
activity, the first indication of a threshold response to a stimulus is ''phase-locking. '
That is, a correlation appears between the phase of the stimulus waveform and the oc-

~currence of the originally spontaneous discharges without the discharge rate necessarily
being affected (refs. 13 to 15). Even in the absence of the stimulus there may be, on the
average, a very slight apparent phase-locking of the spontaneous discharges at possible
stimulus frequencies simply because the spectrum of the spontaneous discharges may in-
clude the stimulus frequency. As the stimulus amplitude is increased the discharge pat-
tern tends, upon summing discharges in each phase interval over repeated realizations
of the'waveform, to reproduce a partial-wave rectification of the original stimulus wave-
form (refs. 13 and 16). Phase-locking is detectable at all stimulus amplitudes for which
there is a neural response and for all stimulus frequencies up to approximately 5 kilo- °
hertz (ref. 17), which includes the dominant frequencies in most sounds.

Electrical Discharge Rates in Individual Fibers

Much of the reported data on neural discharge rates exhibit insufficient regularity
to be useful for theoretical purposes. Conceivably, for fibers with high spontaneous



discharge rates, this may result from failure to subtract the residual spontaneous dis-
charge rate from the rate measured in the presence of a stimulus, especially at low
stimulus amplitudes (ref. 13). Regularity is to be expected since the neural activity is

. an intermediary between the stimulus and the sensation, which exhibit a regular relation,
as evidenced by equation (1). Exceptionally regular sets of rate data for typical individ-
_ual nerve fibers in squirrel monkeys exposed to pure tones are presented in reference 13.
In reference 13 these data are depicted as ''spike'' (impulse) rate as a function of sound-
pressure level, where sound-pressure level S is defined by

3
S =10 log[ 2— (3)
p)
Pref

with [;2 of 2 reference mean-square pressure corresponding to the loudness threshold

~

for a 1-kilohertz tone; specifically, pf of = 4><10'10 N2/m4. The mathematical regularity
of the data is not completely evident in the semilogarithmic plots in reference 13. The
regularity usually becomes more evident by plotting the logarithm of the neural discharge
rate r as a function of S, as shown in figure 1. Each curve shows the discharge rate
for an individual fiber stimulated at its best, or characteristic, frequency (frequency of
maximum sensibility). Clearly, each curve can be split into two segments. Each seg-
ment can be approximated mathematically by a numerical power law since each segment
can be approximated by a straight line. Remarkably, the corresponding segments of
each curve approximately satisfy the same, very special, power law. Specifically, for

any given fiber denoted by the subscript j, the discharge rate rj is given by

~

N1/2
Aj<p2) (lower stimulus amplitudes; dynamically active rate) (4a)

\0.03
()\ s>j(p2) (higher stimulus amplitudes; saturated rate) : (4b)

where Aj and (A s)" are proportionality constants. In the saturation range it will be as-
sumed, because r]. is a weak function of p2, that

r, = (r ) = Constant (5)
where (r s)j is the discharge rate of the jth fiber when it is saturated. There is qften a
tendency for the discharge rate to decline slightly for the highest stimulation amplitudes.
However, neglect of this effect is compatible with the assumption that (rg), is constant,
which is, of course, not exactly true. It is important to note that, with regard to



equations (4) and (5), ''lower' and '"‘higher'' are relative to the stimulus range, perhaps
40 decibels, over which the fiber displays a variable response. This is much less than
the total acoustic amplitude range of hearing, which is approximately 120 decibels.

Equation (4a) is very special because it indicates that, for each fiber, the discharge .
rate at the lower stimulus amplitudes is proportional to the effective sound pressure
(phé)l/ 2. When similar plots of log rj as a function of S are made using the data in
figures 1, 2, 4, 5, 6, and 8 of reference 13, equations (4) generally represent the re-
sults satisfactorily, although the agreement is not always as good as that shown here in
figure 1. However, in general, equations (4) provide a reasonable fit to the data, not
only for stimulation at the characteristic frequency, but for stimulation at other fre-
quencies as well, It is assumed that the activity in the vast majority of auditory nerve
fibers in response to a tonal stimulus is typified by equations (4) and (5).

Number of Stimulated Fibers

Let N denote the total number of auditory nerve fibers which are capable of trans-
mitting coherent (phase locked) electrical discharges to the higher nervous system in
the presence of a given maximal tonal stimulus within the hearing range. For any lesser
stimulus amplitude, the N fibers can be divided into three groups, namely, the group of
inactive fibers, the group of dynamically active fibers, and the group of saturated fibers.
In the absence of a stimulus, all fibers are defined to be inactive. The group of inactive
fibers thus includes truly inactive fibers as well as spontaneously active fibers, which
may, as already explained, exhibit some minimal apparent phase-locking at a stimulus
frequency in the absence of the stimulus. The group of dynamically active fibers con-
sists of those whose electrical activity obeys equation (4a). The group of saturated
fibers includes those whose activity obeys equation (4b), which has been approximated by
equation (5). Those fibers whose dynamic response thresholds are exceeded are desig-
nated simply as active fibers. Thus, the group of active fibers consists of both the dy-
namically active fibers and the saturated fibers.

