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HIGH-SPEED FLOW PAST WINGS

By Helge N0rstrud
Lockheed-Georgia Company

SUMMARY

The analytical solution to the transonic small-perturbation equation which describes
steady compressible flow past finite wings at subsonic speeds can be expressed as a non- ..
linear integral equation with the perturbation velocity potential as the unknown function.
This known formulation is substituted by a system of nonlinear algebraic equations to which
various methods are applicable for its solution. Due to the presence of mathematical dis-
continuities in the flow solutions, however, a main computational difficulty in the present
study was to ensure uniqueness of the solutions when local velocities on the wing exceeded
the speed of sound. For continuous solutions this was achieved by embedding the algebraic
system in an one-parameter operator homotopy in order to apply the method of parametric
differentiation. The solution to the initial system of equations appears then as a solution

to a Cauchy problem where the initial condition is related to the accompanying incom-
pressible flow solution.

In using this technique, however, a continuous dependence of rhe solution development
on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest
descent iteration technique has, therefore, been added to the computational scheme for the

calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic
flows with and without compression shocks are given and compared with other available
theoretical solutions.

INTRODUCTION

The importance of having aircraft flying in the transonic speed range either in the

cruise mode or a maneuvering mode has been expressed by both civilian and military
operators. Although the financial benefits from a commercial transonic airplane seems at

present to be somewhat questionable, no definite conclusion can be drawn before a
thorough understanding has been reached of the various operational problems involved.

The technical difficulties, however, associated with the development of such an aircraft
are well known to both the experimentalists and the theoretician in the area of predicting
the aerodynamic loads and the operating boundaries.

Early attempts to theoretically analyze compressible flow past finite wings at subsonic
speeds beyond an application of simple sweep or strip theory were based on the equivalence
theorem which concerns itself with geometrically equivalent bodies (ref. 1). A solution was
thus obtainable for small aspect ratio wings, but required the solution to the equivalent



nonlifting axisymmetric case. A more general three-dimensional treatment of the transonic
flow problem, however, seems to have been first given by Alksne and Spreiter (ref. 2) who
extended the concept of local linearization to nonlifting wings, but were limited to oncoming
flows which deviated little from the sonic speed (see reference 3 fpr a more recent and
detailed exposition). Similar restriction on the freestream condition also applies to the work
of Burg (ref. 4) which is based on still another linearized form of the governing transonic
small-perturbation equation. Ngjrstrud (ref. 5) adopted the integral equation approach to
the solution of the same governing nonlinear equation, but results were confined to subcritical
flows. The analytical difficulties associated with the three-dimensional transonic flow problem
were clearly a matter which was inherited from the more familiar planar case and a solution
to the spatial problem dependent to a large extent on the progress made in solving the problem
in two dimensions, see e.g. reference 6 for a comprehensive literature review of the subject.

The first successful evaluation of mixed subsonic/supersonic three-dimensional flow
with embedded shocks were recently given by Bailey and Steger (ref. 7) who numerically
solved the steady state small-perturbation equation using relaxation techniques. Their
approach includes a hybrid combination of the perturbation velocity potential and the per-
turbation velocities as the dependent variables and calculations for lifting, supercritical
flows are presented. Similar relaxation schemes have also been applied by Caradonna and
Isom (ref. 8) to the transonic flow problem of hovering helicopter blades at zero lift. Still
further numerical investigations of the transonic wing alone or wing-body problem are found
in references 9, 10 and 11 and this has brought the subject-of transonic flow theory to an
initial stage of overall completeness.

The present study refines and extends the work of reference 5 to lifting flows with the
inclusion of shock discontinuities in three-dimensions. The approach taken follows some
fundamental steps proposed for two-dimensional flows by Oswatitsch in 1950 (ref. 12) and it
can be described as semi-analytical. The formal integral solution to the transonic small-
perturbation equation with associated boundary conditions is regarded as more amendable to
numerical analysis than the differential formulation. This is especially true for subcritical
flows. For supercritical flows, however, some additional considerations must be given
to guarantee the uniqueness of the flow solution. In either case, the governing integral
equation is first replaced by a system of nonlinear algebraic equations and then alternative
methods of solution to the algebraic system are given.

SYMBOLS

A.,B.,C. velocity parameters

AR aspect ratio

Ci cosine integral

c speed of sound

E(|x-?|,|Z-£|;r) influence function

F. functional defined in equation (23)



f. functional defined in equation (37)

G. operator defined in equation (30)

H Struve function of integer order v
v

J Jacobian matrix

M local Mach number

m(x, Z) scaling parameter, see equation (22)

N Neumann function of integer order v

q(5/0 source distribution, see equation (8)

R distance function

r(x,Z) velocity decay parameter

S wing planform area

Si . sine integral

s specific entropy

U,V,W transformed perturbation velocity components

u,v,w velocity components
O 1 ''O

Y,Z transformedcoordinates= (1 -M ) y,z

x,y,z Cartesian coordinates

y function describing wing surface distribution
'w

Greek Letters:

a angle of attack

Y(?,£) vorticity distribution, see equation (9)

2
V Laplace operator

A incremental value

6. Kronecker delta
'I

z. influence coefficients
M

H ratio of specific heats

ia differentiation parameter

§,TI,£ integration variables

p,a,y arguments



T

*

Subscripts:

s

v

w

2,3

Superscripts:

thickness ratio

velocity potential

velocity perturbation potentials
.m •

downwash correction potential

functional defined in equation (36)

freestream value

with reference to the source solution

with reference to the vortex solution

refers to the wing surface

fcNo-dimeroional or three-dimensional respectively

refers to upper surface value

refers to lower surface value

refers to x-direction

refers to Z-direction



ANALYTICAL ANALYSIS

Governing Differential Equations

Three-dimensional irrotational compressible flow of an ideal gas around a finite
wing generates a velocity field (u,v,w) = grad $ which is defined in a body-fixed Cartesian
coordinate system x,y,z. With the further assumption of small disturbances in the plane
normal to the direction of the oncoming steady flow (i .e . , in the yz-plane) the governing^
partial differential equation for the velocity potential $= $(x,y,z) wi l l be written as

M2

(1 -M )* +$ +§ =''(*+ 1) — •[$ - u ] * - 0)
» xx yy zz u x » xx

' ' 00

where M (= u /c ) is the freestream Mach number and.K designates the ratio of specific
co oo ao

heats. Equation (1) is a particular form of the set of equations which can be deduced from
the transonic small-perturbation theory and it can be transformed to

^xx + Vf + ^ZZ = 'x'xx (2)

after a normalized velocity perturbation potential cp = cp (x,Y,Z) is defined as

cp = - o - ( f - u x - v y - w z ) '3J
/, M2> 00 00' CO

(1 - M )u
CO CO

21/2
The employed coordinate transformation Y,Z = (1 - M^) y,z corresponds to a form of the
Prandtl-Glauert transformation and we are thus limiting the present analysis to far-fields
with subsonic flow (M < 1). This restriction is arbitrary since a different coordinate trans-

00

formation would make a similar perturbation analysis valid for freestream Mach numbers
M 2 1 .«°

The introduction of a velocity potential $ in equation (1) is equivalent to imposing
the condition of irrotationality

rot(grad $) = 0 (4)

on the flow field and, hence, equations (1) and (4) must be regarded as the system of equa-
tions to be solved under given boundary conditions. Since equation (4) implies a charac-
terization of the subject flow as global isentropic (s = const.) and assumes no vorticity in
the upstream far field region, the entropy increase across any embedded shock surface is
regarded negligible. Thus, the entropy condition which forbids the occurrence of expansion
shocks must be incorporated in the analysis by means other than the use of the specific
entropy measure . This missing formulation will be dealt with in the numerical analysis section ,



Boundary conditions. - Let the planform projection of the wing be situated in the plane

y = 0 and let the distribution y = h (x,z) define the wing upper and lower surface,

respectively. The simplified boundary condition expressing tangential flow at the wing
surface is then

y = ± 0 : $ =u h±(x,z) (5a)
y «> X

or in transformed variables ~

(x + l)/vT
Y = ±0 : CO, = - 5-^5 [rax, z) - tana] (5b)

^ (i - MT' *
-1 *

where a(= tan (vy/^ )) designates the angle of attack which will be limited to small
values. Furthermore, equation (5b) assumes w = 0 for simplicity of the analysis . The

condition at infinity shall be that of vanishing flow disturbances and will be stated as

In the case of circulatory (or lifting) flows, the Kutta condition at the trailing edge
of the wing must be taken into consideration in order to ensure finite velocities of the
flow as it leaves the wing surface. The associated potential jump Acpatthe trailing edge
varies in a fashion similar to the spanwise load distribution, but remains constant in the
streamwise direction in the so-called vortex wake behind the wing.

The harmonic solution. - For the purpose of constructing a solution to the nonlinear
partial differential equation (2) we will first consider the problem of obtaining a harmonic
solution to the Laplace equation

Z Z ^ 0 (7)

This equation is well known from linearized subsonic theory and we can identify a solution
cp = cp(x,Y,Z) which satisfies equation (7) and the boundary conditions (5b) and (6) as a

2 2-1
transformed Prandtl-Glauert potential with the conversion factor (H + 1)M (1 -M )

CO CO

see equation (3) .

Analytical solutions to equation (7) for given wing configuration (or boundary
conditions) are rare and, in fact, it seems like Holme's solutions, given in reference 13,

are the only ones available. These are closed-form incompressible flow solutions for
rectangular and triangular wings with parabolic arc cross-sections at zero incidence.
Of the various numerical methods available for the evaluation of tp(x,Y,Z), e.g.,
references 14 and 15, the calculative technique employed in the present study is based on
an application of the method of singularity (ref. 16). Since the superposition principle
is valid in treating the linear equation (7), this method of solution utilizes a planar

distribution of elementary sources and vortices to represent the physical wing configuration

and the induced circulatory system.



Thus, for a constant source distribution of strength q(§, £) over an area element AS

xZ

(ref. 16)

2 1/2
in the xZ-plane where Z = (1 - M ) z one is faced with an integration of the form

"£//*•< 1 .
's ^ I J ' [(x -F)2 +Y 2 + (Z - r)2!1/ ®

AS

Similarly, a constant strength vortex distribution y (5 /C) leads to the representation

AS

r
AS

Since the wing planform geometry is necessarily discretized by a number of small planar
elements, the appropriate limits of integration are defined by the corner points of the
individual panels. Within each of these panel elements the strength of the singularities
q(?/C) and y(§/C) are assumed constant and a control point is selected at which the local
boundary conditions are to be satisfied.

