HIGH-SPEED FLOW PAST WINGS

by Helge Nørstrud

Prepared by
LOCKHEED-GEORGIA COMPANY
Marietta, Ga.
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1973
The analytical solution to the transonic small-perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a non-linear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty in the present study was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique has, therefore, been added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>2</td>
</tr>
<tr>
<td>ANALYTICAL ANALYSIS</td>
<td>5</td>
</tr>
<tr>
<td>Governing Differential Equations</td>
<td>5</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td>6</td>
</tr>
<tr>
<td>The harmonic solution</td>
<td>6</td>
</tr>
<tr>
<td>The Integral Equation Formulation</td>
<td>7</td>
</tr>
<tr>
<td>Correction for lifting, continuous flows</td>
<td>10</td>
</tr>
<tr>
<td>Correction for lifting, discontinuous flows</td>
<td>11</td>
</tr>
<tr>
<td>NUMERICAL ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>The Algebraic System</td>
<td>12</td>
</tr>
<tr>
<td>Methods of Solution</td>
<td>14</td>
</tr>
<tr>
<td>The Newton's method</td>
<td>15</td>
</tr>
<tr>
<td>Method of parametric differentiation</td>
<td>16</td>
</tr>
<tr>
<td>The method of steepest descent</td>
<td>17</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>19</td>
</tr>
<tr>
<td>Two-Dimensional Flows</td>
<td>19</td>
</tr>
<tr>
<td>Three-Dimensional Flows</td>
<td>20</td>
</tr>
<tr>
<td>CONCLUDING REMARKS</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX A - BASIC EQUATIONS FROM TWO-DIMENSIONAL ANALYSIS</td>
<td>22</td>
</tr>
<tr>
<td>APPENDIX B - LISTING OF COMPUTER PROGRAM</td>
<td>24</td>
</tr>
<tr>
<td>APPENDIX C - SAMPLE INPUT AND PRINTOUT</td>
<td>59</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>66</td>
</tr>
<tr>
<td>FIGURES</td>
<td>69</td>
</tr>
</tbody>
</table>
HIGH-SPEED FLOW PAST WINGS

By Helge Nørstrud
Lockheed-Georgia Company

SUMMARY

The analytical solution to the transonic small-perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty in the present study was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution.

In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique has, therefore, been added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

INTRODUCTION

The importance of having aircraft flying in the transonic speed range either in the cruise mode or a maneuvering mode has been expressed by both civilian and military operators. Although the financial benefits from a commercial transonic airplane seems at present to be somewhat questionable, no definite conclusion can be drawn before a thorough understanding has been reached of the various operational problems involved. The technical difficulties, however, associated with the development of such an aircraft are well known to both the experimentalists and the theoretician in the area of predicting the aerodynamic loads and the operating boundaries.

Early attempts to theoretically analyze compressible flow past finite wings at subsonic speeds beyond an application of simple sweep or strip theory were based on the equivalence theorem which concerns itself with geometrically equivalent bodies (ref. 1). A solution was thus obtainable for small aspect ratio wings, but required the solution to the equivalent
nonlifting axisymmetric case. A more general three-dimensional treatment of the transonic flow problem, however, seems to have been first given by Alksne and Spreiter (ref. 2) who extended the concept of local linearization to nonlifting wings, but were limited to oncoming flows which deviated little from the sonic speed (see reference 3 for a more recent and detailed exposition). Similar restriction on the freestream condition also applies to the work of Burg (ref. 4) which is based on still another linearized form of the governing transonic small-perturbation equation. Nørstrud (ref. 5) adopted the integral equation approach to the solution of the same governing nonlinear equation, but results were confined to subcritical flows. The analytical difficulties associated with the three-dimensional transonic flow problem were clearly a matter which was inherited from the more familiar planar case and a solution to the spatial problem dependent to a large extent on the progress made in solving the problem in two dimensions, see e.g. reference 6 for a comprehensive literature review of the subject.

The first successful evaluation of mixed subsonic/supersonic three-dimensional flow with embedded shocks were recently given by Bailey and Steger (ref. 7) who numerically solved the steady state small-perturbation equation using relaxation techniques. Their approach includes a hybrid combination of the perturbation velocity potential and the perturbation velocities as the dependent variables and calculations for lifting, supercritical flows are presented. Similar relaxation schemes have also been applied by Caradonna and Isom (ref. 8) to the transonic flow problem of hovering helicopter blades at zero lift. Still further numerical investigations of the transonic wing alone or wing-body problem are found in references 9, 10 and 11 and this has brought the subject of transonic flow theory to an initial stage of overall completeness.

The present study refines and extends the work of reference 5 to lifting flows with the inclusion of shock discontinuities in three-dimensions. The approach taken follows some fundamental steps proposed for two-dimensional flows by Oswatitsch in 1950 (ref. 12) and it can be described as semi-analytical. The formal integral solution to the transonic small-perturbation equation with associated boundary conditions is regarded as more amendable to numerical analysis than the differential formulation. This is especially true for subcritical flows. For supercritical flows, however, some additional considerations must be given to guarantee the uniqueness of the flow solution. In either case, the governing integral equation is first replaced by a system of nonlinear algebraic equations and then alternative methods of solution to the algebraic system are given.

SYMBOLS

\(A, B, C \) velocity parameters
\(\text{AR} \) aspect ratio
\(\text{Ci} \) cosine integral
\(c \) speed of sound
\(E(|x - \xi|, |Z - \zeta|; r) \) influence function
\(F_i \) functional defined in equation (23)
f_i
functional defined in equation (37)

G_i
operator defined in equation (30)

H_v
Struve function of integer order v

J
Jacobian matrix

M
local Mach number

$m(x, Z)$
scaling parameter, see equation (22)

N_v
Neumann function of integer order v

$q(\xi, \zeta)$
source distribution, see equation (8)

R
distance function

$r(x, Z)$
velocity decay parameter

S
wing planform area

S_i
sine integral

s
specific entropy

U, V, W
transformed perturbation velocity components

u, v, w
velocity components

Y, Z
transformed coordinates $= (1 - M_\infty^2)^{1/2} y, z$

x, y, z
Cartesian coordinates

Y_w
function describing wing surface distribution

Greek Letters:

α
angle of attack

$\gamma(\xi, \zeta)$
vorticity distribution, see equation (9)

∇^2
Laplace operator

Δ
incremental value

δ_{ij}
Kronecker delta

e_{ij}
influence coefficients

κ
ratio of specific heats

μ
differentiation parameter

ξ, τ, ζ
inintegration variables

ρ, σ, χ
arguments
\(\tau \)
thickness ratio

\(\phi \)
velocity potential

\(\varphi, \overline{\varphi} \)
velocity perturbation potentials

\(\varphi' \)
downwash correction potential

\(\psi \)
functional defined in equation (36)

Subscripts:

\(\infty \)
freestream value

\(s \)
with reference to the source solution

\(v \)
with reference to the vortex solution

\(w \)
refers to the wing surface

\(2,3 \)
two-dimensional or three-dimensional respectively

Superscripts:

\(+ \)
refers to upper surface value

\(- \)
refers to lower surface value

\(x \)
refers to \(x \)-direction

\(Z \)
refers to \(Z \)-direction
ANALYTICAL ANALYSIS

Governing Differential Equations

Three-dimensional irrotational compressible flow of an ideal gas around a finite wing generates a velocity field \((u,v,w) = \nabla \phi\) which is defined in a body-fixed Cartesian coordinate system \(x,y,z\). With the further assumption of small disturbances in the plane normal to the direction of the oncoming steady flow (i.e., in the \(yz\)-plane) the governing partial differential equation for the velocity potential \(\phi(\mathbf{x},y,z)\) will be written as

\[
(1 - M^2) \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \frac{M^2}{u_\infty} \left[\frac{\partial}{\partial x} \left(\frac{\phi}{u_\infty} \right) \right]_{xx}
\]

where \(M = \frac{u}{c}\) is the freestream Mach number and \(\kappa\) designates the ratio of specific heats. Equation (1) is a particular form of the set of equations which can be deduced from the transonic small-perturbation theory and it can be transformed to

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial Y^2} + \frac{\partial^2 \phi}{\partial Z^2} = \frac{\partial^2 \phi}{\partial x^2}
\]

after a normalized velocity perturbation potential \(\phi = \phi (x,Y,Z)\) is defined as

\[
\phi = \frac{(\kappa + 1) M^2}{(1 - M^2) u_\infty} (\phi - u_\infty x - v_\infty y - w_\infty z)
\]

The employed coordinate transformation \(Y,Z = (1 - M^2)^{1/2} y,z\) corresponds to a form of the Prandtl-Glauert transformation and we are thus limiting the present analysis to far-fields with subsonic flow \((M_\infty < 1)\). This restriction is arbitrary since a different coordinate transformation would make a similar perturbation analysis valid for freestream Mach numbers \(M_\infty > 1\).

The introduction of a velocity potential \(\phi\) in equation (1) is equivalent to imposing the condition of irrotationality

\[
\text{rot} (\nabla \phi) = 0
\]

on the flow field and, hence, equations (1) and (4) must be regarded as the system of equations to be solved under given boundary conditions. Since equation (4) implies a characterization of the subject flow as global isentropic \((s = \text{const.})\) and assumes no vorticity in the upstream far field region, the entropy increase across any embedded shock surface is regarded negligible. Thus, the entropy condition which forbids the occurrence of expansion shocks must be incorporated in the analysis by means other than the use of the specific entropy measure. This missing formulation will be dealt with in the numerical analysis section.
Boundary conditions. - Let the planform projection of the wing be situated in the plane $y = 0$ and let the distribution $y^\pm_w = h^\pm(x,z)$ define the wing upper $(+)$ and lower $(-)$ surface, respectively. The simplified boundary condition expressing tangential flow at the wing surface is then

$$y = \pm 0:\quad \Phi_y = u_\infty h^\pm(x,z) \quad (5a)$$

or in transformed variables

$$Y = \pm 0:\quad \Phi_Y = \frac{(\kappa + 1)M_\infty^2}{(1 - M_\infty^2)^{3/2}} [h^\pm_x(x,z) - \tan \alpha] \quad (5b)$$

where $\alpha(= \tan^{-1}(v_\infty/u_\infty))$ designates the angle of attack which will be limited to small values. Furthermore, equation (5b) assumes $w_\infty = 0$ for simplicity of the analysis. The condition at infinity shall be that of vanishing flow disturbances and will be stated as

$$(x^2 + Y^2 + Z^2)^{1/2} \to \infty:\quad \Phi = 0 \quad (6)$$

In the case of circulatory (or lifting) flows, the Kutta condition at the trailing edge of the wing must be taken into consideration in order to ensure finite velocities of the flow as it leaves the wing surface. The associated potential jump $\Delta \Phi$ at the trailing edge varies in a fashion similar to the spanwise load distribution, but remains constant in the streamwise direction in the so-called vortex wake behind the wing.

The harmonic solution. - For the purpose of constructing a solution to the nonlinear partial differential equation (2) we will first consider the problem of obtaining a harmonic solution to the Laplace equation

$$\Phi_{xx} + \Phi_{yy} + \Phi_{zz} = 0 \quad (7)$$

This equation is well known from linearized subsonic theory and we can identify a solution $\Phi = \Phi(x,y,z)$ which satisfies equation (7) and the boundary conditions (5b) and (6) as a transformed Prandtl-Glauert potential with the conversion factor $(\kappa + 1)M_\infty^2(1 - M_\infty^2)^{-1}$, see equation (3).

Analytical solutions to equation (7) for given wing configuration (or boundary conditions) are rare and, in fact, it seems like Holme's solutions, given in reference 13, are the only ones available. These are closed-form incompressible flow solutions for rectangular and triangular wings with parabolic arc cross-sections at zero incidence. Of the various numerical methods available for the evaluation of $\Phi(x,y,z)$, e.g., references 14 and 15, the calculative technique employed in the present study is based on an application of the method of singularity (ref. 16). Since the superposition principle is valid in treating the linear equation (7), this method of solution utilizes a planar distribution of elementary sources and vortices to represent the physical wing configuration and the induced circulatory system.
Thus, for a constant source distribution of strength \(q(\xi, \zeta) \) over an area element \(\Delta S \) in the xZ-plane where \(Z = (1 - M^2_{\infty})^{1/2} \) one is faced with an integration of the form (ref. 16)

\[
\varphi_s = -\frac{1}{2\pi} \int \int_{\Delta S} q(\xi, \zeta) \frac{1}{\sqrt{(x - \xi)^2 + (Y - \zeta)^2 + (Z - \zeta)^2}} \, d\xi d\zeta
\]

Similarly, a constant strength vortex distribution \(\gamma(\xi, \zeta) \) leads to the representation

\[
\varphi_v = \frac{1}{2\pi} \int \int_{\Delta S} \gamma(\xi, \zeta) \frac{1}{\sqrt{y^2 + (z - \zeta)^2}} \frac{1}{\sqrt{(x - \xi)^2 + y^2 + (Z - \zeta)^2}} \, d\xi d\zeta + \frac{1}{2\pi} \int \int_{\Delta S} \gamma(\xi, \zeta) \frac{1}{\sqrt{y^2 + (z - \zeta)^2}} \, d\xi d\zeta
\]

Since the wing planform geometry is necessarily discretized by a number of small planar elements, the appropriate limits of integration are defined by the corner points of the individual panels. Within each of these panel elements the strength of the singularities \(q(\xi, \zeta) \) and \(\gamma(\xi, \zeta) \) are assumed constant and a control point is selected at which the local boundary conditions are to be satisfied.

The associated computer program which implements the solution of the spherical harmonic \(\varphi = \varphi_s + \varphi_v \) of equation (7) for given boundary condition is listed in Appendix B as subroutine CARM. It should be noted that the original listing of this program as obtained from the NASA Langley Research Center has been modified to consider perturbation velocities in the x-direction only.

The Integral Equation Formulation

Equation (2) resembles a Poisson differential equation for which potential theory admits the solution

\[
\varphi(x, Y, Z) = \varphi(x, Y, Z) + \varphi'(x, Y, Z) - \frac{1}{4\pi} \int \int \int [\varphi_\xi \varphi_\xi]_{\xi, \eta, \zeta} \frac{1}{R_3} \, d\xi d\eta d\zeta
\]

and where \(R_3 = [(x - \xi)^2 + (Y - \eta)^2 + (Z - \zeta)^2]^{1/2} \) designates the inverse of the singular fundamental solution for the domain of integration. To the harmonic solution \(\varphi \) is added another harmonic solution \(\varphi' \) which shall serve as a correction potential to the integral term of equation (10). Since the boundary condition (5b) shall also be satisfied by the potential \(\varphi \), the need for the correction term will become apparent when one differentiates equation (10) with respect to \(Y \) and rearrange to yield
where the kernel

\[
\frac{\partial}{\partial \eta} \left(\frac{1}{R^3} \right) = -\frac{(Y - \eta)}{[(x - \xi)^2 + (Y - \eta)^2 + (Z - \zeta)^2]^{3/2}}
\]

is an antisymmetric function with respect to the xZ-plane for Y \neq 0.

The derivation of equation (10) for symmetrical flows, i.e. with \(\phi'(x, Y, Z) = 0 \), has been given by various authors including Gullstrand (ref. 17) who gave a detailed derivation in connection with the Green's theorems. Similar derivation is found in reference 18 and Klunker (ref. 19) generalizes the use of the integral formulation of the transonic small-disturbance velocity potential for the far field boundary condition in connection with finite-difference calculation methods, see e.g. reference 20.