The total number of active fibers and the relative numbers of dynamically active and
saturated fibers are functions of the stimulus amplitude. The number density of active .
fibers at threshold as a function of sound-pressure level has been reported in refer-
ence 18. The results have been used to obtain the number distributions of active fibers
presented logarithmically in figure 2. The curves in figure 2 show the number distribu-
tions of small samples of active fibers excited at their characteristic frequencies, rather
than at a fixed stimulus frequency. (The characteristic frequency of the fiber, that is,
the frequency which most readily activates the fiber, is determined by the location of the
origin of its discharges along the basilar membrane within the cochlea.) However, the
frequency bandwidth encompassed by each set of data is limited. The curves are similar
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for widely differing frequency bands. There is no reason to believe they would be sig-
nificantly different in shape if a single-frequency stimulus were employed and if all
fibers were sampled, except that the dynamic segments of the curves would tend to ex-
tend over a greater dynamic range of the stimulus. The corresponding subdistributions
of dynamically active and saturated fibers are unknown. As shown in figure 2, the num-
ber distributions of active fibers for different stimulus frequencies bear approximately
the same remarkable relation to sound-pressure level as does the discharge rate for a
single fiber. Specifically, if a denotes the total number of active fibers, then

3 1/2
u(p ) (lower stimulus amplitudes) (6a)
a~

“N0. 03
ps(p2> (higher stimulus amplitudes) (6b)

where p and p g are proportionality constants associated with lower and higher acous-
tic amplitudes, respectively. Here '"lower’’ and '‘higher'' now refer to the total acous-
tic range of hearing (about 120 dB) rather than to the dynamic range of an individual
fiber. Equations (6) yield essentially the same curve as that assumed by Fletcher

(ref. 3, p. 264) on the basis of electrical discharge thresholds from nerve endings in the
eye rather than in the ear. For the higher stimulus amplitudes it will be assumed that

a = N = Constant (D
The to?:al number of fibers which can be activated is given by

N=i+a=i+d+s

where i is the number of inactive fibers, d is the number of dynamically active fibers,
and s is the number of saturated fibers. The numbers i, d, and s depend upon the
amplitude of the sound stimulus. Thus, equation (7) implies that, at the higher stimulus
amplitudes, i - 0, as it must since N includes only those fibers capable of being stim-
ulated by the tone.

In conclusion, physical evidence implies that the simple equations (4a) and (5) may
adequately represent the coherent discharge rate from a single fiber and that the equally
simple equations (6a) and (7) may similarly represent the total number of fibers activ-
ated by the stimulus. In both cases the effective sound pressure of the stimulus is the
independent parameter. With a few additional assumptions a simple model consistent
with equations (4) to (7) can be constructed to represent the total coherent discharge
rate R for an assemblage of N fibers as a function of the effective sound pressure

A
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Model for Total Coherent Discharge Rate R

The model for the electrical activity of auditory nerve fibers is shown in figure 3.
Each individual fiber, denoted by the subscript j, is assumed to begin contributing co-
herent discharges at the same rate ry in response to the sound stimulus when the effec- -
tive sound pressure of the stimulus reaches the particular threshold value (qt)j for the

: 2
fiber. For brevity the symbol q is used to denote (plﬁ)l/ . The number j is assigned

in the order of decreasing sensibility of the fibers; that is, j = 1 denotes the first fiber
to become active, and j = N the last one, as the sound pressure is increased. The dis-
charge rate in each fiber rises linearly as a function of q according to equation (4a)
until the saturation rate is achieved, after which the discharge rate remains effectively
constant, according to equation (5). Similarly, the number of active fibers also in-
creases as a linear function of q, given by equation (6a), until all N fibers are active
(cf. eq. (7)).

The simplifications involved in the model obviously preclude its being an exact rep-
resentation of the system. However, its simplicity allows quantitative calculation of
overall discharge rates throughout the acoustic range. "The utility of the model will then
depend on the degree to which predicted rates correspond to observed :ates and on the
extent to which implicit features of the model correspond to reality.

At the lower end of the sound-pressure range, where the total response results
from a very small number. of units, departures from the simplified model might produce
answers noticeably different from those predicted. However, the departures are not
likely to have serious consequences in predicting loudness because loudness judgments
are also of low precision in this sound-pressure range. For greater sound pressures,
where the active units number in the hundreds or thousands, it seems reasonable to ex-
pect that individual variations among units may average out, so that the model might be
quite adequate if it is functionally sound. For example, in the model shown in figure 3
it is assumed that the order in which the fibers saturate is the same as the order in
which they achieve the threshold of stimulation. Because the data in figure 1 show a
tenfold variation of the saturation discharge rate Tg) the fibers may not, in fact, always
saturate in the same order in which they achieve dynamic threshold. However, since the
discharge rate for each fiber obeys equation (4a) and the threshold sound pressure over
all fibers will be found to cover a range greater than 104, it is evident that, on the aver-
age, the fibers will saturate in the approximate order in which they achieve threshold
stimulation. .

For any given stimulus amplitude the total coherent discharge rate R in the pres-
ence of a sound stimulus equals the sum of the coherent discharge rates of all fibers.
Hence,



R - [z(ri) } + [z (rd>(,] : [z (rs@ ®
g inact o dyn o sat
l J _J

J \ .
Inactive fibers Dynamically Saturated
active fibers fibers

where the subscripts i, d, and s refer to inactive, dynamically active, and saturated
“fibers, respectively. The coherent discharge rates of inactive fibers are likely to be

small or zero and, hence, of possible significance only near the loudness threshold.
The coherent discharge rate of each dynamically active fiber and of each saturated fiber
is represented by equations (4a) and (5), respectively, as a function of the effective
sound pressure of the stimulus. The incoherent discharge rate of each fiber presumably
does not contribute to the loudness of the stimulating tone. Thus, it is emphasized that
the total coherent discharge rate R represents the measured total discharge rate minus
the total incoherent discharge rate (cf. ref. 17).

