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1. Introduction

This report describes the second six months of a continuing pro-

gram for the measurement and analysis of the depolarization and atten-

uation that occur when millimeter wave radio signals propagate through

rain. Technical details covered in the previous report are repeated

only as necessary for clarity.

2. Narrative Summary of the Report Period

2.1 July

The antennas were installed on July 6 and fully aligned by July 10.

After alignment the residual cross polarization level on both receiver

channels was -51dB.

On July 15, lightning struck the local telephone exchange and

damaged the receiver, the PB-440 computer, and the remote system-status

indicator. The last two were repaired within a few days, but some

latent undetected receiver damage persisted until August and replace-

ment mixer diodes for the +45° polarized channel were not available

from the distributor until mid-September. Nevertheless, the receiver

was put into a temporarily acceptable (i..ê. with a slightly degraded

+ channel noise level) operating condition by the end of the month.

To prevent future lightning damage, protective circuits were installed

between the receiver and the telephone lines.



2.2 August

The system began taking data on August 4 with one receiver channel

and two rain gauges. Operations had been delayed by a receiver power

supply failure on August 1 which burned out the local oscillator (LO)

and damaged several transistors. The LO was returned to the manu-

facturer for repairs and replaced by its backup unit: a Hewlett

Packard (HP) sweep oscillator loaned by NASA.

Also on August 1, the transmitter power monitor failed and was

returned to the manufacturer for repair under warranty. In the interim,

another instrument was used to set and spot-check the transmitter out-

put, but it was insufficiently stable for on-line monitoring.

Two-channel operation began on August 10 and the first dual-

polarization data were taken on August 17. Shortly thereafter, a

drought began, and no rain fell from August 20 until September 14.

2.3 September

The LO returned on September 4 and was placed in service. The

drought ended on September 14, but a momentary interruption of the

60 Hz power main disabled the analog-to-digital converter and the

received signal levels were not recorded. This was the last thunder-

storm of 1972. All subsequent autumn rains were covered, but the

digital system will be modified before the 1973 thunderstorm season

to make it immune to power line transients.

On September 19, the transmitter failed and went back to the manu-

facturer for warranty repair. Once again the faithful HP sweeper was



pressed into service for the two weeks that the transmitter was absent.

It was noted that the residual cross polarization level of the antenna

system was higher with the sweeper transmitting than with the usual

transmitter. The probable cause was a spurious signal in the sweeper

output, down 30 or 40 dB from the main signal level. If such a

spurious output should lie outside the normal (and narrow) operating

bandwidth of the transmitting antenna feed, it might be transmitted

with an improper polarization and raise the apparent cross polarization

level at the receiver.

The installation of rain gauges #2, #3, #4 was delayed until the

telephone company could provide the necessary lines, but #3 and #4

were connected to the system on September 20. They were followed on

September 27 by wind sensor #1 (at the transmitter site). Since

September 27, no significant wind velocities have been recorded, so

a quantitative assessment of the role of wind in rain depolarization

must await future thunderstorms.

2.4 October

The transmitter returned to service on October 5.

On October 6, the residual cross polarization level fluctuated

erratically for about 30 minutes and then stabilized at -3dB. An

intensive search began for the cause; after about 20 man-days of work

a common housefly was discovered dead inside the transmitting antenna

feed! The fly had crawled into an open waveguide while the trans-

mitter was disconnected and made its way unerringly (obeying all of

Murphy's laws) to the. most sensitive part of the feed before expiring.



Sometime after the fly was removed, some difficulty in maintain-

ing long-term antenna alignment was experienced - i.e. after the antennas

were set the residual cross polarization level would slowly deterioriate

with time. This problem - thought to be mechanical - did not restrict

data collection, but it remains a nuisance to be corrected before spring.

After a minor power supply transient on October 11, the LO failed

again. It was returned to the manufacturer for evaluation, but the

repair cost approached the price of a new unit. A more rugged LO of

a different design will be purchased in 1973.