Next, we seek to modify equation (10) for a necessary numerical analysis. If a perturbation velocity vector in the transformed space \(x, Y, Z \) is defined as \((U, V, W) = \text{grad} \phi \) and if we restrict ourselves to seek a solution for \(U(x, Y, Z) \) in the planform plane \(Y = 0 \) then a differentiation of equation (10) with respect to \(x \) will yield after some manipulation

\[
U(x, 0, Z) - \frac{1}{2} U^2(x, 0, Z) = \overline{U}(x, 0, Z) + \phi_x'(x, 0, Z) + \frac{1}{4\pi} \iint_{-\infty}^{\infty} \frac{U^2}{2} (\xi, \eta, \zeta) \frac{\partial^2}{\partial \xi^2} \left(\frac{1}{R^3} \right) d\xi d\eta d\zeta
\]

(11)

To facilitate the solution of this nonlinear integral equation, an exponential decay in the \(Y \)-direction will be assumed for the perturbation velocity component \(U = U(x, Y, Z) \), i.e.

\[
U(x, \pm Y, Z) = U(x, \pm 0, Z) \exp \left\{ \mp Y/r(x, \pm 0, Z) \right\}
\]

(12)

where the parameter \(r(\pm)(x, Z) = r(x, \pm 0, Z) \) is approximately derived from equations (4) and (5) as

\[
r(\pm)(x, Z) = \text{abs} \left\{ (1 - M^2) \right\}^{1/2} \frac{1}{u_\infty} \frac{d^2}{dx^2} \left\{ \frac{u(\pm, \pm 0, z) - u_\infty}{u_\infty} \right\}
\]

Equation (12) substituted in the integral term of equation (11) will then yield, after an integration in the \(\eta \)-direction, the reduced integral equation
\[U(x,0,Z) - \frac{1}{2} U^2(x,0,Z) = U(x,0,Z) + \phi^I_x(x,0,Z) + \frac{1}{4\pi} \int_{-\infty}^{\infty} U^2(\xi,0,\zeta) E^+ d\xi d\zeta + \]
\[+ \frac{1}{4\pi} \int_{-\infty}^{\infty} U^2(\xi,-0,\zeta) E^- d\xi d\zeta \]

where the kernel \(E^\pm = E(|x-\xi|,|Z-\zeta|;r^\pm) \) in the double integrals reads

\[E(|x-\xi|,|Z-\zeta|;r^\pm) = \frac{1}{2} \int_{\eta=0}^{\infty} \exp(-2\eta/r^\pm) \frac{a^2}{3} \left(\frac{1}{R^3} \right) d\eta \]

\[= \frac{1}{2} \frac{\partial}{\partial \xi} \left(\frac{1}{R^3} \right) \int_{\eta=0}^{\infty} \exp(-2\eta/r^\pm) \frac{\partial}{\partial \xi} \left(\frac{1}{R^3} \right) d\eta \]

Inserting the relation (valid for \(Y = 0 \))

\[\frac{\partial}{\partial \xi} \left(\frac{1}{R^3} \right) = \frac{(x-\xi)}{[(x-\xi)^2 + \eta^2 + (Z-\zeta)^2]^{3/2}} \]

in equation (14) and making the substitution

\[t = \eta/r \quad \text{i.e.} \quad d\eta = r dt \]

where the upper superscripts to the parameter \(r \) have been dropped one obtains the following expressions

\[E(|x-\xi|,|Z-\zeta|;r) = \frac{\partial}{\partial \xi} \left(\frac{1}{R^3} \right) \int_{t=0}^{\infty} \exp(-2t) \left[\frac{1}{\left[\left(\frac{x-\xi}{r} \right)^2 + \left(\frac{Z-\zeta}{r} \right)^2 + t^2 \right]^{3/2}} \right] dt \]

\[= \frac{\partial}{\partial \xi} \left(\frac{1}{R^3} \right) \left[\frac{2\pi}{\sigma} \left(-H_1(\sigma) + N_1(\sigma) \right) \right] \]

Here \(\sigma = 2\left[\left(\frac{x-\xi}{r} \right)^2 + \left(\frac{Z-\zeta}{r} \right)^2 \right]^{1/2} \) and the integral is obtained from standard tables, see e.g. reference 21.
from reference 24 one can achieve the following properties

\[
\frac{d}{d\sigma} H_1(\sigma) = H_0(\sigma) - \frac{1}{\sigma} H_1(\sigma)
\]

\[
\frac{d}{d\sigma} N_1(\sigma) = -N_2(\sigma) + \frac{1}{\sigma} N_1(\sigma)
\]

for the Neumann function \(N\) and the Struve function \(H\) of both integer order \(\nu\) and with the aid of these relations the final evaluation of equation (15) will yield (see figures 1 and 2)

\[
E(x - \xi, y, z - \zeta | r) = -\frac{2\pi}{r} \left[\frac{4}{\sigma^2} \left(\frac{x - \xi}{r} \right)^2 - 1 \right] \left[\frac{2}{\sigma} - H_1(\sigma) + N_1(\sigma) \right] + \\
+ \frac{4}{\sigma} \left(\frac{x - \xi}{r} \right)^2 \left[H_0(\sigma) - \frac{1}{\sigma} \left(H_1(\sigma) + N_1(\sigma) \right) + N_2(\sigma) \right]
\]

which reduces to

\[
E_x = -\frac{2\pi}{r} \left[\frac{2}{\sigma} - H_1(\sigma) + N_1(\sigma) \right]
\]

\[
E_y = \frac{2\pi}{r} \left[H_0(\sigma) - \frac{1}{\sigma} \left(H_1(\sigma) + N_1(\sigma) \right) + N_2(\sigma) \right]
\]

for \(x - \xi = 0\) and \(z - \zeta = 0\) respectively. Equation (17) has previously been obtained in reference 5, but omits the function \(r\) in the denominator as a result of a typographical error.

Correction for lifting, continuous flows. - In the case of lifting flows, the integral terms of equation (13) will give rise to a downwash in the plane of the wing planform. Since the potential \(\bar{\varphi}\) is already required to satisfy the specified boundary conditions in this plane, i.e., \(\bar{\varphi}_Y = \varphi_Y\) at \(Y = \pm 0\), the correction potential \(\varphi'\) is added to the harmonic solution \(\bar{\varphi}\) to counterbalance this induced downwash. Furthermore, \(\varphi'\) must also be a harmonic function, but we can confine this requirement (or property) to the xy-plane since equation (13) does not depend on any spanwise (i.e., approximately the Z-direction) derivatives of the function \(\varphi'\). We will first consider continuous flow and define a correction potential \(\varphi'(x, Y, Z)\) which shall be antisymmetric with respect to the planform plane \(Y = 0\) as

\[
\varphi'(x, Y, Z) = -\frac{1}{\pi} \int_{\xi = -\infty}^{\infty} \gamma'(\xi, Z) \tan^{-1} \frac{Y}{x - \xi} d\xi
\]
The vortex strength $\gamma'(x, Z)$ is necessarily defined as

$$\gamma'(x, Z) = \frac{1}{2} \left[U(x,+0, Z) - U(x,+0, Z) - U(x,-0, Z) + U(x,-0, Z) \right]$$

(20)

and a differentiation of equation (19) with respect to x together with the limit value

$$\gamma'(x, Z) = \lim_{\xi \to 0} \frac{1}{\pi} \int_{\xi}^{\infty} \frac{Y}{(x - \xi)^2 + Y^2} d\xi$$

yields the identity $\varphi'(x, 0, Z) = \gamma'(x, Z)$. Since a unique circulation is already implemented in writing equation (20) no further considerations have to be made regarding the Kutta condition at the trailing edge.

Correction for lifting, discontinuous flows. - With shock surface discontinuities in the flow field a modification of equation (20) is necessary in order to assure the harmonic nature of $\varphi'(x, 0, Z)$ and, hence, enforce a smooth continuous derivative φ_x. However, instead of defining the function φ' we define its gradient in the x-direction as

$$\varphi'_x(x, 0, Z) = \frac{m(x, Z)}{4} \left[\overline{U}^2(x,+0, Z) - \overline{U}^2(x,-0, Z) \right]$$

(21)

and let $m(x, Z)$ represent a spanwise-varying scaling parameter which shall depend on the local circulation around the wing in order to satisfy the Kutta condition. Hence, one can write

$$m(x, Z) = 2 \int_{-\infty}^{\infty} \left[U(\xi,+0, Z) - U(\xi,+0, Z) - U(\xi,-0, Z) + U(\xi,-0, Z) \right] \left[\overline{U}^2(\xi,+0, Z) - \overline{U}^2(\xi,-0, Z) \right]^{-1} d\xi$$

(22)

It should be emphasized that equation (21) is not unique and that a better downwash representation at the leading edge could be achieved with, say, an adoption of the Riegel's factor $\left[1 + (3\gamma_w/\partial x)^2 \right]^{-1/2}$.

From the elementary relation

$$\overline{U}^2(x,+0, Z) - \overline{U}^2(x,-0, Z) = \left[U(x,+0, Z) - U(x,-0, Z) \right] \left[\overline{U}(x,+0, Z) + \overline{U}(x,-0, Z) \right]$$

where the first and second factor on the right hand side represents the linearized perturbation velocity due to lift and thickness respectively. One sees from equation (21) that the distribution in chordwise direction of the x-component of the correction potential is defined to be of a similar form as the disturbance due to thickness. This distribution, however, is modified by an amount proportional to the local chordwise lift. It should be noted that the use of a different combination of the linearized velocity components in equation (21) could be better defined from known lifting flow calculations.
NUMERICAL ANALYSIS

The Algebraic System

The solution to the nonlinear integral equation (13) cannot be obtained analytically for wing configuration of arbitrary planform and thickness distribution. Hence, a numerical treatment of the general problem is mandatory and the first step in this direction is to discretize the area of integration in accord with the division of the wing planform as used for the numerical evaluation of the harmonic solution. The range of integration shall be confined to the wing planform and the nonlinear compressibility sources outside the cylinder which encloses the planform and which have the generatrix parallel to the Y-direction are therefore not being considered.

Let the upper and lower surface of the left (or right) half of the wing planform each be represented by N number of trapezoidal panels and let the unknown function $U = U(x, \pm \theta, Z)$ assume a constant value within these specified panel boundaries, see figure 3. Then equation (13) can be replaced by a system of $2N$ algebraic equations which are nonlinear (i.e., quadratic) with respect to $U = U(x, 0, Z)$, i.e.

$$
F_i(U_1, U_2, \ldots, U_{2N}) = U_i - \frac{1}{2} U_i^2 - \bar{U}_i + \sum_{j=1}^{2N} e_{ij} U_j^2 = 0 \quad i = 1, 2, \ldots, 2N \quad (23)
$$

where the index $i \leq N$ shall identify a value on the upper surface of the wing (or panel). Consequently, the lower surface values are associated with the range $N < i < 2N$.

Due to the lateral symmetry assumed for the wing planform and its position relative to the oncoming flow (i.e., $w = 0$) only one half of the wing need to be considered in the algebraic system (23) since the influence from two panels which are positioned symmetrical with respect to the x-axis can be lumped together as $e_{i1} = e_{i1} + e_{i2}$ (Note that $U_{i1} = U_{i2}$ where the indices 1 and 2 refers to each half of the wing.)

The influence coefficients e_{i1} are integral representations of the influence function $E = E(|x - \delta|, |Z - \zeta|; r)$ as evaluated over a surface element ΔS, i.e. of the form

$$
\frac{1}{4\pi} \iint_{\Delta S} E(|x - \delta|, |Z - \zeta|; r) d\delta d\zeta - e_{i1}
$$

for $|x - \delta| \neq 0$ and $|Z - \zeta| \neq 0$. Due to the particular and perhaps unfortunate influence pattern of positive and negative contributions from the integral terms of equation (13) care must be exercised in the numerical evaluation of the coefficients e_{i1}, see figure 4.
This is further illustrated by the series representations

\[E^X(\rho) = -4 \left[\frac{1}{\rho^2} - \frac{2}{3} \rho + \frac{4}{45} \rho^2 - \ldots \right] \quad |\rho| \to 0 \]

\[E^Z(\chi) = 4 \left[\frac{1}{\chi^2} - \frac{1}{3} \chi + \frac{1}{45} \chi^3 - \ldots \right] \quad |\chi| \to 0 \]

of the influence function \(E \) in chordwise and approximate spanwise directions respectively where \(\rho = 2|Z - \zeta|/r \) and \(\chi = 2|x - \xi|/r \). Since both equations (24) and (25) show similar behavior at the singular points \(\rho = \chi = 0 \), but of opposite sign, we let \(\varepsilon_{ii} = 0 \). Furthermore, we define the influence coefficients \(\varepsilon_{ij} \) as

\[\varepsilon_{ij} = \frac{\Delta S}{4} [E^{(1)} + E^{(2)} + E^{(3)} + E^{(4)}] \]

Equation (26) is derived from a simple application of the mean value theorem of integral calculus by relating the influence strength \(\varepsilon_{ii} \) at the centroid of each panel to the influence measure at four points \(i = 1, 2, 3, 4 \) located on the four panel boundary lines (see figure 5). A better approximation of \(\varepsilon_{ij} \) would be achieved, however, if a surface spline function is utilized in connection with the four values \(E^{(i)} \) and the local value of \(E \) at the centroid, see e.g. reference 23. Note that for symmetrical flow problems it is sufficient to consider only a system of \(N \) equations with the minor modification of doubling the value of the influence coefficients \(\varepsilon_{ii}(i, j = 1, 2, \ldots, N) \). However, the following analysis will be presented for a system of \(2N \) equations.

The function \(C_i (i = 1, 2, \ldots, 2N) \) appearing in equations (23) is a velocity correction function associated with circulatory flows and is easily obtained from equation (20) as

\[C_i = \frac{1}{2} A_i \quad i = 1, 2, \ldots, 2N \]

for continuous flow. For circulatory flows with a shock discontinuity, equation (21) approximately defines the required correction as

\[C_i = \frac{1}{2} B_i \sum_{j=1}^{N} (1 - \delta_{ij}) \frac{A_j}{B_j} \quad i = 1, 2, \ldots, 2N \]

where \(\delta_{ij} \) represents the Kronecker delta and where
\[
A_i = \begin{cases}
U_i - \bar{U}_i - U_{i+N} + \bar{U}_{i+N} & i \leq N \\
U_i - \bar{U}_i - U_{i-N} + \bar{U}_{i-N} & i > N
\end{cases}
\]

and

\[
B_i = \begin{cases}
\bar{U}_i^2 - \bar{U}_{i+N}^2 & i \leq N \\
\bar{U}_i^2 - \bar{U}_{i-N}^2 & i > N
\end{cases}
\]

In the case of non-circulatory flows, equations (27) and (28) will yield the expected corrections of \(C_i = 0 \). System (23) is now completely determined and the task of finding a vector \(U_i(i = 1, 2, \ldots, 2N) \) which satisfies equations (23) for given \(\varepsilon_i \) and \(U_i \) will be the subject of the following section.

Methods of Solution

Solutions to the nonlinear system (23) could be obtained by various iteration or relaxation schemes and each method has its own merits and limitations. The decisive factor in selecting a solution technique, however, is the type of flow under consideration, see figure 6. Since we are also interested in obtaining discontinuous solutions which shall represent flows with compression shocks, we will distinguish between three different types of flow problems, namely

- Subcritical flow
- Supercritical flow without discontinuities
- Supercritical flow with discontinuities

and describe some numerical approaches for their unique solution. In essence, each one of the numerical methods to be introduced should yield the same solution to the quadratic equations (23) for identical given flow configurations. This is especially correct in the subcritical case where only the smallest roots of system (23) are sought (i.e., all \(U_i \)-values correspond to subsonic velocities) and this single solution is necessarily unique.

However, a supercritical discontinuous solution vector \(U_i(i = 1, 2, \ldots, 2N) \) of system (23) is signified by being a combination of roots which does not belong to the same family, i.e. subcritical or supercritical where the critical value \(U_i = 1 \) correspond to the case of two equal roots. Hence, multivalued solutions are possible and some additional condition must be introduced in the calculation scheme in order to render the obtained solution unique. Such a condition is in our case a substitute for the entropy inequality.
which forbids the occurrence of expansion shocks in real flows, and the present study has
adopted a version of the method of steepest descent to be a suitable calculation scheme
in which the "entropy" condition can be introduced. This is achieved by an approximate
predetermination of the location of the critical points \(U = 1 \) as indicated by the linearized
solution \(\bar{U}_i \) \((i = 1, 2, \ldots, 2N) \) and this again forces the calculation scheme to search for
one particular solution.

An intermediate class of transonic flow solutions are characterized by being both
continuous and supercritical in the sense that subsonic and supersonic velocities can
exist together within a certain control volume without being separated by a surface of
discontinuity. Both theoretical and experimental investigations made in the more recent
years have confirmed this type of flow phenomena and the introduction of the method of
parametric differentiation in the present study can be viewed upon as an attempt to
calculate and to plausible explain such flows. This has been achieved by embedding the
solution to the system (23) in a Cauchy type problem in which a value of \(U = 3/2 \) appears
as the upper critical value for a unique dependence of the initial data upon the sought
solution.

In summary, it should be emphasized that the economics of finding a numerical
solution of the stated system of equations (23) has been considered in the selection of a
suitable algorithm. Thus, the fast converging method of Newton is found to be far the
best choice for a subcritical flow calculation despite the fact that the other two solution
techniques could be applied as well. These two methods, on the other hand, represent
choices for the calculation of the more intricate supercritical flow cases and the ambitious
user will find ample opportunities to make improvements of the listed computer program.

The Newton's method. - An application of Newton's method of successive approxi-
mation to the solution of system (23) will generate a sequence of vectors \(U^{(k+1)}_i \) from
the relation

\[
U_i^{(k+1)} = U_i^{(k)} - \left[F(U_i) \right]^{-1} F(U_i) \quad i = 1, 2, \ldots, 2N
\]

where the integer in the bracket \(\{ \} \) identifies the sequence number and where the
starting vector \(U^{(k=0)}_i \) can be chosen to be identical to the known vector \(\bar{U}_i \). This
method is particularly valuable for subcritical flow calculations, i.e., \(U^{(k)} < 1 \)
\((i=1, 2, \ldots, 2N)\), for which the guarantee of uniqueness of a solution belongs to a
classical proof in fluid mechanics. (See e.g. reference 24 and its list of references).
As long as the functional determinant (or Jacobian) is nonvanishing and positive for
all values \(U_i < 1 \), the necessary inversion of the Jacobian matrix \(J(U_i) = F(U_i) \) or
\[
J(U_1, U_2, \ldots, U_{2N}) = \partial(F_1, F_2, \ldots, F_{2N}) / \partial(U_1, U_2, \ldots, U_{2N})
\]
can be handled by numerous available computer subroutines.
Method of parametric differentiation. — A continuous application of Newton’s method to the solution of system (23) for values of \(U_i \) exceeding unity (i.e., for super-critical flow), would imply some arbitrariness with regard to the uniqueness or the usefulness (expansion shocks can occur) of the obtained solution. For our purpose in controlling the development of an iterative unique and continuous solution to the system for the case of \(U_i > 1 \) we will adopt the method of parametric differentiation (see e.g. reference 25) which has found wide applications in mathematical analysis, including a treatment of the transonic flow problem in two dimensions (ref. 26).

