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INTRODUCTION

1. Literature Survey

The prospect of nuclear fusion recently has stimulated a great deal

of interest in the production of clean, very high temperature plasmas.

Focusing the beam of a Q-switched laser in a gaseous medium creates a

microexplosion and an extremely hot plasma is formed. A typical laser

pulse has a peak power of 100 MW and a width at half power of 20 ns. The

necessary energy concentration for breakdown corresponds to electric fields

of the order 10 -10 V/cm; then gases normally transparent to laser light

become ionized and hence absorbing.

The first reported such experiments are by Meyerand and Haught [1,2]

and Damon and Tomlinson [3] in 1963. Since then a great many investigators

have approached the problem from both experimental and theoretical points

of view. The whole phenomenon is usually divided into three distinct

phases: 1) breakdown mechanism 2) expansion of plasma during the laser

pulse 3) decay of plasma after the pulse.

Experimental evidence is considerable and only a very brief survey

will be attempted, more extensive descriptions can be found in the litera-

ture and a reference list is given in a very complete bibliographical

review by C. DeMichelis [4] in 1969. Experiments concerning the first

phase measure the threshold energy density as a function of various

physical parameters: gas pressure [5,6,7], frequency of laser radiation

[8,9], focal length of lens and hence energy losses by diffusion from the

focal volume [6,7] and even space and time variations of the laser beam.

The results show the threshold to decrease with increasing pressure with

a minimum in the very high pressure range (5,000 psi), to exhibit a peak

as function of frequency, to increase with decreasing focal length and

to be fairly insensitive to variations of the laser beam. A large

selection of gases were used: air, rare gases and some metal vapors.

The most striking feature of the second phase is the speed at which
7 8the front moves against the laser beam, typically 10 -10 cm/s. This



motion has been recorded using techniques such as streak photograph (first

by Ramsden and Davies [10] then various investigators [11,12,13]), Doppler

shift of the radiation scattered by the plasma [10,14,15,16], Schlieren

photographs [17] and scanning photographs [14,15,16],

All the experiments report longitudinal and lateral velocities as

function of time. A note must be made about the experiments of Veyrie and

Floux in 1968 [18] and Korobkin and al. in 1968 also [16] which show dis-

continuous motion of the front in direction of the lens suggesting a

possibility of multiple breakdown. This effect has been explained by Evans

and Grey Morgan [19,20]: primary spherical aberration of simple lenses

causes peaks of intensity along the beam axis thus creating several

possible regions of breakdown; the spacing between these regions is shown

to agree very well with Korobkin's experiment. In fact Veyrie and Floux

[18] reported that multiple breakdown did not occur when using a lens

perfectly corrected for spherical aberrations. Other physical quantities

pertaining to the second phase have been measured: electron density by

interferometry [21,22] and temperature from X-ray emission of the plasma

[15,23,24,13].

Experiments have been also performed during the third phase. Observed

were the plasma motion [10,12,25], electron density from microwave trans-

mission and reflection in a report by Askarayan and al. [26] (they also

point out the existence of an ionized region ahead of the front), and

temperature from spectroscopic studies [27,28,14].

The three phases have been subject to theoretical studies. The break-

down itself is generally described in terms of multiphoton ionization and

cascade ionization. Since the probability of a free electron to occur

naturally in the time interval considered (20 ns) is very low, the first

electrons are believed to be created by a multiphoton ionization process in

which several photons are simultaneously absorbed, their combined energy

being sufficient to knock off an electron from a neutral atom. The

probability of such an occurrence has been calculated and hence the

threshold fields [29,30,31]. Except at very low pressure, order of



magnitude agreement with experiments is obtained only if the computation is

limited to the creation of a single electron in the focal volume thereby

indicating that another process takes over to achieve the plasma electron
18 —3density (typically 10 cm ) , namely cascade ionization. Free electrons

absorb energy from photons by inverse bremsstrahlung until they are

sufficiently energetic to knock off a new electron by collision with a

neutral atom giving two free electrons [32,33,34]. A cascade develops

according to N = N e11'1 with T: cascade time constant depending on the

electric field and breakdown occurs if N reaches a critical value during

the laser pulse. It should be noted that neither of these two processes

can account for the experimentally observed frequency dependence of the

threshold field.

Before turning with somewhat more detail to the theoretical investi-

gations of the second phase, it may be noted that the last phase has been

described in terms of blast wave theory [35,]. Panarella and Savic [36]

developed a perturbation theory from a spherical blast wave assuming

locally radial flow: the shape initially oblong due to asymmetric energy

addition evolves to a spherical blast wave.

The second phase, expansion of the plasma under the influence of the

laser pulse has been theoretically described in terms of three quasi one-

dimensional mechanisms: a radiation supported detonation wave, a breakdown

wave and a radiation transport wave.

The radiation supported detonation mechanism, first proposed by Ramsden

and Savic in 1964 [35] assumes the wave front to be a shock wave followed

by a layer in which the laser radiation is absorbed. Thermal reradiation

from the hot plasma is neglected. Using quasi one-dimensional conserva-

tion laws across both the shock and the absorbing layer and postulating

Chapman- Jo uguet (normal detonation) conditions behind the discontinuity

Ramsden and Savic arrived at

D - [2 (Y2-D £^ ] (I-D
PO

where D is the wave velocity, Jo the heat flux and P0 the density of the

gas ahead of the wave. Taking into account the conical character of the



2
focused laser beam, J ~l/r and integrating (1-1) with respect to time

3/5they showed that the radius of the detonation front grows as t for a

constant power laser and hence
P

D = K(-)
Po

where K is a constant and PL the laser power. Raizer in 1965 [37] extended

the model to general hydrodynamic discontinuities (not necessarily Chapman-

Jouguet) and attempted to include the effect of lateral expansion of the

plasma. In a not very clear paper by Champetier in 1965 [38] the purely

one-dimensional plane motion of the gas behind the detonation wave is

investigated: an expansion wave follows the. front whereas an entropy line

and a shock wave travel in the direction opposite to the lens. The effect

of time dependence of the laser pulse was considered by Daiber and Thompson

in 1967 [12]: in the case of a Gaussian pulse shape the time exponent of

the radius of the detonation is shown to be -3/5 when initial breakdown

takes place near the peak of the Gaussian and larger for breakdown

occurring at earlier instants. They also developed a model for gases

(like hydrogen and deuterium at pressure less than 3 atm) almost trans-

parent to laser radiation. A last improvement was made by Key in 1969

[39]: ionization was included in the gas law, the net effect being to lower

the wave velocity and gas temperature for the same heat flux.

Champetier and al. in 1968 [40] and Wilson and Turcotte in 1970 [Ala]

independently studied the flow behind a spherical laser-driven detonation

for constant power addition. Both used a self similar analysis of the kind

Sedov [42] first proposed for regular blast wave; the hydrodynamic. equations

'were integrated in a temperature-velocity plane starting from the saddle

point corresponding to the origin. It was found that the wave front is not

Chapman- Jouguet but rather overdriven (i.e. the gas behind the detonation

is subsonic with respect to the front). Wilson [41b] also considered the

case of linearly increasing power as well as plane and cylindrical

geometries.

The breakdown wave mechanism is based on the idea that during the

increasing part of the laser pulse breakdown conditions which were satified



at time to, at the focus assumed to be of cross sectional area AO, will

be met further up the beam at location r of larger cross section A at a

later time t. In 1965 Raizer [37] postulating that breakdown occurs by

cascade ionization from an original number of free electrons present in

the cold gas proposed as breakdown criterion that the electron density

reaches a certain critical value. If the cascade time constant T is

simply inversely proportional to the heat flux this criterion yields a

breakdown wave motion characterized by the time integral from zero,

beginning of the pulse to t of the heat flux at location r being a

constant. For the rising part of a triangular pulse of maximum power Pmax

at time t^^ the front velocity is obtained

D '- K (Pmax) — - — (1-3)
tmax tn °

where K is a constant function only of the electron cascade and the critical

electron density; a is half the divergence angle of the laser beam. Alcock

and al. in 1968 [43] remarked that the free electrons necessary to initiate

the cascade could be produced by precursor ionization due to the thermal

radiation emitted by the hot plasma. They modified Raizer fs model by

saying that the initial electrons exist only at time t^ just ahead of the

wave; the breakdown motion is then described by the time integral from t,

to t of the heat flux being constant. Alcock and al. [43] further assumed

(without any theoretical basis) that the time lapse t - t, between pre-

ionization and actual breakdown at any station is a constant t, . Under

these hypotheses the wave velocity for a triangular pulse is obtained

D = K (2a£) b (1-4)
l in55^ (2t -

It differs from (1-3) by the inverse square root time dependence of the

velocity.

Another and simpler breakdown criterion was proposed in 1965 by

Ambartsumyan and al. [44]: if breakdown occurs at the lens focus for a

laser power P , it will occur at station r for a power P equal to P

times the ratio of the beam cross sectional area at r to that at the focus.

Again for a triangular pulse the wave velocity comes out to be



1/2 '
D - K' Cmax) 1 1. (1-5)

tmax tn a 1 172

where K" is a constant containing Pn as well as the focal cross section

area. Canto, Reuss and Veyrie in 1968 [45] introduced the cascade time T

in a similar model: breakdown occurs at station r and time t if the heat

flux at r and time t - T was a critical value J . The wave velocity iss
modified from (1-5) only by changing t L'2 into ( t -T) . They also

pointed out the possibility for transparent gases of a breakdown wave

based on the transmitted power traveling in the direction opposite to the

lens .

In summary, as shown by (1-3) to (1-5), whatever the breakdown
p

criterion used, the wave velocity is large for steep pulses (large - )

and long focal lengths (small tn«) ; the time dependence is more

sensitive to a detailed description of the breakdown mechanism.

The radiation transport wave was also proposed by Raizer in 1965 [37].

This elegant idea has not been subject to further developments since then.

Raizer observed that in air, although the hot plasma is transparent to the

thermal photons it emits, these have a very short free path in the cold

gas ahead of the front. Therefore an ionizing precursor is formed; when

the level of ionization in this precursor becomes sufficiently high the

laser light is intensely absorbed and a new layer of hot plasma forms.

The whole process is continuous and can be characterized as a radiation

diffusion process involving two radiation absorption lengths: the mean

free path of laser photons in the hot gas and the mean free path of thermal

photons in the cold gas. Raizer computed the forward emitted thermal

radiation from the plasma by assuming its shape to be a semi-infinite

cylinder the cross section of which is the focal cross sect-ion of the beam.

He arrived at a velocity dependence on heat flux D~JO '

The three mechanisms for the expansion of the plasma under the

influence of the laser beam are in competition and it is believed that the

fastest velocity corresponding to a particular physical situation is the

one which is observed in an actual experiment. Slow rising pulses and

short focal lengths are associated with radiation driven detonations whereas



fast rising pulses and long focal lengths are explained by a breakdown

wave mechanism. Indeed in an experiment by Floux, Guyot and Langer in

1968 [46] a laser pulse was used which exhibited two distinct slopes in

the rising part; the wave speed corresponding to the steep slope was shown

to agree with a breakdown wave model whereas the wave speed associated with

the lesser slope agreed with the detonation theory. The only case where

the radiation transport wave has been used is by Raizer [37]; he found that

for the particular physical situation corresponding to the experiment of

Mandel'shtam [14] the radiation wave velocity came out very close to the

detonation wave velocity.

2. Present Work

As seen from the above bibliographical survey, theoretical studies of

the plasma expanding under the action of the laser beam have been dealing

mostly with the wave front and have been limited to one-dimensional models.

The only descriptions of the flow inside the plasma have been for a

spherically symmetric spark whereas in experimental conditions oblong

asymmetric shapes were reported. From the point of view of nuclear fusion

the geometrical and temporal distributions of physical variables are

important, in particular temperature and density. As far as plasma

containment is concerned an understanding of the spark shape as a function

of the laser power distribution would be helpful.

The present work is concerned with the fluid mechanical theory of the

developing spark during energy deposition from the laser beam; the wave

front is assumed to be a radiation-driven detonation wave. Consider the

cylindrically symmetric geometry of fig. 1: the laser beam focused at the

origin 0 has a certain heat flux distribution in the azimuthal coordinate

6. A non-spherical plasma is formed and grows with time being led by the

detonation front. The purpose of this thesis is to investigate the flow

inside the spark as well as the front shape dependence on the angular

distribution of the laser power. The general equations describing the flow

and the boundary conditions corresponding to an energy absorbing narrow



layer are presented in Chapter I. A self similar analysis is proposed as

well as conditions required for it. In Chapter II a perturbation scheme

is derived for a small perturbation of the laser power from a purely

spherical distribution. The zeroth order spherically symmetric solution

is reviewed and the first order perturbation from it is obtained in a

series of Legendre polynomials in cos 8. Numerical integration from the

origin to the boundary was used. The dependence of the detonation front

shape on the power distribution is presented together with velocity,

density and pressure profiles inside the spark. This first order perturba-

tion solution exhibits a singularity at the focus which is analyzed and

discussed in Chapter III. Finally, Chapter IV contains a summary and some

concluding remarks.



CHAPTER I

GENERAL EQUATIONS AND BOUNDARY CONDITIONS

1. Boundary Conditions for an Absorbing Layer

The plasma boundary is described as a moving energy absorbing layer

constituted by a high velocity curved shock wave followed by a narrow

region in which the energy carried by the laser photons is deposited. The

laser beam is focused on the origin 0 and is characterized by a 6 - distri-

bution of heat flux; the power may also be time dependent. The strong

shock elevates the gas temperature and density so that the laser photon

mean free path becomes very small (Raizer [37] mentions for air at normal

density and temperature of - 5 10̂ °K mean free paths of the order of 5 10~

cm.). Rankine-Hugoniot jump conditions will be derived from the undisturbed

gas "o" to the hot gas behind the absorption layer "d". Three cases are

considered: normal steady wave, oblique steady wave and unsteady wave.

The following assumptions are made: a) the thermal reradiation from

the plasma is neglected on the basis that the emission length (typically

several cm for conditions above) is much larger than the plasma dimension

(a few mm at the end of the pulse) thus making the plasma transparent to

its own thermal emission; b) the layer width is small compared to the

front radius of curvature and to any length associated with changes of

heat flux along the surface: this allows the application of locally one

dimensional jump conditions c) the perfect gas law is used which is not

an unreasonable description of a fully ionized plasma d) radiation pressure

and energy are neglected; Zeldovich and Raizer ([47] p. 141) show that in

air at normal density, due to multiple ionization, temperatures of 0(3.10

K) must be reached for the equilibrium radiant energy to become comparable

to the fluid energy.