Rain gauge #3 began operation on October 15, completing the planned

rain gauge network.

2.5 November

Wind sensor #3 was installed on November 1 and its velocity trans-

ducer was connected to the digital system. The direction indicator

awaits the installation of a special power supply, but none of the

rains since November 1 have been accompanied by significant wind, so

no important wind direction data have been missed. The mid-path wind

sensor (#2) will be added before the next thunderstorm season.

During November, the receiver and transmitter were disassembled,

carried to the laboratory and tested. Except for a minor problem with

a loose attenuator card in the receiver (repaired when discovered) all

components were within specifications and were returned to the field.

At the suggestion of our NASA colleagues, the instantaneous behavior

of our received signals was examined and an effort was made to relate

observed mechanical vibrations of the receiving antenna to noise in

the receiver output. These investigations are continuing and will be



described elsewhere in this report.

With the onset of extreme cold weather, the transmitter waveguide

switches frequently froze overnight. Initial attempts to heat the

transmitter house failed, as electrical noise generated by the heater

interfered with the transmitter control unit. Heat tape wrapped around

the waveguide switches generated no noise, but its heat output was too

low. Accordingly, the transmitter control unit was redesigned to improve

its noise immunity.

2.6 December

In December, our data processing programs advanced to the point

where time-averages could be calculated for any data from any storm

and plotted on a digital plotter. These programs are summarized later

in the report.

On December 21, the modified transmitter control unit was installed,

permitting continuous heating of the transmitter house and eliminating

the problem of frozen waveguide switches.

3. Computer Data Processing and Experiment Control

3.1 Introduction

A Raytheon PB-440.computer assisted by a special-purpose con-

troller operates the experiment, acquires data, and does some preliminary

processing before storing the results on paper tape. Information from

the paper tape is transcribed to magnetic tape and then read into an

IBM 370/155 system for high level processing. This chapter outlines

the progress of the 440 system since the last report and describes the



present status of the 370 effort.

3.2 The Raytheon PB-440 System

3.2.1 Introduction

The previous report described the design philosophy and most of

the operating hardware in the PB-440 system. This section describes

three important programs now running which control the experiment, com-

press the incoming data, and convert the data to a decimal form (with

the proper units) acceptable to the 370.

3.2.2 Experimental Control

The experimental control program maintains the system in the

proper operating mode for current weather conditions and signal behavior.

It operates as follows:

The clear weather operating mode is called mode 0, and in it the

+45° transmitter channel operates continuously while the computer

monitors the + to - cross polarization level and the +45° direct

attenuation. Both receiver channels are sampled at 10 second intervals

while wind velocity and transmitter power are sampled every 100 seconds.

If the cross polarization level (in dB) changes by more than 2% or if

one of the rain gauges reports precipitation, the system begins operating

in mode 1. During mode 1 operation, transmission is sequenced at 4

second intervals from the + channel to the - channel and then to both

channels. Receiver sampling occurs at 1 second intervals and wind

velocity is sampled every 4 seconds. Mode 1 operation continues until

the precipitation rate falls below 6 mm/hr or until the cross polar-

ization level stabilizes. At this time, mode 2 operation is begun

with transmitter switching at 10 second intervals and receiver and



wind sampling at 2 and 10 second intervals respectively. Mode 2

operation continues until the precipitation rate falls below 3 mm/hr.

The system then enters mode 3 with transmitter switching at 100 second

intervals and receiver and wind sampling at 10 and 100 second intervals

respectively. When the precipitation rate falls below 2 mm/hr, the

system reenters mode 0 operation.

3.2.3 Data Compression

When a new data point enters the computer, the program locates

the last two values stored for that input. If the new value and the

last value differ by more than 1% (this value can be changed by the

programmer) the new value is stored. If the difference between the

new value and the last value is less than 1%, the new value is com-

pared with the next to last value. If these differ by more than 1%,

the new value is stored in a new location; if the difference is less

than 1%, the last value is discarded and the new value take its place.