Let (r) denote the average discharge rate over an ensemble of fibers. Then, con-
sistent with the proposed model, equation (8) becomes

R =i(r;) +d(ry +s(rg) (9)

in terms of products of numbers of fibers and their average discharge rates. These
numbers and rates are to be expressed as functions of the effective sound pressure q.
The numbers of dynamically active and saturated fibers are evaluated first. Let the
subscript t refer to conditions at the dynamic response threshold of a fiber. From
equation (6a) it follows that the effective sound pressure at which the jth fiber becomes

dynamically active is given by

.

m iay)q

(qt)j =

In particular,

'fhe corresponding discharge rate at threshold is (rt)j’ so that
|
]
(qt)j _
which follows from equation (4a). The effective sound pressure a4 at which the jth

fiber becomes saturated is given by

8



which results from the preceding equations. Incidentally,

(@) &)

Assume on the average that with increasing sound pressure the fibers become saturated
in the same order of occurrence as that in which they become dynamically active and
that the values of ry and rg are the same for each fiber (see fig. 3). Then, if there
exist any saturated fibers, it follows from the previous equation that the total number of
saturated fibers s is approximated by

r r
s = <_t>uq = (_t) . (1 =s <N) (10)
Ts Ts (qt)l
Since a =d + s, it follows that the total number of dynamically active fibers is approxi-
mated by
r r
d=a- —tuq=(1-—t>i (1 =s <N) (11)
Ts Ts (qt)l

when some fibers are saturated. Equations (10) and (11) constitute the required expres-
sions for the numbers of fibers in the saturated and dynamically active groups, respec-
tively, as functions of q.

Next, the discharge rates are evaluated. There is considerable variation of dis-
charge rates among individual inactive and saturated fibers. Apparently, fibers with
greater sensibility at their characteristic frequency possess greater spontaneous dis-
charge rates (ref. 13). However, coherent spontaneous rates are generally very small
relative to coherent active rates, so that r; can be replaced by ( ri) , in conformity
with the proposed model. With regard to saturated discharge rates T, note that
(rg) =(ry) are of the same order of magnitude when fibers begin to saturate; and
r, <<rg. Also, a <N until all fibers are active. Considering these conditions, it is
apparent from equations (9) to (11) that the number s of saturated fibers does not sig-
nificantly affect the total discharge rate R until s becomes of the same order as the
number d of dynamically active fibers. This occurs only when the effective sound pres-
sure .q is very large in comparison with the threshold value (qt)1 at which the first




fiber becomes dynamically active. Therefore, rg only affects R significantly when s,
and hence q, is large. For this reason, in equations (10) and (11), rg may be replaced
by the ensemble average ( rs) over s fibers without appreciably changing the value

of R. This is also in accordance with the proposed model.

- It is apparent from the data of reference 13 that the saturation discharge rate for
each fiber depends on the stimulus frequency. Moreover, it appears that the saturation
discharge rate is not a function of the sensibility of the fiber at the stimulus frequency.
This was found by plotting discharge rate as a function of sound pressure for a given
stimulus frequency, using data for several fibers from reference 13. Each curve looked
like those in figure 1 with no systematic change in saturation discharge rate for de-
creased fiber sensibility. Hence, it may be assumed that (rs) is independent of q.

The average discharge rate (rd) among the dynamically active fibers is a function
of the number d of dynamically active fibers since both r a and d are functions of q.
By definition and by virtue of equation (4a), ‘

co- ([T, @,

Hence,
(rg = (Ma

However, (X) is also a function of q since each fiber generally has a different sensi-
bility to a stimulus and since the number of dynamically gctive fibers is a function of q
(cf. eq. (6)). The preceding equation can be rewritten as

w -2 Cas
q d q

o dyn

Here (A) is determined by summing rates ry over the ensemble of dynamically active
fibers for fixed q = q. Alternatively, (1) can also be determined by summing effective
sound pressures q over the same ensemble of fibers for a fixed discharge rate, Ty = f'd. .
The preceding expression for (A) is equivalent to

o0, R, 6

The average over r for fixed q has been replaced by the equivalent average over 1/q
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for fixed r. This is permissible because, for each fiber, r(q) is linear. If one sets

F = r,, then, since 1/(q); = /i for the it fiber, it follows that

r d+s r
) = rt<;ll—> = (%) Z G) (—d—t)gm,s)
t/dyn 7 o=14s8
where
dif . d+s . s .
o £ 0-50-50
o=14+s5 \¥ crz=:1 0/ o=1\C

= g(d + 8, 0) = g(sy 0)

(12)
If s=0, g(0,0)=0 and
d
g(d,0) = Z (1> ~Ind+C+ (—1—> - O(d'z) (12a)
o=1 [¢) 2d

is a weakly increasing function of d, hence of ¢, and C = 0.577 is Euler's constant
(ref. 19). (For example, if d =1, then g(d,0) = 1; whereas, if d =107, then
g(d,0) = 10.) For s # 0 and a < N, equations (12), (12a), (10), and (11) yield

2(d, s) ~ m(d +'S> ~ m(<r5>> (12b)
S

Ty

g(d,s) =~ In AN Inq (12¢)
KT

Finally, when expressed as a function q, the average discharge rate of the dynami-
cally active fibers is then found to be given by

Tt
(rg) = E>g(d, s)uq (13)