Steady normal wave;

Po

Pd



Consevation of mass, momentum and energy from "o" to "d" yields the

following, set of jump conditions: (see e.g. Raizer [37])

p u = p u . (1)
o o d d

p + p u2 = p + p u2, (2)
o o o d d d

1 U
2+ e + Po + J = 1 u2, + e + Pd . (3)

70 o ~ d d TTT
* p0 POUO 2 Pd

p is density, u is velocity, p is pressure and e is internal energy per

unit mass. It is noted that J/p u is the energy per unit mass associated
o o

with the laser heat flux J. To obtain boundary conditions on the physical

variables at "d" equations (1) to (3) are solved for u , p., p, making use
a d d

of the perfect gas law and defining the Mach number ahead of the wave
7 2

M = Po.uo (is the ratio of specific heats at constant pressure and
o YPo
volume)

u - u f (4)

(5)

Pd = Po + Vo (1 - f)

from which the Mach number behind the wave can be obtained as

M
o

where f is defined by

- D
M o o
o

When J = 0 the + sign in formula (8) corresponds to the trivial

solution whereas the - sign gives the familiar density jump across a shock

wave. The necessity for the radicand in (8) to be positive yields a

minimum possible wave velocity: for example for a very strong wave M •*» one
J 1/3 °

gets u > [ 2 (y2 _ 1) — ] . The equal sign corresponds to the Chapman-
o ~ po

Jouguet detonation velocity obtained by Ramsden and Savic (1-1) . The

choice of the - sign in (8) gives an overdriven detonation characterized

by a subsonic downstream flow (M < 1) ; the •+• sign corresponds to an under-
d

driven detonation with a supersonic (M, > 1) downstream flow. For constant
d

10



upstream flow conditions and varying heat flux it is seen that the gas

velocity behind an overdriven detonation is less than behind a Chapman-

Jouguet detonation which in turn is less than that behind an underdriven

detonation; on the contrary density and pressure are larger behind an

overdriven detonation than behind a Chapman-Jouguet one, the latter being

larger than those behind an underdriven one.

In the model adopted here only Chapman-Jouguet or overdriven

conditions are physically acceptable; behind the leading shock wave the

flow is subsonic and further energy addition can only increase the Mach

number towards one. The crossing of the sonic point is impossible unless

heat is somehow removed in the supersonic region (e.g. by radiation losses).

It should be noted that for continuous changes from "o" to "d" (i.e.

without shock) like a breakdown wave or a radiation-supported wave the

- sign would be the appropriate one and thus would correspond to an under-

driven deflagration.

Steady oblique wave:

u

The upstream velocity, parallel to the heat flux vector forms an

angle a with the direction normal to the wave front. The jump conditions

(1) to (3) apply now the normal velocity and heat flux components and the

velocity component v parallel to the front is preserved. Boundary

conditions are obtained, with u the normal velocity behind the wave:
nd

u cos a f
ond

v, = u sin a
d o

P = P / fd o

p + p (u cos a) (1 - f)
o o o

(9)

(10)

(11)

(12)

11



The total Mach number behind the wave is
2

M.
f2 + tn2 a

(13)

+ 1 - f]
M
on

M is the upstream Mach number based on the normal velocity component
on
u cos a; f is now defined as
o

„M
3 2

P u cos ao o

-]

on ' on
The Chapman-Jouguet wave is again defined by the radical in (14) being

zero. This can be seen to correspond to a normal downstream Mach number
2 J

of one. A minimum possible wave speed is associated u - [2 (y -1) 3—
o ^ o

] (for M -»• <>°)which is larger than the corresponding normal2
cos o
minimum wave velocity. The flow behind a Chapman-Jouguet wave is supersonic

(M > 1) and can be supersonic, sonic or subsonic behind an overdriven wave
d

depending on the magnitude of the radical.

Unsteady wave;

D

V Po pd> Pd

The upstream flow from the two steady cases is brought to rest by

superposing a velocity -u . Regardless of whether the steady wave was
o

normal or oblique, the unsteady velocity u, behind the wave is normal to
d

the front; D is defined as the normal component of the front velocity. Of

course the heat flux will generally form an angle a with the normal. The

following unsteady boundary conditions are obtained, where J represents the

magnitude of the heat flux:

u = D (1 - f) (15)

p + p D (1 - f)
o o

(16)

(17)

12



f ̂  7TT I * + —2 ± ) 2 - » .J (18)
MD V MD PQ D

M is the Mach number based on D. p and p . It is
D o o

noticed that contrary to ordinary shocks f does not go to a constant when

M -»• « but generally remains a function of the wave velocity and front

location (through J -1/r and cos a). This feature makes boundary conditions

rather more difficult to apply than for ordinary blast waves.

2. Basic Differential Equations

The differential equations describing the flow behind the absorption

wave are those for compressible non-viscous, non-heat conducting fluid.

Neglecting thermal reemission makes the flow adiabatic and hence isentropic.

Perfect gas law is assumed to apply. Equations are simultaneously

presented in spherical and cylindrical coordinates; r is the spherical or

cylindrical radius, 0 the azimuthal angle measured from the axis of

symmetry in spherical geometry and a fixed reference direction in cylindri-

cal geometry; u is the radial velocity component, u the tangential veloc-
r o

ity component. Axial symmetry exists in spherical geometry and physical

quantities are independent of the z - coordinate in cylindrical geometry.

No swirl is present. If v is defined such that v = 1 applies to the

cylindrical case and v = 2 to the spherical case, the continuity, r -

momentum, 6 - momentum and isentropy equations are:

.? /„ X(pu )
or t

9u
- u 4

r 3r

. v .
+ r PUr "

1 3ur
' r U6 99

1 3 v - 1
' r 3e (PU9) + r

r p 3r

Ve

3. Self-similar Processes

The solution of the set of four non-linear partial differential

equations (19) to (22) in three independent variables r, 9, t subject to

13



boundary conditions (15) to (18) which not only apply at an a priori

unknown location r (8, t) but also contains the unknown quantity r,
: • • d • • • • ' " - • • d

through D, cos a, J, appears a formidable task indeed. Furthermore, •, ',

initial conditions have to be supplied which depend on the complicated

starting process, namely the initial breakdown mechanism briefly discussed

in the introduction. Under appropriate conditions self-similarity will be

shown to apply, this allows to reduce the number of independent variables

to two: 8 and the similarity variable X ~r/t . In a self-similar process

the values of the physical variables describing the flow at station r and

time t can also be used to describe the flow at earlier time and larger r

or later time and smaller r, provided the value of ^ remains the same.

Self-similar flows do not need initial conditions and because of that

generally fail to properly include the initial stages of a physical

phenomenon.

Spherical and cylindrical cases will be treated simultaneously. The

laser beam is characterized by its angular and temporal power distribution

tp( Q, t) from which the heat flux hitting the wave front is

j ( e,t) = *
 (e>t)— (23)

[rd(6,t)]
v , • ..v ; . :

Self-similarity is obtained when the two following conditions are

satisfied: a)'fi is specialized to a power-law time dependence . . . . . . -• ,

^( 6,t) = PT tf g• (6) -' '• (24)
Li

where P is a constant representing power per unit time to the K and g (6)
.L '

is a non-dimensional function of the azimuth; b) very strong waves are

considered i.e. M ->• °° and p r>- 0. This in fact means neglecting the

static pressure ahead of the wave compared to its dynamic pressure; for high

velocity waves as those experimentally observed this assumption is

certainly valid. An analysis is made in Appendix A which includes finite

pressure p for a spherically symmetric spark: the results are presented
2

in the form of a perturbation in 1 / H from the self-similar solution.

Dimensional arguments can be used to determine the proper similarity

variable (see Sedov [42] ). The overall physical problem possesses only

14



two dimensional parameters: P of dimension mass times length to the v
Li

divided by time to the (< + 3) and the undisturbed density p of dimension
o

mass over length cubed. It is seen that the ratio P /p contains only the
Li O

dimensions of length and time. The non-dimensional similarity variable is

thus defined

r

At" 1
(25)

with v + 3
n = ̂ -~ and A = [ _L ( y - 1) a ] (26)

Po

a is a constant to be obtained as part of the solution. It will be chosen

such that the boundary of the spherically symmetric spark is A = 1. From

(25) it is seen that the boundary is now located at

A = h (6) (27)

or in physical variables r, = h (0) A t .
d

The self-similar variable can also be obtained by considering the

boundary conditions; in particular it is necessary that the density ratio

across the wave be time-independent. Looking at the last term of 'the radi-
t<

cand of (18) it is required that the quantity — (the dot

*/ <v
represents time-derivative) be not a function of time. Integrating that

K + 3
quantity with respect to time one obtains r, - t ; defining X as r/r,

d ' v -+ 3 d
one recovers (25) - (26) when all constants are taken into account.

The explicit time dependence in the set of differential equations (19)

- (22) can be shown to cancel out when the velocities, density and pressure

are respectively non-dimensionalized by A t , p and p (A t ) (see
o o

e.g. Rae and Kirchner [48]). This result actually holds for any values of

A and n. This type of self-similarity although limited to spherically

symmetric geometry was first proposed by Taylor [49] for ordinary blast

waves, it differs slightly from Sedov's [42] type in which the non-
2

dimensionalization is carried with respect to r/t, p and p (r/t) .
o o

The self-similar equations are obtained by changing variables in

equations (19),- (22) from r, 9, t to A,6 and introducing the self-

similar physical quantities (represented by capital letters) functions only
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of A,9 :
u = n A t n V ( A, 9) . . ' : . ' ' (28)

u = n A t n~ W ( A,6 ) (29)
0

. p - p R ( A,6 ) • (30)
O i

,p = p (n A t n~1)2:P ( A,6 ) (31)
o

canceling out the explicit t - dependence in all equations one gets

D. . R + R [V, + v 7 + 7 Wo + (v -1) cote - W] = 6 (32)
AD A A A 8 A

; "'

.
A9 n A R A 9

DXQ ' P + 2 S^- P + Y P [ VA +v y + y We + ( v-i) Cot9 i' W] = 0 (35)

where D is a linear differential operator defined by

DA^ E (v-A)iVwi r?
The boundary conditions (15) - (18) are also recast in self-similar form.

First, from (27) the normal component of the wave velocity and the angle a,

defined positive from the external normal direction to the front to radial

direction, turn out to be: ,_
1 ,i^ -l/<£

D = n A t ( l + ~ •) (37)

, ,2 h

cos a = ( 1 + — )~1/2 (38)

h 2
sin« = - I' ( 1 + ̂j) 1/2 (39)

n

h' is the derivative of h (6) with respect to 0 . Then, remarking that the

velocity behind the wave which is perpendicular to the front yields both a

radial and a tangential component the final boundary conditions come out:

at A = h (6) 2

Vd - (1 - f) h (1+ ~ T1 (40)
h
, ,2

W = -(1 - f)h' (1 +~-) (41)
h

j -
)2

P , - (1 - f) h2 (1 + ̂ ~ )~1 (43)
d h 2

16



with f - -- [ Y - i-2 - (1 + ) j (44)
Y X V a n li (6) hz

Only the - sign will be retained in f, consistent with the chosen detonation

wave model. The problem has now been reduced to a system of four non-

linear partial differential equations in two independent variables. The

boundary conditions still contain an unknown function h (9).

It may be noticed that the self-similarity presented here is the

same as for spherically symmetric geometry; this results from the fact that

the angular distribution of power g (6) does not introduce any new physical

length in the problem.
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CHAPTER II

SMALL PERTURBATION OF A SPHERICAL SPARK

1. Small Perturbation Assumption

Throughout this chapter only constant power in time will be

considered i.e. < = 0 and hence n = 3/5. The geometry will be spherical:

v = 2. Consider the following arrangement: a battery of lasers all

focused at the same point creates a slightly non-spherical angular

distribution of power:

g(9) = ̂ [ 1 + eG (8) ] (45)

where e is a non-dimensional parameter much less than one. The object

of this investigation is to determine the spark shape and the plasma flow

resulting from such a power distribution. Since a uniform change in power

level can easily be treated by a perturbation of the definition of A

(see eq. (25)) the function G (6) will be chosen such that the total power

P-f remains unchanged. This is expressed by the condition

1^ G (6) sin 9 d6 = o (46)

It is assumed that the displacement of the boundary of the

initially spherical spark, resulting from the imposed power perturbation

is also proportional to e ; the wave front is thus

\ " h (9) - 1 +e H (6) (47)

where H (6) is an a priori unknown function to be found as part of the

solution.

In the light- of equations (45) and (47) the boundary conditions

previously derived (40) to (44) can be expanded in a power series in e .

First it is observed that, provided the radicand in (44) is different from

zero in the spherically symmetric case, and this will be shown later in

this chapter, the function f can be expanded as

f = f(o)+ e K [G(9) - 5H(9)] + 0(e2) (48)

where f and K are constants depending only on the spherically symmetric

solution (which from now on will also be referred to as "zeroth - order

solution") defined by

18



_ _ (49)
2trn3a

and K - (1 - > (50)

Expanding in powers of e equations (40) to (44) yields the boundary
f\

conditions where terms of 0 (e ) have been dropped: at A = 1 +e H(8)

Vd = 1 - f<°> + e [-K G(8) + (1 - f(°> + 5K) H(6) ] (51)

Wd = -e (1 - f ( ° > ) H' (6) (52)

Rd = ~7£T ~ e ~~—2JG(e> ~5 H(6> 1 <53>

Pd = 1 - f (o) + e[ -K G(8) -»- { 2 (1 - f(o) ) + 5 K> H(8) ] (54)

The form of the boundary conditions (51) to (54) naturally suggests

expansions in powers of e of the physical variables everywhere in the flow

field

V (A,8) = V(o) (A) + e V(1) (A,8) (55)

W (A,8) = e W(1) (A,8 ) (56)

R (A,6) = R<°> (A) + e R^> (A,8) (57)

P (A,8) - p(o) (A) + e p(l) (A,6) (58)

The zeroth-order functions representing the spherically symmetric case are

dependent only on A . It is noticed that, although the expansions of the

boundary conditions are exact, provided that assumption (47) is valid,

there .is no guarantee that the expansions of the field variables (55) to

(58) are uniformly valid. In fact it will be shown that they do break down

in the neighborhood of the focus: A = 0.