The associated computer program which implements the solution of the spherical

harmonic cp = cp + cp of equation (7) for given boundary condition is listed in Appendix B

as subroutine CARM . It should be noted that the original listing of this program as obtained
from the NASA Langley Research Center has been modified to consider perturbation
velocities in the x-direction only.

The Integral Equation Formulation

Equation (2) resembles a Poisson differential equation for which potential theory admits

the solution ^

cp(x,Y,Z)=^(x,Y,Z)+cp'(x,Y,Z) - J- /"//[cp cp "]c j- d^dC (10)
^'' JJJ S St> b / T ! j t ' N o

— oc

2 2 2 1 / 2
and where R« = C(x - ?) + (Y - 1]) + (Z - Q) ] designates the inverse of the singular

o
fundamental solution for the domain of integration. To the harmonic solution cp <s added
another harmonic solution cp'which shall serve as a correction potential to the integral term

of equation (10). Since the boundary condition (5b) shall also be satisfied by the potential

cp , the need for the correction term will become apparent when one differentiates
equation (10) with respect to Y and rearrange to yield



where the kernel

<Y -

is an antisymmetric function with respect to the xZ-plane for Y s 0.

. The derivation of equation (10) for symmetrical flows, i.e. withcp'(x/ Y,Z) =0, has
been given by various authors including Gullstrand (ref. 17) who gave a detailed derivation
in connection with the Green's theorems. Similar derivation is found in reference 18 and
Klunker (ref. 19) generalizes the use of the integral formulation of the transonic small-
disturbance velocity potential for the far field boundary condition in connection with
finite-difference calculation methods, see e.g. reference 20.

Next, we seek to modify equation (10) for a necessary numerical analysis. If a
perturbation velocity vector in the transformed space x,Y,Z is defined as (U,V,W) =
grad cp and if we restrict ourselves to seek a solution for U(x,Y,Z) in the planform
plane (Y = 0) then a differentiation of equation (10) with respect to x will yield after
some manipulation

(11)
To facilitate the solution of this nonlinear integral equation, an exponential decay in the
Y- direct ion wil l be assumed for the perturbation velocity component U= :U(x /Y,Z), i.e.

U(x,±Y, Z) = U(x,±0, Z) exp{TY/r(x,±0, Z)}

where the parameter r (x,Z) = r(x, ±0,Z) is
(5) as

r±(x,Z)=abs

approximately derived from equations (4) and

2 ] /2 fu(x,±0,z) -

Equation (12) substituted in the integral term of equation (11) will then yield, after an
integration in the r]-direction, the reduced integral equation



2U(x,0,Z) - u(x,0,Z) = U(x,0,Z) +cp;(x,0,Z) + —-

oo//
where the kernel E - E(|x-5( ,\ 2L-(,\;r ) in the double integrals reads

rn

E( |x-? | , | .
a? \ 3/

(13)

is r / o /±\ a / 1
= 2^5 7 exp(-2n/r ) TFU-

^ OS j d-s \ K Q/
Tf=0 V - X

Inserting the relation (valid for Y = 0)

( x - C )

(14)

in equation (14) and making the substitution

r = ri/r i.e. dr| = rdt

where the upper superscripts to the parameter r have been dropped one obtains the

following expressi6ns

oo/^ / exp(-2t)
r t=0

dt

(15)

Here 0 =

see e.g. reference 21 .

-r\2l ]/2
and the integral is obtained from standard tables,



rrom rererence f-f- one can aeauce me following properties

for the Neumann function N and the Strove function H of both integer order V and with the

aid of these relations the final evaluation of equation (15) will yield (see figures 1 and 2)

which reduces to

in
r a

4- _ 06)

2^
r Ho(a)

07)

(18)

for x - ?sO and Z - C, s 0 respectively. Equation (17) has previously been obtained in
reference 5, but omits the function r in the denominator as a result of a typographical error.

Correction for lifting, continuous flows. - In the case of lifting flows, the integral
terms of equation (13) will give rise to a downwash in the plane of the wing planform. Since

the potential cp is already required to satisfy the specified boundary conditions in this plane,

i .e ., cp,, = cpY at Y = ±0, the correction potential cp1 is added to the harmonic solution cp to

counterbalance this induced downwash. Furthermore, cp1 must also be a harmonic function,
but we can confine this requirement (or property) to the xY-plane since equation (13) does
not depend on any spanwise (i .e ., approximately the Z-direction) derivatives of the function
cp' , We will first consider continuous flow and define a correction potential cp' =cp'(x,Y,Z)
which shall be antisymmetric with respect to the planform plane Y = 0 as

00

cp'(x,Y,Z) = -l /\'(5,
-1 Y

1 x~^T (19)

§=-'

10



The vortex strength y'(x /Z) is necessarily defined as

Y'(x,Z)=l[U(x,+0,Z) -U(x,+0,Z)-U(x,-0,Z) + U(x,^0,Z):] (20)

and a differentiation of equation (19) with respect to x together with the limit value

Y'(x,Z) = li

yields the identitycp '(x,0,Z) = y ' ( x /Z). Since a unique circulation is already implemented
in writing equation (20) no further considerations have to be made regarding the Kutta
condition at the trailing edge .

Correction for lifting, discontinuous flows. - With shock surface discontinuities in the
flow field a modification of equation (20) is necessary in order to assure the harmonic nature
of cp' (x/0/ Z) and, hence, enforce a smooth continuous derivativecp' . However, instead of

X

defining the function cp' we define its gradient in the x-direction as

(21>

and let m(x,Z) represent a spanwise-varying scaling parameter which shall depend on the
local circulation around the wing in order to satisfy the Kutta condition. Hence, one can
write

03

m(x,Z) = 2 J [U(5,+0,Z)-U(S,+0/Z)-U(§/-0/Z)+U(5/-0,Z)][U2(5,+0,Z)-U2(S/-0,Z)]"1d5

5=— (22)
It should be emphasized that equation (21) is not unique and that a better downwash repre-
sentation at the leading edge could be achieved with, say, an adoption of the Riegel's
factor [1 +

From the elementary relation

U2(x,+0,Z) -U2(x,-0,Z) = [U(x,+0,Z) -U(x,-0,Z)][U(x,+0,Z) + U(x,-0,Z)J

where the first and second factor on the right hand side represents the linearized perturba-
tion velocity due to lift and thickness respectively. One sees from equation (21) that the
distribution in chordwise direction of the x-component of the correction potential is defined
to be of a similar form as the disturbance due to thickness. This distribution, however, is
modified by an amount proportional to the local chordwise lift. It should be noted that the
use of a different combination of the linearized velocity components in equation (21) could
be better defined from known lifting flow calculations.

11



NUMERICAL ANALYSIS

The Algebraic System

The solution to the nonlinear integral equation (13) cannot be obtained analytically
for wing configuration of arbitrary planform and thickness distribution. Hence, a numerical
treatment of the general problem is mandatory and the first step in this direction is to
discretize the area of integration in accord with the division of the wing planform as used
for the numerical evaluation of the harmonic' solution . The range of integration shall
be confined to the wing planform and the nonlinear compressibility sources outside the
cylinder which encloses the planform and which have the generatrix parallel to the
Y-direction are therefore not being considered.

Let the upper and lower surface of the left (or right) half of the wing planform each
be represented by N number of trapezoidal panels and let the unknown function U = U(x,±0,Z)
assume a constant value within these specified panel boundaries, see figure 3. Then equation
(13) can be replaced by a system of 2N algebraic equations which are nonlinear (i.e.,
quadratic) with respect to U = U (x,0,Z), i.e.

2N
eU = ° i = l,2 ..... 2N (23)

where the index i <. N shall identify a value on the upper surface of the wing (or panel).
Consequently, the lower surface values are associated with the range N< i< 2N.

Due to the lateral symmetry assumed for the wing planform and its position relative to
the oncoming flow (i .e . w = 0) only one half of the wing need to be considered in the
algebraic system (23) since the influence from two panels which are positioned symmetrical
with respect to the x-axis can be lumped together as e.. = e.. + e.. . (Note that U. = U.

•I i|, 'I2 .., '2

where the indices 1 and 2 refers to each half of the wing.)

The influence coefficients e..are integral representations of the influence function

E = E(|x - ?|,|Z - £|;r) as evaluated over a surface element AS, i .e . of the form

^yyE(|x-?|,|Z-C|;r)d?dC-e..

AS

for |x-?| ^ 0 and JZ - C,\^ 0. Due to the particular and perhaps unfortunate influence
pattern of positive and negative contributions from the integral terms of equation (13)
care must be exercised in the numerical evaluation of the coefficients e.., see figure 4.

12



This is further illustrated by the series representations

EX(P) = -4 _L I
2 "3 TF P -

X 3 x " 45 x Ixl-o

(24)

(25)

of the influence function E in chordwise and approximate spanwise directions respectively
where p = 2| Z - Cj/r and x = 2'|x - ?|/r. Since both equations (24) and (25) show
similar behavior at the singular points p= \ = 0, but of opposite sign, we let e..= 0.
Furthermore, we define the influence coefficients e.. as

£ • • - - — [ E + E + E + E 1 (?6)

Equation (26) is derived from a simple application of the mean value theorem of integral
calculus by relating the influence strength e.. at the centeroid of each panel to the

influence measure at four points l>~ 1,2,3,4 located on the four panel boundary lines
(see figure 5). A better approximation of e.. would be achieved, however, if a surface

(-0
spline function is utilized in connection with the four values E and the local value of E at
the centeroid, see e.g. reference 23. Note that for symmetrical flow problems it is sufficient
to consider only a system of N equations with the minor modification of doubling the value of
the influence coefficients e..(i, j = 1,2,...., N). However, the following analysis will be

presented for a system of 2N equations.

The function C. (i =1,2,.. . ,2N) appearing in equations (23) is a velocity correction
function associated with circulatory flows and is easily obtained from equation (20) as

C. =±
i 2 (27)

for continuous flow. For circulatory flows with a shock discontinuity, equation (21) approxi
mately defines the required correction as

N
= i - 2 2N

(28)

where &.. represents the Kronecker delta and where
•I

13



U. - U. - U..K. + U..KI i £ N
. _ i i i+N i+N

1 U. - U. - U. M + U. Kl i > N
i i i-N i-N

and
—2 —2ur - IT w ; < N

R -{ ' ' N
D. - o n

In the case of non-circulatory flows, equations (27) and (28) will yield the expected
corrections of C. = Q. System (23) is now completely determined and the task of finding

a vector U.(i = 1,2, . .. ,2N) which satisfies equations (23) for given e.. and U. will be

the subject of the following section.