Equations (9) to (13) can be combined to yield an expression for the total discharge
rate R as a function of the effective sound pressure q in each of four nontrivial sub-

whereas for a = N, they yield

ranges shown in figure 4. In order of increasing stimulus amplitude these subranges
and the resulting formulas for R are as follows:

(1) Dynamically active subrange I ((qt)l <q<q,): Some fibers are dynamically

11



active, but none are saturated. In this range d=a = ud (cf. eq. (6a)). Also,i=N-a
and s = 0, so that equation (9) reduces to

R = a<(rd) - (ri)) + N(r;) (14a)
or, in terms of q, ‘
R = [rg(d,0) - (ri)] ua + N(r) (14b)

Because g(d,0) is a weak function of q, it is concluded that R is an almost-linear
function of q. At the lower limit of this subrange, that is, at q = (q;)y,

R = N(r;)
whereas at the upper limit, q = qa = (rg)/ur, (cf. eq. (10)), so that
R = [rg(d,,0) - (r;)] ua, + N(r;) (15)

where d = da at q = q,.
(2) Active subrange IT (qa =q= qb): Some fibers are dynamically active, and some

are saturated. By introducing equations (6a), (10), (11), and (13) and the relation
i =N - a into equation (9), the expression for R as a function of q is found to be

R = {rt[g(d,s) +1]- (ri)} uq + N(r;) | (16)

where, in this range, g(d, s) is independent of q (¢f. eq. (12b)). Hence, R is a linear
~ function of q. For q = q, this reduces to equation (15) because g(d,s) =g(a-1,1) =
g(a,0) - 1, and a =d,. At the upper limit of this subrange, thatis, at q=q = N/p,

R = r,[g(dy, 5p) + 1] ugy, (17)

where

d, =N _<i> uay, = N< - _rt_> ' (c!L'. eq. (11))
(re (ry)

and

ry Nr,
sb =<__> u = e (Cf. eq. (10))
(Tg) (rg)

Thus far, it has been assumed that, as the stimulus amplitude is increased, the
number of active fibers increases. Eventually, an amplitude is reached for which no
more fibers can be activated. ‘

12




(3) Fiber saturation subrange II (qb =q< qc): All fibers are active. This implies
that a=N and i =0. Otherwise, proceeding as in the case of subrange II, equation (9)
reduces to

R =rg(d,s) + 1jpq (18)

in which R is again an almost-linear function of q (cf. eq. (12¢)). For q = 4, = N/ u,
equation (18) specializes to equation (17). At the upper limit of this subrange, q = q =
(N/Il-)(<rs> /rt) and

R = N(rg) (19)

because

X 1 1

- - = —_) = - 1
gd,s) =g, N-D= > (o) L«
o=N
ry puq = s(Ty) (cf. eq. (10))

and

s=N

(4) Fiber- and rate-saturation subrange IV (qc =q): In the limit when all available

fibers are saturated, s = N and d = (ry) =0, so that equation (9) reduces to
| R = N(r;) = Constant (20)
in agreement with equation (19) at q = - Now, R is independent of q.
These and subsequent results are summarized in table I for all subranges.

The preceding physioacoustic functions relate the total discharge rate R to the ef-
p“é 1/2

fective sound pressure q E( The analysis indicates that R is an almost-linear,
increasing function of q, except at the highest stimulus amplitudes, where R is con-
stant. The transitions between the four ranges are smooth.
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ACOUSTIC PSYCHOPHY SIOLOGIC FUNCTION

The psychoacoustic and physioacoustic functions may now be combined to yield an
acoustic psychophysiologic function which relates the total neural discharge rate R to
the loudness . Alternatively, a simple acoustic psychophysiologic function can be as-
sumed on the basis of physical principles. It can, then, be shown that this function,
when combined with the preceding physioacoustic functions, leads to the psychoacoustic
equations (1) and (2) plus an additional psychoacoustic function for the highest stimulus
amplitudes within the acoustic range. This alternative approach is used herein.

Equation (1) is empirical (refs. 8 and 9). The only derivation of equation (2) uses
equation (1) plus empirical relations among loudness, whole-nerve action potentials, and
the mean-square sound pressure (ref. 7). (The whole-nerve action potential consists of
a weighted sum of the impulsive action-potential discharges over all fibers at any instant,
as determined by using a gross (or macro) electrode in contact with the nerve.) It is
shown in reference 7 in a very crude analysis that the loudness of a pure-tone stimulus
is given by equation (2) herein if the empirical formula & « P2a relating the whole-
nerve action-potential amplitude & to the sound-pressure amplitude P is combined
with the assumption that loudness is proportional to the excess amplitude of this potential
relative to its value at the loudness threshold. (Incorporating time integration should
only change the proportionality constant in the case of a pure-tone stimulus.) Unfortu-
nately, because this potential formula results from an instantaneous weighted sum of ac-
tion potentials over all auditory nerve fibers (because a gross electrode cannot contact
all fibers), its observed range (50 or 60 dB) is far less than the sound-pressure level
range (120 dB) associated with loudness variability.

This weighting effect associated with gross potential measurements can be overcome
by more detailed measurements, using microelectrodes, of action potentials from indi-
vidual fibers. The total discharge rate R measured over all auditory nerve fibers is
proportional to a time-averaged, unweighted, action potential, since each potential im-
pulse possesses the same amplitude. Hence, the assumed psychophysiologic function
based on whole-nerve measurements (ref. 7) can be replaced by the more fundamental
acoustic psychophysiologic function

Z= k(R - Ro) (21)

based on single-unit (fiber) measurements, where R, represents the total coherent
discharge rate at the loudness threshold, and k is a constant. The loudness threshold,
of course, differs from the dynamic thresholds of individual fibers, denoted by the sub-
script t.