Proceeding with the substitution of (55) to (58) into the flow

equations (32) to (36) one collects the 0 (1) and 0 (e) terms to obtain

the. following two systems of differential equations:

(v(°) -A) R(°)' +• R(°) v(°)' + 2 r = 0 • (59)

nil V
(0) + (V(0) -A ) V<°>' + 1 P(0)> = 0 (60)

n

Sit C°) + (VC°> - A) P<O)' + Y P<O> v(o)'
n

In the above zeroth-order non-linear system of ordinary differential
dequations ' stands for

d A
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The first order system is a linear system of partial differential

equations, the non-constant coefficients of which are function of the.

zeroth-order variables. It reads: ;•

R(°> V(\> + (R(°>f + 2 41 ) V(1) + i R(°> -(W(J> + cote W(1)) +

2 ) R - 0 (62)

=l + v(o>' } V(D _ R -- P 0 (63)
n

(64)
T > °

vd> +T i.p(o) (w(l) + cot.fl

=i +T ,<•»•'.+ 2T vW ,

The boundary conditions on the two systems are readily obtained from

(51) to (54); for convenience, they will be transferred to the fixed loca-

tion X = 1 by means of Taylor expansions around A = 1 +e H (8). One thus

obtains the following zeroth order and first order sets of boundary

conditions:

V(0)(1) = l-f(o) .' . ' . . - " (66)R(O) ' '

p

and

• v ^ c i . e ) - -
W ( 1 ) ( l , 6 ) = -

R (1)(i,e ) = -
; f

p (1)d,e ).= -

2. Spherical Spark

(1) = 1

KG(6) +

(l-f (0>)
K

2 G

(o)2

KG(6) +

_ f ( o )

[1 - f (0) + 5 K -

i H' (8)
17

( A\ i r i- ^ ie) + [5 - • • • - • - ]
. \

U /1 ^ * ' \ I C
(1 - f ) + 5

• • ' - • ' : i

V(°)f -'(I)] H(6)

R ( 0 ) ' (1)] H (8)

K - , P ( ° ) f ( l ) ]

- Zeroth-order Solution

(68)

(69)

(70)

(71)

(8) (72)

Although the spherical spark problem was treated by Champetier and al.

[40] and Wilson and Turcotte [41a] a new investigation was prompted by the

necessity of a readily available solution in order to compute the coeffi-

cients of the first order set. It was also observed that a slight

discrepancy exists between the pressure profiles obtained by the above
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investigators: Wilson's and Turcotte exhibit a dip around A = 0.5 which is

not present in Charapetier's and furthermore Wilson and Turcotte's pressure

at the origin is about fifteen percent higher than Champetier's. The

density profile in Champetier and al. [40] appears to be erroneous; al-

though they correctly indicate that the wave front is overdriven, they

mention a density ratio across the wave: f = y which, of course, is

Y+ 1that of a Chapman-Jouguet detonation.

The approach used here is quite different from the previous investiga-

tions: the set of equations (59) - (61) is directly integrated as a

function of A from the origin out to the boundary. This necessitates a

detailed study of the behavior of the physical variables in the neighborhood

of the origin; the understanding of this singularity at the origin also

throws some light on the more complicated singularity arising in the first

order perturbation problem. . Since the boundary conditions (66) to (68)

with f defined in (49) contain the unknown constant a, and hence

provide only two known boundary conditions, expansions near the origin are

needed which contain only two independent constants.

I
2.1 Expansions near A = 0

For convenience a change of variables is made:

V = A a (73)

V<0) = A yx (u) . (74)

R(0> = ~ y2 (P) . (75)

P(O) = y3 (P) (76)
where a is, at this point, an arbitrary constant. Transforming equations

(59) to (61) and canceling out all explicit A - dependence, one obtains:

(with ' = -p )
dp : . . :

,. (y + 2), y + ap[y y + (y-1) yl = 0 , (77)

yl (yi " n} y2 + a U[(yl ~ 1) V2 yl + y3] = ° (78)

(3 Y yx + 2 Sjji) y3 + a p[ y y^ + (y1 - 1) y^l » 0 (79)

Expansions near A = 0 are sought of the form:

y1 = aQ + ax u + a2 p
2 + a^ p

3 -I- * ' ' (80)
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y2 = b^ + b2M + b^V + ••• (81)

73 - CQ + C]u + c2 yi
 2 + c3u

 3 + "• (82)

Note that the constant term in the expansion of y being zero renders the
(o)

density R bounded at the origin. The leading term in equations (77) to

(79) yields respectively:

[a + 2 + a (a - 1)] b - 0 (83)
o o 1

art (a - -) b + oc. = 0 (84)
o o n 1 1

(3 Y a +2 —) c = 0 (85)
o n o

Therefore the expansions near the origin contain two arbitrary constants

b and c., the value of a is found and a is determined:
2 ° n - l a + 2ao = - IT ~T a = - -2 <86>

a -1o
c is readily obtained from (84):

Cl = - (ao - $ ao £ bl <87)

Numerical values corresponding to Y = 5/3 (and recalling n = 3/5) are

a = 4/15 and a = 34/11. a being non-integer makes all functions singular

at the origin in the sense that although the function itself is bounded,
/ \ n

there always exists some derivative which is not (e.g. R is infinite.)

The self-similar velocity, density and pressure are seen to have a

leading term respectively proportional to A, A and a constant. From

the definitions (28) to (31) the r, t dependence of the physical velocity,

density and pressure are obtained respectively as r/t, r . t ,
-4/5
t . This kind of flow where the velocity is proportional to r and the

pressure is independent of r is usually referred to as uniform spherical

expansion. It is worth noting that the temperature is unbounded at the

origin ( r . t ) as it indeed must in a self-similar spherical '

non-heat conducting process. The initial stage of a spark is characterized
_2/5

by an infinite front velocity, D ~ t ; this raises the entropy of the

gas particle at the focus to infinity. But, by symmetry this particle stays

at the focus so that entropy cannot be convected away from the origin; on

the other hand it cannot diffuse away since non-heat conducting fluid is

assumed. Thus the temperature at the origin has to remain infinite at all

times.
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In order to improve the accuracy of the numberical solution several

more terms are computed in expansions (80) to (82). For Y = 5/3 the

following numerical coefficients are obtained where 3 = b /c :

y = r| + 2.69692 10~2 3 V + 3.10402 10~3 B2 V + 2.01178 10~4 33p3(88)

y = b U (1 + 8.54504 10~2 3 V*t- 1.2256 10~2 32 V + 1.56620 10~3

33
3 )i ) (89)

y = c (1 + 1.20784 lo"1 3 V + 1.99936 10~2 62 V2 + 2.91446 10~3

3 o

" B3"3 ) (90)

These expansions containing two arbitrary constants are sufficient to

start a numerical solution which has to satisfy two boundary conditions.

However, it could be argued that the system (59) - (61) is third order and

a third solution has been implicitly discarded. In fact, by inspection a

solution depending on one arbitrary constant C can be found (for Y = 5/3)

V < ° > = f A ; y0)-CX15;P(o)-i|^ C,A17 (91)

This solution has to be discarded indeed since it does not have the required

physical feature of an infinite temperature at the origin.

2.2. Numerical Integration and Results

The system of three non-linear ordinary differential equations (77) to

(79) is integrated from 0.01 to 1 using a standard fourth-order Runge-Kutta
. - , • - . : ' • • ' * " O

technique with a step-size of 10 or less. Expansions (88) to (90) are
v . . , «.

used to move away from the origin. Two boundary conditions are to be

satisfied, for example:

The values of the constants b and c are obtained by a linear correc-
1 o

tion procedure: considering the y's. to be function not only of y but also of
N N

b and c , their values corresponding to a new guess b , c are related toi ; o - »• J. o
o o

the values corresponding to the old guess b , c by a Taylor expansion:'
( U 5 b° c ° ) A c (93)

1 O O

with Ab = b® - b° and A c = cN - c°. The system (77) to (79) and the
1 1 1 o o o
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expansions (88) to (90) must be supplied with six extra equations and six

extra expansions for the derivatives of the y's with respect to b and c ;
1 o

these are obtained simply by taking derivatives of (77) - (79) with

respect to b and c as well as of equations (88) to (90). The full system

of nine equations is then integrated for an initial guess of the pair b ,

c . The values of the y's and their derivatives for the initial guess are

now known at the boundary. Application of the boundary conditions (92) on

the values of y's at the new guess gives a system of two inhomogeneous

algebraic equations for A b and A c . Solving this the A's are found and

hence the new guess. The procedure is repeated until both A'S become small-
-12

er than a prescribed value, namely 10 in the present case. This

correction scheme was found to converge fairly rapidly requiring fifteen

iterations to bring b and c from an initial guess of 1.0 to their final
J. o

values:

b. = 0.9299591 c = 0.173074414
1 o

The self-similar velocity, density and pressure profiles obtained are

plotted on figure 2 as a function of the self-similar variable A. The

boundary values are

R(0) (1) = 1.85043402; V(o) (1) = P<O> (1) = 0.459586242

where all digits are significant. From that the constant a related to the

wave front speed can be found

a = 1.990

2.3. Discussion and Conclusions

A highly accurate numerical solution has been obtained; this results

from the use of several terms expansions near the origin as well as a severe
-4

convergence criterion combined with step-size as small as 5 10 in the last

iterations. No pressure dip similar to Wilson and Turcotte's is observed

and'the ratio of the pressure at the origin to that just behind the absorp-

tion wave is 0.37659 compared to Wilson and Turcotte's value of 0.441.

Aside of these differences the velocity, density and pressure profiles and

in particular the values at the boundary, agree fairly closely with Wilson

and Turcotte's results.
(o) Y

The density ratio at the front f = 0.540413758 is less than y -^ •
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thereby indicating an overdriven detonation front. This result is

important for the perturbation scheme since it justifies the previously

cited eq. (48). Also note that the whole flow inside the spark is

subsonic.

A comparison with ordinary constant energy blast waves is enlighten-

ing. From a mathematical point of view, their treatment would be very

similar. Changes of h to 2/5 and of the definition of A are needed and

the boundary conditions are modified by having f =Y . Expansions

near the origin are of the same form with ao = 3/5 and o = 13/2. It is

observed that the boundary conditions do not contain the unknown wave

velocity "a" and therefore appear to constitute three independent boundary

conditions in contradiction with the expansion near A = 0 containing only

two independent constants. In fact by manipulating the equations (59) -

(61) the following integral relation can be obtained:

(V<°> -» [ P(0> + (Y-D R(0)f°)Z )lx. + (Y-D P<°>V(0) . .2 IA—j_ ABJ.
5n-2 fl (o) R(o)y(0)2 2

+ -—- ; [p + (Y-!) o ]* dA= 0 (94)n o t.
It states that the total energy swept in by the moving front plus the

pressure work balance the change in total energy of the flow inside the

spark. For a constant energy blast wave (n = 2/5) the integral in (94)

drops out and hence a relation is obtained solely from the differential

equations, between the values of the physical quantities at the boundary.

Clearly only two boundary conditions need be applied.

Physically the constant power laser spark has a faster moving front

than a constant energy blast wave which is natural in view of the contin-

uously added energy. The mechanism pushing the leading shock wave is quite

different: in a blast wave the energy released initially at the origin is

redistributed as the blast grows whereas in the laser spark the energy is

deposited right behind the shock driving it forward. This is the reason

why the boundary conditions appear different: dependent on velocity for

a laser spark and independent for a blast wave. The flow near the origin

is very much alike in the two cases: constant pressure and v~r/t.
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It should be noticed that for the same y= 5/3 the density profile of

a blast wave drops much more steeply near the boundary. This, actually, is

only a manifestation of a very important difference between the two flows,

namely the fact that when Y~*l a blast wave exhibits a Newtonian layer of

concentrated mass near the shock, contrary to the laser spark which does

not. Figure 3 shows the velocity, density and pressure profile of a , .

constant power spherical spark for y= 1; they clearly do not have a , layer

of concentrated mass near the boundary. The procedure to obtain these is

the same as for Y= 5/3 although convergence appeared somewhat slower. The

existence of a Newtonian layer for blast waves permits the considerable

simplification of treating the flow as locally radial (î e. dropping of 9 -

derivatives compared to r - derivatives) , this possibility was exploited

by Laumbach and Probsteih [50,51] in their study of blast waves in non-

homogeneous atmosphere. However, the author disagrees with their use of

the same simplifying assumption in their treatment of blast waves in in-
, > • • • . . • .• " . " • * • ' ' •

homogeneous atmosphere including the thermal radiation emanating from the

inside of the blast: the boundary conditions are then modified. to look like

those derived in Chapter I (equations (A) to (8)) and this should destroy

the possibility of a Newtonian layer.

The reason why a Newtonian layer is possible or not is readily seen v '

from equations (15) to (18): when Ŷ l, in the case of a shock- wave the .

density tends to infinity at the same time as the velocity u^ tends to D

thereby trapping most of the mass inside the. blast wave in a layer next to

the shock. Therefore for a blast wave with Y^l the velocity profile tends
(o) ,

to a straight line V = nA which implies that particle trajectories are

also similarity lines: this feature allows the existence of a constant

pressure, zero density core inside the blast wave into which the mass flow

is zero; For a constant power laser spark none of these characteristic

features hold and hence a Newtonian layer is ruled out.

In conclusion, the non-existence of a Newtonian layer for constant

power excludes the possibility of using the locally radial approximation

and a small perturbation scheme has been proposed instead.
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3. Non-spherical Spark - First Order solution

3.1. Fourier Decomposition

Contrary to the zeroth order set, the first order set of differential

equations (62) to (65) is linear; this feature is exploited by expanding

the dependent variables in Fourier series in the coordinate 9. First the

imposed power addition perturbation G (6) is decomposed in a-series of

Legendre polynomials in cos 6: *
co

G(6) = E P£ (cose ) A . (95)
£ = 1

where P., is the Legendre polynomial of order I and the A» are known

constants. Note that the requirement (46) that the total power should

remain unchanged is satisfied since the constant term P is omitted in
o

the series (95) and for I >1, all Legendre polynomials satisfy

/V (cose) sin 9 d 9 = 0 (96)
o *•

The first term of the series P = cos6 corresponds to a maximum asymmetric

perturbation: if A >0 the laser beam is altered such that the power is

increased by a certain amount at 0 = 0 and decreased by the same amount at

6 = IT . Higher order polynomials create a more evenly distributed power

perturbation. When the order & is even the distribution is symmetric with

respect to the axis 9 = — in addition to the original symmetry about 9 O,TT

and the whole flow presumably possesses two axis of symmetry.

The perturbation of the spark shape H (6) is similarly decomposed in:

H(6) - ? P, (cos9) X. (97)
£.=1 * *

where the X are unknown constants since the shape is to be determined as
JC

part of the solution.