Methods of Solution

Solutions to the nonlinear system (23) could be obtained by various iteration or
relaxation schemes and each method has its own merits and limitation. The decisive factor
in selecting a solution technique, however, is the type; of flow under consideration, see
figure 6. Since we are also interested in obtaining discontinuous solutions which shall
represent flows with compression shocks, we will distinguish between three different
types of flow problems, namely ,

b Subcritical flow

o Supercritical flow without discontinuities

o Supercritical flow with discontinuities

and describe some numerical approaches for their unique solution. In essence, each one of
the numerical methods to be introduced should yield the same solution to the quadratic
equations (23) for identical given flow configurations. This is especially correct in the
subcritical case where only the smallest roots of system (23) are sought (i.e., all U.-values

corresponds to subsonic velocities) and this single solution is necessarily unique.

However, a supercritical discontinuous solution vector U. (i .= 1,2, .. . ,2N) of
system (23) is signified by being a combination of roots which does not belong to the
same family, i.e. subcritical or supercritical where the critical value U.= 1 correspond to

the case of two equal roots. Hence, multivalued solutions are possible and some additional
condition must be introduced in the calculation scheme in order to render the obtained
solution unique. Such a condition is in our case a substitute for the entropy inequality

14



which forbids the occurrence of expansion shocks in real flows, and the present study has

adopted a version of the method of steepest descent to be a suitable calculation scheme
in which the "entropy" condition can be introduced. This is achieved by an approximate
predetermination of the location of the critical points (U. = 1) as indicated by the linearized

solution U. (i = 1,2, . . .,2N) and this again forces the calculation scheme to search for

one particular solution.

An intermediate class of transonic flow solutions are characterized by being both
continuous and supercritical in the sense that subsonic and supersonic velocities can
exist together within a certain control volume without being separated by a surface of
discontinuity. Both theoretical and experimental investigations made in the more recent .

years have confirmed this type of flow phenomena and the introduction of the method of
parametric differentiation in the present study can be viewed upon as an attempt to

calculate and to plausible explain such flows. This has been achieved by embedding the
solution to the system (23) in a Cauchy type problem in which a value of U. = 3/2 appears

as the upper critical value for a unique dependence of the initial data upon the sought
solution.

In summary, it should be emphasized that the economics of finding a numerical
solution of the stated system of equations (23) has been considered in the selection of a
suitable alogrithm. Thus,the fast converging method of Newton is found to be far the
best choice for a subcritical flow calculation despite the fact that the other two solution

techniques could be applied as well . These two methods, on the other hand, represent
choices for the calculation of the more intricate supercritical flow cases and the ambitious
user will find ample opportunities to make improvements of the listed computer program.

The Newton's method. - An application of Newton's method of successive approxi-

mation to the solution of system (23) wil l generate a sequence of vectors U. from,
the relation

uf f c t".ufk '-[FW(U.)]-1FW(U,) , = 1,2 2N (29)
i

where the integer in the bracket { } identifies the sequence number and where the

starting vector U. can be chosen to be identical to the known vector U.. This

' fkl '
method is particularly valuable for subcritical flow calculations, i .e . U. < 1

(i=l ,2, . . .,2N), for which the guarantee of uniqueness of a solution belongs to a
classical proof in fluid mechanics. (See e.g. reference 24 and its list of references).
As long as the functional determinant (or Jacobian) is nonvanishing and positive for
al I values U. < 1, the necessary inversion of the Jacobian matrix J(U.) = F. (U.) or

i

J(u1,u2/... /u2N) = o(F1,F2/... /F2N)/a(u ru2,...,u2N)

can be handled by numerous available computer subroutines.
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Method of parametric differentiation . - A continuous application or Newton's
method to the solution of system (23) for values of U. exceeding unity (i .e . for super-
critical flow), would imply some arbitrariness with regard to the uniqueness or the
usefulness (expansion shocks can occur) of the obtained solution. For our purpose in
controlling the development of an iterative unique and continuous solution to the system
for the case of U.> 1 we will adopt the method of parametric differentiation (see e.g.

reference 25) which has found wide applications in mathematical analysis, including
a treatment of the transonic flow problem in two dimensions (ref . 26).

Our mei'hod of solution will be based on the particular one-parameter operator
homotopy (embedding)

G.(n;U1,U2,...,U2N)=U. -U. + n[F.(U) -U. + U.] i = 1 ,2, . . .,2N . (30)

where |i is a real-valued parameter in the range Osp.£ 1 . From the implicit function
theorem as applied to equations (30) one obtains the differential properties

dU. , oG. •

=-J (wU 'U ..... " ;^'2 ..... 2N

where the Jacobian matrix of the system is

J(^U1'U2 ..... U2N)=a(Gl'G2 ..... G2N>/9(U1'U2 ..... U2N)

The first-order nonlinear ordinary differential equations (31) together with the
initial conditions

U = 0: U. =U. i = l,2,...,2N (32)

defines a Cauchy problem which at H = 1 yields our sought solution of the algebraic system
(23). There exists various powerful methods for the numerical solution of system (31), see
for example reference 27, and we will confine ourselves to the use of Hamming's modified
predictor-corrector method together with a fourth order Runge-Kutta method for the compu-
tation of the starting values. Since the right-hand side of equations (31) includes the
parameter p., the system (31) was solved at every appropriate stage of the integration
(0 ^ n s 1 ) by including a modified Gaussian elimination procedure.

A condition for a unique solution of system (31) in the range 0 s \i <. 1 is the non-
vanishing of the functional determinant (or Jacobian) of G. (ia; U,, . . ., U^K.) w'th

respect to U. for fixed |j . This determinant is positive under the condition that the
elements on the principal diagonal are positive, i.e. from equations (23), (27), and
(30) we obtain

-n(u. - j )>0 i = l,2,...,2N (33)
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oince me initial solution U. is necessarily continuous and wil l yield a-positive

Jacobian, one can conclude by virtue of inequality (33) that a unique and continuous
solution of system (31) can at least exist for U. < 3/2(i = 1,2, ...,2N).

However, it is more consistent with the present analysis to express this limit for
continuous flow directly in terms of a maximal local perturbation velocity

max
u - u 3(1 -/vT)

CO

2(* + ])M2

and then appjy, For example, the isentropic relation M = M(K,U/U , M ) for the evaluation
00 GO

of the corresponding Mach number. The dependence between this maximal local Mach
number and the Mach number at infinity is given in figure 7. It is seen that the predicted
limitation of shock-free transonic flow is in general accordance with the two-dimensional
results from Nieuwland's theory (ref . 28) and of Korn (ref . 29) depsite our underlying
assumption of small disturbances. Also depicted in the figure is the stability criterion of
Spee (ref. 30) which limits the value of the local Mach number to (5/2) for K~ 7/5.

The method of steepest descent. - Fora certain value of the parameter \± the
Jacobian matrix in system (3T) might become singular and the solution curve to the
Cauchy problem, equations (31) and (32), can split into two or more solutions . Such a

point p.= n* in the interval 0 < p. <. 1 for which det J(^j; U, , IL, . . . , tL.. ) = 0 can be

regarded as a bifurcation point and the associated solution lit = U.(n*)will be designated

the bifurcation solution. Since the next step in the integration of system (31) would
involve the crossing of a line of a singular Jacobian matrix, a continuous dependence of
the solution on the initial data is no longer possible. The condition that the bifurcation
solution U*satisfies equation (30) could be utilized in connection with the introduction of

a family of differentiation parameters in order to continue the solution curve past the
singular lines. This difficult problem, however, will not be further pursued in the present
report. Instead, we will apply the method of steepest descent to the solution of system (23)
which represents a set of quadratic equations with respect to U.(i = 1,2, ...^N^and the
roots of the system for the case of discontinuous flow are easily obtained as

U. , = 1 + sgn
'1,2

1 -2

2N
— ^
U. -C. - 2 > e.. U

1/2

(34)

where sgn - ±1 depends upon U.^: 1 . Hence, a bifurcation of the solution to equations (34)

subject to the initial data U. = U. occurs when the discriminants vanish and this is equivalent
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to considering the identity of the relations

2N

(35)

Furthermore, the inequality of (35) gives the condition for positive discriminants and hence
the condition for real-valued roots of the algebraic system.

Let a function i|i - f(f, ,f_, . .. ,frtK ,v be defined as

2N

(36)

where
M U U . . . . . U ) = 1 - U . + s g n2N

2N

1 -2

i i

u. -c. -
1 1

1/2

(37)

which is obtained from a rewriting of equations (34). In order to find the roots of system
(37) the method of steepest descent considers the variational problem of searching for the
zero value of i|f from equation (36). The calculation scheme in the method produces a

sequence of vectors [U. } from the relations

oU. i = 1,2,...,2N (38)

where the step length X along the gradient direction of the function i|r is determined at each
sequence number k as

2N

I au.

The sign convention in system (37) is either determined from the condition

Ik}
U. ' ^ 1: sgn = ± 1 or from some information which yields the approximate geometric

location of the sonic line and the foot of the shock discontinuity.
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The present method utilizes the linearized solution U. (i = 1 ,2, . . ,,2N) to

approximately define any supersonic region on the wing surface or in other words to
enforce the sign convention in equations (37). This is accomplished by mapping the
region for

(H+ 1)M2

~
1 - M2

*where cp is the critical pressure coefficient as obtained from the exact isentropic

relation and then shift the upstream boundary line one chordwise panel length downstream.
The resulting region is then our definition for the area of supersonic velocities and a
positive sgn-value in system (37) shall only be connected to points U. which lies within

this region. An improvement of this rather arbitrary technique of defining a sonic line
and a line of discontinuity has been attempted with a partial use of the associated
bifurcation solution, but required computation times have made such'an improvement
impractical .