Equation (21) indicates that, for a pure-tone sound stimulus, loudness is propor-
tional to the excess total coherent discharge rate over its coherent value at the loudness
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threshold. Throughout the greater portion of the loudness range, R >> RO’ so that, ex-
cept in the vicinity of the loudness threshold, £ =~ kR. The idea that loudness is propor-
tional to the total discharge rate has been commonly suspected for many years (e.g.,
ref, 2, p. 302; ref. 3, pp. 263-272).

LOUDNESS FUNCTION DERIVED FROM TOTAL NEURAL DISCHARGE RATE

When the preceding physioacoustic functions for each stimulus subrange are inserted
in equation (21), new loudness functions result.
Dynamically Active Subrange I (gy<q<qy)

The loudness threshold determines the lower bound of this subrange. At the loud-
ness threshold, denoted by the subscript !0, "' qp = (qt)l’ and equation (14b) becomes

R, = [rtg(do,O) - (x| ugg + N¢ry)
By combining this with equations (14b) and (21), the result is
- r@(@,0 - (xp]ua - [rgldg, 0 - <rp]uag)

Now rg(d, 0) > rg(dg, 0) >> (r;). Hence, the resultant loudness function is found to be

g(d, 0) - g(d,, 0)
g(d, 0)

(22)

&= krypug(d,0))a - q4 +

At the loudness threshold, d0 =1 fiber. If the total range of R is to correspond to the
known range of ¢ (cf. eq. (21)), d0 must be small. Suppose d0 =10 fibers. Then,
since d < q in subrange I (cf. eq. (6a)) and this subrange is found experimentally to be
of the order of 40 decibels or less (see, e.g., refs. 7, 11, and 12), the corresponding
total subrange of g(d, 0) is about 2 or 3 in comparison with a total subrange of q of the .
order of 100. Hence, g(d,0) is a weak function of q. The third term in equation (22) is
negligible because )

g(d,0)

as d - do, that is, near the loudness threshold; whereas q >> qy as
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g(d, 0) - g(dy, 0) .
g(d, 0)

that is, near the upper limit of the subrange. Hence, there results an approximate for-
mula

2 =Kk(d)(q - qp) (23)
for the loudness function, where
k(d) = «r,pg(d,0) (24)

is a weakly increasing function of d, and hence of q.
As the upper limit of this subrange is approached, q >> q,, so that

& ~ k(d)q : (25)

Equation (23) has the same form as the loudness function chosen by Lochner and Burger
(ref. 12) to fit loudness judgment data, except that their mean-square pressure exponent
is 0,27, rather than 1/2. Equation (23) was also derived in reference 7 by using elec-
trophysiological data for the whole nerve.

Active Subrange II (g, <q<qp)

When equations (16) and (21) are combined with the preceding expression for Ry,
the result is

&= K({rt[g(d, s)+1]- (ri)}uq + N(r;) - [rtg(dO,O) - (ri)] nag - N(ri))
Now rt[g(d,s) +1]> rtg(d,O) > rtg(do,O) >> (r;), so that |

2= Kfeyfe@, ) + 1ua - rgdg, Ousg} |

. However, in this range q >>q,. Therefore, \
Z-=K(d,s)q (26)
where |
K(d,s) = Krtu[g(d,s) +1] - (27)

Equation (26) has the same form as a commonly accepted loudness function (ref. 9), ex-
cept that the exponent of the mean-square pressure is now 1/2, rather than 0.3. The
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loudness is an almost linear function of the effective sound pressure q. As q—-q,,
K(d, s) - k(d), and equation (26) approaches equation (25) (since q, >> qo).

The preceding derivation implies that R >> RO’ so that equation (21) can be approx-
imated by

Z=«R

in this and all subsequent subranges.

Fiber Saturation Subrange III (q; <q<q,)
Equations (18) and (21) combine to yield
2= K(d,s)q | - (26)

which is the same result as in subrange I, and where K(d, s) is given by equation (27).
For q-gq,, equation (26) reduces to '

Z-K(1, N - 1)q

where K(1, N - 1) = KTy L because g(d,s) =g(1, N - 1) <<'1 in equation (27).

Fiber- and Rate-Saturation Subrange IV (q. <q)
Equations (20) and (21) combine to yield
£ =K(0,N)q,, = Constant (28)

because, in equation (20), s =N = (r,/(r;))pq,, and K(0,N) = kryp.

In summary, the assumed acoustic psychophysiologic function (eq. (21)) and the em-
pirical physioacoustic functions combine to yield the psychoacoustic function (cf. eq. (2)),

£ =K@, s)[(pNZ)l/2 ] (p%)l/zJ |  (29)
where

K(d,s) = lcrtu[g(d,s) + 1] e (27)

and
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d+s
g, 9= » 1 (12)

o=1+s5 ¢

These results should be valid throughout the loudness range, except possibly very near
the loudness threshold. The loudness £ is an almost-linear function of the effective

sound pressure (1;2)1/ 2 - g throughout nearly the entire dynamic range of loudness. At
higher sound pressures, when both the number of active fibers and the discharge rate in
each fiber reach saturation, loudness is found to be independent of sound pressure.
These results are based on an assumed psychophysiologic relation and physical measure-
ments.rather than on relatively inaccurate human loudness judgments, the usual basis
for the loudness function.