In order to achieve Fourier decomposition of the differential

equations and boundary conditions the following expansions are made for the

velocities, density and pressure perturbations:

V(1) (A,6) = ? p (cos6) V. (*) (98)
A -1 •

W(1) (A,9) = Z ̂ f^

£-1
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(1) co -
RV (A, 6) = Z P (cos0) R (X) (100)

(1) CO

P (x,e) = z PO (cose) P (x) (ioi)i=i i i . .. , i

where the quantities — are solely function of X. Again the constant terms

P = 1 have been omitted consistently with ithe remark made previously that

they represent a purely spherical flow which can easily be treated by a
/

perturbation of the definition of X. The expansions (98) to (101) are

inserted into equations (62) to (65) . Making use of the defining differen-

tial relation for Legendre polynomials ,

d2Po dPo
— -— + cot 6 — -+ SL(SL + 1) Po =0 (102)
d°^ do i

to express the quantity (W + cote W) as function of P^ rather than

its derivatives it is seen that P (cos6) can be factored out of equations

(62), (63) and (65) and that -A P* (cose ) can be factored out of (64)
d e - . . - . ! • .

which is then integrated with respect to 6 producing an arbitrary constant

C. Each equation, which is now of the form P (cos 6). function of X, is

multiplied by P, (cos6) sin6 (with k = 1,2,3«") and integrated from 0 to IT.
K.

Using the orthogonality properties of Legendre polynomials:

/^Pk (cos6) . P^ (cos6) s i n 6 d e = 0 k ?« X, (

2 (103)
= - k = £

2k + 1

and remarking that the contribution of the arbitrary constant C is zero, for

any value k > 1 one obtains : -

R(0) V + (R
(°> ' + 2 *£>, y f\ (k +1) 5 + (V

(°> -X) ̂  +
» * K Ai iv

• = 0 : (1QA)

' (o)'
0 Ft = 0 (105)

(o) _• (o)' P(0) - »(0)
YP V + (P + 2 Y-r— ) V --—-— yk (k + 1) W.+

k A K. A K

(V(0) -X) P' + (2 B^i+YV
(o)l + 2y ̂  ) P, - 0 (107)

K. A K
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d
In the above equations ' refers to — . The boundary conditions are

treated likewise: the expansions (95) for G (6), (97) for H (9) and (98)
* I

to (101) for the physical variables are substituted into equations (69)

to: (72); after multiplication by P- (cos9) sin 6 and integration over 9
k

f rom -0 to '.it one obtains the set' of boundary conditions :

f 1 -*f(o) + 5K;- V(o)' (D] ' (108) '

.W (1) = - (1 - f(o)) X. . ., . .. (109)
- £ * • ' ' **•'*,'.' ' ' " ' ' '

\™ = - -̂ br \ + [5̂ 2 - R<°>"(1) ] \ (110)

Pk(l) '- - K Afc + [2 (1 - f
(o)) + 5 K - P(o)l (D 1 \ (111)

The differential equations (104) to (197) and boundary conditions

(108) to (111) apply separately for each value of k = 1,2, 3... The problem

has been completely split into its different harmonic components: the
• ; . • t •.' - ' : '• ' '•

influence of each constituent harmonic of the power perturbation G (6)
" . . • . ; . • - . ' } . ' • . ' ' ' '

can be investigated independently. The simplification is the result of

adopting a linear perturbation scheme in e and it is remarked that the

full set of non-linear equations (32) to (35) is not amenable to such a

treatment.

The problem now is. reduced to that of obtaining the solution of the

system of four linear homogeneous' ordinary differential equations with

variable (and known only numerically) coefficients subject to four non-

homogeneous boundary conditions. These contain the unknown constant X:

which, in fact, reduces the number of known boundary conditions down to-

three, by eliminating X. . The system being fourth order, this implies

that a solution will have to be discarded on physical grounds.

3.2. Expansions near A = 0

The set of equations (104) to (107) will be integrated outward from

the origin to the boundary. Starting such a solution necessitates an

investigation of the flow in the neighborhood of A = 0. Only the leading

term of. the expansions of V , W , R and P is sought; to that effect
K. K K' i K
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equations (104) to (107) are specialized to the neighborhood of the origin

by retaining only the leading term in the expansion of their coefficients.

Use is made of the previously obtained. expansions of the zeroth order

physical variables (80) to (82):

biAa~2 V/ + b a Aa~?v - k(k+l) h A a~3 W + (a -1) A R: + 3 a
J . K . X K . J . K . O K . O

\ - ° _ c a

( V1' X*k + <*? + V \ - 72 A " ^ \ + I X ~a +\ - °
bl 1

(a -1)A W' + (— + a ) W, + £- A ~a +1 P = 0 (114)
o k n o k b. k

c _ -L c _
yc V; + 2 y -T2 V, - Y k (k + 1) -r2 W, + (a -1) A P« + y a.

o k A k A k o k 1 •

(ct + 3)Xa P = 0 (115)
1C

It is observed that the coefficients of P' and P in equation (115) are
f\

respectively multiplied by A and A compared to those in equations (113)

and (114). These higher order terms may be dropped and equation (115)

reduces to its first three terms. Equations (112) to (115) constitute a

fourth order system, hence four solutions are sought, each of the form:

Vk = Au X \ (116)

\ ' A2k * ""

When these are substituted into the set (112) to (115) all terms in each

equation come out to be of the same order in A . Cancelling out all A

dependence a system of four algebraic equations is obtained for the con-

stants A , A , A , A . Since the original differential equations are
-LK, ^K . <jK, 4K.

homogeneous the algebraic system is homogeneous too and m, must be root

of an indicial equation, namely the determinant of the system equals zero.

After some manipulations in which use is made of the definition of a

(86) it reads:
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ct-2

(a -1) m. +o k.

0

m -f 2

1 -I
, ,. 4- n O n ( -i }- — ~ el \j ct \ d ^^/

n o o o n

f ,. i \ _ 4. n~l -i- _ nId J. I IIL i ^^^^ id W0 k n o

- k (k + 1) 0

» 0

\
"f" 01 ""1

1

0

= 0

(120)

Developing this determinant yields a fourth order algebraic equation in

mu. Its coefficients do not contain the constants b^ and co entering the

expansions of the zeroth order quantities so that the values of m^s are

dependent only on the characteristic quantities aQ and a of the zeroth

order numerical solution. However, the m^s are seen to be function of y

and of the harmonic considered k. The fourth order equation has been

solved numerically for Y = 5/3, the results are presented in table 1 for

the first ten harmonics. A definite pattern for the numerical values of

the roots seems to emerge for increasing k i.e. for perturbations tending

to be more and more spherically symmetric: the first root is positive and

increasing, the last root is negative and decreasing and the pair of

complex conjugate roots has a real part negative and increasing for the

first three harmonics and a real part positive and increasing from harmonic

four on. An important feature of the complex roots is that their real

part always remains less than one, even for large values of k. This will

be demonstrated in section 3.4.

The system of four algebraic homogeneous equations for A., to A.,

is then solved for each root. One obtains, with the superscript i referring

to each root 1=1,2,3,4:
i + 2

**-M5« V <121)

4--T^-bi4 <12«3k • l -1)(.„-!)

i HSlr i 2 "I TY—1 "I
m — F f« 1 \ -. •*• _i_ * _i_ 1U . f 1 O O \
A4k - " k(k + 1) f^o-1) "k + n

 + Ho] b! Alk
 (123)

For each root, A^u has been arbitrarily chosen as the free constant. Note

that for the pair of complex conjugate roots all A's are complex numbers.
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harmonic k

1

2

3

4

5

6

7

8

9

10

- roots: m,

1.114

1.399

1.941

2.719

3.619

4.569

5.540

6.522

7.510

8.510

- 0.6253 ±0.5500 i

- 0.2491 ±0.7055 1

- 0.0137 ±0.6691 i

+ 0.0998 ±0.5965 i

+ 0.1510 ±0.5413 i

+ 0.1767 ±0.5047 i

+ 0.1912 ±0.4802 i

+ 0.2002 ±0.4632 i

+ 0.2061 ±0.4511 i

+ 0.2103. ±0.4421 i

- 3.500 ".

- 4.537

- 5.550

- 6.555

- 7.557

- 8.558

- 9.559

- 10.56

- 11.56

- 12.56

Table 1; Roots of the indicial equation for harmonics 1 to 10

and Y = 5/3.

From this, the expansions of Vk, W R , P~ near A = 0 can be

obtained as a sum of four linearly independent solutions. For

convenience the notation is simplified to: m. refers to the positive root

and is associated with the real constants A/s; m/ refers to the negative
K. K.

root and is associated with the real constants D's; m , ± *m-i. are the
K". IT 1C X iC

complex conjugate roots associated with the complex constants B/'s. The

expansions of the k harmonic read:

^5. ( A) = At A • + B,. A

B2kA
mrk+imik

m . -im..rk ik
D2k

m'
A k

Rk(A) A.,, A

D_, A m,
3k k

3k .*L>

(124)

(125)

(126)

(127)
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* stands for complex conjugate. Note that in each relation the second and

third terms always combine to form a real quantity as they should since

they represent real physical quantities. The free constants are now A
JLK

Blk' Dlk and tne Aik* Bik» D1k ̂  = 2»3'^ are respectively related to the

free constants by (121) to (123). The pair of middle terms, containing

B's can also be rewritten as:

B x k i k + B* A
mrk- inik = 2A

 mrk ̂  cos 5. B. sin ^ (128)

. I = mik log A (129)

where B and B. are respectively the real and imaginary parts of B. In

this form the oscillatory character of the expansions is clearly displayed.

3.3 Numerical Integration and Results

The system of differential equations (104) to (107) is integrated from

X = 0.01 to A = 1 using a standard fourth-order Runge-Kutta numerical

scheme. The three boundary conditions are obtained from (108) to (111)

by elimination of X, . The solution is started using expansions (124) to

(127) in which the terms corresponding to the worst singularity (i.e. the

negative real root m£) are discarded by setting Dlk = o and hence D =
£• K

D., = D,, = 0. This will be justified in the next chapter on the physical

ground that this singularity represents a source of mass and energy at the

origin.

The linear character of the differential system and boundary conditions

is exploited to determine the values of the free constants A,, , B,, ,

B,. . by application of the boundary conditions. First a solution is

obtained starting with expansions (124) to (127) specialized to A., = 1,

B k = 0, Blki " 0. Call this solution S, ̂  ' where Sfc; ' is a column

matrix V f c j wk» «k, Pfc. A second solution Sj2 is obtained with Alk - 0,

B = 1, B,, _, = 0 as well as a third solution S (3) for A,, = 0, B = 0,
Ikr . Iki k -"-K x«tr

1. The full solution is then sought in the form of a linear

combination of S , S , S
K. l» K.

lk k lkr k Blki Sk (130)
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The value of the constants are obtained by applying the boundary conditions

on the full solution S . Since these are non-homogeneous, a third order

non-homogeneous linear algebraic system is to be satisfied by A , B and
.LK. JLK.1T

B and the velocities, density and pressure profiles are obtained as
/1 \

linear combinations of the specialized solutions S, ' , S. '̂ )f S. (3). As

a check of the numerical accuracy the equations were integrated over again

with the correct values of the free constants and it was found that the

boundary conditions were accurately satisfied.

Note that the system (104) to (107) was supplied with the set of

zeroth order equations (59) to (61) so as to have the numerical values of

the coefficients at all grid points. The seven equations were integrated

simultaneously starting with expansions (88) to (90) in which use is made

of the correct values of b^ an(j CQ obtained in the previous section.

More details about this method of linear superposition of specialized

solutions can be found in Appendix A where it is applied to a spherical

perturbation due to finite external pressure.

The integration has been carried out for the first five harmonics,

treating each as if it were alone i.e. the coefficient A^ (i = 1,2,3,4,5)

in series (45) is set equal to one and all the others zero. An actual

power perturbation G (6) would include several coefficients different from

zero and with numerical values distinct of one. The effect of such a

perturbation can easily be obtained by a linear superposition of the

results presented here.

The results describing the wave front and the physical variables behind

it are presented in Table I; each harmonic is treated separately. As a

reminder, the five first Legendre polynomials are given in the second

column of Table I. The magnitude of the shape perturbation is given by

the coefficient X, of the Legendre expansion of H (8). All XJ"s are

positive indicating that an increase of laser power creates an outward dis-

placement of the wave front and hence an increase of its velocity D.

For increasing values of k, the magnitude of X. diminishes: this shows that

the shape perturbation becomes less when the power is more evenly
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distributed. The values of radial velocity, tangential velocity, density

and pressure behind the absorption front are readily obtained from

equations (51) to (54) combined With expansions in Legendre polynomials

(95), (97), and (98) to (101). They read:

Vd = 1 - f
0 + e pk .(cos 0) [-KAk + (1 - f

(o) + 5K) J.] (131a)

Rd - 7^7 - e Pk (C°S 6) TtoV <\ - 5 Xk) (132a)
'

P = 1 - f(o) + e Pk (cos6 ) [-KA +( 2 (1 - f
(o))

+ 5 K } XjJ . . (132b)

. . • ,.. , dP,
Table I gives the numerical values of the coefficients of P. or — - whenk d6
A^ is set equal to one for each individual harmonic. The density perturba-

tion corresponding to a power increase is negative: this simply results

from the fact that the influence of the shape perturbation H (6) is

greater than that of the power perturbation G (6) in all cases. As a

result of the enhanced front velocity, the velocities and pressure perturba-

tions at the boundary appear first positive, then negative. It must be

pointed out that the absolute values of the perturbations of radial

velocity, . density and pressure increase with k; in fact they tend to

asymptotic values for k •*• °° as will be shown in section 3-4. The

tangential velocity decreases with k as it should for a flow tending towards

spherical symmetry.

The radial dependence of velocities, density arid pressure are plotted

on Figures 4,5,6 and 7 for harmonics 1 to 4. The 9 - dependence is

obtained by multiplying by the respective Legendre polynomials. Note

that the radial variable A used here is not the ratio of the current

radius r to the wave front radius r^, and consequently the wave front does

not correspond exactly to A = l. The choice of A was made so that the

radial and tangential variables A and 0 remain independent of each other.

The tangential velocity remains negative as was imposed by the boundary

condition that the velocity vector be perpendicular to the wave front. Its
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magnitude decreases over the whole range of A for increasing k. The

density perturbation exhibits a change of sign from negative to positive

around A x ^3^

Although the character of the singularity near the origin changes

between harmonic three and four (the velocities become bounded from

harmonic four and up, whereas they were unbounded for the first three) no

drastic change in the profiles appears to take place. This is discussed

in more detail in Chapter III, Section 1.

Density maps are presented in Figures 8 and 9; for the first two

harmonics the constant density lines are shown. Compared to the spherical

spark the mass repartition has been altered as follows: near the focus,

an increase of density corresponds to enhanced power addition. In the main

body of the flow, on the contrary, a decrease of density is associated

with a positive power perturbation. Separating these two regions are

circles of radius X = 0.34 and A = 0.3 for respectively k = 1 and k = 2.

Near the boundary the density perturbation again follows the power

perturbation. In the asymmetric case (k = 1) a net mass transfer appears

to take place across the focal region from 6 = ir towards 6=0. It

should be remembered, however, that the small perturbation scheme breaks

down near the origin so that the validity of what happens there is

questionable.