RESULTS AND DISCUSSION

Two-Dimensional Flows

As first examples of continuous flow, subcritical pressure distributions past a
nonlifting and lifting NACA 0012 airfoil have been calculated using the Newton's method
and are shown in figures 8 and 9, respectively. Comparisons are made with "exact"
numerical solutions, see reference 31, which are obtained from an application of Sells
method to the full two-dimensional gasdynamic equation. Furthermore, it is found that
the present transonic small-perturbation solution as seen in figure 9 is very similar to the
solution given by Krupp (ref. 32) which also assumes small disturbances to the freestream
condition .

Figures 10 and 11 show results for supercritical flow past the same airfoil configurations
as given in the two preceding figures, but the present solutions are continuous in the sense
that supersonic velocities exist on a portion of the profiles without being terminated by a
shock. These results are obtained by the method of parametric differentiation and are
compared with solutions which have been calculated with the Jameson program, see e .g.
reference 33. It is seen that these latter solutions exhibits small compression shocks, at
least in the solution given in figure 11 . For freestream Mach numbers slightly higher than
those given in the figures, no continuous solution could be obtained. This occurrence is
interpreted as the Mach number limit for which shock discontinuities start forming on the
airfoi ls.

The result for discontinuous flow past an 8.4 percent (T = 0.084) thick symmetrical
parabolic arc airfoil at zero angle of attack is given in figure 12 and compared with the
numerical solutions of references 20 and 34. The solution associated with the latter
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reference is, for the given thickness parameter, related to a freestream Mach number
of M^ = 0.8496. The lifting case of a discontinuous solution is depicted in figure 13

for a NACA 0012 airfoil and comparison is made with the numerical results of reference
35.

Three-Dimensional Flows

To test the Woodward/Carmichael computer program which calculates the linearized
solution to the posed wing problem, a subsonic lifting case fora rectangular wing of
parabolic arc cross-section has been evaluated and plotted in figure 14. The chordwise_
pressure distribution at various spanwise stations (identified by the spanwise coordinate C
which is normalized to the semispan) are in good agreement with the results of figure"10
from reference 7'. The familiar singular behavior of the solution at the leading edge
region, however, is apparent. This is also brought out in frgure 15 which compares the
calculated incompressible flow solution at mid-span for a high aspect ratio wing with a
blunt leading edge with the exact two-dimensional data (reference 36). A further test of
the accuracy of the linearized solution is depicted in figure 16 which compares the
numerically obtained results for a symmetrical wing with the analytical solution of
Holme (ref. 13). It is somewhat surprising to see that the numerical solution yields
higher perturbation velocities than the analytical. The reason for this might be in the
low number of panels (i .e ., 100) used to represent the semi-wing planform in the
numerical calculation scheme .

Figures 17 and 18 compares the present subcritical results, as obtained from an
application of Newton's method, for a high aspect ratio non-lifting and lifting wing
respectively witfvthe "exact" two-dimensional values given in reference 31 . For this
aspect ratio of 7 the flow at the midspan of the wing should be nearly planar and figure 18
also partly validates the downwash correction potential (see equation 19) employed for
this case . The sensitivity, however, of the number of chordwise and spanwise panels used
in the calculation scheme is brought out in both figures. Similar results for the same
non-lifting wing, but of smaller aspect ratio, is given in figure 19.

For an arbitrary wing configuration the planform of a trapezoidal half-wing is
defined by its four corner points and the profile geometry is input in a table-form. This
is illustrated by the swept wing configuration of figures 20 and 21 . The cross-section of
this wing is a RAE 101 airfoil and the profile surface coordinate, slope, and curvature at
various chordwise stations are tabulated in subroutine SECTIN as ZTAB1, ZPTAB1,
CUTAB1, and XTAB respectively. Calculated supercritical results were obtained by the
method of parametric differentiation and compared with the experimental data of reference
35. Both types of data indicates that the flow solutions are continuous.

Discontinuous flows are obtained with an adoption of the method of steepest descent
and sample flow calculations are given in figures 22 through 25. The first two figures
show results for a non-lifting parabolic arc wing at two different spanwise stations.
Comparisons with the numerical solutions of reference 7 are not very encouraging and this
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is even more true for the lifting case as shown in figure 24. However, if the dis-
continuous supersonic region is confined to only a small part of the wing (e.g. in the
root section area) a better agreement of the results are found (figure 25).

CONCLUDING REMARKS

The'compressibility effects on the flow past lifting and nonlifting wings at high

subsonic Mach numbers have been studied with an application of the transonic integral
equation method. This semi-analytical calculation method preassumes a solution for
the equation describing linearized flow around the same wing configuration, i .e . assumes
the availability of the PrandtUGIauert solution, and this problem is solved by means of

known analytical or numerical solutions. The aim of the study was to incorporate the
nonlinear compressibility effects in a pressure calculation scheme which also should include
the case of a shock compression surface in the flow field.

The present calculation method involves a summation of some compressibility effects
which are distributed over the wing planform area and which are a function of local
velocity and profile curvature. Since these nonlinear effects can attain different sign
convention an approximate numerical integration over the domain of influence depends

largely on the grid size employed. An alternative integration technique (approximate
two-directional) which involves one sign convention for the influence measure only,
has therefore been developed and applied to all calculation cases shown in this report
(see figure 3).

The practical desirable case of shock-free supercritical flow was studied by an

incorporation of the method of parametric differentiation in the numerical evaluation of the
governing algebraic system. Obtained results show that local supersonic velocities can
indeed exist in the flow field without a discontinuous re compress ion in the form of a
shock surface. It is felt that these findings constitute an important contribution to the
subject involved.

For the calculation of supercritical flows with shock discontinuities, however, the
present methods seems less effective. The reason for this lies in the fact that points on
the sonic line represent extreme values for the stream-density quantity and an accurate

influence definition in the neighborhood of these points is re.quired. Also, a different
iteration scheme for the evaluation of the nonlinear equations could greatly improve the
usefulness of the presented analysis technique. ; :
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APPENDIX A - BASIC EQUATIONS FROM TWO-DIMENSIONAL ANALYSIS

For wings of infinite aspect ratio the analysis becomes two-dimensional and available
results for this case can be utilized in the calculation of flows about finite wings (see
reference 5). The appropriate integral equation (as compared to equation (10) on page 7)
will then read

2 2 1/2
where R2 = [(x - §) + (Y - r\) ] . A similar assumption for the decay of the perturbation
velocities in the Y-direction as made in the foregoing three-dimensional analysis will reduce
equation (Al) to an equation involving the unknown quantity U = U(x,±Y) of the form

U(x,0) -lu2(x,0) = U(x /0)+cp'(x,0) + ̂ - f U2(§,±0)E (|x.-gl^dg (A2)
^ X ^ TT »/ £.

— oo

where the two-dimensional influence function E_ - E«(]x -§l;r) is given as

4_
TT -cos(x)Ci(x) (A3)

Here Si and Ci are the sine and cosine integrals respectively.

An analogous numerical integration of equation (A2) would involve the determination
of influence coefficients e.. and this leads to a definition of

'I
Ax/2
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which yields after a substitution of equation (A3) in the integrand of equation (A2) the
following value

The values of the coefficients GJ: (where j / i), however, is determined direct from the
influence function £2 as eij = AxE2(|x - 5|;r)/(4r). These influence coefficients are used
in the approximate integration of the nonlinear influence measure over the wing, see e.g.
figure 3.
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APPENDIX B - LISTING OF COMPUTER PROGRAM

A computer program has been written in the FORTRAN IV language to implement the
numerical calculation schemes described in the foregoing sections. The program consists of
a main calling program designated MAIN and 17 external subroutine or function subprograms,
Subprograms which are part of the particular Carmichael computer program received from the
NASA Langley Research Center are designated by an asterisk (*). A flow chart showing the
calling sequence of the program subroutines are given in figure 26.

Nome

MAIN

CYL

SICI

ACSH

GAUSS

HPCG

FCT

OUTP

CARM*

WNGEOM*

FILL*

Description

Main program

A subroutine subprogram which evaluates the cylindrical functions N
(Neumann function or Bessel function of the second kind) and H
(Struve function) both of integer order v.

A subroutine which evaluates the sine and cosine integrals (Si and Ci)

A function subprogram to evaluate the transcendental function y = arcsinh x
(arcus sine hyperbolicus).

A subroutine which solves a system of linear algebraic equations by a
modified Gaussian elimination method.

A subroutine to solve a system of first-order ordinary differential equations

A subroutine which defines the differential system (31)

A subroutine used for control of output from HPCG

A subroutine used as the calling program for the evaluation of the arbitrary
harmonic or linearized solution (i.e. a modified Carmichael program).

A subroutine to evaluate the geometric characteristic of the wing.

A subroutine for function interpolation in connection with WNGEOM.
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SECTIN* A subroutine used to input the profile geometry. Note: The four data
tables XTAB, ZTAB1, ZPTAB1, and CUTABl given in this subroutine are
for a RAE 101 airfoil and they represent 19 chordwise values for the profile
chordwise station together with the associated measure for the thickness,
slope and curvature with reference to a profile thickness ratio of one. For
arbitrary profile geometry appropriate input data tables must be supplied by .
the user. If the number of chordwise input stations are different from 19,
a dimension statement and three sequential calling statement for subroutine
TAINT must also be changed accordingly.

TAINT* A subroutine used in connection with SECTIN to interpolate geometric data.

EVAL* A subroutine to evaluate the aerodynamic influence coefficients in connection
with the harmonic solution.

COMP* A subroutine used for the calculation of the linearized perturbation velocities
(TCOMP) due to thickness. This subroutine has an alternative entry point identified by

the name TCOMP.

INVERT* A subroutine for the matrix inversion of the influence matrix evaluated in
EVAL.

FORCE* A subroutine used for the calculation of the complete linearized solution in
terms of perturbation velocities.

VECON A subroutine which converts local perturbation velocities to local Mach
numbers, pressure coefficient and pressure ratio.
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Listing of main calling program and associated external subroutines.

c MAIN PROGRAM :

c
C THIS PROGRAM CALCULATES THE TRANSONIC PRESSURE DISTRIBUTION
C ON ARBITRARY LIFTING WINGS AT SUBSONIC SPEEDS
c BASED ON A (NONLINEAR) INTEGRAL EQUATION METHOD.c . • • . , . . . • -
c THE PROGRAM WAS LARGELY DEVELOPED UNDER CONTRACT NAsi-iooes
c SPONSORED BY THL LOADS DIVISION 'OF THE NASA LANGLEY ,
c RESEARCH CENTER. BUT INCORPORATES THE WOODWARD/CARMICHAEL
c COMPUTER PROGRAM FOR THE CALCULATION OF THE LINEARIZED^ SOLUTION.
c . • • • • • . .
C THE PROGRAM IS DIMENSIONED FOR A TOTAL OF 100 PANELS ' .
C TO REPRESENT THE WING PLANFORM AND THIS LIMITS THE NUMBER.
C OF PANELS WHICH CAN BE USED FOR THE LIFTING CASE TO 50.
C A SYMMETRICAL NCNLIFTING wlNG. HOWEVER. CAN BE REPRESENTED
C BY A MAXIMUM OF 100 PANELS. THE STORAGE REQUIREMENT
C IS APPROXIMATELY 145 COU IN OCTAL.
c • ' : . . .