QUANTITATIVE REPRESENTATION OF LOUDNESS FUNCTION

The results of the preceding anal%is permit a quantitative determination of the loud-
ness function, as follows:

The unit of loudness is the sone, which is defined as the loudness of a 1-kilohertz
tone imposed frontally on a listener as progressive plane waves at a sound-pressure
level of 40 decibels. Any other equally loud sound also has a loudness of 1 sone. From
equation (3) it follows that a 1-kilohertz tone has a loudness of 1 sone if q = 2><10'3
N/mz, where Qpef = 2><10'5 N/mz. Note that q >> Qpef when the loudness is 1 sone.
From this and equation (29) the loudness of the tone relative to 1 sone is given by

2 = 5x102 X@,8) (o _ 2x10°5) (30)
,Kl(d,s)

where K =K, when % =1 sone, Equation (30), which is dimensionless but yields nu-
merical values equal to the loudness in sones, eliminates the necessity for evaluating the
psychoacoustic conversion factor x in equation (27). Hence, equation (30) expresses the
loudness solely in terms of physical quantities.

The appropriate expression for K in terms of numbers of fibers, or of the sound
pressure, is a function of the subrange. The subranges can be related to the sound-
pressure level. Thus, at the lower limit of the active subrange II, there must exist one
saturated fiber. Hence, at this limit, pq, ~ (r.)/r, ~ 50 (cf. eq. ( 10)) if it is assumed
that (r g ~ L 5><102 coherent discharges per second (ref. 13) and that r, ~ 3 coherent
discharges per second. (The selected value of Ty is based on the fact that near the
loudness threshold the integration time of the auditory system is of the order of 0.5 sec-
ond (ref. 20, p. 358). Moreover, the sensation of pitch is detectable after only one or
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two cycles of stimulation (ref. 20, p. 554). Near threshold, only one coherent discharge
might occur within one cycle of stimulation. Thus, a minimum of only one or two coher-
ent discharges occurring repetitively within successive auditory integration periods
should be sufficient to produce a continuous sensation of pitch.) The data of reference 18
in figure 2 indicate that p =a/q = 5><104 mz/N for a 1-kilohertz tone at the lower sound
pressures (dynamic range). Hence, q, =~ 50/u ~ 1073 N/mz, so that qa/qref =~ 50,
which corresponds to a sound-pressure level Sa ~ 34 decibels at the lower limit of sub-
range II. This, of course, is also the upper limit of the dynamically active subrange I.
Since S, < 40 decibels (for which the loudness = 1 sone), K; must be given by equa-
tion (27) with s # 0.

Assume that K; is in subrange II. Then,

(r

K; = kr ulln S> + 1|~ 5kr u

1 t r t
t

because g(d,s) = In ((rs) /rt) ~ 3,9, since s # 0. Therefore, equation (30) may be re-
written in the approximate form

2= 10%[g(d,s) + 1](q - 2x10°) (31)

Equations (30) and (31) can be used to obtain simple approximate formulas for loud-
ness in each subrange.
(1) Dynamically active subrange I (0 <S =< 34 dB): Equation (31) becomes

# =102(1n q + 12.4)(q - 2x10°°) (32a)

because g(d,s)+1 ~Ind+1.6=Inq+1In y+ 1.6 when s=0.

At the upper limit of subrange II, qy = N/ = 0.6 N/m? if N = 3x10* fibers (see
Discussion). Therefore, at the upper limit of subrange 11, Sb = 90 decibels, which is
obtained by using equation (3).

(2) Active subrange II (34 dB <S8 =< 90 dB): Equation (30) reduces to

£ =5x102 g : (32b)

since in this subrange K(d,s) = Kl(d, s) = Constant'and q >> dp- Note that equation
(32b) applies over much of the normal range of hearing.

At the upper limit of subrange III, q, = N(r.) /p.rt =30 N/m2. Therefore,
a,/a9 ~ 10°, s0 that S_ =~ 120 decibels.
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(3) Fiber saturation subrange III (90 dB < S < 120 dB): Equation (31) becomes

#-10%(4.4 - Inq)q - (32¢)

since g(d,s) ~ In(N(r.)/ru)-Inq=3.4-Inq.

(4) Fiber- and rate-saturation subrange IV (120 dB < S): Equation (30) reduces to
2 -10% q_ = 3x103 (32d)

since, in this subrange, K(d,s)/Kl(d, s) = K(O,N)/Kl(d,s) = 1/5, and q, =30 N/mz.
Thus according to equation (32d) the maximum achievable loudness is approximately
3000 sones.

The quantitative loudness function indicated by equations (32)is displayed in figure 5.
This theoretical curve is in excellent agreement, except for sound-pressure levels
greater than 80 decibels, with that obtained by Fletcher (ref. 3, p. 271), which was based
on similar assumptions but utilized different data in a different analysis. Fletcher's
curve (fig. 171 in ref. 3) is presented in figure 5 as well. (In comparing Fletcher's
curi/e, note that, for a 1-kilohertz tone, loudness level equals sound-pressure level.)
Over the greater portion of the suprathreshold loudness regime, decreasing the sound-
pressure level by 6 decibels results in halving the loudness. This is in contrast with the
commonly accepted value of 9 or 10 decibels for loudness halving (ref. 3, p. 192; 9).
Loudness judgment data from 720 subjects reported by Warren (ref. 21) are also shown
in figure 5. Experimental biases in previous studies have presumably been eliminated
in obtaining these data. Warren's data consist of ''standard, '’ sound-pressure levels
(which have been chosen to lie on the theoretical curve) of 1-kilohertz tones paired with
sound-pressure levels of ''comparison, '’ 1-kilohertz tones judged to be one-half as loud
as the standards. The 95 percent confidence limits of the comparison tones are also
shown. The theoretical curve nearly always lies within these limits.