Figures 10 and 11 show velocity maps for k = 1 and k = 2. The vectors

represent direction and magnitude of the velocity at different points of

the field. Lines tangent to the velocity vectors are streamlines, not

particle paths since the flow is unsteady. Physically, the vectors are

proportional to the traces which would be left by flow particles made

visible by flow visualization techniques on a short exposure time photo-

graph. The bending of streamlines is determined by the distorted shape of

the spark since velocity has to remain perpendicular to the wave front.

In the asymmetric case, k = 1, there appears to be a net flow across the

focal region from 0 = 0 towards 6 = TT ; the zero velocity point is

displaced on the cylindrical symmetry axis towards higher laser powers.
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This, of course, doe not happen in the case of symmetric perturbation,

k - 2.

3.4. Limiting Case of Large Wave Numbers

For increasingly large wave numbers k it is observed in table 1 that

the numerical value of the first root m. of the indicial equation is

positive and increasing without bounds; the fourth root mj is negative and

its absolute value is also increasing boundlessly. On the contrary both

the real part m^ and the imaginary part mile of the complex conjugate roots

tend to finite asymptotic values. These behaviors have been confirmed by

calculating the roots corresponding to the next ten harmonics ( k = 10,

11, ...20). The values of m , and m.. are displayed on Figure 8.

The purpose of this section is to show that in the limit k -»• °° the

original fourth order system of ordinary differential equations (104) to

(108) reduces down to a second order system. Furthermore, the behavior

of the physical quantities near the focus A = 0 is entirely described by

the asymptotic values of the complex conjugate roots which will be

calculated exactly.

Physically, for large wave numbers, all quantities i.e. the power

perturbation, the shape perturbation and the physical variables oscillate

rapidly in the angular direction 9 thus giving rise to large 6 - deriva-

tives. This is expressed by:

^f- [Pk (cose )] - 0(k) when k - "

Terms W + cot 6 W containing second derivatives of Legendre Polynom-
9 2

ials in equations (62) and (65) become 0 (k ) in equations (104) and (107)

and the whole equation (64) containing first derivatives of P. (cos9 )

becomes 0 (k). A new ordering of terms is called for in order for the

expansions (55) to (58) in powers of e to remain valid for large values of

k. The perturbation quantities V(1), W(1), R(1), P(1) have to be ° <D

or less.

It is noticed that one should expect a singular perturbation problem

when k-* °° due to the existence of two independent small parameters e and ~ •
1C
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The new ordering of terms corresponding to large k is suggested by

equations (104) to (107). V"k and Rk remain of 0 (1) but Wk is set of

0 (T ) thus making P. of 0(-i) through equation (106). New tangential
k2 k kz

velocity and pressure are defined:

\ (X) • -4 Wk (A) (133)

Substituting (133) and (134) in equations (104) to (107) and neglecting

in first approximation terms of 0 (— i-) one obtains:

(° + (
k

(V(o) + 2 ) ^ . 0 (135)
A J\. .

f \

(V(0)_A) V/ + (-S=i + V
(o)') V. - ̂ -% R. = 0 (136)

k n k
 R(o)

2 k

YP
(0)V- + (P<°> -f 2y fj) V - E y W - 0 (137)

k « k k " K

Equation (106) contains terms which are all 0 ( — ) ; it may be used as a
k

decoupled relation to calculate Pk. The system (135) to (137) is only

second order as can easily be seen by eliminating R^ and Wk.

Consideration of large wave numbers thus brings about the important

simplification of reducing the order of the system by two. This is

further exploited by specializing equations (135) to (137) to the neighbor-

hood of the origin. Only the first term in the expansions of the

coefficients is retained so as to obtain:

"^k - TT V °"3
(138)

X . o (139)

v' + 2 -^ - -*£L W, = 0 (140)k X k K

In complete analogy to what was done for the fourth order system,

solutions to (138) and (140) are sought of the form:

V = A A'"" (1*1)

*k * AouX*• 2k
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\ = A3k A

An indicial equation is obtained for m^ . It is quadratic as it should

for a second order system and reads after some manipulations in which it
k+1

is remarked that -j—- -»• 1 when k-> °°:

-(ao-1) m2 - 2n"1 m + [a-2)aQ
 afi"̂ " + 5=1 +a ] = 0 (144)

00 n °° ao n

The solution is the pair of complex conjugate roots:

m̂  = 0.227 ±i 0.400 (145)

These values are plotted on Figure 12. They show excellent agreement with

the asymptotic values obtained from the fourth order indicial equation when

k gets large (k = 20) . This also proves that the real part of m,,, is less

than one. The two purely real roots m^ and m£ completely disappear in
mi.

this limit; this looks reasonable since the contribution of* tend to
m,!

be very small and can thus be discarded and on the other hand X gets

very large, so violating the small perturbation assumption and has to be

discarded too.

This approach provides a rational way to reduce the order of the

system and will be used in Chapter III when dealing with the full non-

linear equations (32) to (35).

It is easily recognized that boundary conditions (109) to (111)

cannot be satisfied by equations (135) to (137). This comes as no sur-

prise since the order of the system is only two and the number of

independent boundary conditions is three. Specifically, in view of the

definition (133) of Wk equation (109) implies that Xk is 0 (-i—). A

contradiction then appears between the definition (134) of P^ and equation

(111).

This difficulty can be resolved by introducing a narrow region near

the front of the wave where derivatives with respect to X become large. In

fact the singular perturbation aspect of the expansions suggests such a

boundary layer approach. The proper ordering in that region is to keep

V. , R. , and P, of 0 (1) compatible with the boundary conditions and to

make W. and the thickness of the boundary layer of 0 (—). One defines:K k
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Wk - I Wk _ (146)

A = 1 - IX (147)
k

This ordering makes W^ ' of 0 (1) so that the expansion in series of e

is still valid. Furthermore (146) implies X, of 0 (i) through boundary
* k

condition (109). Physically this corresponds to the perturbation of the

wave front being much smaller, — , then the imposed power perturbation.
k

Thus boundary conditions (108), (110), (111) take only into account, in

first approximation, the power perturbation A.. The perturbation in shape

is reflected solely in the boundary condition (109) on the tangential

velocity W, . . . .
K • • ' . i . . - . _ , " • ' • '

Equations (104) to (109) are transformed as follows. The coefficients

dependent on the first order physical variables are expanded in Taylor

series .-:
f /• ,H?(°)
FW(X) = Fto'(l) - -^— (1) X (148)

k dA

where F(O) is any v(°), R(°), p(°). Use is made of the zeroth order

boundary conditions (66) to (68). Terms of 0 (k) are retained in equations

(104), (105), (107) compared to terms of 0 (1) and terms of 0 (1) are

retained in equation (106) compared to terms of 0 (—). One obtains:
k

- f(o) dRk = o (149)L 1 5- + .
f(o) dA k f<°> k dA

- ir + $r = ° <150>

(l-f ) + Yd-f ) W - f ° = 0 (152)

The last three equations are combined into a single equation for
k+1

remarking that ~ £~ •->• 1 when k ->• °°.

where (o)
2
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2
8 is a positive number and its numerical value, using the results of the

spherically symmetric solution is:6 2 = 3.390 or 6 = 1.8AO.

Boundary conditions are given by (108) to (111) with X. = i-Xk :
"• K

Vk(l) = - K^ (155)

Wk(l) = - (1 - f
(o)) Xk (156)

Pk(l) = - KAfc. (158)

The solution of (153) gives an increasing exponential and a decreasing

exponential in X. The former is rejected since only bounded values of

the physical variables are acceptable when ^ -*•«>, that is at the inner edge

of the boundary layer. The solution of (149) to (151) and (153) subject

to boundary conditions (155) to (158) is:
fi A

Vk <= - KAfc e " (159)

a = - Mk. e ~6 X (160)
K. n *•*

B
2 f(o)2

(162)

and X. = + !±i 1 (163)
K 6 l-f(o)

The validity of the boundary layer expansions near the front of the

spark can be discussed in comparison with the numerical results obtained in

Section 3.3. when k increases. Since calculations were carried out only

for the first five harmonics, no accurate agreement should be expected but

rather some general trends.

First the boundary layer ordering implies that X, = 0 (—); thus for
K. fc

large values of k the expected behavior of subsequent X/s is given by

\ +

In comparison this ratio is calculated for the first five harmonics using

the values of X, obtained previously (equation (131) . The result is shown

in Table 2 and plotted on Figure 13.
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k

1

2

3

4

k
k + 1

0.5

0.667

0.750

0.800

\ + lcalculated
\

0.921

0.904

0.8996

0.9015

Table 2

It is seen that the right trend appears in the numerical solutions when

k equals 3: the ratio
+1 •

begins to increase and will presumably tend
.

towards one. As an indication that k - 4 is still quite far away from the

asymptotic limit k ->• <*> reference is made to Figure 12.

Secondly, the boundary values obtained from (159) to (163) are:

Vk(D = Pk(l) - - 0.789; Rĵ l) = - 2.71; Wk<iy 0 (165)

These are compared to those of the numerical solutions for the first five

harmonics (see Figures 4 to 7). Again the correct trends emerge: V, (1) is

negative with an increasing absolute value for increasing k's and the value

(165) fork*00 fits in that pattern: see Figure 4; the same behavior is

observed for Rfc(l) and Pk(l). In contrast Wk(l) is negative with a

decreasing absolute value (Figure 5) which is also in agreement with (165).

It may thus be concluded that the boundary layer expansions agree with

the trends of the numerical solution for increasingly large k's.

The boundary layer solution (159) to (162) must be compatible in the

limit k-»-«> with the solution of the inside equations (138) to (140). In

particular W, and P, must become of 0 (i_) as k -»• °° : this is certainlyK k kY

possible in view of the exponential decay (160), (162) of both W, and P, .

It is noticed that ̂  is finite at the inner edge of the boundary layer

whereas V, is exponentially small; this of course does not imply that Vk

is small everywhere in the inner region.

Matching of the boundary layer solution with the inner region

solution thus appears possible.
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CHAPTER III

INVESTIGATION OF THE SINGULARITY AT THE FOCUS OF

A NON-SPHERICAL SPARK

1. Nature of the Singularity

In Chapter II the behavior of all physical quantities was obtained

near the focus A = 0. Equations (124) to (127) together with Table 1

show that the two components of velocity V and W are oscillating and
1C 1C

unbounded for the first three harmonics then become oscillating but of

decreasing amplitude for subsequent harmonics. An analogous behavior is

observed for the density R, except that the transition from unbounded

amplitude to bounded amplitude occurs between harmonics two and three.

The pressure P is oscillating and decreasing for all harmonics.
K.

Presented in this fashion the singularity at the origin may appear

quite confusing. In order to get a better understanding of the physical

situation, fluxes of basic properties such as mass, momentum and energy

are computed across a sphere of small radius surrounding the focus.

Since one of the basic assumptions made was that of non-viscous, non-heat

conducting fluid, singularities of the type source or dipole are mathe-

matically possible. In this problem, however, no source exists at the

origin and such a singularity is not acceptable. This remark is used to

provide a physical basis for the rejection of solutions depending on the

fourth root of the indicial equation m/ .

1.1. Integrated Flow Properties near the Focus

Consider the fluxes of mass 7?? , axial momentum'??/ and energy £
s ' m **

across a sphere defined by A = A with A « 1. This choice insures the
o o

reference sphere radius to be much smaller than the spark size at all

times.

tnj = f pu 2ff r sin 9 d6 = 2ir p n A3t3n~1 /* R V A2
 Sin6 d9 (166)

Ills J o r o o o o

fjji = / P(u cos 9- u. sin9) u 2 if r sin 9 d9= 2 it p
m m o . r 9 r o o

n A4 t4n"2 r R (V cos 9 - w sin9) VA sin9 d 9 (167)
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2 , 2
ir Ur 8 ID 2 1 S 5 3

£ = / P( 5 + ~ T ) " 2u r sin 9 d 9 = 2 wp n A t. o ^ Y - l P r o o

,TT .V + W 1 P 2/o R <—^— + TT["R> V A
O
 sine d9 <168>

The mass and momentum fluxes increase with increasing time (respectively

as t and t ) whereas the energy flux remains constant. This, of

course, is a consequence of the constant power assumption.

The 9 - integrals in equations (166) to (168) give the dependence

on X . In the mass flux Tfl the product RV contains successive powers ofo s

E RV = R(°V0) + e <R<°>V(1>+ V(0)R(1)) + e2 (R(°V2) + V(o)R(2) +

R(1)V(1) ) + 0 (e3)

Second order perturbations (superscript (2) ) are treated in Appendix B;

their behavior is described in the neighborhood of the origin by equations

(B 13) to (B 16).

The integral from 0 to TT of the zeroth order term of (169) yields a

mass flux whose dependence on X is: X . This simply corresponds to
o o

the spherically symmetric geometry. The 9 - integral of the 0 (e) term gives

no contribution since the series of Legendre polynomials (98) to (101)

start with H = 1 and Legendre polynomials satisfy the integral relation (96).
2

There is, however, a contribution to 0 (e ) since the series (B 5)

to (B 8) and the product R V contain the constant term P (cos 9) = 1.
o

If terms containing D's were retained in the first order expansions

near the focus (124) to (127), the leading terms of R V as well as

those of R(°V2) and V(o)R(2) would be: X2mN + (>"3, thus contributing

a mass flux: „ , .

It is readily remarked that this always corresponds to a source of mass

at the focus; even for the smallest possible value of m*, that is k = 1,

the exponent of (170) is equal to - 5.091.

Similarly it can be shown that the worst singularity UL" of the first

order expansions also yields a source of energy at the focus. It-does not

give a source of linear momentum for the first harmonic although it does
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for all higher harmonics. Since the physical problem does not allow for

any kind of source, these considerations provide sufficient ground for the

rejection of solutions based on D's in Chapter II, Section 3.

It remains to show that the singularity related to the complex conju-

gate roots does not create sources of mass, linear momentum or energy.
2

The leading contribution to 0 (e ) in (169) corresponds to the

complex conjugate roots of harmonic 1: m ± im. and gives a mass flux
rl Xl

whose amplitude behaves as:

.A<m > ~A2nX + a"1 (17D
S rt A.

The numerical value of the exponent is 0.840 which is physically acceptable.

It may be remarked that if the leading harmonic happens to be higher than

one, the exponent of X will always be greater than the above numerical
• o '

value, thus being a fortiori acceptable.
2

The linear momentum flux contains RV and RVW which expand respective-

*• 0 ( e2) (172)

RVW = e R-" V
(0) WU) (173)

The integral over 6 in (167) has no zeroth order part as it should for

a spherically symmetric situation and the 0 (e) contribution is, taking

into account only the first harmonic

''Im ' e Ao 3 13 1 1
This gives an oscillating momemtum flux the amplitude of which behaves as:

\ + a+1 (175)

The numerical value of the exponent is 3.466, which is acceptable.