Under typical operating conditions this scheme provides a 20:1 com-

pression of stored data.

3.2.4 Data Conversion

For all quantities except rain rate, data conversion is done

by linear interpolation using calibration curves for the input in

question. Each table contains 32 entries and the tables are updated

each time the system is recalibrated. Rain rates are computed di-

rectly from the time intervals between trips and are accurate to

within 3%.



3.3 IBM 370 Operations

3.3.1 Introduction

An IBM 370/155 computer program has been developed which pro-

cesses, analyzes, and plots the accumulated data from a number of

selected storms. These data are rain rates from each gauge plus

quasi-instantaneous (i_.e_. short integration time) samples of the

analog signals coming in during a storm. The latter are stored at

essentially regular times while the intervals between successive rain

gauge trips are random. Before data from different inputs can be com-

pared the computer must generate a time-function representation for

each data variable. These time functions can be averaged over appro-

priate time intervals to generate the average signal levels, rain

rates, etc., required by steady-state theory.

3.3.2 Time-Function Generation

The computer constructs a table of values and entry times for
I

each data input active during a given storm. For a given input channel

we will call the times of entry t. (where t. < t..,) and the correspond-

ing ,data points v.. The computer must build a time function v(t) which

will give the value of v at any time, t.

Our current algorithm makes a simple step-function fit to the

tabulated data points. For signal representation this method is not

as accurate as a piecewise linear approximation, but it simplifies the

numerical averaging that follows. Since the most frequently considered

signal parameter in this report is a 15-second time average (to which

about 15 data points contribute) the errors introduced by the step-

function fit are minor. Later programs will incorporate a piecewise-



linear approximation for all data but rain rates; these are presumed

constant between rain gauge trips.

To generate a value for v(t), the computer searches the data table

for t. such that t. < t < *.,,. If successful it makes v(t) = v(t.).

If t < t1 (the first data point in the table) the computer returns a

zero for v(t). (This happens infrequently in the processing of anything

but rain gauge data; for rain gauge data, the rate is zero before the

first recorded trip). If t is greater than the last entry time, t ,

then the returned value is the last in the table, v .

3.3.3 Time Averaging

Time averages are generated by numerically averaging the time

function values over a specified interval. The program in use will

average for arbitrary starting and ending times; 1,5,15,30,60, and

120-second running averages around successive reference points one

second apart are calculated routinely.

i

4. Data Presentation and Analysis

4.1 Introduction

During the period of this report data were collected for 19 storms.

Of these 19, the 6 with the highest rain rates are discussed in the

paragraphs which follow. Table 1 lists the dates of all observed

storms and identifies with asterisks those to be analyzed. Table 2

lists the important parameters of the selected group.

The discussion which follows will deal almost exclusively with

15-second running averages of both rain rates and signal levels.
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Table 1. Summary of Data for This Report Period

Storm Date Discussed Here

1 4 August 1972 *

2 17 August 1972

3 17 August 1972 *

4 18 August 1972

5 19 August 1972

6 14 September 1972

7 26 September 1972

8 27 September 1972

9 27 September 1972

10 27 September 1972

11 28 September 1972

12 29 September 1972

. 13 29 September 1972 *

14 4 October 1972

15 5 October 1972

16 24 October 1972

17 27 October 1972 *

18 13 November 1972 *

19 14 November 1972 *
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Measurements must be averaged before they can be compared with present

steady-state theory, but if the averaging time is too short, random

fluctuations will be overemphasized and if it is too long, significant

time variations will be suppressed. A preliminary screening of the

data indicates that 15-second averaging times provide reasonable cor-

relation between theory and experiment, so 15-second running averages

were adopted for this report. The influence of averaging times on

experimental results will be reconsidered later in the project.

4.2 Expected Behavior of the Data

The present model for predicting cross polarization levels has

been presented in several forms (Oguchi, 1964) (Saunders, 1971) (Thomas,

1971), but basically it depends upon polarization-dependent attenuation

of waves propagating through a population of non-spherical rain drops.