DIMENSION .
1 . lUX'dOOi IDZdUO), U(lOO)» U'OL(IOO) »'.FINT(100)'» ' '
2 DFU(100)r PRMT(5)» £P(4), DELTX (50 ) • AUX ( 16, 100) »
3 XSU(5U)» XSL(50). XXU(50)r XXL(50) '

COMMON /DY/ O E R Y ( I O O ) , Y I I O O ) »ui.(ioo) »DP
COMMON /HOL/ EPSdoooij» Ado ioo)
COMMON /PRHDTL/ upo(ioo) >ILIFT,NRUN,SYMF ;
CcMMOix /VEL/ MACH, MACnSU • BETASG . BETA r AAM1 r AAM2 » AAM3
COMMON /PARAMO/ NwlNG,PAr-JELS»SREF,«EFMOMiCBAR»SPAN»OC

PMb/ ROOTU) »TIP(4) »M»N»TYPEfF(lpl) »G
. ISECT.THIcK(b)

COMMON /CDKV/ C u R d o o j
K£AL MACHfMACHSQfDETASQrBETA
NAMELIST /FLOft/ MACH,OELM»NDELM
NAMELIST /.VING/ i w ING, IUFLU. METHOD » ROOT* TIP. THICK »ISECT»LX»LZ»

1 SPA.-f T A O . . : - , . . .
NAMELIST /SHOCK/. xsu? ASL».XXO»XXLc ' . '' . . • ' • ' ' . . " '

c CONSTANTS AND THE INPUT
c .

IT = 1
ACC=0.001 . . . . . . .
Pl=3. lHl5 • • •
P IO=2.0*PI
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PjH=l. 5707963
Pl22=U. 3163099
Pj2P=G.5/PI
Pl2=U.63obl977
Pl3=3.0*PI

OC=2

10 READ15
IF (IVnING.cQ.9) GO TO 9999
READ (S^FLO*)
ILIFF=0
IF (IwING.GT.O) GO TO 100
SpAN=2.0*TIP(3)
SEMI=SPAN/2.0
ROT=KOOT(2)-ROOTtl)+TlP(2)-TIP(D
SR£F=TIP(3)*ROT
HEFMOM=0.2b*(ROOT(2)-ROOT(l) )
CBAR=ROT/2.0 "•> ^
TAU=THICKU)
AR=SPAM*SPAN/SRtF
Go TU 110

100 TAUP=TAU/PI
SrbPwN/2.0
SEMI=S
TAI.'S=TAU*SEMI

no MAC,HSQ=MACH*MACH

aETA=SuRT(A8S(B£;TASQ))
AAMl = 10.0/(7.0*;-iACHSQ)
AAM2=0.2*MACHSQ
AAM3=0.7*MACHSQ
AM=MACH

LL=LXZ+LXZ
LL2=LL*LL

OEUTZ=SEMI/FLOAT(LZ)

C -
C THE FKOGRAM H£AuER
C

200 rtRlTt (e»£lQ)
210 FORMAT uHi f27Xf3&H VELOCITY AMD PRESSURE DISTRIBUTION »

1 nQHU* AN ARdITr<ARY »viN6 AT SUBSONIC SPEEDS /42X>
2 46H 6ASLD ON A TRAUSCNIC INTEGRAL EQUATION METHOD ////)

c
C THE P.<ANDTL-GLAUERT SOLUTION
C

215 AK*:
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60 TO U60f217m20)» IWl
217 AR=2.0*SLMI

DLTX=1.0/FLOAT(LX)
DO 2.JO NZ=1»LZ
DELTX(UZ)=JLTX
Dx2=ULTX/2.0
00 220 NX=1»LX

ZW(K)=-DL22+FLOAT(NZ)*DELTZ
X* < K> =-OA2+FLOA f ( NX ) *oLTX

220 CONTINUE
230 CONTINUE

DO

SMZ=(S-Zh(NN) )*d£TA
SpZ=(S+Zv»i(NN) )*tiETA
00 300 NX=1»LX

X=2.U*X«V(NX)-1.U
XRl=i.O+X
XMl=1.0-X
Bl=ACSH(XPl/SPZ)
B2=ACSH(XM1/SPZ)
B3=ACSH(XP1/SMZ)

B&=ACSH(SMZ/XM1)
B7-ACSH(SPZ/XP1)

DuM=SPZ*(Bi-ft32)-«-SMZ*(B3-«-8i*)-X*(B5+B6-B7-B8)
UpG(K)=TAUP*DUM/BETA
CuR(K)=-t*.0*TAU
IDX(K)=NX
IDZ(K)=NZ

300 CONTINUE
GO TO

DO 3JU NZ=1»LZ
DLTX= ( S-FLOAT ( NZ-1 ) *DELTZ-DLZ2 ) /S

( i\IZ ) rOLTX/FLOAT ( LX )

Do 320 NX=1»LX
K=(NZ-D*LX+NX
Zlf< ( K ) =-DLZ2+FLO*T ( NZ ) *DELTZ
X* ( K ) =1 . 0-ULTX+FLOAT ( UX ) *OE|_TX ( NZ ) -DLX2320 CONTINUE

330 CO'^TI^UE
S=S*B£TA
SS=S*S

Sl=(1.0*2.0*SS)/(S*SO)
S2=2.0/S
S3=2.0*S/SO

S5=l»0/5
XOF=ti .O-OLX2)/S
DO «*bO NZ = 1»LZ
NN=(N2-l)*Lx+l
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Z=ZWINM)*BETA
ZZ=Z*Z
SP2=S+Z
SMZ=S-Z
Zl=S.'iZ*SMZ

As=2.0*Z
DO 160 MX=1»LX
K=(NZ-D*LX-MX
X=Xrt(K)
XX=X*X
Xl=U.O-X)**2

Al=(b*X-Z)/SO

A5=SMZ-XS2
SxZM=S*X-Z
SxZP=S*X+Z
Vl=(1.0-X*S*5ivIZ)/SXZM
V2=(X*S*Z)/SXZM
V3=(1.0-X+S*SPZ)/SXZP

XlO=1.0-X
VS=SMZ/XIO
V6=SPZ/X10
V?=Z/X10

67=ACSH(V2)
b9=ACSH(V3)

SH5=ACSH(V5)
SH6=AC5H(Vb)
SH7=ACSH(V7)

B3=S2*S3RT(X1+ZZ)
B(+=Si*XZ
85=54* (A1-A2)

Bll=A2*SH5 - • '
Bl2=Ab*SH6
Bl3=«b*SH7 '

DuM=bl*Bi:-L}3-Btf»-35* ( B6+B7 ) +B8* (B9+B10 ) +S5* ( B1H-B12+B13 )
UPG ( K ) =TAUP*OUM/BETA
CuR(K)=-"t.O*TAU

IOZ(K)=NZ
CONTINUE
GO TO 180

460 CALL CARM
00

OEl -TX(NZ)=Xw(NrJ l ) -X iV( | .N)
DO «*70 NX=1»LX

10X(^)=f^ lX
IDZ(K)=NZ
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470 CONTINUE
480 CONTINUE

NS=LL
IF ULIFT.EQ.O) NS=LXZ
NS2=NS*Nb
IF (ILIFT.EQ.O) GO TO 500
00 490 I=1»LXZ
U = I + LXZ
Xft'(II)=Xw(I)
ZlN(II)=Zb(I)
CUR(II)=CUR(I)
IDX(H)=IDX(I)
IOZ{II)=IDZ(I)
IF (UING.EQ.O) GO TO 490
UPG(II)=UPG(I)

490 CONTINUE
c
C THE REDUCED VARIABLES
C

500 N1T=Q
AM7=U.7*AM2
AM22=0.2*AM2
AMF=10.0/(7.0*A!-12)
XM=AM*S3RT ( 1 . 0/ { 1 . 0-i-O .16666666* < AM2-1 . 0 ) ) )
CPST=2.0/(1.4*AM2)*( ( (2.0 + 0.4*AM2)/2.»f) **3. 5-1.0 )

FAT=oET2

RO=FAK/FAT
RV=RU/RY
UCR=-RU*CPST/2.i)
AMT=( 2. 4*AM2)**U.33333333/TAU**0. 66666666
EMR= ( AM2-1 • 0 ) / ( d . 4*TAu*AM2 ) **0 . 66666666
HMT=FAK**0. 3333 J333/TAU**0. 66666666
HMT=HMT/AMT
DO 8UU I=l»N5

U(I)=UL(I)
UOL(1)=U(I)

800 CONTINUE
c
C THE INFLUENCE MATRIX
C

IF (INFLU.EQ.O) GO TO 5800
IF (INFLU.EQ.2) GO TO 2305
DO 2300 1=1 • MS
DIZI=DELTi:*FLOA-| ( IDZ ( I ) )-DLZ2
DO 2290 J=lnJS
DIZJ=OELTZ*FLOA( (IDZ(J))-DLZ2

IREF=IOZ(J)
/CUR( J)

Ij=IAUS(l-J)
IF tU.EU.O.OR.U.EQ.LXZ) GO TO 2090
GO TO 2100

2090 SsASbfDELTXdkEH/ER)
CALL S ICKS»SINT»CINT)
EPS1=PI2P*(PIH*(1.0-CCS(S))+COS(S)*SINT-SIN{S)*CINT)
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60 TO 2250
2100 CONTINUE