The energy flux contains two parts: the flux of kinetic energy and

the pressure work. Considerations analogous to what was done for

arid ]((\ allow to show that there exists a zeroth order contribution and a
m

second order contribution. The latter has an amplitude behaving like:

(S . 2 2m + a+1

The exponent is equal to 2.840.

In summary the leading perturbations of the mass, momentum and energy
2 2

fluxes were shown to be respectively of 0 ( c ) , 0 (p ) and 0 ( E ).
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Furthermore, the singularity m/ gives rise to at least a source of mass

and energy at the focus whereas the complex conjugate roots m ± im.
rk Xk

yield bounded fluxes to leading order. This justifies

setting D's = 0 in expansions (124) to (127). ,

1.2. Mathematical Description - Singular Perturbation

The treatment will be limited to the mass flux 7ft , the other fluxes
s

being amenable to the same approach. Furthermore, only the leading

harmonic of the first order perturbation, which will here be assumed to

be harmonic one, is taken into account. Higher order perturbations
3 4

( e » e f*') could be computed; it is clear that higher order equations

will look like equations (B 1) to (B 4) of Appendix B with right-hand sides

containing more complex functions of the lower order perturbations. The

A - dependence of the amplitude of the third and fourth order quantities

can be inferred to be:

A(V(3))~ A3IV2 ,4(V(4))~A4IV3 ' (177)

A(W(3>)- A - ^ ( W - A - . - ' • (178)

(̂R(4)) . X
4m
ri
 + °-6 (179)

>t(P(4)) . x4"̂  + °"4 (180)

The mass flux is then obtained from (166). The integral over 6 gives
2 3

terms of 0 (1), 0 (e ), 0 ( e )"• The expansion has the form:
, ,, . , . . . 2 2(m -1) 3 . 3(m . -rl) .. .

> * J ( A ) T C A [ 1 + e A r f ( A ) + e A r ,
//(s o o o o 1 2 o o l

f, ( A ) + e4 A 4(mr "1) f ( A ) + • • • • ] (181)
J o o 1 4 o

where fn, f. and f are purely oscillating functions of A ^whose
2 J 4 o

arguments are respectively 2m. In A, 3m in A and 4 m. In A. ,

Similar series of powers of e can be obtained for the linear

momentum and energy fluxes.

Series (181) is uniformly convergent in Poincarre's sense as- long as

e A mr ~1 < 1 (182)
°, 1

Thus there exists a region in the neighborhood of .the origin of size
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_'__!__ 0.615
0 ( e m -1 ) = 0 ( e ) (183)

rl
in which expansions (55) to (58) in powers of e break down. It must be

remarked that the region of non-uniformity exists however small e is.

The problem is thus a singluar perturbation problem (reference [52],

Chapter V). It is interesting to observe that the usual warning sign of

singular perturbation (reference [52]), namely £ being the ratio of two

independent lengths is not present in this particular case.

Equation (182) indicates that for any m < 1, there is a region of
rk

non-uniformity near the focus. Since it was shown (equation (145)) that

m is always less than one the singular perturbation exists for all
rk

harmonics, including the limit k •*•.

2. Model Equations Near the Origin

2.1. Attempt to use a Poincare-Lighthill-Kuo Method

The usual Poincare-Lighthill-Kuo (P.L.K.) method, as presented for

example in reference [52], Chapter 6, is not applicable to a system of

four equations for four unknowns. This, of course, is due to the fact
!

that a single straining of the independent variable cannot take care of

the singularity of four dependent variables. What is needed is an individ-

ual straining for each dependent variable. The proper strainings can be

obtained using a method derived from Pritulo's remarks [53]. It requires

the knowledge of the second order solution, as is done in Appendix B.

The method is founded on the following consideration. A function

F ( X,6 ) is expanded in series of e:

F ( X,9 ) = F(1) ( X,0 ) + e F(2) ( X,6 ) + 0 (e 3) (18A)

F is singular near X = 0 and F even more singular. The dependent

variables are also expanded in series of e :

X » s + e X 1 (s, 4>) + 0 (c
2) (185)

6 = <J> + e * 1 (s, <|>)+0 (e
2) , (186)

Substituting (185) and (186) into (184) one collects powers of e after
(1)

making use of the Taylor expansion of F . The determination of the

straining functions X and * is such that the 0 (e) term of the expansion
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in the new independent variables s, <j> is no more singular than the 0 (1)

term. This is written as:

a (1) aF

"ix - (8** > A 1 + ~39~ (8'* } "$1+ ' M.
where £* is any function of s, $ no more singular than F ; usually it

is set equal to zero.

In order to apply this method to the problem at hand, four functions
t

F are defined from the physical variables, by subtracting the regular

zeroth order term:

V-v fO (21 u C\}
V* = — - - VU' + e VU; and W* - - - WU' (188)

E C

R* and P* are formed similarly. Using the results (124) to (127) of

Chapter II and (B 13) to (B 16) of Appendix B, individual relations (184)

can be written for V*, W*, R* and P* from which individual strainings are

obtained.

However, no functions A and * could be found such that the mapping

s,<J> to A, 6 is one to one thus insuring functions V* to P* to be single-

valued in A, 6 . As an example consider V* and choose <J> to be zero; A

is then obtained:

v(2) fl, • •
A (8l8 ) = - (1)

t8'HJ (189)

3V

» Cs'e) (1)
Owing to the oscillating character of V and hence of its derivative •, ',

V. in both A and 9, A. takes up infinite values of either sign, which in

turn gives a non-acceptable transformation .s to A. • ,

Notice that this difficulty with a P.L.K. method is not specific to

this particular problem but rather appears in any situation where the first

order function F is oscillating. •

The method of matched asymptotic expansions could be used.

As indicated by equation (183) an inner independent variable A is defined:

A=e'X'A. with OC=--^T =0.615 (190)m -1
r

Expansions (124) to (127) show the ordering of the inner dependent variables

V -c V; W -, e*** R = e ;̂ P = ̂°>+ e*
XP«> (191)
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rp turns out to be constant and l!f, Itr, 1j fP are solution of a
p. -• .'-••• f - •••

fourth order non-linear system of partial differential equations. This

system was found to be ho more tractable than the original non-linear

system (32) to (35) so that this approach was interrupted.

2.2. First Order Non-linear Models

In view of the difficulties encountered with the above standard

techniques non-linear model equations are considered with the hope to

determine if the singularity at the focus originates in the mathematical

treatment of the problem or in the basic physical assumptions.

The full non-linear equations (32) to (35) are used in the neighbor-

hood of A == 0. For convenience they are slightly modified by extracting

the leading part of the spherically symmetric solution near the origin:

V = a X + v (192)
o

- W = w (193)

^ = S = -~— ( £ A + s) (194)
R xa'J. bi
P = c +A (c.A + p*) (195)

o 1
The system of non-linear partial differential equations for v, w, s, p* is

derived in Appendix C, equations (C 6) to (C 10). It is used as the source

of model equations.

Notice that for :small A 's developing the physical quantities in powers

of e is equivalent to linearizing system (C 6) to (C 10) . Model equations

must thus be chosen so as to include non-linear terms.

A first model is obtained by retaining only the linear and non-linear

radial velocity terms in the r-momentum equation (C 8). After dividing through

by (a + - ) and absorbing the multiplicative constant in a new definition

of v, one gets:

with

N Av + v = v v (196)
A A

ao ~ > 0 . (197)

The numerical value of N is 11/6. The general solution of (196) is
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obtained by inverting independent and dependent variables; with K an

arbitrary constant it reads:

X = Kv~N + ~- v (198)
N+l

If this solution is to be matched with the numerical solution of Chapter II

developed in powers of e outside the region of non-uniformity, v must

be of 0 (e), Thus

v = e v* (199)

The solution for v*, now directly comparable to V or V is:
1C

X = Kv*~N + ~ v* (200)

A schematic plot of v* (A) is presented in Figure 14 for positive K.

The first term in (200) corresponds to the dotted line and indicates that

v* goes to infinity when A goes to zero. This is the sort of behavior

observed for the amplitude of V in Chapter II. This, however, is strongly

modified by the existence of the second term in (200) which corresponds

to the non-linear right-hand side of (198). It forces the solution to

turn around before reaching A = Q; v* then tends to infinity along an
N+l

oblique asymptote: v* = A. Thus, however small e ; there exists a

forbidden region near A = Q which the solution cannot enter; its size is

given by:
N I N

X = ê "1 [K (N+1)]N+1 N N+1 (201)
c

N
Notice that the characteristic power of e: ——• = 0.647 is fairly close to

the power X = 0.615 corresponding to the region of non-uniformity of the

singular perturbation(eee equation (190)).

In this case it can be shown that the P.L.K. method gives exactly the

answer (200); this is not surprising since the solution appears in the form

of X being a function of v* expanded in powers of e.

The non-linear term of (196), even though it is small, radically

changes the character of the solution near X = o. Unfortunately, this

change depends on the exact nature of the non-linear term. Suppose that

instead of equation (196) another first order model equation is chosen:

50



N Xv^ + v = £ v2 2 (202)
w

This is quite plausible in view of the existence of a term — in
2 X

equation (C 8) which very likely behaves as v /X . The solution of

(202) is reduced to a quadrature at the transformation v = X z and

C = In A ; expressed in terms of v* it comes out to be, with K. an arbitrary

constant:
X

i v* = K (N+l) — - (203)
N

This is schematically plotted on Figure 14. The dotted line corresponds

'to equation (203) with e set equal to zero; it is exactly the same as the

dotted line corresponding to the first term of (200) . The non-linear term

introduces a change near X = Q which is quite different from the one

observed with the first model equation: v* goes to zero with a slope of
N+T
— — thus exhibiting a typical boundary layer behavior. The boundary layer

thickness,"1 defined as the value of X for which v# is zero, comes out:
N N

Xc = e N+l (NK) N+l

Notice that the same power of e appears in both models. The P.L.K. method

applied to equation (202) does not properly describe the boundary layer

effect: instead of going to zero for *"*" 0, v* goes to a finite value of

0(6

The examination of these two non-linear first order model equations

shows that the correct behavior of the solution near X = 0 is very sensitive

to the exact nature of the non-linear terms retained. It is thus desirable

to use a rational way to derive a model equation.

2.3. Second Order Non-linear Model

The second order model equation must have the feature that its linear

part yields the oscillating behavior in X characteristic of V . The
K.

pertinent non-linear terms can be rationally chosen in the limit of large

wave number (k) . In that case, the linear system (104) to (107) reduces

down from fourth order to second order. The non-linear system (C 6 ) to

(C 10) is similarly reduced.

For large k, the ordering of tangential velocity and pressure
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perturbation is obtained by carrying over the results of the linear

analysis (equations (133) and (134) ) to the non-linear system:

w - 0 (£) (205)

P* - 0 (~ ) (206)
k

Equations (C 6) to (C 10) are specialized to the axis of symmetry 6=0,

IT on which the 6 derivatives of v and s vanish. Further, only equations in

the neighborhood of A = 0 are of interest. For small A, provided that v

and w are leading over A , equation (C 10) simply reads:
0

* = 0 (207)

The large k center line equations near A = Q obtained from (C 7) and (C 8)

are:
1 VS

- (a - 2) — v + (a -1) (A s -s) - vs - (a -1) —- = 0 (208)
b o A A A

J- .a

(a -1) A v , + (a + — ) v + a c 1 s + v v > = 0 (209)
o A o n 1 A

Elimination of s provides the second order equation in v:

(ex -2) aCl v + (a -I)2 A 2 v,, + (a + —) (a -l)(Av,-v)
~ ~ ~ o A A o n ° A

+ 2 (a -1) Aw + v2v + (a -1) A v2 + v v 2

o AA AA o A A

+ (3 ao + ̂  ) v vx - (a -1) ̂  v2V A - (a -1) (., + ̂  -

This equation contains a rather long series of non-linear terms all of

which must be retained. It is seen from the ordering (190), (191) of

dependent and independent variables in the region of non-uniformity of the

series of powers of e that all terms, linear and non-linear, in equation

(210) are of 0 (ê S.

The explicit A- dependence in (210) can be eliminated by the

transformation

v = A z (211)

C - In A (212)

With ' s —-? the equation reads:
2

N z" + N z1 + N z
2 2 2 2 2

- 2N z z" + z z" - N z ' + zz' - M z z1 + M z z ' + M z -
J. f. J. X ^ J

- M, z = 0 (213)
4
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The quantities N's and M's are defined positive:

R. = (a -1) = .7333 ; M = 7 a - n+1 = 1.8001 o I o n

N. = (a -1) (2 a ~^) = .8311 ; M0 = 4- a = .9091

^ 1 nl <214)
N, = -(°<-2) a (a - - ) = .4073 ; M = 4 a + - -( <*-!)
J o o n 3 0 n

(a + — ) = 1.236
o n

M = a-2 o 1.091
4

In form (213) the second order equation for z is amenable to phase-plane

techniques. See for instance reference [54]. With the standard notation:

Xx = z (215)

X2 E z' (216)

equation (213) becomes:

1 X ( - N ) (217)

<218)

The quantities R and R, are defined as:

R = N3 = 1.3965 (219)
a M,
o 4

R. = N2 = 1.2445 (220)
N1M2

In principle, equation (217) is to be integrated in the phase plane

X,, X_ taking singular points into account. The physical location * is then

found by integrating equation (218).

For example, consider only the linear terms in equation (210); equation

(217) simply reads:

d J L - N X - N X
—~" „ — (221)
dXl N2X

It has one singular point (0,0) which is a focus, the characteristic roots

of which are: - 0.773 ± 0.400i. The corresponding solution for v is:

. . .227 + iO.400 .227 - iO.400
v = A X + A X (222)
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which is-in agreement'with the results of Chapter II, Section 3.4.

The complete equation (217) exhibits five singular points: S (0,0) '

which is a focus; S •(R .0), S_ (-a ,0) and Sf ~, «) which are saddle '
2 1 j o 5 ,

points; and the singular point S (N ,°° ). : •

The local solutions in the neighborhood of S are given by: - - . . ' •

X2 = -N <223>

The corresponding solutions for v are obtained from integration of equation

(218):

(v - N A)2 = A2 (C;L In A + c ) (224)

c.. and c are arbitrary constants.

This result is interpreted in the following way: singularity S is

associated with points v , A on the straight line v = N A of the v,

A plane. Consider the integral curves going through such a point; their

behavior in

(224) with:

behavior in the immediate neighborhood of v , A is obtained from equation
c c

A = A + A' (225)
c

v = v + v' ' ' • ' ' '' (226)
c

Expanding the In A. for small A', one obtains: . . .

v' = + N A' ± v̂ TTT (227)

Thus the integral curves cross the line v = N A with an infinite slope.