The exact attenuation values are known only at a few frequencies, so

theoretical predictions at most frequencies (ours included) involve
i f

extrapolation and interpolation.

If for our path and frequency we adopt Thomas's model of depo-

larization and Oguchi's attenuation values (interpolated to 17.65 GHz),

we would expect depolarization to vary with rain rate as shown in

Figure 1. This curve assumes +45° or -45° transmitted polarization

incident on uncanted drops; canted drops would produce smaller but

unequal cross polarization levels for the +45° and -45° cases. The

waves with the direction of polarization toward which the minor axes

of the drops are canted should depolarize the most.

Rainfall rate enters the differential attenuation model through
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the ratio of horizontal (for uncanted drops) to vertical attenuation,

Â /Â . (The rainfall rate and the wind velocity do determine the

average canting angle of a given drop population, but the mathematical

dependence is unknown and will be ignored in this discussion.) If the

attenuation coefficients for horizontal and vertical polarization are

a and OL^ dB/km respectively, then

and V-
(1)

(2)

where L is the path length in km.

For drops with canting angle <|> (measured between the minor axis

and the vertical) and waves polarized at an angle 8 from the vertical,

the cross polarization level in dB is given by

sin(e-<J>)cos(6-<}>)̂ A~ ~ '
XPOL = 20 logi (3)

1 + sin (6-<(>) (̂  - 1)

If the drops are uncanted (<j)=0) and the incident waves have l45c

polarization, the cross polarization level becomes

0.5 (̂ -

XPOL = 20 log,
'10

1 + -r^- 1)

(4)

As Â /A.. approaches 1.0 (_i.£. at low rain rates), the cross

polarization level is quite sensitive to small changes in A^/A^, while

for large Â /A.. (high rain rates) the sensitivity is greatly reduced.

For example, at R (rain rate) = 12.5 mm/hour, Oguchi's value of Â /A..

is 1.02 and XPOL = -40.09 dB. A 1% decrease is Ajj/Â  changes XPOL to

-46.06 dB (a 5.97 dB decrease) while a 1% increase in Â /A,, changes

XPOL to -36.61 dB (a 3.48 dB increase). Thus if Oguchi's A/A were
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correct to +1% at R = 12.5 mm/hour, one could measure cross polarization

levels anywhere from 5.97 dB below to 3.48 dB above the theoretical

value. For a 12% uncertainty in A^/A-, the R = 12.5 mm/hour cross

polarization levels range from - °° dB (A /A = 1.0) to -34.07 dB
H V

(Â /Â  = 1.04); measured values could lie anywhere below the theoretical

curve and up to 6.02 dB above it. Since Oguchi's Â /Â  values almost

certainly are not accurate to +2% for any rainfall rate and since the

rainfall along a propagation path would almost never be homogeneous

to within i2%, one should find considerable scatter in cross polarization

measurements at low rain rates. Our data bear this out.

The situation improves at higher rain rates. For R = 100 mm/hour

Oguchi's value of A^/Ay is 1.24 and the corresponding cross polarization

level is -19.40 dB. A J2% uncertainty in Â /Â  varies the cross polar-

ization level from -20.25 dB to -18.64 dB, a spread of only -1.61 dB.

This reduction in scatter at the higher rain rates is obvious both in

our data and in that of other investigators. For further emphasis,

Figure 2 displays the expected spread in predicted cross polarization

levels versus rain rate for a ±2% uncertainty in Â /Â .

Some scatter in the experimental values is expected - particularly

at low rain rates - and if the experience of other experimenters

(Shimba and Morita, 1972) is typical, the trend of the measured cross

polarization levels should be toward higher values than the theory

predicts. Whether this is because Oguchi's attenuation values are

low - as Thomas thinks (private communication) - remains to be seen.

As the next section illustrates, our measured cross polarization levels

are higher than expected.
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4.3 Experimental Results

4.3.1 Storm of August 4, 1972

This storm was the first that we observed. Unfortunately the -45°

polarized receiver channel was not working, so only data on +45°

attenuation and on -45° to +45° cross polarization were taken. Rain

rates were measured by two gauges, one at each end of the path. Fig-

ure 3 presents the results in terms of a time history of the storm.