Our method of solution will be based on the particular one-parameter operator homotopy (embedding)

\[
G_i(\mu; U_1, U_2, \ldots, U_{2N}) = U_i - \overline{U}_i + \mu[F_i(U) - U_i + \overline{U}_i] \quad i = 1, 2, \ldots, 2N \tag{30}
\]

where \(\mu \) is a real-valued parameter in the range \(0 \leq \mu \leq 1 \). From the implicit function theorem as applied to equations (30) one obtains the differential properties

\[
\frac{dU_i}{d\mu} = -J^{-1}(\mu; U_1, U_2, \ldots, U_{2N}) \frac{\partial G_i}{\partial \mu} \quad i = 1, 2, \ldots, 2N \tag{31}
\]

where the Jacobian matrix of the system is

\[
J(\mu; U_1, U_2, \ldots, U_{2N}) = \partial(G_1, G_2, \ldots, G_{2N}) / \partial(U_1, U_2, \ldots, U_{2N})
\]

The first-order nonlinear ordinary differential equations (31) together with the initial conditions

\[
\mu = 0: \quad U_i = \overline{U}_i \quad i = 1, 2, \ldots, 2N \tag{32}
\]

defines a Cauchy problem which at \(\mu = 1 \) yields our sought solution of the algebraic system (23). There exists various powerful methods for the numerical solution of system (31), see for example reference 27, and we will confine ourselves to the use of Hamming’s modified predictor-corrector method together with a fourth order Runge-Kutta method for the computation of the starting values. Since the right-hand side of equations (31) includes the parameter \(\mu \), the system (31) was solved at every appropriate stage of the integration (\(0 \leq \mu \leq 1 \)) by including a modified Gaussian elimination procedure.

A condition for a unique solution of system (31) in the range \(0 \leq \mu \leq 1 \) is the non-vanishing of the functional determinant (or Jacobian) of \(G_i(\mu; U_1, U_2, \ldots, U_{2N}) \) with respect to \(U_i \) for fixed \(\mu \). This determinant is positive under the condition that the elements on the principal diagonal are positive, i.e. from equations (23), (27), and (30) we obtain

\[
1 - \mu(U_i - \frac{1}{2}) > 0 \quad i = 1, 2, \ldots, 2N \tag{33}
\]
Since the initial solution U_i is necessarily continuous and will yield a positive Jacobian, one can conclude by virtue of inequality (33) that a unique and continuous solution of system (31) can at least exist for $U_i < 3/2 (i = 1, 2, \ldots, 2N)$.

However, it is more consistent with the present analysis to express this limit for continuous flow directly in terms of a maximal local perturbation velocity

$$\max \left\{ \left(\frac{u - u_\infty}{u_\infty} \right) \right\} = \frac{3(1 - M_\infty^2)}{2(n + 1)M_\infty^2}$$

and then apply, for example, the isentropic relation $M = M(x, u/\infty, M_\infty)$ for the evaluation of the corresponding Mach number. The dependence between this maximal local Mach number and the Mach number at infinity is given in figure 7. It is seen that the predicted limitation of shock-free transonic flow is in general accordance with the two-dimensional results from Nieuwland's theory (ref. 29) and of Korn (ref. 28) despite our underlying assumption of small disturbances. Also depicted in the figure is the stability criterion of Spee (ref. 31) which limits the value of the local Mach number to $(5/2)^{1/2}$ for $x = 7/5$.

The method of steepest descent. - For a certain value of the parameter μ, the Jacobian matrix in system (31) might become singular and the solution curve to the Cauchy problem, equations (31) and (32), can split into two or more solutions. Such a point $\mu = \mu^*$ in the interval $0 < \mu < 1$ for which $\det J(\mu; U_1, U_2, \ldots, U_{2N}) = 0$ can be regarded as a bifurcation point and the associated solution $U_i^* = U_i(\mu^*)$ will be designated the bifurcation solution. Since the next step in the integration of system (31) would involve the crossing of a line of a singular Jacobian matrix, a continuous dependence of the solution on the initial data is no longer possible. The condition that the bifurcation solution U_i^* satisfies equation (30) could be utilized in connection with the introduction of a family of differentiation parameters in order to continue the solution curve past the singular lines. This difficult problem, however, will not be further pursued in the present report. Instead, we will apply the method of steepest descent to the solution of system (23) which represents a set of quadratic equations with respect to $U_i (i = 1, 2, \ldots, 2N)$ and the roots of the system for the case of discontinuous flow are easily obtained as

$$U_i = 1 + \text{sgn} \left\{ 1 - 2 \left[\overline{U}_i - C_i - 2 \sum_{j=1}^{2N} c_{ij} U_j^2 \right] \right\}^{1/2} i = 1, 2, \ldots, 2N$$

where $\text{sgn} = \pm 1$ depends upon $U_i \geq 1$. Hence, a bifurcation of the solution to equations (34) subject to the initial data $U_i = \overline{U}_i$ occurs when the discriminants vanish and this is equivalent
to considering the identity of the relations
\[\sum_{i=1}^{2N} \varepsilon_{ij} U_{ij}^2 = \frac{1}{2} \left(\bar{U}_i - C_i - \frac{1}{2} \right) \quad i = 1, 2, \ldots, 2N \] (35)

Furthermore, the inequality of (35) gives the condition for positive discriminants and hence the condition for real-valued roots of the algebraic system.

Let a function \(\psi(f_1, f_2, \ldots, f_{2N}) \) be defined as
\[\psi = \sum_{i=1}^{2N} f_i (U_1, U_2, \ldots, U_{2N}) \] (36)
where
\[f_i(U_1, U_2, \ldots, U_{2N}) = 1 - U_i + \text{sgn} \left(1 - 2 \left[\bar{U}_i - C_i - \varepsilon_{ij} U_{ij}^2 \right]^{1/2} - 2 \sum_{i=1}^{2N} \varepsilon_{ij} U_{ij}^2 \right) \quad i = 1, 2, \ldots, 2N \] (37)

which is obtained from a rewriting of equations (34). In order to find the roots of system (37) the method of steepest descent considers the variational problem of searching for the zero value of \(\psi \) from equation (36). The calculation scheme in the method produces a sequence of vectors \(\{U_i\} \) from the relations
\[U_{i}^{[k+1]} = U_{i}^{[k]} - \lambda^{[k]} \frac{\partial \psi(f_1^{[k]}, f_2^{[k]}, \ldots, f_{2N}^{[k]})}{\partial U_i} \quad i = 1, 2, \ldots, 2N \] (38)
where the step length \(\lambda \) along the gradient direction of the function \(\psi \) is determined at each sequence number \(k \) as
\[\lambda^{[k]} = \frac{\psi^{[k]}}{2 \sum_{i=1}^{2N} \left(\frac{\partial \psi^{[k]}}{\partial U_i} \right)^2} \]

The sign convention in system (37) is either determined from the condition \(U_i^{[k]} \geq 1 \): \(\text{sgn} = \pm 1 \) or from some information which yields the approximate geometric location of the sonic line and the foot of the shock discontinuity.
The present method utilizes the linearized solution \(\tilde{U}_i \) \((i = 1, 2, \ldots, 2N)\) to approximately define any supersonic region on the wing surface or in other words to enforce the sign convention in equations (37). This is accomplished by mapping the region for

\[
\tilde{U}_i > \frac{(\kappa + 1)M_\infty^2}{1 - M_\infty^2} c_p^* \]

where \(c_p^* \) is the critical pressure coefficient as obtained from the exact isentropic relation and then shift the upstream boundary line one chordwise panel length downstream. The resulting region is then our definition for the area of supersonic velocities and a positive sign-value in system (37) shall only be connected to points \(U_i \) which lies within this region. An improvement of this rather arbitrary technique of defining a sonic line and a line of discontinuity has been attempted with a partial use of the associated bifurcation solution, but required computation times have made such an improvement impractical.

RESULTS AND DISCUSSION

Two-Dimensional Flows

As first examples of continuous flow, subcritical pressure distributions past a nonlifting and lifting NACA 0012 airfoil have been calculated using the Newton's method and are shown in figures 8 and 9, respectively. Comparisons are made with "exact" numerical solutions, see reference 31, which are obtained from an application of Sells method to the full two-dimensional gasdynamic equation. Furthermore, it is found that the present transonic small-perturbation solution as seen in figure 9 is very similar to the solution given by Krupp (ref. 32) which also assumes small disturbances to the freestream condition.

Figures 10 and 11 show results for supercritical flow past the same airfoil configurations as given in the two preceding figures, but the present solutions are continuous in the sense that supersonic velocities exist on a portion of the profiles without being terminated by a shock. These results are obtained by the method of parametric differentiation and are compared with solutions which have been calculated with the Jameson program, see e.g. reference 33. It is seen that these latter solutions exhibits small compression shocks, at least in the solution given in figure 11. For freestream Mach numbers slightly higher than those given in the figures, no continuous solution could be obtained. This occurrence is interpreted as the Mach number limit for which shock discontinuities start forming on the airfoils.

The result for discontinuous flow past an 8.4 percent \((\tau = 0.084)\) thick symmetrical parabolic arc airfoil at zero angle of attack is given in figure 12 and compared with the numerical solutions of references 20 and 34. The solution associated with the latter
Three-Dimensional Flows

To test the Woodward/Carmichael computer program which calculates the linearized solution to the posed wing problem, a subsonic lifting case for a rectangular wing of parabolic arc cross-section has been evaluated and plotted in figure 14. The chordwise pressure distribution at various spanwise stations (identified by the spanwise coordinate C_t, which is normalized to the semispan) are in good agreement with the results of figure 10 from reference 7. The familiar singular behavior of the solution at the leading edge region, however, is apparent. This is also brought out in figure 15 which compares the calculated incompressible flow solution at mid-span for a high aspect ratio wing with a blunt leading edge with the exact two-dimensional data (reference 36). A further test of the accuracy of the linearized solution is depicted in figure 16 which compares the numerically obtained results for a symmetrical wing with the analytical solution of Holme (ref. 13). It is somewhat surprising to see that the numerical solution yields higher perturbation velocities than the analytical. The reason for this might be in the low number of panels (i.e., 100) used to represent the semi-wing planform in the numerical calculation scheme.

Figures 17 and 18 compares the present subcritical results, as obtained from an application of Newton's method, for a high aspect ratio non-lifting and lifting wing respectively with the "exact" two-dimensional values given in reference 31. For this aspect ratio of 7 the flow at the midspan of the wing should be nearly planar and figure 18 also partly validates the downwash correction potential (see equation 19) employed for this case. The sensitivity, however, of the number of chordwise and spanwise panels used in the calculation scheme is brought out in both figures. Similar results for the same non-lifting wing, but of smaller aspect ratio, is given in figure 19.

For an arbitrary wing configuration the planform of a trapezoidal half-wing is defined by its four corner points and the profile geometry is input in a table-form. This is illustrated by the swept wing configuration of figures 20 and 21. The cross-section of this wing is a RAE 101 airfoil and the profile surface coordinate, slope, and curvature at various chordwise stations are tabulated in subroutine SECTIN as ZTAB1, ZPTAB1, CUTAB1, and XTAB respectively. Calculated supercritical results were obtained by the method of parametric differentiation and compared with the experimental data of reference 35. Both types of data indicates that the flow solutions are continuous.

Discontinuous flows are obtained with an adoption of the method of steepest descent and sample flow calculations are given in figures 22 through 25. The first two figures show results for a non-lifting parabolic arc wing at two different spanwise stations. Comparisons with the numerical solutions of reference 7 are not very encouraging and this
is even more true for the lifting case as shown in figure 24. However, if the discontinuous supersonic region is confined to only a small part of the wing (e.g. in the root section area) a better agreement of the results are found (figure 25).

CONCLUDING REMARKS

The compressibility effects on the flow past lifting and nonlifting wings at high subsonic Mach numbers have been studied with an application of the transonic integral equation method. This semi-analytical calculation method preassumes a solution for the equation describing linearized flow around the same wing configuration, i.e. assumes the availability of the Prandtl-Glauert solution, and this problem is solved by means of known analytical or numerical solutions. The aim of the study was to incorporate the nonlinear compressibility effects in a pressure calculation scheme which also should include the case of a shock compression surface in the flow field.

The present calculation method involves a summation of some compressibility effects which are distributed over the wing planform area and which are a function of local velocity and profile curvature. Since these nonlinear effects can attain different sign convention an approximate numerical integration over the domain of influence depends largely on the grid size employed. An alternative integration technique (approximate two-directional) which involves one sign convention for the influence measure only, has therefore been developed and applied to all calculation cases shown in this report (see figure 3).

The practical desirable case of shock-free supercritical flow was studied by an incorporation of the method of parametric differentiation in the numerical evaluation of the governing algebraic system. Obtained results show that local supersonic velocities can indeed exist in the flow field without a discontinuous recompression in the form of a shock surface. It is felt that these findings constitute an important contribution to the subject involved.

For the calculation of supercritical flows with shock discontinuities, however, the present methods seems less effective. The reason for this lies in the fact that points on the sonic line represent extreme values for the stream-density quantity and an accurate influence definition in the neighborhood of these points is required. Also, a different iteration scheme for the evaluation of the nonlinear equations could greatly improve the usefulness of the presented analysis technique.
For wings of infinite aspect ratio the analysis becomes two-dimensional and available results for this case can be utilized in the calculation of flows about finite wings (see reference 5). The appropriate integral equation (as compared to equation (10) on page 7) will then read

\[
\phi(x, Y) = \bar{\phi}(x, Y) + \phi'(x, Y) - \frac{1}{2\pi} \int_{-\infty}^{\infty} \int [\phi_\xi, \phi_\eta] \xi, \eta \ln \frac{1}{R_2} d\xi d\eta \quad (A1)
\]

where \(R_2 = [(x - \xi)^2 + (Y - \eta)^2]^{1/2} \). A similar assumption for the decay of the perturbation velocities in the \(Y \)-direction as made in the foregoing three-dimensional analysis will reduce equation (A1) to an equation involving the unknown quantity \(U = U(x, \pm Y) \) of the form

\[
U(x, 0) - \frac{1}{2} U^2(x, 0) = \bar{U}(x, 0) + \phi_x'(x, 0) + \frac{1}{2\pi} \int_{-\infty}^{\infty} U^2(\xi, \pm 0) E_2(|x - \xi|/r) d\xi \quad (A2)
\]

where the two-dimensional influence function \(E_2 = E_2(|x - \xi|/r) \) is given as

\[
E_2(x) = E_2 \left(\frac{2|x - \xi|}{r} \right) = \frac{4}{\pi} \left[\sin(\chi) \left(\frac{\pi}{2} - Si(\chi) \right) - \cos(\chi) Ci(\chi) \right] \quad (A3)
\]

Here \(Si \) and \(Ci \) are the sine and cosine integrals respectively.

An analogous numerical integration of equation (A2) would involve the determination of influence coefficients \(e_{ii} \) and this leads to a definition of

\[
e_{ii} = \frac{1}{2\pi} \int_{0}^{\Delta x/2} E_2 d\xi
\]
which yields after a substitution of equation (A3) in the integrand of equation (A2) the following value

\[\epsilon_{ii}(x_o) = \epsilon_{ii}\left(\frac{\Delta x}{r}\right) \]

\[= \frac{1}{\pi} \left[\cos(x_o) \left[\text{Si}(x_o) - \frac{\pi}{2} \right] - \sin(x_o) \text{Ci}(x_o) + \frac{\pi}{2} \right] \]

The values of the coefficients \(\epsilon_{ij} \) (where \(j \neq i \)), however, is determined direct from the influence function \(E_2 \) as \(\epsilon_{ij} = \Delta x E_2(\|x - x_o\|;r)/(4r) \). These influence coefficients are used in the approximate integration of the nonlinear influence measure over the wing, see e.g. figure 3.
A computer program has been written in the FORTRAN IV language to implement the numerical calculation schemes described in the foregoing sections. The program consists of a main calling program designated MAIN and 17 external subroutine or function subprograms. Subprograms which are part of the particular Carmichael computer program received from the NASA Langley Research Center are designated by an asterisk (*). A flow chart showing the calling sequence of the program subroutines are given in figure 26.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>Main program</td>
</tr>
<tr>
<td>CYL</td>
<td>A subroutine subprogram which evaluates the cylindrical functions N_v (Neumann function or Bessel function of the second kind) and H_v (Struve function) both of integer order v.</td>
</tr>
<tr>
<td>SICI</td>
<td>A subroutine which evaluates the sine and cosine integrals (Si and Ci)</td>
</tr>
<tr>
<td>ACSH</td>
<td>A function subprogram to evaluate the transcendental function $y = \text{arcsinh} , x$ (arcus sine hyperbolicus).</td>
</tr>
<tr>
<td>GAUSS</td>
<td>A subroutine which solves a system of linear algebraic equations by a modified Gaussian elimination method.</td>
</tr>
<tr>
<td>HPCG</td>
<td>A subroutine to solve a system of first-order ordinary differential equations</td>
</tr>
<tr>
<td>FCT</td>
<td>A subroutine which defines the differential system (31)</td>
</tr>
<tr>
<td>OUTP</td>
<td>A subroutine used for control of output from HPCG</td>
</tr>
<tr>
<td>CARM*</td>
<td>A subroutine used as the calling program for the evaluation of the arbitrary harmonic or linearized solution (i.e. a modified Carmichael program).</td>
</tr>
<tr>
<td>WNGEOM*</td>
<td>A subroutine to evaluate the geometric characteristic of the wing.</td>
</tr>
<tr>
<td>FILL*</td>
<td>A subroutine for function interpolation in connection with WNGEOM.</td>
</tr>
</tbody>
</table>
SECTIN* A subroutine used to input the profile geometry. Note: The four data tables XTAB, ZTAB1, ZPTAB1, and CUTAB1 given in this subroutine are for a RAE 101 airfoil and they represent 19 chordwise values for the profile chordwise station together with the associated measure for the thickness, slope and curvature with reference to a profile thickness ratio of one. For arbitrary profile geometry appropriate input data tables must be supplied by the user. If the number of chordwise input stations are different from 19, a dimension statement and three sequential calling statement for subroutine TAINT must also be changed accordingly.