Furthermore, there exists, on the axis of symmetry, a forbidden region near

the origin: an integral curve coming from the half plane A > A turns back
. . • . ' • • • -'- • • • c ' • •

toward that region after crossing v = N A .
• ' • 1 • . • • .' ' • .

The integral curves defined by equation (227) depend on two parameters:

the position A at which the crossing occurs and the curvature (related to
C , ' • . • . . • • : •; :

c..) of the square root function.

The size of the forbidden region could, in principle, be determined

by matching the small perturbation solution (222), depending on the constants

A_ ' and A to be determined from the boundary conditions, to the local non-

linear solution (227) also depending on two free constants. As a first

approximation of the relation of the size of the forbidden region to'e ,

it may be assumed that the linear solution (222) is continued until it '
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1.291
crosses the line v = N X. This yields a size A % 0 (e ) which is

in agreement with the ordering used in the singular perturbation approach:

see equation (190) with m = 0.227.

In summary it is seen that a forbidden domain of approximate size
1 291

0 ( e ) occurs on the axis of symmetry. It seems likely that this

conclusion also applies to other 9 - directions.

3. Interpretation and Discussion

The above analysis brings about the true nature of the singularity

at the focus: rather than possessing unbounded oscillatory physical

variables, as indicated by the linear theory, the flow displays a for-

bidden region or hole near the origin. This, of course, is not physically

acceptable. Since the mathematical treatment can no longer be criticized

from the standpoint of singular perturbation, the source of the difficulty

must be sought in the basic assumptions made to derive the flow equations.

Self-similarity in this particular problem, besides other conditions,

requires neglecting the counterpressure p as well as neglecting viscosity
o

and heat-conduction. The latter two are responsible for the infinite

temperature and zero density obtained in the spherically symmetric geometry.

It is shown in Appendix A that when counterpressure p is included in the
o

problem as a small perturbation T away from self-similarity, these features

still prevail (see equations (A 37) and (A 39)).

It is believed that the infinite temperature is the physical origin of

difficulties appearing in non-spherically symmetric geometry.

Each gas particle retains the entropy it got when it was processed by

the narrow absorption layer. In particular, there exists always a point

of zero velocity on the cylindrical symmetry axis, for example the focus

itself if the power perturbation has a second symmetry axis at 6 = 90 .

Consider the gas particles immediately adjacent to that point; they have a

high entropy because they were processed at early time and have a different

entropy according to the angle 9 at which they crossed the spark front.

Very strong 9 - gradient of entropy (or temperature) are therefore present

near the focus. Physically it seems that these must be smoothed out by
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diffusion processes including radiative heat transfer.

It is thus concluded that a proper physical approach of the flow

near the focus should probably include momentum transfer and heat transfer
. - . • ' - , V1 ' •

effects. v
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CHAPTER IV

. . . . - • -• SUMMARY AND CONCLUSIONS

Most experiments on'laser breakdown of gases until now have relied

upon a single focused beam, thus creating very asymmetric sparks and

theories have been limited to one dimensional models. In this study,

angular variations of power are introduced. Furthermore, from the point

of view of energy concentration in a single spark it would be highly

desirable to use a spherical array of lasers surrounding the plasma.

This, of course, will provide a nearly spherically symmetric distribution

of power to which the small perturbation analysis presented here is

exactly applicable.

Boundary conditions are derived for a narrow absorbing layer pre-

ceded by a shock wave. The inner plasma is described as a non-viscous,

non-heat conducting, and perfect gas. The thermal radiation emitted by

the hot plasma is neglected compared to the laser beam power input, thus

making the inner flow isentropic. Self-similarity is possible provided

the counterpressure can be neglected and assuming constant power addition

in time; the size of the spark then grows like t

The angular dependence is introduced as a perturbation in the power

addition, of magnitude e, a small quantity. The self-similar equations

and boundary conditions are split into a zeroth order set and a first order

set. The former describes a purely spherical spark. A numerical outward

integration yields the velocity, density and pressure profiles which are

comparable to those obtained by Champetier and Al. [40] and Wilson and

Turcotte [41]. The temperature at the origin is infinite and the pressure

bounded. The singularity at the origin is identified as depending on the

self-similarity variable A according to X .

The first order perturbation equations and boundary conditions are

linear and can be decomposed in Fourier series of the angular variable 9 .

For the first five harmonics an outward numerical integration yields the

velocity components, density and pressure profiles in function of X. The
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size of the perturbed spark is determined; it turns out to be much smaller

than the power perturbation which corresponds to a redistribution of the

added energy in the whole flow. The wave front is strengthened by

enhanced power addition, thus making velocity, density and pressure

perturbations positive behind the front. Maps are presented of the stream

lines and constant density lines for the first two harmonics. In the case

of harmonic one, a mass transfer occurs near the focus towards the

increased power addition; similarly the stream lines are pulled in that

direction.

The case of large wave numbers is examined. The tangential velocity

and pressure perturbations become small in most of the field and the

system of differential equations describing the flow reduces down from

fourth order to second order. A boundary layer forms near the wave front

to accommodate the boundary conditions.

The small perturbation solution is valid away from the focus of the

laser in which neighborhood the physical variables exhibit a singular

behavior: they oscillate with reducing wave length. Analytical expansions

in the variable A shov; that the singularity does not, to leading order,

yield a source of mass, momentum and energy. The expansion in powers of

E is, however, a singular perturbation near the focus.

Several first order and second order model equations are considered

with the aim of including non-linear effects near the origin. In

particular, for large wave numbers, a second order equation is rationally

obtained which describes the velocity perturbation on the axis of symmetry

of the spark. Solution of the first order to that equation suggests,

and study of the second order equation confirms, the existence of a

forbidden region near the focus.

Further improvements of the analysis presented here would include a

detailed derivation of the size of the forbidden region by properly matching

the non-linear solution with the small perturbation linear solution, in

the large wave-number limit. This, however, still does not completely

describe the physical situation. The basic assumptions should be reviewed;

self-similarity likely should be excluded to properly take into account
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heat transfer during early phases of the spark history when the infinite

temperature singularity is established. Experimental evidence indicates

the existence, inside the spark, of a hot core in which radiative transfer

effects are probably strong; this may suggest the use of a constant

temperature region near the origin.
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APPENDIX A

SPHERICAL LASER SPARK WITH COUNTERPRESSURE

A 1 . General Equations and Boundary Conditions

The inclusion of counterpressure p introduces a new parameter
o

containing mass, length and time; this invalidates the dimensional arguments

leading to self-similarity (see Chapter I) . The governing flow equations

are thus the full time dependent equations (19) to (22) . The analysis is

restricted to purely spherical geometry i.e* — = 0 and u - 0 and constant
08 8

power ic = 0. Defining A as previously (eq. (25) and (26)) and a modified

time variable T as

po (n A t "'V
and non dimensionalizing the physical quantities as

u - n A t n-1 V ( X,T) (A2)

p = PQ R ( A,T) (A3)

p - p n2 A2 t2 n"2 P ( A,T) (A4)
o

equations (19), (20) and (22) can be rewritten, after cancellation of

explicit t-dependence

(V -X) R, + R V + 2 ^7 - 2 — T R =0 (A5)
X A A n T

( V - X ) V + — V + 7 P, -2 — TV =0 (A6)
A n R A n T

(V- A) P + 2 — P + Y P V + 2Y — -2 ~ T P • 0 (A7)
A n A A n t

4/5
Note that the new independent variable T (which goes as t ) can be

interpreted as the inverse square of a fictitious Mach number based on the

sound velocity in the undisturbed gas and the wave front velocity that

would pertain to a self-similar spherical spark. It was found more

convenient, for perturbation purposes, to use this fictitious Mach number

rather than the Mach number based on the actual front velocity as was done

by Sakurai [I, II] in his study of ordinary blast waves.

The spark boundary is an unknown function of time that may be expressed

as
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r = A t" m (T) (A8)

The wave velocity is obtained by derivation with respect to time:

D = n A tn-1 ( m - ̂^ T m') (A9)
, n

in which m1 B —— . Defining m, which depends only on the unknown function

m as:

m (T) = m - ̂ ^ T m1 (AID)
n

the boundary conditions are obtained from (15) to (18) for constant power
P n

P and uniform heat flux J = L : at A = At m (T)
L —

V, = m (T) ( 1-f ) (All)
d

R, = 1/f (A12)d

Pd = ± T + [m (T)]
2 (1-f) (A13)

with
1 T / T 2 Y +1 I

IY + ~T - / (l - -r) r ——- J (A14)
m * m 2ffan m m

A.2. Small perturbation Assumption

A small perturbation scheme from the self-similar spherical solution

(zeroth order) is proposed by considering T as the small parameter. This

type of approach can be regarded as a late time solution for which the
-2/5

velocity of the self-similar wave (which goes as t ) has decreased

sufficiently so that the undisturbed sound speed is no longer negligible

with respect to it and the effect of non-infinite Mach number I/T has to

be taken into account.

The function m (T) is expanded in a MacLaurin series, the first term

of which is only retained

A = m (T) = 1 + AT ' (A15)
d 2

The density ratio f is expanded in powers of T making use of the fact that

the radical in (A 14) is non-zero for the overdriven zeroth order wave.

One arrives at:

f = f(0) + T (K + K A ) (A16)

where f and K are defined as in Chapter II (equations (49) and (50)) and
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K- is another constant solely dependent on the zeroth order wave speed as:

The boundary conditions on velocity, density and pressure are then

developed in powers of T . This naturally suggests expansions of the flow

variables over the whole field of A :

V <X,i) = V(0> (X) + T V(1) (A) (A18)

R (A,T) = R(0) (A) + T R(1) (A) ' (A19)

P (A,t) = P(°} (A) + T P(1> (A) (A20)

Expansions (A 18) to (A 20) are substituted into the flow equations

(A 5) to (A 7) and the boundary conditions (A 11) to (A 14) . Collecting

the terms of 0 (1) yields the zeroth-order problem which has already been

solved in Chapter II § 2. The 0 (T) terms give rise to a system of three

ordinary differential equations with variable coefficients for V , R

and P(1). They read with'

R(o)v(l) • + (R(o) ' + 2 v(l) + (v(o) _X) R(l). + (v(o) • + 2
A

I(0)_ 2 nzl , R(D . 0 (A2p

(o)

_ A) V(1) ! (V(0) ' - ) V - R+ P = 0 (A22)

(D ' + (p

v(o) (i)
. 2y -y ) P = 0 . (A23)

The 0 (T) terms are collected in the boundary conditions which are further

transferred from the unknown location A = 1 + A, T to the known .location
d 2

A = 1 by a Taylor expansion. One obtains: . . =

V(1) (1) = - K + [ (l-f(o)) — - K - V(0)'(1)] -A, (A24)
n / /

P (1) - - K + [(l-f) 2-K 2 - P ( 1 ) ] X2 (A26)

A 2.1. Expansions near A= 0

•The system of differential equations (A 21) to (A 23) is to be integrated
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subject to boundary conditions (A 24) to (A 26). By elimination of the un-

known constant \ these reduce down to only two, rendering impractical

an inward numerical integration from the boundary A = 1. Instead the

three linearly independent solutions are sought in the neighborhood of

the origin. One is to be discarded as corresponding to a physically in-

acceptable singularity. A numerical integration is conducted outwards

with the two remaining solutions so as to satisfy boundary conditions at

X = 1.

Keeping only the leading term in the expansions of the coefficients

of equations (A 21) to (A 23) , the flow equations near the origin read:

V V + VA0"3 V(1) + (a -1) X R(1)'+ (3 . - 2 S=i>1 1 o o n

R(1) = 0 (A27)

(a -1) X V + (a - =) V -
o % o n , 2 b 1

1
(1) *
P: =0 (A28)

(1}
(1) ' V Q) ' (1)

Yc Vv + 2 Yc -r- + (a -1) X PV ' + 3Y a PV ' = 0 (A29)o o X x o o

Note that for P behaving like a power of X the last two terms of

equation (A 29) are of 0 (X ) compared to the last term of (A 28). They

may thus be dropped to leading order. Three linearly independent solutions

are sought, each of the form:

= AI X
X (A30)

= A X X + " - 3 (A31)

Substituting these into (A 27) to (A 29) gives, after cancellation of all X

dependence, a system of three linear homogeneous algebraic equations for

A , A , A . x is solution of the indicial equation obtained by setting the

determinant of this system equal to zero:

68



bn (x + a) (a -1) (x-1) - 2 — 0
1 o n

(a -1) x + a - — a (a--) x + cu l = o (A33)
o o n o o n

x + 2 0 0

The three roots are immediately found:

x = - 2 ; x - - ( (VI) ; x. = 1 + 2 — — (A34)
1 2 3 n a

o
The first root x = - 2 yields an infinite velocity at the origin as well

2
as an infinite density. It can be seen that to order t the origin is a

point source of mass and energy; this feature is not acceptable and the

solution corresponding to the root x = -2 is rejected by setting the

A's equal to zero. The system of algebraic equations is solved for the A's

corresponding to roots two and three. For x , one obtains

AI = 0 ; A2 = 0 ; A3 = arbitrary (A35)

and for x0, the solution is: 1
a (a - ~ )

Al = ° 5 A2 = arbitrarv > A3 " - x° + °P- 1
 A

2
 (A36)

Note that in both cases none of the physical quantities blow up at the

origin. In order to increase the accuracy of the numerical solution, the

first non-zero term of the expansions is sought. To that effect, the first

two terms in the expansions of the coefficients of equations (A 21) to (A 23)

are retained and it is easily seen that the next order terms of V and
(1) x + a x + 2 ct— 3R are respectively X , X . Denote the coefficients of these

terms by B's. Remarking that for Y = 5/3 the numerical values of the
23 31

retained roots are x = - — and x = — — the expansions read:

V(1> - Bj A + B* X
 65/U (A37)

R(l) = Bl A 12/11 + A2 A 32/11

(l> *P= A + A3 X (A39)

where superscript 1 refers to the root x and superscript 2 refers to the

root x . It is interesting to remark that the solution corresponding to the

root x has exactly the same type of singularity as the zeroth order self-

similar solution, namely linear velocity in X and constant pressure; it is
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1 2
noted however that the coefficients are different. Choosing B-, and B,

1 2 1 2 '
as the arbitrary constants the four constants B , A , A and A are

solution of an homogeneous algebraic third order system; for y = 5/3 and

using equations (88) to (90) one obtains:
B (MO)

and
.2 2025 x 2175 2 ' .•
A2 = 154 x 374 Co Bl (M2)

2 2175 2 . ,„.
CoBl (M3)

A 2.2. Numerical Integration and Results

The system of six ordinary first order differential equations formed

by the zeroth order system plus equations (A 21) to (A 23) is integrated

starting from the origin with expansions (88) to (90) and (A 37) to (A 39).