(All points plotted in this and subsequent curves represent 15-second

running averages.) Some correlation between cross polarization level

and rain rate is evident but the attenuation seems to be little

affected by rain rate.

Figure 4 is a scatter plot of the cross polarization level versus

rain rate. The points indicated by a triangle are the Oguchi predictions

for our path. The plotted points are 15-second running averages taken

at one second intervals. Since the expected scatter at low rain rates

is large and since low tipping-bucket rain rates are not representative

of the instantaneous rain rate, measured values for rain rates less

than 10 mm/hour have been deleted from all scatter plots in this report.

The agreement between experimental and theoretical values in

Figure 4 is remarkably close, particularly in view of the scatter

predicted for a hypothetical _2% uncertainty in Oguchi's theoretical

AU/A^ values. With only two rain gauges operating, the inaccuracy

in the measured rain rates alone almost certainly exceeds ±2%.

In Figure 5 the experimental cross polarization values falling

within each 1 mm/hour increment of rain rate have been averaged and

plotted to display the average results for the storm. Most points lie

close to the theoretical curve.
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4.3.2 Storm of August 17, 1972

The second storm on this date provided more data than any other

storm discussed in this report. Figure 6 displays the time history

of the storm and indicates that the peak rain rate occurred about 5

minutes after the storm began. Both receiver channels were operating

and the difference in rain attenuation for +45° and -45° polarization

is evident. The identity of the strongest (less attenuated) polar-

ization changed about 7 times during the storm, and there were several

periods when the attenuation on one channel was about 1 dB less than

on the other. This effect holds the promise of improving satellite

system performance through polarization switching, but the degree of

improvement to be expected on a satellite path cannot yet be predicted.

For most of the storm the +45° to -45° ("+ to -") and -45° to +45°

("- to +") cross polarization levels were unequal. This indicates that

the drops were canted and that by current theory the canting was

generally toward the +45° direction. Note that this effect is not

reflected in the measured attenuations; a need for further refinement

of the theory may be inferred.

Figure 7 is a one-point-per-second scatter plot of the depolar-

ization level as a function of rain rate with + to - conversion shown

as a | and - to + conversion shown as a +. Note the reduced scatter

at high rain rates. The correlation between theory and experiment

is more marked in Figure 8 where the points in the previous figure

are averaged for each integer rain rate value.

4.3.3 Storm of September 29, 1972

This storm provided considerable cross polarization data, as
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Figure 6. August 17, 1972, time history.
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indicated on the scatter plot of Figure 9. The difference between

the +45° and -45° cross polarization levels is striking and would seem

to indicate rather pronounced canting. Note that the average depolar-

ization as shown in Figure 10 generally agrees with the theoretical

predictions.

4.3.4 Storm of October 27, 1972

This storm produced some rather surprising data; see Figure 11

for its time history. A period of intense rain came about 25 minutes

after the start of the storm and was accompanied by extreme increases

in cross polarization level and attenuation on both channels. These

effects were displaced somewhat in time. Unfortunately the IBM 370

program halted prematurely and scheduling problems have precluded

completing the curve in time for this report. Of considerable interest

are the levels to which the direct and cross polarized signals returned

at the end of the rain.

With no other information than the direct signal level, one

might wonder if the equipment were operating correctly. The behavior

of the cross polarization levels in the scatter plot of Figure 12

and the average plot of Figure 13 indicates that it was functioning

normally, as the measured cross polarization levels agree well with

those of the other storms presented. The time variation of attenuation

during this storm remains to be explained.

4.3.5 Storm of November 13, 1972

Figures 14 and 15 show the scatter and the average values of

cross polarization level as a function of rain rate.
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4.3.6 Storm of November 14, 1972

Data from this storm are displayed in Figures 16 and 17.