TAINT* A subroutine used in connection with SECTIN to interpolate geometric data.

EVAL* A subroutine to evaluate the aerodynamic influence coefficients in connection with the harmonic solution.

COMP* (TCOMP) A subroutine used for the calculation of the linearized perturbation velocities due to thickness. This subroutine has an alternative entry point identified by the name TCOMP.

INVERT* A subroutine for the matrix inversion of the influence matrix evaluated in EVAL.

FORCE* A subroutine used for the calculation of the complete linearized solution in terms of perturbation velocities.

VECON A subroutine which converts local perturbation velocities to local Mach numbers, pressure coefficient and pressure ratio.
Listing of main calling program and associated external subroutines.

MAIN PROGRAM

THIS PROGRAM CALCULATES THE TRANSONIC PRESSURE DISTRIBUTION ON ARBITRARY LIFTING WINGS AT SUBSONIC SPEEDS BASED ON A (NONLINEAR) INTEGRAL EQUATION METHOD.

THE PROGRAM WAS LARGELY DEVELOPED UNDER CONTRACT NAS1-10065 SPONSORED BY THE LOADS DIVISION OF THE NASA LANGLEY RESEARCH CENTER, BUT INCORPORATES THE WOODWARD/CARMICHAEL COMPUTER PROGRAM FOR THE CALCULATION OF THE LINEARIZED SOLUTION.

THE PROGRAM IS DIMENSIONED FOR A TOTAL OF 100 PANELS TO REPRESENT THE WING PLANFORM AND THIS LIMITS THE NUMBER OF PANELS WHICH CAN BE USED FOR THE LIFTING CASE TO 50. A SYMMETRICAL NON-LIFTING WING, HOWEVER, CAN BE REPRESENTED BY A MAXIMUM OF 100 PANELS. THE STORAGE REQUIREMENT IS APPROXIMATELY 145 000 IN OCTAL.

DIMENSION
1 IU(100), IDZ(100), U(100), UOL(100), FINT(100),
2 DFU(100), PRMT(5), EP(4), DELTX(50), AUX(16,100),
3 XXU(50), XSL(50), XXL(50)
COMMON /DY/ DERY(IOO), Y(100), UL(100), DP
COMMON /HOL/ EPSD100, AI0100
COMMON /PRMTL/ UPG(100), ILIFT, NRUJ, SYMF
COMMON /VEL/ MACH, MACHSQ, BETA, BETA, AAM1, AAM2, AAM3
COMMON /PARAMS/ NWINP, PANELS, SHEF, RGMOM, CBAR, SPAN, OC
COMMON /WING/ ROOT(4), TIP(4), M, N, TYPE, F(101), G(101), P(101),
1 SHEAR(101), ISECT, THICK(5)
COMMON/XSU/ XSU(100), ZW(100)
COMMON /CURV/ CUR(100)
REAL MACH, MACHSQ, BETA, BETA
NAMELIST /FLOW/ MACH, DEL, NUelm
NAMELIST /WING/IWING, IWING, IFLU, METHOD, ROOT, TIP, THICK, ISECT, LX, LZ,
1 SPA, TAU
NAMELIST /SHOCK/ XSU, SL, XXU, XXL

CONSTANTS AND THE INPUT

IT=1
ACC=0.001
PI=3.1415926535
PID=2.0*PI
PI4=4.0*PI
PID3=5.0*PI/3.0

26
P1H=1.5707963
P122=0.3163099
P12P=0.5/PI
P12=0.63061977
P13=3.0/PI
P11=1.0/PI
P141=1.0/PI4
TYPE=4
OC=2

10 READ(S,WING)
 IF (SNWING.EQ.9) GO TO 9999
 READ (S, FLOW)
 L1FF=0
 IF (SING.GT.0) GO TO 100
 SPAN=2.0*TIP(3)
 SEMI=SPAN/2.0
 ROT=ROOT(2)-ROOT(1)+TIP(2)-TIP(1)
 SREF=TIP(3)*ROT
 KEFNUM=0.25*(ROOT(2)-ROOT(1))
 CBAR=ROT/2.0
 TAU=THICK(1)
 AR=SPAN*SPAN/SREF
 GO TO 110
100 TAU=TAU/PI
 SEMI=SEM1/2.0
 TAU=TAU*SEMI
 110 MAC=H=1.5
 BETA=SQRT(ABS(BETSQ))
 AM1=10.0/(7.0*MACSQ)
 AM2=0.2*MACSQ
 AM3=0.7*MACSQ
 AM=MAC
 N=NXZ
 NLZ
 LZ=(NXZ+1)*LZ
 LL=LXZ+LXZ
 LL=(LL+1)*LL
 LZXZ=LXZ*LXZ
 DELTZ=SEMI/FLOAT(LZ)
 DLZ=DELZ/2.0
 NRUN=U

THE PROGRAM HEADER

200 WRITE (5,210)
210 FORMAT (1H1,27X,36H VELOCITY AND PRESSURE DISTRIBUTION ,
1 40H A ARBITRARY WING AT SUBSONIC SPEEDS /42X,2
40H BASED ON A TRANSONIC INTEGRAL EQUATION METHOD ////)
 WRITE (6*WING)
 WRITE (6*FLOW)

THE PRANDTL-GLAUERT SOLUTION

215 AM2=AM*AM
 BET2=1.0-AM2
 BETA=SQRT(BET2)
IW1=IN2NG+1
GO TO (460+217*420), IW1

217 AR=2.0*SEMI
DLTX=1.0/FLOAT(LX)
DO 230 NZ=1,LZ
DELTX(NZ)=DLTX
DX2=ULTX/2.0
DO 220 NX=1,LX
K=(NZ-1)*LX+NX
ZW(K)=-DLZ2+FLOAT(NZ)*DELTZ
Xw(K)=0.0X2+FLOAT(NX)*DLTX
220 CONTINUE
230 CONTINUE
DO 300 NZ=1,LZ
NN=(NZ-1)*LX+1
SMZ=(S-2.0(NN))*Td ETA
SPZ=(S+2.0(NN))*iei ETA
DO 300 MX=1,LX
K=(NZ-1)*LX+NX
X=2.0*XW(NX)-1.0
XP1=1.0+X
XM1=1.0-X
B1=ACSH(XP1/SPZ)
B2=ACSH(XM1/SPZ)
B3=ACSH(XP1/SMZ)
B4=ACSH(XM1/SMZ)
B5=ACSH(SPZ/XM1)
B6=ACSH(SMZ/XM1)
B7=ACSH(SPZ/XP1)
B6=ACSH(SMZ/XP1)
DUM=SP2*(B1+B2)+SMZ*(B3+B4)-X*(B5+B6+B7-B8)
UPG(K)=TAUP*DUM/4ETA
CUR(K)=-4.0*TAU
IDX(K)=NX
IDZ(K)=NZ
300 CONTINUE
GO TO 480

420 AR=4.0*SEMI
DO 330 NZ=1,LZ
DLTX=(S-FLOAT(NZ-1)*DELTZ-DLZ2)/S
DELTX(NZ)=DLTX/FLOAT(LX)
DLX2=DELTX(NZ)/L*0
DO 320 NX=1,LX
K=(NZ-1)*LX+NX
ZW(K)=-DLZ2+FLOAT(NZ)*DELTZ
Xw(K)=0.0-ULTX+FLOAT(NX)*DELTX(NZ)-DLX2
320 CONTINUE
330 CONTINUE
S=S*3ETA
SS=S*S
S0=1.0+SS
S1=(1.0+2.0*SS)/(S*S0)
S2=2.0/S
S3=2.0*S/S0
S4=1.0/SQRT(S0)
S5=1.0/S
XOF=(1.0-DLX2)/S
DO 450 NZ=1,LZ
NN=(NZ-1)*LX+1
450 CONTINUE
Z = Z * W(NZ) * BETA
ZZ = Z * Z
SPZ = S + Z
SMZ = S - Z
Z1 = SMZ * SMZ
Z3 = SPZ * SPZ
A3 = 2.0 * Z
DO 450 MX = 1, LX
 K = (NZ - 1) * LX + MX
 X = XRT(K)
 XX = X * X
 VL = (1.0 - X * S * S) / SXZM
 V2 = (X + S * Z) / SXZM
 V3 = (1.0 - X * S * SPZ) / SXZP
 V4 = (X - S * Z) / SXZP
 X10 = 1.0 - X
 V5 = SH5 / X10
 V6 = SPZ / X10
 V7 = Z / X10
 B6 = ACSH(V1)
 B7 = ACSH(V2)
 B9 = ACSH(V3)
 B10 = ACSH(V4)
 SH5 = ACSH(V5)
 SH6 = ACSH(V6)
 SH7 = ACSH(V7)
 B2 = SQRT(X1 + Z1) + SQRT(X1 + ZZ)
 B3 = S2 * SQRT(X1 + ZZ)
 B4 = S3 * XZ
 B5 = S4 * (A1 - A2)
 B6 = S4 * (A4 - A5)
 B11 = A2 * SH5
 B12 = A5 * SH6
 B13 = A6 * SH7
 DU1 = S1 * B2 - B3 * B4 + B5 * (B6 + B7) + B8 * (B9 + B10) + S5 * (B11 + B12 + B13)
 UpG(K) = TAU * DU1 / BETA
 CUR(K) = -4.0 * TAU
 IDX(K) = NX
 IDZ(K) = NZ
450 CONTINUE
GO TO 430
460 CALL CARM
DO 470 NZ = 1, LZ
 NN = (NZ - 1) * LX + 1
 NN1 = NN + 1
 DELT X(NZ) = XW(NN1) - XW(NN)
DO 470 NX = 1, LX
 K = (NZ - 1) * LX + NX
 LX(N) = NA
 IDZ(N) = NZ
CONTINUE
NS=LL
IF (ILIFT.EQ.0) NS=LXZ
NS2=NS*Nb
IF (ILIFT.EQ.0) GO TO 500
UO 490 I=1+LXZ
II=II+LXZ
Xw(II)=Xw(I)
Zw(II)=Zw(I)
CUR(II)=CUR(I)
IDX(II)=IDX(I)
IDZ(II)=IDZ(I)
IF (INFLU.EQ.0) GO TO 490
UPG(II)=UPG(I)
CONTINUE

THE REDUCED VARIABLES

NIT=U
AM7=U*7*AM2
AM22=0.2*AM2
AMF=10.0/(1.0*AM2)
XM=*SQRT(1.0/((1.0+0.16666666*AM2-1.0)))
CPST=2.0/(1.0*AM2)*(((2.0+0.4*AM2)/2.4)**3.5-1.0)
FAK=2.4*AM2
FAT=BETA
RY=RY
RU=FAK/FAT
RV=RU/RY
UCR=-RU*CPST/2.0
AMT=(2.4*AM2)**U*3.33333333/TAU**0.66666666
EMR=(AM2-1.0)/(2.4*TAU*AM2)**0.66666666
HMT=FAK**0.33333333/TAU**0.66666666
HMT=HMT/AMT
DO 800 I=1+NS
UL(I)=RU*UPG(I)
U(I)=UL(I)
UOL(I)=U(I)
CONTINUE

THE INFLUENCE MATRIX

IF (INFLU.EQ.0) GO TO 5800
IF (INFLU.EQ.2) GO TO 2305
DO 2300 I=1+NS
DIZI=DELZ2+FLOAT(IDZ(I))-DLZ2
DO 2290 J=1+NS
DIZJ=DELZ2+FLOAT(IDZ(J))-DLZ2
K=(J-1)*NS+I
IREF=IDZ(J)
ER=ABS(UPGJ)/CUR(J)*RY
ERZ=ER*ER
IJI=ABS(I-J)
IF (IJ.EQ.0.OR.IJ.EQ.LXZ) GO TO 2090
GO TO 2100
2090 S=ABS(DELTX(IREF)/ER)
CALL SIC(S,SINT,CINT)
EPS1=PI2P*(PIH*(1.0-CCS(S))+COS(S)*SINT-SIN(S)*CINT)
GO TO 2250

2100 CONTINUE
 IF (IDZ(I) .EQ. IDZ(J)) GO TO 2110
 GO TO 2200
2110 DIN=ABS(FLOAT(IDX(I)-IDX(J)))
 UISX=DELTX(IREF)*DIN/ER
 S=Abs(2.0*DISX)
 CALL SIC(S,SINT,CINT)
 EPS1=PI2P*(SIN(S)*(PHI-SINT)-COS(S)*CINT)
 EPS1=EPS1*EPS1/ER
 GO TO 2290
2200 CONTINUE
 IF (IDX(I) .EQ. IDX(J)) GO TO 2205
 GO TO 2280
2205 NEP=1
2210 DIN=ABS(DIZI+DIZJ)
 IF (NEP.EQ.2) DIN=DIZI+DIZJ
 DISZ=BETA*DI/ER
 DISX=ABS(X(I)-X(J))
 DISX=DIX/ER
 UX2=UISX*DISX
 DISR=SQR(UX2+DISZ*DISZ)
 DS=2.0*ABS(DISR)
 DS2=DS*DS
 CALL CYL(DS,FH0,FH1,FH2,FN2)
 G1=PHI/DS
 G2=PHI-FH1
 G3=FH0/DS+FN2
 EFUNC=G1*(((0.0*UX2/DS2-1.0)*G2+4.0*UX2*G3/DS)
 EPF=DETA*DELTZ*DELTX(IREF)*EFUNC/((PI4*ER2)
 IF (NEP.EQ.2) GO TO 2260
 EPS1=EPF
2250 GO TO 2210
2260 EPS2=EPF
 EPS(K)=EPS1+EPS2
 GO TO 2290
2280 EPS(K)=0.0
2290 CONTINUE
2300 CONTINUE
 GO TO 2600