DISCUSSION

At the highest stimulus levels for a given discharge-rate curve (cf. fig. 1), the dis-
charge rate of a given fiber sometimes tends to decline. This decline would tend to
cause a diminution of loudness. A diminution of loudness has been observed at low fre-
quencies (ref. 20, p. 264). However, the discharge-rate data are not sufficient to deter-
mine the rate of decrease of the discharge rate. Moreover, the actual measured de-
crease is within the saturation range given by equation (5) in which (r s)° was assumed to
be constant. Hence, the possible diminution of loudness at high stimulus amplitudes has
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not been incorporated in the present model.

In subrange I, d =a = puq; and g(d, 0) is essentially a logarithmic function, that is,
a weak function, of d for d > 1. Hence, by virtue of equation (13), (ry) is a weak
function of d. Therefore, by virtue of equation (14a), R is an explicit function of d
and a weak implicit function of d through (rd) . Similarly, in subranges II and III,

(rq) is a weak function of d and s and, hence, R is a weak implicit function of d
and s through (rd} . In subrange IV, R is, of course, independent of d and s.
Therefore, throughout the entire acoustic amplitude range, the total discharge rate R
and the loudness % are affected principally by variations of the number of active fibers
and only weakly by variations of the ensemble average (r) of discharge rates over all
the active fibers.

The behavior predicted by the model might appear to be contradicted by the data in
figure 2. The calculation of d implies that . corresponds to 90 decibels, whereas
the data in figure 2 seem to imply a value of only about 40 decibels. It should be noted,
however, that figure 2 illustrates the number distribution function for a small sample of.
fibers, each stimulated at its best frequency. In the model, on the other hand, a set of
N fibers is assumed which includes all those capable of responding to a given stimulus
frequency. Consequently, it includes fibers whose characteristic frequencies are far
removed from that of the stimulus. Their dynamic response thresholds are raised cor-
respondingly. These two factors, namely the sampling of all N fibers and the raised
thresholds, account for the difference between the theoretical and experimental ranges.
Clearly, data are needed on the number density over all fibers at dynamic threshold as a
function of sound pressure for a fixed-frequency stimulus, preferably a 1-kilohertz
stimulus. ‘ 3

The detailed loudness values arising from the model are obviously dependent to some
extent on the assumption as to the fraction of the total number of fibers responsive to the
given stimulus and the values taken for ry and Ty When they are represented by equa-
tions (6), the two segments of the active-number-distribution curve for the eye used in
Fletcher's theory (ref. 3, p. 264) intercept in the neighborhood of a/N =1, S = 84 deci-
bels. If it is assumed that only one-half of the total number of fibers can be stimulated
by a 1-kilohertz tone, then in the present model, N = 1.5><104, so that Sb = 84 decibels,
in agreement with the curve assumed by Fletcher. In addition, since r; cannot be de-
termined precisely, it is reasonable to assume that ry ® 1.5 coherent discharges per
second, so that S, ~ 120 decibels, as before. However, then S'a = 40 decibels, rather
than 34 decibels. The effects of these adjustments on the theoretical loudness function
shown in figure 5 are negligible.

The various published values of the exponent o in the loudness function (eq. (1))
often appear to be functions of artifacts in various psy}:hoacoustic experiments (ref. 21).
By virtue of the present theory, there are now three independent reasons for believing
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that o = 1/2. Firstly, loudness judgment tests by Warren (ref. 21), in which all known
artifacts in previous tests were presumably eliminated, yielded « = 1/2. The present
theory, which incorporates the electrophysiological measurements of references 13

and 18, also shows, without consideration of psychoacoustic tests, that o = 1/2 and,
hence, that loudness is proportional to effective sound pressure over a large part of the
dynamic response range of hearing, Finally, Fletcher's earlier theory (ref. 3, pp. 263-
272) leads to the same result.

The subjective judgment of loudness ratios is very difficult. This is well illustrated,
for example, by Warren's data (ref. 21), as well as by those of Stevens and Guirao
(ref. 22). Judged loudness ratios have always been used to determine «@. The assump-
tion o = 1/2 attaches physical significance to loudness which is missing with other pro-
posed values of @. Thus, in the suprathreshold regime it would seem more reasonable
to let selected physical stimulus ratios define psychological loudness ratios, rather than
the reverse. In other words, the listener would be exposed to a tone at two amplitudes
differing by 6 decibels and would be told that one sound is twice as loud as the other. All
subsequent judgments would be based on this initially defined observation.

Warren and Sersen (ref. 23) and Warren (ref. 24) theorized that a listener's loud-
ness judgments are based up‘on his experience in estimating how the sensation varies with
his distance from the sound source. In concurrence with this theory they found that halv-
ing the loudness corresponds approximately to a 6-decibel decrease in sound-pressure
level. In contrast Stevens (ref. 25) rejected this proposition on the basis that, in his
opinion, loudness is determined by the operational characteristics of the auditory system
and that other judgment tests indicate that a 10-decibel decrease in sound -pressure level
corresponds to halving the loudness. Warren (ref. 24) agreed that if loudness, and not
distance, is primary, then it should be possible to establish neurophysiological functions
related quantitatively to the psychophysical functions. Such functions have been derived
in this report. Hence, the present model supports Stevens' thesis. On the other hand,
the loudness function predicted in this report quantitatively agrees with the function found
from loudness judgments by Warren. The fact that the two functions agree results from
the very special operational characteristics of the neural system (eqs. (4) and (6)).