IF (IDZ(I).Ea.lOZ(J)) GO TO 2110
60 TO' 2200

2110 UlN=«BS(FLOAT(IUX(I)-iOX(J) ) )

S=Abb(2.G*DISX)
CALL SICKS, SINT,CIHT)
EPS1=PI2P*(SIN(S)*(PIH-SINT)-COS(S)*CINT)
EPS(K)=QELTX(IR£F)*EPS1/ER
GO TO 229U

2200 CONTINUE
IF (IDX(I).Ea.lOX(J)) GO TO 2205

2205
2210

GO TO
N£P=1

2260

IF (UEP.E3.2) D1N=DIZI+DIZJ
DISZ=BETA*DIN/EK
OlX=ABS(Xl«(I)-Xrt(J»
OISX=DIX/ER
UX2=OISX*DISX

DS=2.0*AOS(DISR)
DS2=DS*DS
CALL CYL(DS,FHO»FHl,FrJl»FN2)
Gl=Pi/DS
G2=PA2-FHl+Fia

EpF=dETA*UELTZ*OELTX(IRtF)*EFUNC/(Pm*ER2)
IF (NEP.EQ.2) GO TO 2260
EPS1=£PF

2250 N£P=2
60 TO 2210

2260 EpS2=EPF

2280
2290
2300

2305

GO TO 2290
EpS(K)=0.0
CONTINUE
CONTINUE
60 TO 2600

1=1, NS
DIZI=DELTZ*(FLOAT(IQZ(I))-DLZ2)
DO 2̂ 00 J=1,|-JS
DIZJ=UELTZ*(FLOAT(IDZ( J) )-DLZ2)
K=(J-1)*NS+I
U=IAaS(I-J)
lREF=IOZU)
DlX=AjS(Xrt(U-X.,(J) )
LK=Ao5(UPG(J)*Ry/CUR)

DO
EpSl=0.0
IF (U.Eu.O.OK.IJ.EO.LXZ) GO TO 230&
Go TO 23bO

2308 HEP=1
2310 AD^=O.O

IF (Ju.Eij.l) ADLJ=-UELTX(IREF)/2.0
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IF (JJ.Eli.3) ADD=DELTX(IREF)/2.0
UiSX=(DIX'+ADD>/c:R
DX2=OISX*DISX
QlZ=AbS(L/IZI-DIZJ)
IF (UEP.EQ.2) DiZ=UIZl+QlZ>J
ADD=U.O
IF (JJ.E0.2) ADQ=DLZ2
IF (JJ.£u.»*) AUU=-DLZ2
DlSZ=3ETA*(DIZ+ADD)/En
OISR=SQRT(DX2+DISZ*DI5Z) •
DS=2.U*ABS(DISR)

C
C
C
3000
3020

CALL CYL(DS,FHO,FH1»F|V1.FN2)
Gl=Pi/US
62=PI2-FH1+FN1 '
G3=FHu-(FHH-FNl)/OS+Fr;2 - -
EFUNC=GI* t ( n. 0*0x2/05^-1 .0 > *s2+<*. 0*0x2*63/05)
IF (NEP.EQ.2) GO TO 2360
EPS1=EFUNC

2350

2360
2390

2100
2500
2600

GO TO 2310
EpS2=EFUNC

EPF=BLTA*DE1LTZ*UELTX(IREF)/(PI4*ER2)
EpS ( K ) =EPF * ( EP ( i ) +EP ( 2 ) +EP ( 3 ) +EP «t ) ) /<t . 0
CONTINUE -
Co'JTi.'JUE
SYMF=I.O
IF (ILIFT.EQ.O) SYMF=2.0
GO TO (3000f500U»5lOO) » METHOD

THE NEriTON-RAPHbON METHOD

CONTINUE
DO 3200 1=1 »NS

SUM=CJ.O
DO 3120 J=ltNS
K=(J-1)*NS+I
U=IAbS(I-J)
IF (U.EQ.O) GO To 3120
SUM=SUM+SYMF*EPS(K)*U(J)*U(J)'
CONTINUE
SUM=SUM+SYMF*EPS (KKK > *UL ( i ) *UL

3120

IF (ILIFT.EQ.O) GO TO 3150
Il = H-LXZ
IF (I.GT.LX2) Ilrl-LXZ
AOU=U.5*(U(I)-UL(I)-U(II)+UL(II) )

3150 F I NT U ) =U ( I ) -0 . D*U 1 1 ) *U ( I } -OH I ) +SU'M*ADO

A(KK)=FINT(I)
3200 CQNTiiSUE

UO 3*i50 IsifNS
UQ 3tkb J=1»NS

IJ=IAbS(I-J)
IF (IJ.EU.O) GO TO 3230



IF (IJ.EG.LXZ) ADD=-0.5
A(K)=2.0*SYMF*U(J)*EPs(K)>ADD
GO TO 32UO

3230 ADD=0.5
IF (1LIFT.EQ.O) ADD=0.0
A(K)=1.0-U(J)+AOD

3240 CQNTiNUE
3250 CONTINUE

CALL GAUssUfNS»iT)
DO 3-iio 1=1 r us

3310

3320

3330

c
c
c

U(I)=U(I)-A(KK)
CONTINUE
NIT=NIT+I
DO 3320 1=1 » MS
UT EST= ABS ( u M ) -UOL ( i ) )
IF (UTEST.GT.ACC) GO TO 3330
CONTINUE
GO TO 5800
CONTINUE
IF (NIT.GE.15) GO TO 5800
DO 33HO I=1»NS
UOLU)=U(I)

331*0 CONTINUE
GO TO 3020

THE METHOD OF PARAMETRIC DIFFERENTIATION

5000 PRMf(l)=0.0
PRMT(2>=1.0
PRMT(3)=0.2
PRMTU)=O.I
NpD=0
DO 5010 I=1»NS
Y(I)=UL(I)

5010 D£«Y(I)=1.0/FLOAT(NS)
CALL HPCG(PRMTHMS»IHLF»AUX)
DO 5U20 I=1»NS
UOL(I)=Y(I)

GO TO 5800

THE METHOD OF STEEPEST DESCENT

NZ=1»LZDO
IFG1=0
IFG2=0
DC

5020

C
C'
C
5100

KK=K+LXZ
IF (IFG1.EQ.D GO TO 5030
IF (U(K).GT.UCR) IFG1=1
XSU(NZ)=XW(K)+DELTX(HZ)/2.0

5030 CONTINUE
IF ULIFT.EQ.O) GO TO 5010
IF (IFG2.E.O.D GO TO bO«*0
IF (U(KK).GT.UCR) IFGi;=l
XSL (NZ) =X*' (KK) +DELTX (iaZ) /2 . 0

so<*o CONTINUE
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5050 CONTINUE
DO 4d50.NZ=l»LZ
lFGl=0
IFG2=0
00 4640 NX=lrLx
NNA=LX-NX+1

KK=K+LXZ
IF (IFGl.EQ.D bO TO i*830
IF (U(K).GT.UCR) IFGlrl
XXU(NZ)=Xw(K)+0.5*DELTX(NZ>

4830 CONTINUE
IF (ILIFT.EQ.O) GO TO 4d4Q
IF UFG2.EG.D JO TO u840
IF (U(KK).GT.UCR) IFG2=1
XxL(NZ)=Xd(KK)+0.5*OELTX(NZ)

4840 CONTINUE
4850 CONTINUE

WRITE (6»ShOCK)
C

NH=NS/2

IMAX=NS
NIT=O. .

4000 AC=0.0
IF (ILIFT.EQ.O) GO TO 4020

SUM2CO.O
DO 4010 I=1»NH
II=I+NH
SUM1=SUM1+U ( I ) -UU ( I ) -u ( 1 1) HJL ( II )
SUM2=5UM2+UL ( I ) *UL .( I ) -UL ( 1 1 ) *UL ( 1 1 >

4010 CONTINUE
AC=0.5*SUM1/SUM2 .

4020 CONTINUE
00 4173 1=LMIN»UMAX

KK=(I-1)*NS-H
00 4lbl J=IMIN»IMAX

IF (U.td.I) GO TO 4L5l

4151 CONTINUE
SuMl=SUMl-fSYNiF*t.PS(KK>*UL{I)*UL(I)
cc=o.o
IF ULIFT.EQ.O) GO TO 4152

IF (I.GT.MH) 1I=I-NH
CC=Uw{I)*UL(I»-UL(II)*UHH)

4152

ZGN=i.O

IF U.GT.UXZ) GO TO 4l5S
IF (Xrtf(l).GT.XSU(If<EF).MNO.XVMI).LT.XXU(IREF)>
GO TO 4loO
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4155 CONTINUE
IF UW(I).GT.XSL<IREF).ANO.XW<I).LT.XXL(IREFn
Suf'''=2.U*(U(I)-1.0-»-ZGN*TER)
SUMM=O.O
DO 4172 J=LMIIvULMAX
IF (J.EQ.I) GO TO 4172

Sul->2=0.0
DO 41bb

IF (MJ.EU.J) 60 TO 41b5
SuM2=SUM2+SYi'lK*£PS(K)*U(MJ)*U(MJ)

4165 CONTINUE .
SuM£=SUM2+SYMF*t:PS ( KK ) *UL( J } *UL ( J )
cc=o.o
IF (ILIFT.EQ.O) GO TO 4166
Jj=J+NH
IF (u.GT.NH) JJ=J-NH
CC=UL(J)*UL(J)-uL(JJ)*UL(JJ)

4166 TE.K=1.0+2.0*(SUM2-UL(j)-»-CC*AC)
T£R=SQrtT(ABS(TEH))

JREF=IDZCJ)
IF (J.ST.LXZ) GO TO 4170
IF (X>( J) .GT.XSU(JREF) ,AND.XW(J).LT.XXU(JREF) ) ZKN=-1.0
Go TO 4171

4170 CONTINUE '
IF iX,-J(J) ,GT,XSL(JREF) . AND.XW ( J) .LT.XXL( JREF) ) ZKN=-1.0

4171 SU4=<2.0*(U(J)-1.0+2KN*TER)

SU6=4.0*U(I)*SYMF*EPS(KKK)

4172 CONTINUE
4173

DO 4169 I=LMIN»LMAX
KK=(!-D*NS+I
St>il=0.0
DO 4176 J=lMINfIMAX
K=(J-l)*NS-«-I
IF (J.cQ.I) GO TO 4178
SuMl-SUMH-SYMFr*cPS(K)*U(J)*U(J)

4178 CONTINUE - . - . . .
SUM1=SUM1+SYMF*£PS(KK)*UL(I)*UL(I)
C C = 0 . 0 . ' . :

IF (ILIFT.EQ.O) GO TO 4179
II=I+NH •
IF U.GT.HH) II = I-NH
CC=UL ( I ) *UL ( I ) -UL( I I ) *UL ( I I )

4179

Z6N=1.0
IREF=IDZ(I)
IF (I.bT.LXZ) GO TO 4160
IF (XV(I) .GT.XSU(IREF) .
Go TO.