C
2305 DO 2500 I=1,NS
 DIZI=DELTZ*(FLOAT(IDZ(I))-DLZ2)
 DO 2400 J=1,NS
 DIZJ=DELTZ*(FLOAT(IDZ(J))-DLZ2)
 KJ=J-1)*NS+1
 IJ=1ABS(I-J)
 IREF=IDZ(J)
 DISX=ABS(X(I)-X(J))
 ER2=ER2*ER
 DO 2390 JJ=1,4
 EPS1=0.0
 IF (IJ,EJ,0.0,OK,IJ,EJ,LXZ) GO TO 2308
 GO TO 2350
2308 NEP=1
2310 ADU=0.0
 IF (JU,EJ,0.0) ADU=-DELTX(IREF)/2.0
IF (JJ,EQ.3) ADD=DELTX(IREF)/2.0
UISX=(DIX+ADD)/ER
DX2=DISX*DISX
DIZ=ABS(UIZ-DIZ)
IF (NEP,EQ.2) DIZ=DIZ1+DIZJ
ADD=0.0
IF (JJ,EQ.2) ADD=DLZ2
IF (JJ.EQ.4) ADD=DLZ2
DISZ=BEQA*(DIZ+ADD)/ER
DISK=SQR(DX2+DISZ*DISZ)
DS=2.0*ABS(DIS)
DS2=VS*DS
CALL CYL(DS,FH0,FIH1,FN1,FN2)
G1=PI/05
G2=PI2-FH1+FN1
G3=FH0-(FH1+FN1)/DS+FI.2
EFUNC=G1*((4.0*Ux2/DS2-1.0)+G2+4.0*DX2*G3/DS)
IF (NEP.EQ.2) GO TO 2360
EPS1=EFUNC
2350 NEP=2
GO TO 2310
2360 EPS2=EFUNC
2390 EPS(UJ)=EPS1+EPS2
EPF=BEQA*DELTZ*DELTX(IREF)/(PI4*ER2)
2400 EPS(K)=EPF*(EP(1)+EP(2)+EP(3)+EP(4))/4.0
2500 CONTINUE
2600 CONTINUE
SYM=1.0
IF (ILIFT.EQ.0) SYMF=2.0
GO TO (3000,5000,5100), METHOD
C THE NEWTON-RAPHSON METHOD
C
3000 CONTINUE
3020 DO 3200 I=1,NS
KKK=I-1)NS+1
SUM=0.0
DO 3120 J=1,NS
K=(J-1)NS+1
IJ=IABS(I-J)
IF (IJ.EQ.0) GO TO 3120
SUM=SUM+SYM*EPS(K)*U(J)*U(J)
CONTINUE
3120 SUM=SUM+SYM*EPS(KKK)*UL(I)*UL(I)
ADD=0.0
IF (ILIFT.EQ.0) GO TO 3150
II=I+LXZ
IF (II.GT.LXZ) II=I-LXZ
3150 ADD=0.5*(UI-UL(I)-U(II)+UL(II))
3150 FINT(I)=U(I)-0.5*(U(I)-UL(I)+UL(II))+SUM+ADD
KK=NS+2+1
A(KK)=FINT(I)
3200 CONTINUE
DO 3250 J=1,NS
DO 3240 I=1,NS
SUM=0.0
3240 K(J-1)NS+1
IJ=IABS(I-J)
IF (IJ.EQ.0) GO TO 3230
ADD=0.0
IF (IJ.EQ.1XZ) ADD=-0.5
A(K)=2.0*SYMF*U(J)*EPs(K)+ADD
GO TO 3240
3230 ADD=0.5
IF (1LIFT.EQ.0) ADD=0.0
A(K)=1.0-U(J)+ADD
3240 CONTINUE
3250 CONTINUE
CALL GAUSS(A,NS,IT)
DO 3310 I=1,NS
KK=NS2+I
U(I)=U(I)-A(KK)
3310 CONTINUE
NIT=NIT+1
DO 3320 I=1,NS
UTEST=ABS(U(I)-UOL(I))
IF (UTEST.GT.ACC) GO TO 3330
3320 CONTINUE
GO TO 3800
3330 CONTINUE
IF (NIT.GE.15) GO TO 3800
DO 3340 I=1,NS
UOL(I)=U(I)
3340 CONTINUE
GO TO 3020
THE METHOD OF PARAMETRIC DIFFERENTIATION
5000 PRMT(1)=0.0
PRMT(2)=1.0
PRMT(3)=0.2
PRMT(4)=0.1
NPD=0
DO 5010 I=1,NS
Y(I)=UL(I)
5010 DSY(I)=1.0/FLOAT(NS)
CALL HPCG(PRMT,N,S,IHLF,AUX)
DO 5020 I=1,NS
UOL(I)=Y(I)
5020 U(I)=Y(I)
GO TO 3800
THE METHOD OF STEEPEST DESCENT
5100 DO 5050 NZ=1,LZ
IFG1=0
IFG2=0
DO 5040 NX=1,LX
K=(NZ-1)*LX+NX
KK=K+LXZ
IF (IFG1.EQ.1) GO TO 5030
IF (U(K).GT.UCR) IFG1=1
XSU(NZ)=XSU(KK)+DELTX(NZ)/2.0
5030 CONTINUE
IF (1LIFT.EQ.0) GO TO 5040
IF (IFG2.EQ.1) GO TO 5040
IF (U(KK).GT.UCR) IFG2=1
XSL(NZ)=XSL(KK)+DELTX(NZ)/2.0
5040 CONTINUE
5050 CONTINUE
DO 4850 NZ=1,LZ
IFG1=0
IFG2=0
DO 4840 NX=1,LX
NX=LX-NX+1
K=(NZ-1)*NX+N
KK=K+LXZ
IF (IFG1.EQ.1) GO TO 4830
IF (U(K).GT.UCR) IFG1=1
XXU(NZ)=XU(K)+0.5*DELTX(NZ)
4830 CONTINUE
IF (ILIFT.EQ.0) GO TO 4840
IF (IFG2.EQ.1) GO TO 4840
IF (U(KK).GT.UCR) IFG2=1
XXL(NZ)=XL(KK)+0.5*DELTX(NZ)
4840 CONTINUE
4850 CONTINUE
WRITE (6,SHOCK)
C
NH=NS/2
LMIN=1
LMAX=NS
IMIN=1
IMAX=NS
NIT=0
4000 AC=0.0
IF (ILIFT.EQ.0) GO TO 4020
SUM1=0.0
SUM2=0.0
DO 4010 I=1,NH
II=I+NH
SUM1=SUM1+U(I)+UL(I)+UL(II)
SUM2=SUM2+UL(I)+UL(II)+UL(II)
4010 CONTINUE
AC=SUM1/SUM2
4020 CONTINUE
DO 4173 I=LMIN,LMAX
SUM=0.0
SUM1=0.0
KK=(I-1)*NS+I
DO 4151 J=IMIN,IMAX
K=(J-1)*NS+I
IF (U<=J) GO TO 4151
SUM1=SUM1+SYIF*EPS(K)*UL(J)*UL(J)
4151 CONTINUE
SUM1=SUM1+SYIF*EPS(KK)+UL(I)+UL(I)
CC=0.0
IF (ILIFT.EQ.0) GO TO 4152
II=I+NH
IF (I.NE.NH) II=I-NH
CC=UL(I)+UL(II)+UL(II)
4152 continues
TER=1.0+2.0*(SUM1-UL(I)+CC*AC)
TER=SQRT(ABS(TER))
ZGN=1.0
IREF=10Z(I)
IF (I.GE.LXZ) GO TO 4155
IF (XU(I).LT.XSU(IREF).AND.XL(I).LT.XSU(IREF)) ZGN=-1.0
GO TO 4150
CONTINUE
IF (XW(I).GT.XSL(IREF).AND.XW(I).LT.XXL(IREF)) ZGN=-1.0
SUMH=2.0*(U(I)-1.0+ZGN*TER)
SUMM=0.0
DO 4172 J=LMIN,LMAX
IF (J.EQ.I) GO TO 4172
KK=(J-1)*NS+J
KKK=(I-1)*NS+J
SUM2=0.0
DO 4165 MW=LMIN,IMAX
K=(J-1)*NS+J
IF (JW.EQ.J) GO TO 4165
SUM2=SUM2+SYM*EPS(K)*U(MJ)*U(MJ)
4165 CONTINUE
SUM2=SUM2+SYM*EPS(KK)*UL(J)*UL(J)
CC=0.0
IF (ILIFT.EQ.0) GO TO 4166
JJ=J+NH
IF (J.GT.NH) JJ=J-NH
CC=UL(J)*UL(J)-UL(JJ)*UL(JJ)
4166 TEK=1.0+2.0*(SUM2-UL(J)-CC*AC)
TER=SQRT(ABS(TEK))
JREF=IDZ(I)
IF (J.EQ.LXZ) GO TO 4171
IF (XW(I) .GT.XSU(JREF).AND.XW(I).LT.XXU(JREF)) ZKN=-1.0
GO TO 4171
CONTINUE
IF (XW(J).GT.XSL(JREF).AND.XW(J).LT.XXL(JREF)) ZKN=-1.0
SU4=2.0*(U(J)-1.0+ZKN*TER)
SU5=ZKN/(2.0*TER)
SU6=4.0*U(I)*SYM*EPS(KK)
SUMM=SUMM+SU4*SU5*SU6
CONTINUE
DO 4173 DFIN(I)=SUM+SUMM
C
SUM2=0.0
DO 4169 I=LMIN,LMAX
KK=(I-1)*NS+I
SUMI=0.0
DO 4178 IJ=LMIN,IMAX
K=(J-1)*NS+I
IF (J.EQ.I) GO TO 4178
SUMI=SUMI+SYM*EPS(K)*UL(I)*UL(I)
4178 CONTINUE
SUMI=SUMI+SYM*EPS(KK)*UL(I)*UL(I)
CC=0.0
IF (ILIFT.EQ.0) GO TO 4179
II=I+NH
IF (I.GT.NH) II=I-NH
CC=UL(I)*UL(I)-UL(II)*UL(II)
4179 TEK=1.0+2.0*(SUMI-UL(I)-CC*AC)
TER=SQRT(ABS(TEK))
ZGN=1.0
IREF=IDZ(I)
IF (I.GE.LXZ) GO TO 4180
IF (XW(I).GT.XSU(IREF).AND.XW(I).LT.XXU(IREF)) ZGN=-1.0
GO TO 4181
CONTINUE
IF (XW(I).GT.XSL(IREF).AND.XW(I).LT.XXL(IREF)) ZGN=-1.0
4181 TEP=U(I)-1.0+ZGN*TER
4189 SUM2=SUM2+TEP*TER
C
 FFF=SUM2
 SUM=0.0
 DO 4190 I=LMIN,LMAX
 SUM=SUM+DFU(I)*UFU(I)
 ELL=FFF/SUM
 DO 4200 I=LMIN,LMAX
 U(I)=U(I)-ELL*DFU(I)
 4200 CONTINUE
 NIT=NIT+1
 DO 4700 I=1,NS
 UTEST=ABS(U(I)-U0L(I))
 IF (UTEST.GT.TOL) GO TO 4710
 4700 CONTINUE
 GO TO 5800
4710 CONTINUE
 IF (NIT.GE.25) GO TO 5800
 DO 4720 I=1,NS
 U0L(I)=U(I)
 GO TO 1000
 4720 CONTINUE
 5800 IF (NRUN.GT.0) GO TO 6010
 5810 WRITE (6,5820)
 5820 FORMAT (1H0,3X,11H PLANFORM-)
 5830 FORMAT (1H0,3X,10H PROFILE-)
 5840 FORMAT (1H0,3X,20H PLANFORM-)
 5850 WRITE (6,5890)
 5890 WRITE (6,5900)
 5900 FORMAT (1H0,3X,20H PLANFORM-)
 5910 WRITE (6,5920)
 5920 FORMAT (1H0,3X,19H PLANFORM-)
 5930 WRITE (6,5940)
 5940 FORMAT (1H0,3X,23H PROFILE-)
 5950 WRITE (6,5960)
 5960 FORMAT (1H0,3X,18H THICKNESS = F12.5, 4X,
 2 17H SEMISPAN/CHORD = F13.5, 4X,
 3 15H ASPECT RATIO = F15.5)
 6010 WRITE (6,6020) AM,BETA,XP,CPST,EMR
 6020 FORMAT (1H0,5X,26H THE SOLUTION FOR THE WING // 4X,
 1 18H MACH NUMBER = F15.5, 4X,
 2 8H BETA = F22.5, 4X,
 3 22H MACH NUMBER (STAR) = F8.5, 4X,
 4 13H CP (STAR) = F17.5, 4X,
 5 6H XI = F24.5, 4X,
 6 52H VELOCITY AND PRESSURE DISTRIBUTION ON UPPER SURFACE)
 6025 WRITE (6,6030)
 6030 FORMAT (1H0,4X,
 1 2H 15X,8H X/CHORD,7X,2H U,11X,4H U+/1,7X,7H U(RED),9X,2HCX,8X,
 2 8H CP(RED),6X,5H P/P(,10X,2H M,8X,8H M(STAR))/
 DO 6200 J=1,LZ
NN = (J-1) * LX + 1
ZS = ZH(NN) / SEMI

WRITE (6 * 6040) ZH(NN), ZS

6040 FORMAT (1HU, 3X, 29H SPANWISE STATION, Z/CHORD = F8.5, 2X,
1 15H (Z/SEMI:SPAN = F8.5, 1H))
DO 6200 I = 1, LX
K = (J-1) * LX + I
KUK = K + LXZ
IF (NNR.EQ.2) K = KUK
UW = URT I / RU
WW = UPG(K)
RTT = UW + 1.0
CALL VECON(UW, CP, RTM, MS, PPP)
CALL VECON(WW, WP, WTM, MS, WPP)
CPR = AMT * CP
WPR = AMT * WP
XLCHL = (FLOAT (I) - 0.5) / FLOAT (LX)
WRITE (6 * 6050) I, XLCHL, UW, RTT, UW, RTM, WTT
6050 FORMAT (5X, I2, 1X, 9(1X, E12.5))

6200 CONTINUE
IF (NNR.GE.3) GO TO 8000
IF (ILIFT.EQ.0) GO TO 8000
WRITE (6 * 6300)
6300 FORMAT (/ 39X*
1 36H VELOCITY AND PRESSURE DISTRIBUTION ON LOWER SURFACE /)
GO TO 6025

8000 WRITE (6 * 8030)
8030 FORMAT (1H0, 48X,
1 36H THE LINEARIZED SOLUTION IS BASED ON)
IF (IWINING.GT.0) GO TO 8050
WRITE (6 * 8040)
8040 FORMAT (1H, 5UX, 32H CARMICHAEL'S NUMERICAL ANALYSIS /)
GO TO 8070
8050 WRITE (6 * 8060)
8060 FORMAT (1H, 52X, 28H HOLME'S ANALYTICAL ANALYSIS /)
8070 CONTINUE
WRITE (6 * 9000)
9000 FORMAT (1H0, 46X,
1 41H THE NONLINEAR SOLUTION WAS OBTAINED WITH)
GO TO (9010, 9030, 9050)* METHOD
9010 WRITE (6 * 9020)
9020 FORMAT (1H, 56X, 20H THE NEWTON'S METHOD)
GO TO 9070
9030 WRITE (6 * 9040) UP
9040 FORMAT (1H, 46X, 41H THE METHOD OF PARAMETRIC DIFFERENTIATION /
1 55X, 19H AT THE VALUE DP = F6.4)
GO TO 9085
9050 WRITE (6 * 9060)
9060 FORMAT (1H, 47X, 31H THE METHOD OF STEEPEST DESCENT)
9070 WRITE (6 * 9080) NIT
9080 FORMAT (1H, 56X, 7H AFTER 12, 11H ITERATIONS)
9085 CONTINUE
C
NRUN=NRUN+1
IF (.NRUN.GT.NDELM) GO TO 9090
AM=AM+DELM
GO TO 215
9090 IWING=9
GO TO 10
9999 CONTINUE
STOP
END

SUBROUTINE SICI(S;SINT,CINT)
C
S2=S*S
S5=S2
S4=S2*S2
S6=S4*S2
S8=S6*S2
IF (S.GT.1.0) GO TO 20
S3=S5*S
S5=S3*S5
S7=S5*S5
S9=S7*S7
S3=S3/18.0
S5=S5/600.0
S7=S7/35280.0
S9=S9/325920.0
SINT = S-S3+S5-S7+S9
S2=S2/4.0
S4=S4/96.0
S6=S6/4320.0
S8=S8/322560.0
CINT = 0.57721566*ALOG(S)-S2*S2-S6+S8
GO TO 30
20 F1=S0+39.027204*S5+265.187033*S4+335.67732*S2+38.102495
F2=S0+40.021433*S5+332.624911*S4+570.23628*S2+157.105423
F0=F1/(S+F2)
G1=S0+42.242055*S6+302.757865*S4+352.018493*S2+21.821899
G2=S0+43.196927*S6+482.485984*S4+1114.978885*S2+449.690326
G0=G1/(S5+G2)
SINT=1.5707963-F0*COS(S)-G0*SIN(S)
CINT=F0*SIN(S)-G0*COS(S)
30 CONTINUE
RETURN
END
SUBROUTINE CYL(S, FH0, FH1, FN1, FN2)

PI = 3.1415926535
PI2 = 0.63661977
IF (S.LT.4.0) GO TO 40
T1 = 4.0 / S
T2 = T1 * T1
P0 = (((((1.0 - 0.000037043 * T2 + 0.000173565) * T2 - 0.000487613) * T2 + 0.3989423

G0 = (((((0.000003232 * T2 - 0.0000142079) * T2 + 0.000342468) * T2 + 0.01246694

P1 = (((((0.0000042414 * T2 + 0.00020092) * T2 + 0.000580759) * T2 + 0.00023203) * T2 + 0.02421626) * T2 + 0.3989423

Q1 = (((((1.0 - 0.000056594 * T2 + 0.0001622) * T2 - 0.000398708) * T2 + 0.0340084

A2 = 0 / SQRT(S)
B2 = A1
C = S - 0.7853962
Y0 = A * P0 * SIN(C) + U * Q0 * COS(C)
Y1 = A * P1 * COS(C) + U * Q1 * SIN(C)
GO TO 90

40 SS = S / 2.
S = SS * SS
T = ALOG(SS) + 0.5772156649
SUM = 0.0
TERM = T
Y0 = 1
DO 70 L = 1, 15
IF (L - 1) 50, 60, 0
50 SUM = SUM - H.0 / FLOAT(L - 1)
60 FL = FLOAT(L)
TS = T - SUM
TERM = (TERM * (1.0 - 1.0 / (FL * TS))

Y0 = Y0 + TERM
TERM = SS * (T - S)
SUM = 0.0
Y1 = TERM
DO 80 L = 2, 16
SUM = SUM + 1.0 / FLOAT(L - 1)
FL = FLOAT(L)
FL1 = FL - 1.
TS = T - SUM
TERM = (TERM * (1.0 - 1.0 / (FL * FL)) * ((TS - S / FL) / (TS + S / FL)))

80 Y1 = Y1 + TERM
Y0 = PI2 * Y0
Y1 = -PI2 / S + PI2 * Y1

90 Y2 = 2.0 * Y1 / S - Y0
FN1 = Y1
FN2 = Y2
IF (S.GT.11.0) GO TO 120
SH = 5.0 / 2.0
SH2 = SH * SH
A0 = 6.0 / (3.0 * PI)
B0 = 4.0 / PI
AU = -4.0 * SH2 * A0 / 15.0
BU = -4.0 * SH2 * AU / 9.0
SM = SM + AN
ZUM=B0+BN
110 DO 110 I=1,16
FL1=FLOAT(I)
AN=-SH2/((FL1+2.5)*(FL1+1.5))*AN
BN=-SH2*BN/(FL1+1.5)**2
SUM=SUM+AN
110 ZUM=ZUM+EN
FHU=SH*ZUM
FH1=SH2*SUM
GO TO 130
120 S2=S*S
S3=S2*S
S4=S2*S2
S5=S4*S
S6=S2*S4
S7=S6*S
S8=S2*S6
S9=S8*S
S10=S2*S8
S11=S10*S
S12=S2*S10
FH0=YO+P12*(1.0/S-1.0/S3+9.0/S5-1225.0/S7+11025.0/S9-93025.0/S11)
FH1=FN1+P12*(1.0+1.0/S2-3.0/S4+45.0/S6-1575.0/S8+199225.0/S10-9823275.0/S12)
130 CONTINUE
RETURN
END

FUNCTION ACSH(CA)
C
C0=CA*CA
IF (CA.GT.1.0) GO TO 40
C3=CA*C3
C5=CA*C5
C7=CA*C7
C9=CA*C9
C11=CA*C9
ACSH=CA-C3/6.0+C5/40.0-15.0*C7/336.0+15.0*C9/3456.0-945.0*C11/42240.0
GO TO 50
40 C4=CA*C4
C6=CA*C6
C8=CA*C8
C10=CA*C10
ACSH=ACSH+C4/24.0+3.0/240.0+C5/120.0-5.0/720.0+C6/4032.0+C7/362880.0+C8/479001600.0+C9/6227020800.0+C10/39916800.0
GO TO 50
50 CONTINUE
RETURN
END

FUNCTION ACSH(CA)
SUBROUTINE GAUSS(A,N,IT)