A fourth order Runge-Kutta scheme is used. The boundary conditions are

obtained from equations (A 24) to (A 26) by elimination of the unknown

constant X :

X - X3 P(1)(l) - *5

X2 X4

in which the X's are known constants:

v = - K ; X - (l-f(o)) 23L - K - V(0)'(1) (A45)
l ^ n z

K ' '

. X 5-i- K ; X6- (1-£
(0>) 2^-- K2 - P

<O> '(1) . .. (A47)

Use is made of the linear character of the system (A 21) to (A. 23) to . .
1 2

determine the constants B and B . A first integration is carried out with

BJ" = 1 and B^ = 0, call that solution V (1) , R (1) , P (1) ; the numerical

values of these quantities at the boundary A = 1, of course, do not satisfy
1 2

the boundary conditions. A second integration is made for B = 0 and B = 1,

call that solution V , R , P . The full solution which must

satisfy the boundary conditions is expressed as a linear combination of these
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two specialized solutions i.e.:

V(J> BJ + V<» B* (A48)

- RT Bi + RT \
- P<J> BJ + P < J > B* ' (A50)

1 2
The constants B and B are solution of the second order algebraic system

obtained by applying boundary conditions (A 44) on the full solution

(A 48) to (A 50). It reads:

R(J}(1) X X

~~~> '* = 5 '

i _

X_ X, 1 X0 X,. 1 Xo X,
/. o i b / o

As a check the system was integrated once more using the so obtained values
1 2

of B and B in expansions (A 37) to (A 39) and it was found that the

boundary conditions were accurately satisfied.

The velocity, density and pressure perturbation profiles are plotted

on Figure A and A is obtained

X2 - - 0.1993 (A53)

A 2.3. Discussion and Conclusions

The numerical value of A is negative indicating an inward displace-

ment of the boundary of the spark as well as a weakening of the wave

characterized by a slower front velocity. This fact is also reflected in

the perturbations of the physical quantities just behind the front. It

should be noted that this applies at the actual front X = 1 - 0.1993 T and

not at the fictitious point A = 1 (which is not even inside the spark)

where boundary conditions are applied in the analysis. The value of a

perturbation physical variable F at the front is easily obtained:

F , = F (1) + F (1) • A (A54)
d 2.

The particle velocity is seen to be lowered behind the detonation front and

so is the density as might be expected for a weakened wave. The pressure,
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however, is higher showing that"the contribution of the added external

static pressure overrides the lowering of the dynamic pressure (see for

example eq. (17)).

The perturbation velocity is negative over the whole range of X and

its profile remains remarkably linear up to X= 0.5 which is not surprising

in view of the expansion (A 37) the linear part of which is expected to

dominate over the power law part with the high exponent 65/11. The

perturbation density and pressure are positive and a pressure increase is

present at the origin. Note that since the density goes to zero, the

temperature remains infinite at the origin as .it should because no diffusion

mechanism has been provided in this perturbation scheme.

Comparing these results with Sakurai's [I, II] for constant energy

blast waves, it seems apparent that a considerable simplification in the

analysis and numerical solution has been gained by the adoption of the

perturbation parameter T, inverse of a fictitious Mach number, rather than

the actual front Mach number. This is reflected in the fact that the

unknown constant does not enter the differential equations but is only

present in the boundary conditions, thereby avoiding* the difficulty of

having to deal with unbounded functions in the integration procedure.

A direct comparison of the physical quantities distribution with those

of a blast wave presented by Sakurai would require expressing the dependent

variables in terms of a new independent variable, say x = —, where r is
rd , d

the actual front. Noting that x is related to X by x = X (1 - T X ) this

could easily be done

F (x) = F(0)(X) + T [F(1)(X) - F(0)' (X) X 2\ ] (A55)

Nevertheless, the trends can be qualitatively described without that trans-

formation. The perturbation profiles for density and pressure are markedly

less steep near the boundary than for a blast wave. This, of course, is

connected with the remark made in Chapter II § 2 that a Newtonian layer is

not possible when energy is deposited right behind the leading shock wave.

The velocity profiles exhibit the same negative behavior throughout and

the density profiles appear to have the same trend in both cases. The
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difference seems more marked itu the pressure proflies:-at the center a

decrease in pressure is obtained for blast waves rather than the increase

present here and a diminution of the pressure gradient just behind the

shock wave is reported by Sakurai; it is not so for constant power laser sparks.

The applicability of this perturbation solution including counter-

pressure for laser sparks can be found in certain special cases.

Parameter T becomes significant when the sound speed in the undisturbed

gas is high, for example.if the gas is preheated. This physical situation

has been actually realized in an experiment conducted by Ahmad and Key in

1969 [III]. Instead of focusing the laser beam in a cold gas they first

created a primary laser detonation wave in helium at 8 atm, after a 2 V

sec delay they focused,the beam of a second laser on the hot gas just

behind the front of the primary spark (which by then .had degenerated into

an ordinary blast wave). A secondary spark was obtained which developed

in the heated gas inside the blast wave.

Another application is related to the possibility of maintaining a

laser spark, once initial breakdown has taken place, by using much smaller

powers than those commonly used in experiments and hence creating much

slower moving fronts. Raizer discussed that situation for air in 1968

IIV], the criterion being that the gas should remain sufficiently hot

( -20,000 K) to be able to absorb the laser photons on a short distance.

Front velocities of the order of a few km/sec seem possible, thus making

the inverse Mach number non-negligible with respect to one.
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APPENDIX B

SOME REMARKS ABOUT THE SECOND ORDER SOLUTION

B.I. Second Order Equations
2

Expansions .(55) to (58) in powers of e are extended to 0 (e ).
. ' , . - . • • 2

Collecting terms in e the equations for the second order perturbation

quantities are: . •

R(o)v(2) + (R(o)' + 2|
CO)
)V(2) + I R(o) (w(2)+ cot 9 w(2) +

A • A -A D

-A ) R + (V<°>' + 2 ) R<2)

. „- . cot9 Wv ')] (Bl)
A 0

/ \' "

P(0) (1)2
-(oTIR ] <B2)
R

f*\

w(2)+ V̂ -_ i P(9
2)= - [v(1V̂

R^P^ ] (B3)

Yp(o)v<2) + (p(o)' + 2y P. y(2) y P. (W(2) + ̂  Q w(2))

-X) P + (Y V+ 2y -+ 2 i ) P(2)

[v(l)p(l) + y p(Dv(l) + I v(l)p(l) + I p(l) (2V(D +
A A A o A

W(a
L) + cote W(1)) ] (B4)
o

The solution of this fourth order linear system is sought as the sum of a

complementary solution plus a particular solution. Since the left-hand

sides of this system are identical to equations (62) to (65) the complemen-

tary solution can be treated in the same way as the first order solution

(see Chapter II, Section 3). In particular its behavior near the origin

is given by (124) to (127).

B.2̂  Particular Solution in the Neighborhood of X = 0.

Consider the right-hand sides of (Bl) to (B4) . Their 6 - dependence
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involves products of Legendre polynomials. If N is the highest harmonic

present in the first order solution, developing the product of two N—

order Legendre polynomials in series yields Legendre polynomials up to

order 2 N. The particular solution is thus sought in the form:

v(2) = 2£ p (cose) v (x) (B5)
A=0 * ' *

(2) 2N d -W E dl P £(cose)W£(X) (B6)
*=0

(2) 2N

RV = z P (cose) R.(X) • ! (B7)
JL=0 £

2N
P(2) - E P (cosB) P (X) (B8)

A-0 * *
«• K

In order to find the leading term in the expansions of V to P near

X = 0, only the first term in the expansions of the coefficients is kept on

the left-hand side and only the leading terms of the right-hand sides are

retained.

Two cases are considered. First suppose that the terms D's are kept

in expansions (124) to (127). Table 1 indicates that the strongest

singularity m/ corresponds to the highest harmonic. The leading term on
2m'-1

the right-hand side of (B 2) is thus seen to be X N . The particular

solution then has a \ - dependence:

V2N . X ̂  "I (B9)

W - X 2m<N "X (BIO)

(Bll)

^-^'H-1-*"-1 . • (B12)

Secondly, suppose that D's are set equal to zero. The strongest first

order singularity is now given by the first harmonic k = 1. Hence the

X - dependence is given by (B9) to (B12) where m* is replaced by m + im

It may be noticed that it is physically more acceptable to

have the strongest singularity at the origin corresponding to the most

asymmetric perturbation i.e. the lowest harmonic rather than the opposite.
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The complete second order particular solution has been calculated for

the case: D's = 0 and the first order solution limited to its first

harmonic. It comes out with m = - 0.6253 and m. = 0.5500:

v(2) = X2m r -1 [COS29 (^ x 2^ + x* x-2imi + ^ + sin
2

 9

/ v ' \ 4 - L . v ' * \ *••«•"', , f . \ \ i / n i i \(X. X i + X * X i + C. ) \ (oil)

w(2) = A2mr-l gin Q cogg

(2) , 2m + a -4 2 0 .„ . 2im. . * ,-2im. . 2 . . . 2 .
R = A r [cos 9 (XX i + X X i + ZT ) + sin 9

(B14)

A21mi + X'* A "'"i +2f') ] (B15)

(2) _ ,2m, + a-2 , _2 ' ,„ , 2im, , *, -2ifflj , -* x . __22 2im * -2im •* 2
[cos 9 (X, X i + X A i + £.) + sin 6

4 4 4
Px 7 = X

a I 1 *"•*•"*J i v " l~tA1". • i< t \ /D1£\.X i + X A i - f ^ ) (B16)
4 4 • 4 .

The constants X's and Z's are solution of a system of fourteen linear

algebraic equations. The numerical values are:

X = (0.12+il.88)10~3 Z = 1.77 10~3 X' = (-0.06 - iO.94) 10~3 Z'= -0.89 10~3

X£ = (1.05+i0.17)10~
3 ^̂ = 0.22 10~

3 X^ = (-0.91+10.39) 10~3 Z^ • 2.09 10~3

X. = (0.50-il.52)10~3 Z0 = -2.34 10~
3 x! = (0.12-i0.56)10~3 Z.'= -5.78 10~3

3 , 3 4 4

X, = (0.80+10.04)10~3 Z, =-4.07 10~3

4 4
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APPENDIX C

SECOND FORM OF THE FLOW EQUATIONS

The complete non-linear self-similar flow equations (32) to (35)

are transformed by defining:

R = ̂  „ (CD
D . , • „ . . „

V = a A + v ... .(C2)
O ' • ,- • • • < • ' , • • > - : . . .

W - w ' • - . - . - . , (C3) •

s = ̂ r (r A +s) '.'.". . . , ,'.''.'
. o-i *

P B c^ +X (c X + p ) (C5)

With the definition:

'* = A vx + 2v + w Q + cot 9 w ' (C6)

the system reads:

- (ct-2) £- v - •£- * + (a -1) (A s, - s) + vs, - ( a-1) if5- +
D D O A A A

WS0 1
— - y a * = 0 ^ ^ (C7)

(a -1)A v + (a + IL^) v + a Cl s + ^- [A p* + ( a-1) p*] +
o A o n I D A

^ + T" w va ~ ̂ T + T s [X p* + ( a-1) p*] = 0 (C8)
A A o A A A

(a -1)A w + (a + ) w + -— p^ + v w , + — ww+ — vw
o X o n b i 9 X X 9 X

+ Y s P9* " ° (C9>
1 * *

(a-1) a c, X + y c — $ + o c, v + y c, $ + (a -1) [X p + ( cKL) p ]
o 1 o i a * * °

* D V W D 9 1 *+ v Pl + (a-1) £^ + ^-^-+ y± p 4 = o (CIO)
A A A A

In the neighborhood of the origin, equations (C 7) to (C 10) are

linearized as follows:

X v + 2 v + w + c o t 9 w = 0 (Cll)
1

- ( w-2) 7- v + (a -1) As, - (a -1) s = 0 (C12)b o A o

(a -1) A v, + (a + —) v + a c, s + ~ [ A P* + (a -i) p ] = 0 (C13)
o A o n 1 b A

V" Xwx + ^ + *o> w + b^ p e* " ° (C14)
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Power distribution: g (9 ) = — [ 1 + e P (cose) ]
f 71 tC

Wave front: h (? ) = 1 + e Pfc (cos
 9 ) X,

Radial velocity behind the wave: V = 1 - f + e p (cos6) C
Q 1C i

Tangential velocity behind the wave: W = -e k(cos9) C
dfl

Density behind the wave: R, = • +e. P, (cos9 ) C
u \o) ' fc *^

Pressure behind the wave: P = 1 - f ' + eP (cos9 ) C
'Pk

k .

1

2

3

4

5

Pk(x)

x
2

3 x - 1
2

5 x3 - 3X
2
A 2

34 x -30 X + 3
8

5 3
63x - 70x +15x

8

Xk

.1903

.1754

.1589

.1429

.1288

CVk

.0491

-.0164

-.0891

-.1586

-.2217

CWk

.0875

.0806

.0730

.0656

.0591

CRk.

-.1297

-.3325

-.557

-.773

-.965

: CPk

.1366

.0642

-.0161

-.0939

-.1625

Note: X = cos 9

f(o) = .54041 l-f(o) = .45959
-(o)

1.8504

Table I: Spark Shape and Values of Velocities, Density
and Pressure Behind the Wave Front
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-RCJS

Figure 1. Geometrical arrangement of.a laser induced spark.
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0 .2 1.0

Figure 2. Velocity, density and pressure profiles of a
spherically symmetric spark when y = 5/3.
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0.1.
. 0.5

Figure 3. Velocity, density and pressure profiles of a
spherically symmetric spark when T~~=~T.
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.6 .8 1.0

CO

V(1)=£Pk(cos 0). Vk (A )

\

..k=5

k=3

- k = oo

Figure 4. Radial velocity perturbation profiles for harmonics
1 to 4.
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wk

Figure 5. Tangential velocity profiles for harmonics 1 to 4.
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00

•R(n=IX (cos9). R. (A)

.1.5 . k = 3

k = 5

Figure 6. Density perturbation profiles for harmonics 1 to 4.
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2 .4 \ .6 .8 , 1.0

Figure 7. Pressure perturbation profiles for harmonics 1 to 4.
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Figure 12. Complex conjugate roots of the characteristic equation
near the focus as a function of the harmonic number k.
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Figure 13. Comparison of numerical values of wave strength with
predicted values, for large k.
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Figure 14. Solutions of two non-linear first order model
equations. , ;
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Figure A. Velocity, density and pressure perturbation
profiles for finite counterpressure.'
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