4ieo CONTINUE

.LT.XXUf IREF) ) ZGN=-1.0
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IF (Xv/(I).GT.XSL(IREF).AND.XWm.LT.XXLCIREF))
T£F<l=U(I)-L.O*ZoN*TER

ZGN=-1.0

1189

FpF=SUM2
SuM=O.G
DO llyu I=LMIN»LMAX

4190 SUM=bUV!+DFd{I)*uFU(I)
EI_L=FFF/SUM
DO 1200 1=LMIN»LMAX
U(I)=U(I)-ELL*L)FU(I)

1200 CONTINUE
NlT=NIT-H
DO 1700 I=1»NS
UTEST=ABb(U(I)-UOL(I) )
IF (JTEST.GT.ACC) 60 TO 1710

4700 CONTINUE
GO TO 5HUO

IF (UIT.GE.25) GO TO 5800
DO 1720 I=1»NS

4720 UoL(l)=U(I)
Go TO 1000

WRITE OUT THE SOLUTION FOR THE WING
C
C
C
5800

IF (IMRUN.GT.O) GO TO 6010
Go Tu (5810f5B90»5910)» Itall

5810 V»RlTL (6»5f l20)
5820 FORMAT (lHO»3XfllH PLANFORM- )

5890
5900

5830 FORMAT <IH »3X»iOH PROFILE- )
GO TO 5950
WRlTt (6»5900>
FoRMMT (lHO»oX»iiOH PLANFORM- RECTANGLE )
GO TO 5950
WRITE (6»5920>
FORMAT (1HOOX»19H PLANFORM- TRIANGLE )
WklTt (6»5910)
FoHMMT (1H OX.23H PROFILE- PARABOLIC ARC )

5910
5920
5930
5910
5950
5960

TAy.SENl»ARWRITE <A»b96U)
FORMAT (in »jXr
1 16H THICKNESS KATlO = F12.5 / 1X»
2 1?H SEMISPAI^/CHORD = F13.5 / 4X»
3 15H ASPECT RATIO = FiS.b)

6010 »RlTt (6 »6020) AM» BETA. XM » CPST» EMR
6020 FoHMAT (lHO,53Xf26H ThE SOLUTION FOR THE WlNG // 4X»

1
2
3
•4
5
6

6025
6030

lt>H MACH NUi-lhJ£i< =
6H BETA = F22.!i / **X,
g2H MACH NUMdEK (STAR) = Fti.5
13H CP (STAR) = F17.S, / uX.
6H XI = F24.5 // U1X,
b"2H VELOCITY AUO PRESSURE DISTRIBUTION ON UPPER SURFACE /)

fcRlTc (6»6U30)
FQHMAT (IHO»IX>
1 2H I»5X»8H X/CriORD»7x»2H UrllX»UH U+lt7X»7H U(RED) »9X»2HCP»8X»
2 8H CP(REO) i6Xr5H P/P(,rlOX»2H M»8X'8H M(STAR) /)
DO 6200 J=1»LZ
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NN={J-1)*LX+1
ZS=Zw(NN)/SEMl
NRlTE (6*6040) ZM(NN),ZS

6040 FORMAT '(1HO,3X.4:9H SPANwISE STATION, Z/CHORD = F8.5»2X»
1 15H (Z/SEMISPAU = F6.5»1H) /)
DO 6200 I=1*LX
K=(J-1)*LX*I

IF (NKK.EG.2) K=KUK
Uw=UrtR/RU
WW=UPG(K)

RTT=UW+I.O
CALL VECON ( u« * CP . RTM » KMS » PPP )
CALL vECON(w^»wpfWTM,hMS»wPp)
CpR=AMT*CP
WPR=A?>1T*wP
XLCHL= ( FLOAT ( I ) -0 . 5 ) /FLOAT ( LX )
WRITE (b»6050) i»XLCHL»UW,RTT»UWRfCp,CPR.PPP»RTM,RMS

6050 FORMAT (5X»I2»1X»9(1X»E12.5) )
^RlTt (6»6U60> t v W » W T T , k v h R r W

6060 FORMAT (2ix,aux»Ei2.5»
6200 CONTINUE

IF (hllnR.GE.3) GO TO 8000
IF (ILIFT.EQ.O) GO TO 8000
WRITE (6»6300)

6300 FORMAT (// 39X*
1 b3H VELOCITY AND PRESSURE DISTRIBUTION ON LOWER SURFACE /)
GO TO 6025

C
8000 A'RlTc. (6*8030)
8030 FoRM«T (1HO*48X»

1 36H THE LINEARIZED SOLUTION IS BASED ON )
IF (IxilNG.GT.O) GO TO 8050
WRITE (6*B04Q)

8040 FORMAT (1H *5UX»32H CARMICHAEL'S NUMERICAL ANALYSIS /)
Go TO 8070

8050 WRlTt (6*8060)
80&0 FORMAT (IH ,52x.2aH HOLME«s ANALYTICAL ANALYSIS /)
8070 CONTINUE

WRITE; (6*9000)
9000 FORMAT (iHO»4ox»

1 4lH THE NONLINEAR SOLUTION WAS OBTAINED WITH)
Go TO (9010,9030*9050)* METHOD

9010 KRlTL (6*9020)
9020 FoHN.nT (Ih ,56X,2oH TnE NE«TON«S METHOD)

GO TO 9070
9030 \»RlTt- (6*9040) uP
9040 FORMAT <IH mbx,4iH Tn£ METHOD OF PARAMETRIC DIFFERENTIATION /

1 55X»19H AT THE VALUE DP = F6.4)
Go T^ 9085

9050 ioRlTc. (6 *9060 )
9060 FOKMAT (in ,47x.3iH THE METHOD OF STEEPEST DESCENT)
9070 UK lie. (6*9080) NlT
9080 FcfWAl (IH *b6X* 7H AFTER I2*11H ITERATIONS )
9085 CONTINUE
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c
NRUN=NRUN+I
IF (.4RUN.GT.MQELM) GO TO 9090
AM=AM+D£LM
GO TO 215

9090 IwlN5=9
Go TO 10

9999 CONTINUE
STOP
END

38

SUBROUTINE SICKS, SINT»CINTJ

SS=S2
Si*=S2*S2
S6=SH*S2
Se=S6*S2
IF (S.GT.1.0) GO TO 20
S3=SS*S
Ss=S3*SS
S?=S5*SS
Sg=S7*S5

S5=S5/600.0

S9=S9/32b5920.0
= S-S3*S5-s,7*S9

St*=S'+/96.0

58=56/322560.0
ClNT = 0.57721566*ALOG(S)-S2^SU-S6+Sa
GO TO 30

20 Fi=S6 + 3a.0272o'4*S6-»-a6b. 1^7033*51+335. 67732*S2-»-38. 102195
F2=S6-K*0. 021433*56+33;; .624911*54+570. 23628*52 + 157. 105423
Fo=Fi/(S*F2)

2<42b55+56+30a. 757865*54+352. 018<493*S2-i-21. 821 899
196927*56+48^.4659^4*54 + 11 14. 978885*52+^9. 690326

SINT=1.5707963-FO*COS(S)-GO*SIN(S)
ClNT=FO*5IN(S)-GO*COS(S)

30 CONTINUE

END



SUBROUTINE CYUS»FHO»FHl»FNlfFN2)

Pl=3. 1415926535
Pl2=0.63bbl977
IF (S.LT.4.0) GO TO 40
Ti=4.0/S • . ••. "-.
T2=T1*T1
PO=U « (-O.U000037043*T2-»-0.00001735&5)*T2-0.0000487613)*T2
1 +O.OU017343)*Ta-O.OOi753062»*T2+0. 3989423
QO=((«0.000003a312*Tj:-0.0000142073)*T2-»-0.00-00342468)*T2
1 »0. 0000869791 >*T2+0.t,0045b4324>*T2-0. 01246694
Pl=( I ( { .U<jOOG424l4*T2-.000020092)*T2+.0000580759>*T2
I T.OU022o203)*T2-«-.002s.21626)*T2+. 3989423
&!=( ( ( (-.OOOOU3o594*T2+.00001622)*T2-.0000398708)*T2

1 +.000106474l)*T2-.OOu6390400)*T2+. 03740084 .

B=A*T1
C=S-0. 7853962
YO=A*PO*5IN(C)+iJ*QO*CoS<C)
Y1=-A*P1*COS(C)*B*Q1*SIN(C)
GO TO 90

40 SS=S/2.
S2=SS*SS
TsALOG ( SS ) + . 577215fa649

TERM=T
YO=T
DO 70 L=lrl5
IF (1--1) 50t60»bO

50 SUM=bUM-H.O/FLOAT(L-l)
60 FL=FUOAT(L>

TS=T-SUM
TERM=(TERM*(-S2)/FL**2)*(1.0-1.0/(FL*TS)

70 YO=YO+TERM
T£RM=5S*(T-.5)

YI=TC:RM
DO 80 L=2»16
SUM=bUM-H. /FLOAT (L-l)

FL1=FL-1.
TS=T-SUM
TERM=(TERM*(-S2)/(FLl*FL»*((TS-.5/FL)/(TS+.5/FH)

so YI=YI+-TERM
YO=PI2*YU

90 Y2=2«C*Y1/S-YO

IF (S .GT. i l .Q) 00 TO i20
SH=S/2.0

A O = b . O / ( 3 . 0 * P l )
&0=4.0/P1
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DO 110 I=l»16
FLl=FLOAT(I)
AN=-bH2/( (FLl+2.5)*(Fi_H-1.5) )*AN
BN=-bH2*t>'M/(FLI-H.5)*»2

110
FHU=SH*ZUM

GO TO 130
120 S2=S*S

S?=Sb*S

S9=Sb*S , - , ' . .
SlO=b2*S6
Sll=SlO*S
Sl2=S2*SlO
FHO=YO+P12*(1.0/S-1.0/S3+9.0/S5-
l 225. 0/S7+1 1025. 0/S9-h93025.0/Sll)
FHl=FNi*PI3* (1.0*1. 0/S2-3.0/S4+15. 0/S6-1575.0/S8+
1 992«i5.0/S10-9823275.(j/Sl2)