DIMENSION A(N+1)
REAL MAX
IT=0
E=1.E-8
NN=N+1
DO 12 I=1,N
IF (I-1).LT.3,3,1
1 DO 2 J=I,N
2 M=I-1
DO 3 K=1,M
3 A(J,I)=A(J,I)-A(J,K)*A(K,I)
4 K=I
MAX=ABS(A(I,I))
DO 5 K=I,N
IF (MAX-ABS(A(K,I))).GT.E 6,7,7
5 CONTINUE
6 IT=1
RETURN
7 DO 8 K=1,NN
8 MAX=A(I,K)
A(I,K)=A(KEY,K)
9 KEY=I
II=I+1
M=I-1
DO 10 J=II,NN
IF (I-1).LT.9,9,9
10 A(I,J)=A(I,J)-A(I,K)*A(K,J)
11 A(I,J)=A(I+J)/A(I,I)
12 CONTINUE
DO 14 I=2,N
J=N+1-I
JJ=J+1
DO 13 K=JJ,N
13 A(J,NN)=A(J,NN)-A(J,K)*A(K,NN)
14 CONTINUE
RETURN
END
SUBROUTINE HPCG(PRMT,NDIM,IHLF,AUX)

DIMENSION PRMT(1)*AUX(16,1)
COMMON /DY/ OERY(100),Y(100),UL(100),DP
N=1
IHLF=0
X=PRMT(1)
H=PRMT(3)
PRMT(5)=0.
DO 1 I=1,NDIM
AUX(16,I)=0.
AUX(15,I)=DERY(I)
1 AUX(1,I)=Y(I)
IF (H*(PRMT(2)-X)) 3,2,4
2 IHLF=12
GO TO 4
3 IHLF=13
4 CALL FCT(X,NDIM)
CALL OUTP(X,NDIM,IHLF)
IF (PRMT(5)) 6,5,6
5 IF (IHLF) 7,7,6
RETURN
7 DO 8 I=1,NDIM
8 AUX(8,I)=DERY(I)
ISW=1
GO TO 100
9 X=X-H
DO 10 I=1,NDIM
10 AUX(2,I)=Y(I)
11 IHLF=IHLF+1
X=X-H
DO 12 I=1,NDIM
12 AUX(4,I)=AUX(2,I)
H=0.5*H
N=1
ISW=2
GO TO 100
13 X=X+H
CALL FCT(X,NDIM)
N=2
DO 14 I=1,NDIM
AUX(2,I)=Y(I)
14 AUX(9,I)=DERY(I)
ISW=3
GO TO 100
15 DELT=0.0
DO 16 I=1,NDIM
16 DELT=DELT+AUX(15,I)*AABS(Y(I)-AUX(4,I))
DELT=0.06666667*DELT
IF (DELT-PRMT(4)) 19,19,17
17 IF (IHLF-10) 11,18,18
16 IHLF=11
X=X+H
GO TO 4
19 X=X+H
CALL FCT(X,NDIM)
DO 20 I=1,NDIM
20

42
AUX(3,I)=Y(I)
20 AUX(10,I)=DERY(I)
N=3
IS=N=4
GO TO 100
21 N=1
X=X+H
CALL FCT(X,NDIM)
X=PRMT(1)
DO 22 I=1,NDIM
AUX(11,I)=DERY(I)
22 Y(I)=AUX(11,I)+H*(0.375*AUX(8,I)+0.7916667*AUX(9,I))
1=0.2083333*AUX(10,I)+0.04166667*DERY(I))
23 X=X+H
N=N+1
CALL FCT(X,NDIM)
CALL OUTF(X,NDIM,IHLF)
IF (PRMT(5)) 6,24,6
24 IF (N=4) 25,200,200
25 DO 26 I=1,NDIM
AUX(N,I)=Y(I)
26 AUX(N+7,I)=DERY(I)
IF (N=3) 27,29,200
27 DO 28 I=1,NDIM
DELT=AUX(9,I)+AUX(9,I)
DELT=DELT+DELT
28 Y(I)=AUX(11,I)+0.3333333*H*(AUX(8,I)+DELT+AUX(10,I))
GO TO 23
29 DO 30 I=1,NDIM
DELT=AUX(9,I)+AUX(10,I)
DELT=DELT+DELT
30 Y(I)=AUX(11,I)+0.375*H*(AUX(8,I)+DELT+AUX(11,I))
GO TO 23
100 DO 101 I=1,NDIM
Z=H*AUX(N+7,I)
AUX(5,I)=Z
101 Y(I)=AUX(N+7,I)+0.4*Z
Z=X+0.4*H
CALL FCT(Z,NDIM)
DO 102 I=1,NDIM
Z=H*DERY(I)
AUX(6,I)=Z
102 Y(I)=AUX(N+7,I)+0.2969776*AUX(5,I)+0.1587596*Z
Z=X+0.4557372*H
CALL FCT(Z,NDIM)
DO 103 I=1,NDIM
Z=H*DERY(I)
AUX(7,I)=Z
103 Y(I)=AUX(N+7,I)+0.2181084*AUX(5,I)+3.050965*AUX(6,I)+3.832865*Z
Z=X+H
CALL FCT(Z,NDIM)
DO 104 I=1,NDIM
104 Y(I)=AUX(N+7,I)+0.1747603*AUX(5,I)-0.5514807*AUX(6,I)
1+0.2055536*AUX(7,I)+0.1711848*DERY(I)
GO TO (9,13,15,21), I5N
200 ISTEP=3
201 IF (N=0) 204,202,204
202 DO 203 N=2,7
DO 203 I=1,NDIM
43
AUX(N-1,I)=AUX(N,I)

N=7

N=N+1

DO 205 I=1,NDIM

AUX(N-1,I)=Y(I)

205 AUX(N+6,I)=DERY(I)

X=X+H

ISTEP=ISTEP+1

DO 207 I=1,NDIM

DELTA=AUX(N-4,I)+1.333333*H*(AUX(N+6,I)+AUX(N+6,I)-AUX(N+5,I)+

1 AUX(N+4,I)+AUX(N+4,I))

Y(I)=DELTA-0.9256198*AUX(16,I)

207 AUX(16,I)=DELTA

CALL FCT(X,NDIM)

DO 208 I=1,NDIM

DELTA=0.125*(9.0*AUX(N-1,I)-AUX(N-3,I)+3.0*H*(DERY(I)+AUX(N+6,I)+

1 AUX(N+6,I)-AUX(N+5,I)))

AUX(16,I)=AUX(16,I)-DELTA

208 Y(I)=DELTA+0.0743817*AUX(16,I)

DELTA=0.0

DO 209 I=1,NDIM

DELTA=DELTA+ABS(AUX(N+6,I))

209 CALL FCT(X,NDIM)

CALL OUTP(X,NDIM,ILIFT)

DP=X

IF (PRMT(5)) 210,212,212

210 CALL FCT(X,NDIM)

212 RETURN

IF (ABS(X-PRMT(3))) 213,212,212

IF (ABS(X-PRMT(2))) 214,212,212

SUBROUTINE FCT(X,NDIM)

COMMON /EX/ EX(50)

COMMON /DY/ DERY(100),Y(100),UL(100),DP

COMMON /PRM/ NDIM,UPG(100),ILIFT,NRUN,SYM

COMMON /MOL/ EP(10000),A(10100)

IT=9

NH=NDIM/2

DO 1200 I=1,NDIM

SUM=SUM+ABS(K)

1200 CONTINUE

IF (ILIFT.EQ.0) GO TO 110

SUM=SUM+SYM*EP(K)*Y(J)*Y(J)

GO TO 1200

1110 SUM=SUM+SYM*EP(K)*UL(J)*UL(J)

1120 CONTINUE

IF (I.GT.NH) II=I-NH

IF (1100) 213,212,212

END
A(KK) = 0.5*Y(I)*Y(I) - SUM
GO TO 1200
1130 A(KK) = 0.5*Y(I)*Y(I) - SUM
1200 CONTINUE
DO 1250 I=1,NDIM
DO 1240 J=1,NDIM
KK=(J-1)*NDIM+1
IJ=ABS(I-J)
IF (IJ.EQ.0) GO TO 1230
ADD=0.0
IF (IAABS(I-J),EQ,NH) ADD=-0.5*X
A(KK)=2.0*SYMD*X*Y(J)*EP(K)+ADD
GO TO 1240
1230 A(KK)=1.0-X*(Y(J)-0.5)
1240 CONTINUE
1250 CONTINUE
CALL GAUSS(A,NDIM,IT)
DO 1310 I=1,NDIM
KK=NDIM*NDIM+1
1310 DER(I)=A(KK)
RETURN
END

SUBROUTINE OUTP(X,NDIM,IHLF)
C
C COMMON /DY/ DER(100),Y(100),UL(100),DP
C OPTION FOR USER TO PRINT OUT INTERMEDIATE SOLUTION
RETURN
END

SUBROUTINE VECOK(X,CP,AM,AMS,PR)
C
C COMMON /VEL/ MACH,MACHSQ,BETASQ,BETA,AAM1,AAM2,AAM3
REAL MACH,MACHSQ,BETASQ,BETA
X1=X+1.0
X12=X1*X1
CP1=ABS(1.0+AAM2*(1.0-X12))
CP=AAM1*(CP1**3.5-1.0)
AM=MACH*X1/SQRT(ABS(1.0+AAM2*(1.0-X12)))
AM=SAM*SQRAT(ABS(1.0/(1.0+0.166666666*(AM*AM-1.0))))
PR=AAM3*CP+1.0
RETURN
END
SUBROUTINE CARM

COMMON /VEL/ MACH, MACHSQ, BETASQ, BETA, AAM1, AAM2, AAM3
COMMON /PARAMS/ NWING, PANELS, SREF, REFMOM, CBAR, SPAN, OC
COMMON /WNGPMS/ ROOT(4), TIP(4), M*, N*, TYPE, F(101), G(101), P(101), 1 SHEAR(101), ISECT, THICK(5)
COMMON /HEL/ HH(100, 100)
REAL MACH, MACHSQ, BETASQ, BETA
INTEGER PANELS, OC, TYPE
LOGICAL SYM
LOGICAL THK
DATA THK, .FALSE., / DATA PANELS, 0 /
DATA HALFPI, 1.57079633, PI/3.14159265 /
CALL WNGEOM
NWING = PANELS
IF (THICK(1), GT, 0, OR, THICK(2), GT, 0, 0) THK = .TRUE.,
CALL EVAL (THK)
N1 = NWING + 1
CALL INVERT (HH, NWING)
CALL FORCE
PANELS = 0
RETURN
END

SUBROUTINE WNGEOM

COMMON /VEL/ MACH, MACHSQ, BETASQ, BETA, AAM1, AAM2, AAM3
COMMON /PARAMS/ NWING, PANELS, SREF, REFMOM, CBAR, SPAN, OC
COMMON /WNGPMS/ ROOT(4), TIP(4), M*, N*, TYPE, F(101), G(101), P(101), 1 SHEAR(101), ISECT, THICK(2), PERCH, ZT, DZDX, CURX
COMMON /PSINGS/ Pm(100), ALPHAT(100)
COMMON /PDATA/ XBAR(100), AREA(100), COSTH(100), SINTH(100), SYM(100)
COMMON /SCAP/ X(100, 4), Y(100, 2), Z(100, 2), XCPT(101),
1 SLOPE(101), CHROOT(202), CHTIP(202), ZROOT(101), ZUTIP(101), 2 ZROOT(101), ZLTIP(101), SCF(101)
COMMON /CURV/ CUR(100)
REAL MACH, MACHSQ, BETASQ, BETA
INTEGER PANELS, PANMAX, OC, TYPE
LOGICAL SYM, FIN
DATA PANMAX / 100 /
HELI = 0.0000001
IF (N, LE, 0 OR, N, LE, 0) RETURN
M1 = M1 + 1
N1 = N1 + 1
F(1) = ROOT(1)
G(1) = TIP(1)
F(N1) = ROOT(2)
G(N1) = TIP(2)
P(1) = ROOT(3)
P(N1) = TIP(3)
SHEAR(1) = ROOT(4)
$Sh:EAk(M1) = TIP(4)$
$Dr = ROOT(2) - ROOT(1)$
$DT = TIP(2) - TIP(1)$
$SSPA\in = TIP(3) - ROOT(3)$
$PAREA = (DR + DT) * SSPAN$
$Sc1 = 1.$
$Sc2 = 1.$

IF (TYPE.EQ.1) GO TO 20
IF (TYPE.EQ.2) GO TO 10
CALL fill (F, N)
CALL fill (G, N)

10 IF (TYPE.EQ.3) GO TO 20
CALL fill (P, M)
CALL fill (SHEAR, M)

20 $XX = TIP(3) - ROOT(3)$

DO 30 1 = 1, N
$C_ROOT(I) = 0.$
$C_TIP(I) = 0.$
$SLOPE(I) = (G(I) - F(I)) / XX$

$XCPT(I) = F(I) - ROOT(3) * SLOPE(I)$

DO 50 I = 1, N
IF (ABS(DR) .LT. HELL) GO TO 50
$C_ROOT(I) = (F(I) + F(I + 1)) / 2. - F(1) / DR$

40 IF (ABS(DT) .LT. HELL) GO TO 50
$C_TIP(I) = (G(I) + G(I + 1)) / 2. - G(1) / DT$

50 CONTINUE
IF (UT .GT. 0.) GO TO 70
DO 60 I = 1, N
60 $C_TIP(I) = C_ROOT(I)$

70 UO 90 J = 1, M
$Y1 = P(J)$
$Y2 = P(J + 1)$
$YPER = ((Y1 + Y2) / 2. - P(1)) / (TIP(3) - ROOT(3))$
$YPER1 = 1.0 - YPER$
$THCK = THICK(2) * YPER + THICK(1) * YPER1$

DO 90 I = 1, N
PANELS = PANELS + 1
IF (PANELS .GT. PANMAX) GO TO 210
X(PANELS) = XCP_T(I) + Y1 * SLOPE(I)
X(PANELS + 2) = XCP_T(I) + Y2 * SLOPE(I)
X(PANELS + 3) = XCP_T(I + 1) + Y1 * SLOPE(I + 1)
X(PANELS + 4) = XCP_T(I + 1) + Y2 * SLOPE(I + 1)
Y(PANELS + 1) = Y1
Y(PANELS + 2) = Y2
Z(PANELS + 1) = SHEAR(J)
Z(PANELS + 2) = SHEAR(J + 1)
IF (ABS(THCK) .LT. HELL) GO TO 80
PERCH = C_TIP(I) * YPER + C_ROOT(I) * YPER1
CALL SECTIN
CUR(PANELS) = THCK * CURX

80 ALPHAT(PANELS) = THCK * DZDX
FINC = .FALSE.
IF (ABS(Y1) .LT. HELL .AND. ABS(Y2) .LT. HELL) FINC = .TRUE.

90 SYM(PANELS) = .NOT. FINC
C
CALCULATIONS OF WING PROFILE
KTMAX = THICK(1) * JR
TIPMAX = THICK(2) * DT
DO 130 I = 1, N
IF (ABS(KTMAX) .LT. HELL .OR. ABS(DR) .LT. HELL) GO TO 100
PERCHD=(F(I)-F(1))/DR

CALL SECTIN
ZUROOT(I)=ROOT(4)+ZT*TMX
ZLROOT(I)=ROOT(4)-ZT*TMX

GO TO 110

100 ZUROOT(I)=ROOT(4)
ZLROOT(I)=ROOT(4)

110 IF (ABS(TIPMAX).LT.HELL, OR, ABS(3T).LT.HELL) GO TO 120
PERCHD=(&I)-G(1)/DT
CALL SECTIN
ZUTIP(I)=TIP(4)+ZT*TIPMAX
ZLTip(I)=TIP(4)-ZT*TIPMAX

GO TO 130

120 ZUTIP(I)=TIP(4)
ZLTip(I)=TIP(4)

130 CONTINUE

RETURN

END

SUBROUTINE FILL (AFILL,NFILL)

REAL AFILL(I)
IF (NFILL.LE.1) RETURN
DELF=AFILL(NFILL+1)-AFILL(I)/FLOAT(NFILL)
DO 10 I=2,NFILL
10 AFILL(I)=AFILL(I-1)+DEL
RETURN