CONCLUSIONS

On the basis of published electrophysiological data from the auditory nerve, a model
was proposed which yields a loudness function not dependent on human loudness judgment
tests but which does agree with loudness judgment tests reported by Warren. The follow-
ing specific results were obtained:

1. Electrophysiological data of Rose, Hind, Anderson, and Brugge indicate that
over the lower response ranges of individual auditory nerve fibers the action-potential
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discharge rates are proportional to the effective (rms) sound pressure of a sinusoidal
sound stimulus, whereas over the higher response ranges the discharge rates are essen-
tially independent of sound pressure.

2. Electrophysiological data of Katsuki, Suga, and Kanno indicate that over the lower
range of subjective response to a sinusoidal sound stimulus the total number of stimulus-
activated, auditory-nerve fibers is proportional to the effective sound pressure, whereas
over the higher range of response the total number of activated fibers is essentially in-
dependent of sound pressure. '

3. It was shown by using a model consistent with the preceding data, that, through-
out the dynamic range of hearing, the total neural discharge rate in the auditory nerve is
an almost linear function of the effective sound pressure, except near the threshold of
feeling, where the total discharge rate becomes independent of sound pressure. These
functions were designated herein as physioacoustic functions.

4. By assuming that the loudness of a pure tone is proportional to the difference be-
tween the total coherent discharge rates with and without the stimulus, the loudness
funetion was found to be approximated by

2~ 10%(In q + 12.4)(q - 2x1079) (0 =S <34 dB)
2~ 5x102 q (34 dB <§ =90 dB)
£~10%(4.4 - In q)q (90 dB < § < 120 dB)
2~ 3x10° (120 dB <S)

where q= (;2)1/ 2 is the effective sound pressure. The formulas are displayed graphi-
cally in this report. Over its range the second equation implies that decreasing the
sound-pressure level by 6 decibels results in halving the loudness.

5. Loudness was found to be dependent primarily on variations in the total number
of active fibers rather than on variations of the discharge rate per fiber averaged over
the ensemble of active fibers.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 19, 1973,
501-04.
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APPENDIX - SYMBOLS

a number of active fibers
C Euler's constant, 0.577
d ' number of dynamically active fibers
g(d, 0) ~Ind+ C + (1/2d) - O(d™2)
.d+s
g(d, s) = ), (/o)
o=1+s
i number of inactive fibers
j integer number of fiber
K(d,s) proportionality function in loudness function for higher stimulus ampli-
tudes
Kl(d, s) value of K(d, s) when loudness is 1 sone
k(d) proportionality function in loudness function
L4 loudness
N total number of fibers available for activation
o) order |
P pressure amplitude
P instantaneous sound pressure
(;2)1/ 2 - q effective sound pressure

<[:3 ef)l/ 2- Apef effective sound pressure corresponding to loudness threshold of
1-kHz tone, 2x107° N/m2

q= (pNZ)l/ 2 effective sound pressure v

R total coherent, action-potential discharge rate over all fibers
r coherent, action-potential discharge rate in individual fiber
ryq coherent discharge rate in dynamically active fiber

ry coherent discharge rate in inactive fiber

T | coherent discharge rate in saturated fiber
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sound-pressure level

8 number of saturated fibers

a exponent in loudness function

K proportionality constant in acoustic psychophysiologic function

A proportionality constant in discharge-rafé equation for dynamic range

b s proportionality constant in discharge-rate equation for saturation range

U proportionality constant in active-fiber -number equation for dynamic range

Bg proportionality constant in active-fiber -number equation for saturation range

o integer

$ whole-nerve, action-potential amplitude indicated using a gross electrode

@) average over ensemble of fibers

Subscripts:

a upper bound of dynamically active subrange I and lower bound of aétive
subrange II

b upper bound of active subrange II and lower bound of fiber saturation
subrange I

c upper bound of fiber saturation subrange III and lower bound of fiber and
rate saturation subrange IV

dyn dynamiéally active

inact inactive

j integer number of fiber

sat saturated

t dynamic response threshold of fiber

0 loudness‘threshold

Superscripts:

~

~

time average over auditory integration time (0.2 sec)

fixed value
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11.

12,
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14.
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TABLE I. - SUMMARY OF PHYSIOACOUSTIC AND PSYCHOACOUSTIC FUNCTIONS FOR ALL SUBRANGES

Subrange Number and nature Discharge rate formula, Loudness functiona, Equations
of active fibers R = £~
I - Dynamically active <N [r@(d,0) - (rplua+ N(r)) | 10% (in g + 12.4)(q - 2x107°)| 14b, 32a
(0 =S =< 34 dB) s=0
I - Active d+s <N {rled,s) + 1) - (r))} pa + N(ry) 5x102 q 16, 32b
(34 dB < S <90 dB)
101 - Fiber saturation d+s=N r/e(d,s) + 1]pq 102 (4.4 - In q)q 18, 32¢
(90 dB = S < 120 dB) :
IV - Fiber and rate s=N N(r,) = Constant ax10° 20, 32d
saturation (120 dB < 8) d=0
21 oudness functions follow from assumption: ¢ = (R - RO)'
21
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Figure 3. - Model of coherent electrical discharge rates in individual auditory
nerve fibers as function of effective sound pressure.
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Figure 4, - Number distribution of fibers as function of effective sound pressure,

(Not to scale. )
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Figure 5. - Predicted loudness function.
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