4.4 Conclusions

Figure 18 is a composite scatter plot which includes all of the

cross polarization levels presented in this report. Figure 19 shows

6 storm average - to + depolarization for each integer rain rate and

Figure 20 is a similar plot lumping *- to + and + to - levels. The

values in Figure 20 are heavily biased by the storm of November 14 (see

page 5). The agreement with theory is generally good, but particularly

at low rain rates the theory predicts values which are too low. This

is significant, because an operating communications system will encounter

low rain rates much more frequently than very high ones. The need for

further experimentation and more exact theory is obvious.

5. Theoretical Investigation

The experimental results presented in the previous chapter under-

score the need for an accurate theoretical model to predict the amount

of depolarization at a given rain rate. The model must include both

frequency and wind effects and to be most useful it should be applicable

to signals scattered in any direction.

There are two approaches to the problem - the stochastic and the

deterministic - and both are under investigation. The deterministic

model first requires the solution for scattering by a single raindrop;

this is really the problem of a plane wave incident on a lossy dielectric

oblate spheroid, and it has never been solved exactly. The low-

frequency approximation available in the literature (Stevenson, 1953)
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involves a two term series representation with each term requiring

many calculations. The first term gives Rayleigh-type scattering and

is sufficient to approximate the scattered field amplitude. The phase

of the scattered field is very important in attenuation calculations,

but the phase given by the first term alone is highly inaccurate.

We are currently investigating the effect of including the second

term. After the single-drop problem is solved the real rain situation -

an ensemble of drops - must be attacked.

A stochastic solution is also possible and may be pursued. This

treats rain as a random medium and seeks the expected values of the

scattered fields.

6. Antenna Vibrations and Signal Fluctuations

Nearby machinery causes the wall on which our receiving antenna is

mounted to vibrate, and we are investigating the influence that these

vibrations may have on our data. A time-domain study has been completed

and a comparison of the antenna vibration frequency spectrum with the

frequency spectra of the receiver outputs is planned.

Both receiver outputs are taken from identical logarithmic video

amplifiers which pass undistorted all signals with rise times of 0.1

microseconds or less. These circuits normally drive the analog to

digital converter through a voice-grade telephone line and a .04 second

RC integrator; the telephone lines and the integrator suppress some of

the scintillations in the received signal.

To make a worst-case analysis of the existing situation, we removed

the telephone lines and connected a 2 kHz bandwidth Honeywell Visi-

corder to the receiver output. To eliminate DC saturation of the
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Visicorder a 200 microfarad blocking capacitor was placed in series

with the instrument. The co-polarized and cross-polarized receiver

signals were both recorded at chart speeds of 50 and 10 inches per

second. The original records were forwarded to NASA; since their low

contrast precludes Xerox reproduction, they do not appear in this

report.

The principal features of the cross polarized signal were a 120 Hz

component modulated by a 15 Hz signal, the composite waveform having a

peak-to-peak swing of about 0.025 volts. Our nominal cross polarized

signal level is about 1 volt, so that in the worst case noise represents

about 2.5% of the unfiltered cross polarized signal level.

The co-polarized signal exhibited a 60 Hz ripple of about 0.009

volts superimposed on a nominal 2.5 volt signal level. Hence the noise

component of the unfiltered co-polarized signal is about .0036%.

Whether the noise observed in the receiver output represents

antenna vibrations, transmitter or receiver power supply hum, or

extraneous 60 Hz pickup somewhere in the receiver is at present unknown.

We intend to attach an accelerometer to the receiving antenna and com-

pare a spectral analysis of its output voltage to the receiver output

spectrum. This will confirm or eliminate the antenna vibrations as a

noise source. Whatever the source of the residual noise in the receiving

system, the noise at worst represents less than ±2.5% of the recorded

signal levels and this is well within the expected accuracy of the overall

experiment. Under clear-weather conditions our data compression pro-

gram (see page 7) indicates that after filtering cross polarized signal

fluctuations in excess of 1% are infrequent.
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