END

SUBROUTINE SECTIN

COMMON /WANGPS/ ROOT(4),TIP(4),N,N,TYPE,F(101),G(101),P(101),
1 SHEAR(101),I,SECT,THICK(2),X,Z,DZDX,CURX
DdimENSlON XTAB(19), ZTABA(19), ZPTABA(19), ZTPTABA(19)
C THE FOUR DATA TABLES GIVEN BELOW ARE FOR A RAE 101 PROFILE
AND THEY REPRESENT 19 CHORDWISE VALUES FOR THE PROFILE
X/CHORD STATION TOGETHER WITH THE THICKNESS, SLOPE AND
CURVATURE MEASURE RESPECTIVELY AS GIVEN FOR A PROFILE
THICKNESS RATIO OF ONE. FOR ARBITRARY PROFILE INPUT THE
APPROPRIATE DATA TABLES MUST BE SUPPLIED BY THE USER.
IF THE NUMBER OF CHORDWISE STATIONS USED IS DIFFERENT
FROM 19, THE DIMENSION STATEMENT ABOVE AND THE THREE
SEQUENTIAL CALLING STATEMENTS STARTING WITH STATEMENT 100
MUST ALSO BE CHANGED ACCORDINGLY.
DATA XTAB /0.005,0125,0250,050,075,1.,15,2.,25,3,4,1.*9,7,9,95,1.1/
DATA ZTABA /0,0871,1169,1917,2659,3919,3607,4220,4630
1.4805,4997,5491,427,3531,2661,1789,899,95470/1
DATA ZPTABA /39.05,8.685,5.265,3.709,2.662,1.863,1.434,1.001
1.6575,3675,9640,13638,6508,-8058,-8023,-8943,-8943,
2.,8945.,-8944/
DATA CUTAB1 /-7000.0,-420.0,-120.0,-83.1,-32.6,-19.601,-12.35,-6.915,-5.92,-4.988,-3.384,-2.117,-1.173,-0.602,-0.331,-0.152,-0.125 /
IF (X.LT.0.,OR.X.GT.1.) GO TO 130
IF (I$ECT.EQ.0) GO TO 100
GO TO (10,30,50) 1$ECT
10 Z=2.*X*(1.-X)
DZDX=2.*(1.-2.*X)
CURX=4.0
RETURN
30 IF (X.GT.5) GO TO 40
Z=X
DZDX=1.
CURX=4.0
RETURN
40 Z=1.-X
DZDX=-1.
CURX=4.0
RETURN
50 CONTINUE
IF (X.GT.0.0) GO TO 60
Z=0.0
DZUX=100.0
CURX=5.0
RETURN
60 Sx=SQRT(X)
A2=X*X
Z=5.0*(0.2969*Sx-0.126*X-0.3516*X2+ 1.0*X2*X-0.1015*X2*X2)
DZDX=5.0*(0.14845/Sx-0.126-0.7032*X+ 1.3529*X2-0.485*X2*X)
CURX=5.0*(0.074225/(Sx*X)+0.7032- 1.3558*X+1.218*X2)
RETURN
100 CALL TAINT (XTAB,ZTAB1,X,Z,19,2)
CALL TAINT (XTAB,ZPTA1,X,DZDX,19,2)
CALL TAINT (XTAB,CUTAB1,X,CURX,19,2)
RETURN
130 Z=0.
DZUX=0.
CURX=0.0
RETURN
END
SUBROUTINE TAINT (XTAB, FTAB, X, FX, N, K)

REAL XTAB(1), FTAB(1), C(10), T(10)
DO 10 I=1+N
IF (X.GT.XTAB(I)) GO TO 10
J=I
GO TO 20
10 CONTINUE
J=N
20 J=J-(K+1)/2
IF (J.LE.0) J=1
30 M=J+K
IF (M.LE.N) GO TO 40
J=J-1
GO TO 30
40 KP1=K+1
GO TO 50
ENTRY TNT
50 DO 60 L=1,KP1
C(L)=X-XTAB(J)
T(L)=FTAB(J)
60 J=J+1
DO 80 J=1,K
I=J+1
70 T(I)=(C(J)*T(I)-C(I)*T(J))/(C(J)-C(I))
I=I+1
IF (I.LE.KP1) GO TO 70
80 CONTINUE
FX=T(KP1)
RETURN
END

SUBROUTINE EVAL (THICK)
COMMON /VEL/ MACH, MACHSU, BETASQ, BETA, AAM1, AAM2, AAM3
COMMON /PARAMS/ NWING, PANELS, SREF, REFMOM, CBAR, SPAN, OC
COMMON /PDATA/ xBAR(100), AREA(100), COSTHS(100), SINTHS(100), 1
SYN(100)
COMMON /COMPS/ XPRIME, YPRIME, ZPRIME, U, V, B, BTERM, EPS, SUB, BPOS, XPM
1T
COMMON /SCARP/ X(100), Y(100), Z(100), XCS(100), YCS(100), 1
ZCS(100), A(100),XBAR(100), XC(100), YC(100), ZC(100), 2
SINTHS(100), COSTH(100), UNT(100)
COMMON /HEL/ HH(100+1, 0)
COMMON /HOL/ HH(100+1, 100), HH2(100+1, 100)
COMMON/XZ+/XY(100), ZV(100)
REAL MACH, MACHSU, BETASQ, BETA
REAL LE
INTEGER PANELS, UC
LOGICAL SUB, BPOS, BNEG, B1NEG, B2NEG, DIAG, WING, THICK, TWING
LOGICAL SYN
DATA PI1/.3183099/, PI2/.1591549/
DATA P14/7.957747163E-2/, PI6/3.978673581E-2/
USELF=0.0
\text{STOTAL}=0.
\text{BNEG=.FALSE.}
\text{DO 10 I=1,PANELS}
\text{CR=X(I,4)-X(I,1)}
\text{DELY=Y(I,2)-Y(I,1)}
\text{DELZ=Z(I,2)-Z(I,1)}
\text{SPN=SQRT(DELY*DELY+DELZ*DELZ)}
\text{CT=X(I,4)-X(I,2)}
\text{AREA(I)=(CR+CT)*SPN/2.}
\text{STOTAL=STOTAL+AREA(I)}
\text{YPER=1.*CT/(CR+CT)/3.}
\text{YPER1=1.-YPER}
\text{LE=YPER*X(I,2)+YPER1*X(I,1)}
\text{TE=YPER*X(I,4)+YPER1*X(I,3)}
\text{XCS(I)=.95*TE+.05*LE}
\text{XC(I)=XCS(I)/BETA}
\text{XBARS(I)=LE+TE)/2.}
\text{XV(I)=XBARS(I)}
\text{XBAR(I)=XBARS(I)/BETA}
\text{YCS(I)=Y(I,1)+YPER1+Y(I,2)+YPER}
\text{ZV(I)=YCS(I)}
\text{YC(I)=YCS(I)}
\text{ZCS(I)=Z(I,1)+YPER1+Z(I,2)+YPER}
\text{ZC(I)=ZCS(I)}
\text{SINTHS(I)=DELZ/SPN}
\text{SINTH(I)=SINTHS(I)}
\text{COSTHS(I)=DELY/SPN}
\text{STOTAL=STOTAL+2.}
\text{IF (SREF.LT.0.) SREF=STOTAL}
\text{IF (CBAR.LT.0.) CBAR=SQRT(SREF)}
\text{EPS=AMAX1(SPAN,CBAR)/10000.}
\text{IF (BETASO) 40,40,30}
\text{SUB=.TRUE.}
\text{XBTENM=1.}
\text{UCON=PI8}
\text{UTCON=PI2/BETA}
\text{VWCON=BETA*PI3}
\text{VTCON=PI2}
\text{GO TO 50}
\text{SUB=.FALSE.}
\text{XBTENM=-1.}
\text{UCON=PI4}
\text{UTCON=PI1/BETA}
\text{VWCON=BETA*PI4}
\text{VTCON=PI1}
\text{GO 260 I=1,PANELS}
\text{COST=COSTHS(I)}
\text{SINT=SINTHS(I)}
\text{WING=.TRUE.}
\text{T,WING=THICK.AND.WING}
\text{X1=X(I,1)/BETA}
\text{X2=X(I,2)/BETA}
\text{X3=X(I,3)/BETA}
\text{X4=X(I,4)/BETA}
\text{Y1=Y(I,1)}
\text{Y2=Y(I,2)}
\text{Z1=Z(I,1)}
\text{Z2=Z(I,2)}
DELTA Y = (Y2 - Y1) * COS + (Z2 - Z1) * SINT
B1 = (X2 - X1) / DELTAY
B2 = (X4 - X3) / DELTAY
B1NEG = B1 .LT. 0.
B2NEG = B2 .LT. 0.
B1 = ABS(B1)
B2 = ABS(B2)
BTERM1 = SQRT(ABS(B1 * B1 + XyTERM))
BTERM2 = SQRT(ABS(B2 * B2 + XyTERM))
DO 250 J = 1, PANEI
DIAG = I .EQ. J .AND. .NOT. ING
XW = SINT * COSH(J)
XX = COST * SINH(J)
XY = COST * COSH(J)
XZ = SINT * SINH(J)
SINH = XW - XX
COSTH = XY + XZ
COSTL = XX
GO TO 90
C BEGIN THE EIGHT SEPARATE SET-UPS FOR COMP AND TCOMP
BPOS = .NOT. B1NEG
B = B1
BTERM = BTERM1
C SETUP 1
DELTA Y = YC(J) - Y1
DELTA Z = ZC(J) - Z1
XPRIME = XC(J) - X1
YPRIIME = DELTAY * COS + DELTAZ * SINT
YP = YPRIME
IF (B1NEG) YPRIME = -YPRIIME
ZPRIIME = DELTAY * COST - DELTAZ * SINT
ZP = ZPRIIME
CALL COMP
AAVR = V
AAWR = w
IF (DIAG) GO TO 60
U = U
GO TO 70
60 U = 0.
70 IF (.NOT. TING) GO TO 90
XPMT = XBAR(J) - X1
CALL TCOMP
VT = U
IF (DIAG) GO TO 80
AAVTRT = V
AAWR1 = w
GO TO 90
80 AAVRT = 0.
AAWR1 = 0.
ABN = V
C SETUP 2
90 DELTA Y = -YC(J) - Y1
YPRIIME = DELTAY * COS + DELTAZ * SINT
YP3N = YPRIME
IF (B1NEG) YPRIME = -YPRIIME
ZPRIIME = DELTAY * COST - DELTAZ * SINT
ZP3N = ZPRIIME
CALL COMP
AAVL = V
GO TO 250
IF (.NOT.TWING) GO TO 100
CALL TCOMP
UT=UT+U
AAVLT=V
AANLT=W

SETUP 3

100 DELTAY=Y(J)+Y2
DELTAZ=ZC(J)+Z2
XPRIME=X(J)+X2
YPRIME=DELTAY*COS+DELTAZ*SINT
YP4=YPRIME
IF (Y1NEG) YPRIME=-YPRIME
ZPRIME=DELTAY*COS-DELTAZ*SINT
ZP4=ZPRIME
CALL COMP
AAVR=AAR-V
AAW=AAVR-W
IF (DIAG) GO TO 110
UU=UU-U

110 IF (.NOT.TWING) GO TO 130
XPRMT=XBAK(J)+X2
CALL TCOMP
UT=UT-U
IF (DIAG) GO TO 120
AAVR=AARVT-V
AAW=AAWRT-W
GO TO 130

120 ABN=ABN-V

SETUP 4

130 DELTAY=-Y(J)+Y2
YP4=YPRIME
IF (Y1NEG) YPRIME=-YPRIME
ZPRIME=DELTAY*COS-DELTAZ*SINT
ZP4=ZPRIME
CALL COMP
AAVL=AAVL-V
AAWL=AAWL-W
UU=UU-U
IF (.NOT.TWING) GO TO 140
CALL TCOMP
UT=UT-U
AAVLT=AAVLT-V
AANLT=AANLT-W

140 BPOS=.NOT.B2NEG
B=B2
BTERM=BTERM2

SETUP 5

XPRIME=XL(J)+X3
YP1=YP3
IF (U2NEG) YPRIME=-YP1
ZPRIME=ZP3
CALL COMP
AAVR=AAVR-V
AAW=AAWR-W
IF (DIAG) GO TO 150
UU=UU-U

53
150 IF (.NOT.TWING) GO TO 170
XPMT=XBAR(J)-X3
CALL TCOMP
UT=UT-U
IF (U1AG) GO TO 160
AAVRT=AAVRT-V
AAWRT=AAWRT-W
GO TO 170

160 ABN=ABN-V
C SETUP 6
170 YPRIME=YP3N
IF (U2NE6) YPRIME=-YPRI ME
ZPRIME=ZP3N
CALL COMP
AAVL=AAVL-V
AAARL=AAARL-W
UU=UU-U
IF (.NOT.TWING) GO TO 180
CALL TCOMP
UT=UT-U
AAVLT=AAVLT-V
AAWLT=AAWLT-W
C SETUP 7
180 YPRIME=YP4
XPRIME=XC(J)-X4
IF (U2NEG) YPRIME=-YPRI ME
ZPRIME=ZP4
CALL COMP
AAVRL=AAVRL-V
AAARL=AAARL-W
UU=UU-U
IF (.NOT.TWING) GO TO 190
UU=UU+U
190 IF (.NOT.TWING) GO TO 210
XPMT=XBAR(J)-X4
CALL TCOMP
UT=UT+U
IF (U1AG) GO TO 200
AAVRT=AAVRT+V
AAWRT=AAWRT+W
GO TO 210

200 ABN=ABN+V
C SETUP 8
210 YPRIME=YP4N
IF (U2NEG) YPRIME=-YPRI ME
ZPRIME=ZP4N
CALL COMP
AAVL=AAVL+V
AAARL=AAARL+W
UU=UU-U
IF (.NOT.TWING) GO TO 220
CALL TCOMP
UT=UT+U
AAVLT=AAVLT+V
AAWLT=AAWLT+W
C SETUP 9
220 CONTINUE
A(J)=(AAVR*SINTR+AAVL*SINTL+AAWR*COSTR+AAWL*COSTL)*VWCON
UTPVAL=UU*UCON
IF (.NOT.TWING) GO TO 240
UT(J)=UT+UTCON

54
GO TO 245
240 UAT(J)=0.
245 HH(J,J)=A(J)
HH1(I*J)=UPVAL
HH2(I*J)=UAT(J)
250 CONTINUE
260 CONTINUE
IF (.NOT. THICK) WRITE (6,370)
RETURN
370 FORMAT (49SHOWING THICKNESS MATRIX CALCULATION WAS SUPPRESSED)
END
SUBROUTINE COMP

COMMON /COMPS/ X,Y,Z,U,V,W,B,TERM,EPS,SUBP,BPOS,XT
LOGICAL SUBP
DATA PI/3.14159265/ 1.57079633/
DATA PI32/4.12389/ 0.712389/ 0.0/ 1.0/
D2=0.0
10 CONTINUE
IF (ABS(B).LT.1.0E-8) GO TO 150
X2=X*X
Y2=Y*Y
IF (ABS(Z).LT.EPS) GO TO 120
BR2=b*R2
W=BTM+F2-Y*F6-B*ALOB(ABS((X+D)*RPRIME/BR2)
GO TO 190
120 A=X-U*Y
RPRIME=SQRT(A*A+BTERM*BTERM*Z2)
F6=(X+Y)/R2
F2=ALOG(ABS((B*X+Y+BTTERM*D)/RPRIME))
U=ATAN2(Z*U,DR2-X*Y)+ATAN(Y/Z)
V=ZF6-B*U
W=BTTERM+F2-Y*F6-B*ALOG(ABS((X+D)*RPRIME/BR2))
GO TO 190
121 CONTINUE
U=HALFP
IF (A.LT.ZERO) GO TO 110
IF (Y.GT.ZERO) 00 70 130
U=-HALFP
60 TO mo
130 U=PI32
140 V=5*U
W=BTERM+F2-(X+D)/Y-B*ALOG(ABS((X+D)*AA/3/Y2))
GO TO 190
150 IF (ABS(Z).LT.EPS) GO TO 160
X2=X*X
Y2=Y*Y
Z2=Z*Z
R2=Y2+Z2
D=SQRT(X2+R2)
U=ATAN2(Z*U,-X*Y)+ATAN2(Y/Z)
F6=(X+U)/R2
V=Z/F6
W=ALOG(ABS(((Y+D)/SQRT(X2+Z2))))-Y*F6
GO TO 190
160 D=SQRT(X*X+Y*Y)
U=HALFPI
IF (X.LT.ZERO) GO TO 180
IF (Y.GT.ZERO) GO TO 170
U=-HALFPI
GO TO 180
170 U=PI/2
180 W=ZERO
W=ALOG(ABS((Y+D)/ABS(X)))-(X+D)/Y
185 CONTINUE
190 IF (dPOS) RETURN
U=-U
W=-W
RETURN
ENTRY TCOMP
X2=XT*XT
Y2=Y*Y
A=XT-3*Y
IF (ABS(Z).LT.EPS) GO TO 270
R=SQRT(R2)
D=SQRT(X2+R2)
RPRIME=SQRT(A*A+BTERM*BTERM*Z2)
F2=ALOG(ABS((d*xT+Y*BTEHM*D)/RPRIME)))/BTERM
V=B+F2-ALOG(ABS((XT+0)/ABS(Y))
RETURN
270 D=SQRT(X2+Y2)
F2=0.0
IF (ABS(B*XT+Y+UTERM*D).LT.1.0E-8) GO TO 271
F2=ALOG(ABS((B*XT+Y+UTERM*D)/ABS(A)))/BTERM
271 CONTINUE
W=ZERO
IF (A*Y.GT.ZERO) W=PI
U=-F2
V=B+F2-ALOG(ABS((XT+D)/ABS(Y))
RETURN
END
SUBROUTINE INVERT (AA, NN)

REAL AA(100, 100)
NN=NN
DO 30 I=1, NN
ITEST=1
PIVOT=AA(I, I)
AA(I, I)=1.
DO 10 L=1, NN
LTEST=L
10 AA(I, L)=AA(I, L)/PIVOT
DO 30 H=1, NN
IF (N.EQ.I) GO TO 30
TT=AA(N, I)
AA(N, I)=0.
GO TO 20
30 CONTINUE
RETURN
END

SUBROUTINE FORCE

THIS SUBROUTINE INCLUDES THE NAMELIST /LIFT/

WHICH SPECIFIES THE GLOBAL ANGLE OF ATTACK (IN DEGREES)
OF THE WING PLANFORM AND THE CAMBER OR LOCAL ANGLE
OF ATTACK (IN RADIANS) OF EACH WING PANEL.

COMMON /VEL/ MACH, MACHS, BETASQ, BETA, AAM1, AAM2, AAM3
COMMON /PARAMS/ NWING, PANELS, SREF, RREF, MOM, CBAR, SPAN, OC
COMMON /PSINGS/ PWM(100), ALPHAT(100)
COMMON /PDATA/ XBAR(100), AREA(100), COSTH(100), SINTH(100), SYM(100)
COMMON /SCRAP/ UW(100), DUMMY(200), CAMBER(100), ALPHA(100), CP(100)
1 A(100), UL(100), CPU(100), CPL(100), DELCP(100), UWT(100)
COMMON /HEL/ HH(100, 100)
COMMON /NOL/ HH1(100, 100), HH2(100, 100)
COMMON /PRNDTL/ UPG(100), I LIFT, NRUN, SYMF
REAL MACH, MACHS, BETASQ, BETA
INTEGER PANELS, OC
DATA RAD/57.2957795/, MLFA/0.0/
NAMELIST /LIFT/ ILIFT, CAMBER, ALFA.
IF (NRUN.GT.0) GO TO 50
READ (5, LIFT)
WRITE (5, LIFT)
50 ANGLE=ALFA/RAD
ARADEG=ALFA
WRITE (6, 200) ARADEG
IF (NWING.EQ.0) GO TO 80
DO 60 I=1, NWING
60 PWM(I)=0.
DO 70 J=1, NWING

57
AXX = -CAMBER(J) - ANGLE * COS THETA(J)
DO 70 I = 1, NWING

70 PW(I) = PW(I) + HH(I, J) * AXX
CONTINUE
DO 90 I = 1, PANELS
 UW(T(I)) = 0.0
CONTINUE
UW(I) = 0.0
DO 100 J = 1, NWING
 PW(T(J)) = ALPHAT(J)
 CL(J) = PW(J)
 DO 100 I = 1, PANELS
 UW(T(I)) = UW(T(I)) + HH2(J, I) * PW(T(J))
 UW(I) = UW(I) + HH1(J, I) * CL(J)
CONTINUE
DO 140 I = 1, NWING
 UX = UW(I) + UW(T(I)) + PW(I) / 4.
 UPG(I) = UX
 IF (ILIFT.EQ.0) GO TO 140
 UX = UW(I) + UW(T(I)) - PW(I) / 4.
 II = I + NWING
 UPG(II) = UX
CONTINUE
RETURN

FORMAT (4X, 31H, CONFIGURATION ANGLE OF ATTACK = F7.3, 8H DEGREES)
END
APPENDIX C - SAMPLE INPUT AND PRINTOUT

The subject computer program is dimensioned for a total of 100 panels to represent the wing planform and this limits the number of panels which can be used for the lifting case to 50. A symmetrical nonlifting wing, however, can be represented by a maximum of 100 panels. The storage requirement is approximately 145,000 in octal. The input data which defines the wing geometry and its relative position to the oncoming flow of given strength are arranged in the following sequence of namelists. These namelists are read in from the main program except the namelist LIFT which is read in from subroutine FORCE.

Note: The given numbers in the input data correspond to the sample calculation case shown in the printout. Namelist $SHOCK is only used for the output of the calculated locations of the shock and sonic lines in connection with METHOD = 3.

$WING

IWING = 0
Type of wing, i.e., arbitrary input (0), rectangular planform with parabolic arc cross-section (1), triangular planform with parabolic arc cross-section (2).

Note: An arbitrary half-wing planform is defined as a trapezoidal planform with the two parallel sides in the direction of the axis of symmetry (i.e., the x-axis). The coordinates of the four corner points is the required input, see ROOT(i) and TIP(i), together with the two thickness ratios THICK(1) and THICK(2).

INFLU = 1
Type of influence matrix to be used, i.e., semi two-directional (1), complete planar (2). INFLU = 0 for linearized solution only.

Note: It is recommended to use the option INFLU = 1 unless the program has been modified to account for a large number of wing panels, i.e., N = 200-300.

METHOD = 1
Method of calculation, i.e., Newton (1), parametric differentiation (2), method of steepest descent (3).

Note: METHOD = 1 should be preferred for purely subsonic flows whereas METHOD = 2 applies to slightly supercritical flows. For the calculation of discontinuous flow the option METHOD = 3 is the only one applicable.

ISECT = 3
Type of wing section, i.e., arbitrary input (0), parabolic arc (1), double wedge (2), NACA 00XX (3).

Note: The guidelines for arbitrary section input is described in Appendix B under subprogram name SECTIN.

LX = 10
Number of panel division in the chordwise direction.
LZ = 5
Number of panel division in the spanwise direction.

ROOT (1) = 0.0
x-coordinate of the leading edge at the root.

ROOT (2) = 1.0
x-coordinate of the trailing edge at the root.

ROOT (3) = 0.0
z-coordinate of the root section.

ROOT (4) = 0.0
y-coordinate of the root section.

TIP (1) = 0.0
x-coordinate of the leading edge at the tip.

TIP (2) = 1.0
x-coordinate of the trailing edge at the tip.

TIP (3) = 3.5
z-coordinate of the tip section.

TIP (4) = 0.0
y-coordinate of the tip section.

THICK (1) = 0.12
Thickness ratio of the root section.

THICK (2) = 0.12
Thickness ratio of the tip section.

SPAN = N.A.
Span to root-chord ratio for the cases of IWING = 1, 2.

TAU = N.A.
Thickness ratio for the cases of IWING = 1, 2.

$ FLOW$

MACH = 0.72
Initial freestream Mach number (M_∞).

DELM = 0.0
Desired increment of the freestream Mach number.

NDELM = 0
Number of increments desired of DELM.

Note: The options DELM and NDELM are introduced for the convenience of the user to reduce the number of input data cards for the case where only a change in Mach number is desired.

$ LIFT$ (required only for IWING = 0)

ILIFT = 0
Type of flow considered i.e., noncirculatory (0), circulatory (1).

CAMBER = 100 * 0.0
Local slope of each planar panel element which defines a cambered wing (in radians).

Note: The subscripted quantity CAMBER (i) is read in as an array of index $i = (m - 1)LX + m$ where $1 \leq n \leq LZ$ and $1 \leq m \leq LX$ and
the indexing starts with the panel located at the leading edge of the root section. The input can be simplified by use of the notation shown for the sample case.

ALFA = 0.0 Angle of attack (in degrees).

The printout lists these namelists for each calculation case. The results from a flow calculation are written out in two rows for each chordwise calculation point. The upper row refers to the final nonlinear solution, whereas the lower row refers to the linearized or Prandtl-Glauert solution. The calculation points are located at the centroid of each wing panel and results are given for each spanwise station in the following notation:

1 Chordwise sequential number of wing panel

X/CHORD Chordwise location of panel centroid with reference to local chordlength

U Normalized perturbation velocity, \(\frac{u - u_\infty}{u_\infty} \)

U + 1 Normalized velocity, \(\frac{u}{u_\infty} \)

U (RED) Reduced perturbation velocity, \(\frac{(\kappa + 1)M_\infty^2}{1 - M_\infty^2} \frac{u - u_\infty}{u_\infty} \)

CP Pressure coefficient, \(\frac{2}{\kappa M_\infty^2} \left[1 + \frac{1}{2} (\kappa - 1)M_\infty^2 \left(1 - \frac{u^2}{u_\infty^2} \right) \right] \frac{\kappa/(\kappa-1)}{1 - \frac{u^2}{u_\infty^2}} - 1 \)

CP (RED) Reduced pressure coefficient, \(\frac{[\kappa(\kappa + 1)M_\infty^2]^{1/3}}{\tau^{2/3}} c_p \)

P/PO Pressure ratio, \(\frac{1}{2} \kappa M_\infty^2 c_p + 1 \)

M Mach number, \(M = \frac{u}{u_\infty} \left[1 + \frac{\kappa - 1}{2} M_\infty^2 \left(1 - \left(\frac{u}{u_\infty} \right)^2 \right) \right]^{-1/2} \)

M (STAR) Critical Mach number, \(M^* \)

Note: CP(STAR) The critical value of the pressure coefficient (C_p) is evaluated from the exact relation.
VEHICLE AND PRESSURE DISTRIBUTION ON AN AMIRATIONAL WING AT SUBSONIC SPEEDS

Based on a Transonic Integral Equation Method

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Nodal Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>Wings</td>
<td>*U</td>
<td></td>
</tr>
</tbody>
</table>

Mach Numbers:
- MACH = 0.200000
- UDEL = 0.000000
- NDELM = 4U

Seno:
- FLUX

Configuration Angle of Attack:
- ALFA = 0.000000U
PLANFORM

PROFILE:

THICKNESS RATIO: .12000

SLIPSPAN/CHORD: .560900

ASPECT RATIO: .740000

MACH NUMBER: .72000

BLTA: .65397

MACH NUMBER (STAR): .75075

CP (STAR): .65959

X1: .47717

THE SOLUTION FOR THE WING

VELOCITY AND PRESSURE DISTRIBUTION ON UPPER SURFACE

<table>
<thead>
<tr>
<th>1</th>
<th>X/CHORD</th>
<th>U</th>
<th>U+1</th>
<th>CP</th>
<th>CP/(U+1)</th>
<th>P/PD</th>
<th>M</th>
<th>MISTAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.50000+01</td>
<td>19849+01</td>
<td>97651+00</td>
<td>.5825+01</td>
<td>23266+00</td>
<td>10191+01</td>
<td>.6934+00</td>
<td>.7338+03</td>
</tr>
<tr>
<td>2</td>
<td>.15000+02</td>
<td>12192+02</td>
<td>12192+02</td>
<td>.5443+02</td>
<td>.3775+02</td>
<td>13750+02</td>
<td>10233+01</td>
<td>.7676+02</td>
</tr>
<tr>
<td>3</td>
<td>.25000+03</td>
<td>12273+03</td>
<td>12273+03</td>
<td>.4959+03</td>
<td>12025+03</td>
<td>83315+03</td>
<td>.5422+03</td>
<td>.8145+03</td>
</tr>
<tr>
<td>4</td>
<td>.35000+04</td>
<td>12956+04</td>
<td>12956+04</td>
<td>.4461+04</td>
<td>11727+04</td>
<td>85514+04</td>
<td>.5773+04</td>
<td>.8606+04</td>
</tr>
<tr>
<td>5</td>
<td>11137+05</td>
<td>11137+05</td>
<td>.4199+05</td>
<td>.3989+05</td>
<td>.7665+05</td>
<td>.8789+05</td>
<td>.9314+05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11137+06</td>
<td>11137+06</td>
<td>.3989+06</td>
<td>.3989+06</td>
<td>.7665+06</td>
<td>.8789+06</td>
<td>.9314+06</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11137+07</td>
<td>11137+07</td>
<td>.3775+07</td>
<td>.3775+07</td>
<td>.7370+07</td>
<td>.8093+07</td>
<td>.8505+07</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11137+08</td>
<td>11137+08</td>
<td>.3562+08</td>
<td>.3562+08</td>
<td>.6857+08</td>
<td>.7715+08</td>
<td>.8093+08</td>
<td></td>
</tr>
</tbody>
</table>

SPANWISE STATION: X/CHORD = 1.00000 (Z/SLPMISPAN = .70000)

<table>
<thead>
<tr>
<th>1</th>
<th>X/CHORD</th>
<th>U</th>
<th>U+1</th>
<th>CP</th>
<th>CP/(U+1)</th>
<th>P/PD</th>
<th>M</th>
<th>MISTAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.50000+01</td>
<td>12485+01</td>
<td>97362+01</td>
<td>.5332+01</td>
<td>.2349+01</td>
<td>.1019+01</td>
<td>.6584+01</td>
<td>.7166+00</td>
</tr>
<tr>
<td>2</td>
<td>.15000+02</td>
<td>12142+02</td>
<td>12142+02</td>
<td>.4846+02</td>
<td>.4377+02</td>
<td>19353+02</td>
<td>.8415+02</td>
<td>.9084+01</td>
</tr>
<tr>
<td>3</td>
<td>.25000+03</td>
<td>12142+03</td>
<td>12142+03</td>
<td>.4358+03</td>
<td>12025+03</td>
<td>83315+03</td>
<td>.5422+03</td>
<td>.8145+03</td>
</tr>
<tr>
<td>4</td>
<td>.35000+04</td>
<td>12485+04</td>
<td>12485+04</td>
<td>.3872+04</td>
<td>11727+04</td>
<td>85514+04</td>
<td>.5773+04</td>
<td>.8606+04</td>
</tr>
<tr>
<td>5</td>
<td>11137+05</td>
<td>11137+05</td>
<td>.3394+05</td>
<td>11018+05</td>
<td>8789+05</td>
<td>.7715+05</td>
<td>.9084+05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11137+06</td>
<td>11137+06</td>
<td>.3187+06</td>
<td>.3187+06</td>
<td>.7370+06</td>
<td>.8093+06</td>
<td>.8505+06</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11137+07</td>
<td>11137+07</td>
<td>.2981+07</td>
<td>.2981+07</td>
<td>.6857+07</td>
<td>.7715+07</td>
<td>.8093+07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.53D0+03</td>
<td>1.49D0+00</td>
<td>1.19D0+01</td>
<td>1.41D0+04</td>
<td>1.33D0+00</td>
<td>1.47D0+00</td>
<td>1.87D0+00</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>2.53D0+03</td>
<td>1.98D0+00</td>
<td>1.21D0+01</td>
<td>1.65D0+04</td>
<td>1.10D0+00</td>
<td>1.33D0+01</td>
<td>1.87D0+01</td>
<td>1.83D0+04</td>
</tr>
<tr>
<td>4</td>
<td>5.39D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>5</td>
<td>9.30D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>b</td>
<td>5.30D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>7</td>
<td>6.33D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>8</td>
<td>7.33D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>9</td>
<td>8.33D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
<tr>
<td>10</td>
<td>9.33D0+03</td>
<td>1.26D0+00</td>
<td>1.15D0+01</td>
<td>7.80D0+04</td>
<td>1.20D0+01</td>
<td>1.26D0+00</td>
<td>1.87D0+00</td>
<td>1.83D0+03</td>
</tr>
</tbody>
</table>

The linearized solution is based on Lam Technical's numerical analysis.

The nonlinear solution was obtained with the Newton's method after 3 iterations.
REFERENCES

FIGURE 1 - Influence function E for various angular deviation from the free-stream direction.
FIGURE 2 - Location of zero influence line.
FIGURE 3 - Geometric division of an arbitrary planform into a number of trapezoidal panels.
FIGURE 4 - Influence pattern with reference to the mid-point of a rectangular wing.
FIGURE 5 - Integration points for the definition of the influence measure from an elementary panel.
INPUT: WING GEOMETRY AND FLOW CONDITION

CARMICHAEL'S PROGRAM

HOLME'S ANALYTICAL SOLUTION

INFLUENCE MATRIX

DEFINE THE ALGEBRAIC SYSTEM

METHOD OF SOLUTION

TYPE OF FLOW

NEWTON

- SUBCRITICAL

PARAMETRIC DIFFERENTIATION

- SUPERCritical CONTINUOUS

STEEPEST DESCENT

- SUPERCritical DISCONTINUOUS

WRITE:

COMPLETE SOLUTION
LINEARIZED SOLUTION
INPUT DATA

FIGURE 6 - Block diagram of the computer program.
FIGURE 7 - Limits for shock-free transonic flow.
FIGURE 8 - Subcritical flow past a non-lifting airfoil.

NACA 0012
$t = 0.12$
$\alpha = 0^\circ$
$M_\infty = 0.72$
NACA 0012
\(\tau = 0.12 \)
\(\alpha = 2^\circ \)
\(M_\infty = 0.63 \)

FIGURE 9 - Subcritical flow past a lifting airfoil.
FIGURE 10 - Supercritical flow past a non-lifting airfoil.
Figure 11 - Supercritical flow past a lifting airfoil.

NACA 0012
\[\tau = 0.12 \]
\[\alpha = 2^\circ \]
\[M_\infty = 0.676 \]
PARABOLIC ARC
\[\tau = 0.084 \]
\[\alpha = 0^\circ \]
\[M_\infty = 0.85 \]

PRESENT SOLUTION \((M = 0.84834) \)

NUMERICAL SOLUTION, REF. 20

PRANDTL-GLAUERT SOLUTION

FIGURE 12 - Discontinuous flow past a non-lifting airfoil.
FIGURE 13 - Discontinuous flow past a lifting airfoil.
FIGURE 14 - Linearized solution for a lifting wing.
FIGURE 15 - Comparisons of analytical and numerical results for a symmetrical wing.
FIGURE 16 - Incompressible flow solutions for high aspect ratio wings with a blunt leading edge.
FIGURE 17 - Subcritical flow past a non-lifting rectangular high aspect ratio wing.
FIGURE 18 - Subcritical flow past a lifting rectangular high aspect ratio wing.
FIGURE 19 - Subcritical flow past a non-lifting rectangular wing.
FIGURE 20 - Continuous supercritical flow past a non-lifting swept wing ($\zeta = 0.4$).
RAE 101 WING
SWEPT PLANFORM
\(\tau = 0.09 \)
\(\Lambda = 30^\circ \)
\(AR = 6 \)
\(M = 0.85 \)
\(\zeta^\infty = 0.6 \)

FIGURE 21 - Continuous supercritical flow past a non-lifting swept wing \((\zeta = 0.6) \).
FIGURE 22 – Discontinuous flow past a non-lifting rectangular wing near the mid-span station.
FIGURE 23: Discontinuous flow past a non-lifting rectangular wing at $\zeta = 0.5$.

PARABOLIC ARC WING

RECTANGULAR PLANFORM

- $\tau = 0.06$
- $AR = 4$
- $\alpha = 0^\circ$
- $M = 0.908$
- $\zeta = 0.5$

PRESENT RESULT

REFERENCE 7
FIGURE 24 - Supercritical flow past a lifting rectangular wing near the mid-span station.
FIGURE 25 - Supercritical flow past a lifting rectangular wing.
FIGURE 26 - Flow chart for the calling sequence of the program subroutines.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

Scientific and Technical Information Office
National Aeronautics and Space Administration
Washington, D.C. 20546