130 CoNTll^uE
KETUKN

FUNCTION ACSH(CA)

CQ=CA*CA
IF (CA.GT.l.O) GO TO
C3=C(.i*CA
C5=CU*C3
C?=CG1*C5
Cg=CO*C7

AcSH=CA-C3/6.0+i.O*C5/40. 0-15.0*07/336.
1 105.0*09/31*56.0-945. u*Cll/'+22tO.O
60 TO 50

4.0 C

ACSH=ALOG(2.*CA)+1.0/('*.0*CQ)-3.0/(32.0*C'*) +
1 lb. 0/(2bB.O*C6) -105. u/( 3072. 0*C8)+9'*5.0/( 38400. 0*C10)

50 CONTINUE
RETUrtN
LND
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SUBROUTINE GAUSS(A»N»IT)
c

DIMENSION A(N»1)
REAL MAX
IT=O

DO 12 I=I»N
IF u-i> 3t3»i

1 DO 2 J=I'N
M=I-1
DO 2. K=1»M

2 A(J,I)=A(J.I)-A(J,K)*A(K»I)
3 K£;r=I

NAX=A3S(A(I»I))
DO b K=I»N
IF (NiAX-ABS(A(K»D) )

MAX=AB5(A(K»D)
5 CONTINUE

IF (MAX-E) 6»7»7
6 IT=1

RETURN
7 DO 8 K=1»NN

MAX=A(I»K)
A(I»K)=A(KEY»K)

8 A(KEYrK)=MAX

DO 12 J=II»W4
IF (i-i) 9»n»9

9 DO 10 K=1»M
10 A(IrJ)=A(I»J)-A(I,K)*A(K»J)
11 A(I.J)=A(1»J)/A(I»I)
12 CONTINUE

L>0 1«* I

JJ=J+1
Do 13 K=JJrN

13 A ( J , (MN ) =A ( J r NN ) -A ( J > K ) * A ( K » NN)
i«* CONTINUE

RETURN
END • • • . :



SUBROUTINE HPCG(PRMT»NDIM,IHLF,AUX)

DIMENSION PRMT(l)»AUX(lfa»l>
/DY/ OERY(100),Y(100) »UL(100)»DP

IHLF=0
X=PRriT(l)
H=PRMT<3)
PRKT(5)=0.
DO 1 I = 1
AUX(16»I)=0.
AUX(15»I)=DERY(I)

1 AUX(1»I)=Y(I)
IF (H*<PRMT(2)-XM

2 IHLF=12
60 TU «i

3 IhLF=13
t CALL FCT(X»NDIM)

CALL ouTP(x»tioiM»iHLF)
IF (PRMT(5» 6»b»6

5 IF (IHLF) 7»7»6
6 RETUHN
7 DO 8 I=1»NDIM
8 AuX(8f I)=DERY(I)

ISW=1
60 TO 100

9 X-X-h
DO 10 I=lrNDlM

10 AUX(^»I)=Y(I) ,
11 1HLF=IHLF+1

X=X-H
DO 1* I = lrNDIi-1 .

12 A U X ( 4 » I ) = A U X ( 2 » 1 )
H=0.5*H
N;l
IS»i=2
GO TO 100

13 X=X+H
CALL FCT(X»NDIM>
N;2
DO 1«+ I = 1»ND1M
AUX(<2»I)=Y(I)

14 AUX(9»I)=DERYU)
15*=.}
GO TO 100

15 OELT=0.0
DO '16 I=I.NDIM

16 DELT=DELT+AUX(15»I>*A6S(Y{I)-AUX(4»I))
D£LT=0* 06666667*DELT
IF (UcLT-PKMT(l) ) 19»19»17

17 IF (1HLF-10) Il»l6»lb
16 1HLF=11

GO TO n
19 X=X + ri

CALL FCT(X»NOIM)
DO 2U I=1
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AUX(3»I)=Y(I)
20 AuX(10rI)=DERY(i)

60 TO 100
21 N=l

X=X+H
CALL FCTU»NOIM)
X=PRMT(1)
DO 2* I=i»NDI«
AuX(ll.I)=DE«Y(I)

22 Y ( I ) =AUX ( 1 • I ) +H* ( 0 . 37b*AUx ( & • I > +0 . 7gifab67* AUX (9 »
1 -O.^

23 XzX+H

CALL FCT(X»NDIM> :
CALL OUTPCX.NDIK,»IHLF)
IF (PRKT(5» 6>2t»6

24 IF (N-i|) 25.200»200
25 DO 2o I=1»ND1M

AuXd>l»I)=Y(I)
26 AUX(N+7»D=DERY(I) ;

IF (N-3) 27,29t200
27 DO 2d I=1»NOIM

DELT=AUX(9»I)+AdX(9,I)
DELT=DELT-t-DELT ,

28 Y(I)=AUX(1»I)+0.3333333*H*(AUX(B»I)+DELT+AUX(10»D)
GO TO 23

29 Do 30 I=1»NDIM

30 Y(I)=AUX(l»I)-»-0.375*H*{AUX(8'I)+DELT+AUX(llf I))
GO TO 23

100 DO 101 I=1»NDIM

101 Y(I)=AUX(N»I)+0.«**Z
Z=X+0.4*H
CALL FCT(Z»NJINU
DO 102 I=1»NDIM

AUX(&»I)=Z
102 Y(I)=AUX(N»I)-KJ.2969776*AUX(5»I)+0.1587596*Z

CALL FCT(Z»NL>IM)
DO 103 I=1»NUIM

AuX(7»i )=2
103 Y(I)=AUX(N» I)-«-0.2li31001*AUX(5f I)-3.050965*AuX(6rD+3.832865*Z

Z=X+H
CALL FCT(Z»NDIM)
DO lO1* I = 1»NL)IM

101* Y(I)=AUX(N»I)*0.1747603*AUX(5»I)-0.5511807*AUX(6»I).
1 +1.205536*AUX(7»I)+0.17H3«ta*DERY(I)
GO TO (9»13»ll5»<il) '

200 IST£P=3
201 IF.(N-O) 20t*»202»204
202 DO 203 N=2»7

&0 203 I=1»NJIM
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AUX(N-1»I)=AUX(N»I)
203 AUX(N+b»I)=AUX(N+7»I)

• N=7
20<* N=iN+i

DO 205 I=1»NOIM
AuX(N-lt 1)=Y(I)

205 AUX(N+6»I)=DERY(I)

IST£P=ISTEP+1
00 207 I=1»NDIM
DELT=AUX(N-4rI)+1.333333*H*{Ayx<N+6»I)+AUX(N+6»I)-AUX(N+5.I)+

Y ( I ) =JELT-0 . 9256198*AUX ( 16» I )
207 AuXU6.I)=DELT ,

CALL FCT(X»NOIM)
UO 208 1=1»NOIM , .
DELT=0.125*(9.0*AUX{N-i.I)-AUX(N-3»I)+3.0*H*(DERY(I)+AUX(N+6.I)-«-

AUX ( ib » I ) =AUX ( 1 o • I ) -DELT
208 Y(I)=DELT-f0.07«t3817*AoX(l6»I)

DELT=O.O
Do 209 I=1»NDIM

209 DELT= JELT+AUX < 15 > I ) *AQS ( AUX < 16 » I ) )
IF (JtLT-PRMTCl)) 210,212»212

210 CALL FCT(X»NOIMJ
CALL OUTP(X»NDI,-I»IHLF)
DP=X -
IF ( P R M T ( 5 » 212»211»?12

211 IF UHLF-m 213»212>2l2 . '
212 RETUKN .. .,• ..... . ,
213 IF (H*(X-PRMT(2))) 21u»212»212

IF (A6S(X-PRMT(2))-0.i*ABS<H)) 212»20l»201

SUBROUTINE FCTU>NOIM)

COMMON /EX/ EX(50)
COMMON /DY/ OERYHOO) ,Y ( i oo ) »UL( IOO> »DP
COMMON /PR.MDTL/ upoduo) »ILIFT»NRUN,SYMF
CC-HMUN /HOL/ EP(lOUOO) »A(10100)
IT=9
NH=N J IM/2
DO

DO H20 J=

U=IABS(I-J)
IF (U.Evji.O) GO TO lllO

60 TO ll<iO
1110 SU!J!=̂ u
1120 CONTINUE

IF (iLIFT.E^.U) GO TO 1130
H = I*i'4H
IF (l.GT.NH) II=I-NH
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A ( KK ) = 0 . 5* ( Y < I ) * Y ( I ) -y ( I ) +UL ( I ) +Y ( 1 1 ) -UL (ID) -SUM
GO TO 1200 : - ' ' •'

1130 A(KK) = 0.5*Y(I)*Y(I)-SUM
1200 CONTINUE

DO 12bO I=lfUOI, . |
DO ie:uo J=I»NDIM

IF (IJ.Eu.O) GO TO 1230
ADO=O.U
IF (IA3S(I-J) .EJ.NH) ADU=-0.5*X

GO TO 12tU
1230 A(KK)=1.0-X*(Y(J)-0.5)
1240 CONTINUE
1250 CONTINUE

CALL GAUSSU»NDIM,IT)
DO 1310 I = 1
KK=NUIM*NOIM+I

1310 D£HY(I)=A(KK)
RETUrlN
END

SUBROUTINE OUTP(X.NDIM»IHLF)
c
c COMMON /DY/ otRY(ioo) .YUOO) »umoo)rDP
c OPTION FOR USER TO PRINT OUT INTERMEDIATE SOLUTION

RETURN
END . •

SUBROUTINE VECON(X»CP,AM»AMS»PR) •
c

COMMON /VEL/ .« lACH,MACHS6i fBETASQ>BETArAAMl» 'AAM2»AAM3
' REAL MACH»MACHSG»BETASQ»BETA

X12=X1*X1
CPl=AtiS(1
Cp=AAMl*(CPl**i. 5-1.0)

KETURN
END
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SUBROUTINE CARM '

COMMON /VEL/ MACH»MAChSQ»BETASQ»BETA»AAMl,AAM2rAAM3
/PARA.4S/ Nfl ING, PANELS »SREF,REFMOM,CBAR» SPAN »OC .
/WNGP^S/ ROOTU) »TIP<4) »M.N»TYPE»F < 101 ) » G ( 101 ) »P(101)

1 SHEAR(lOl) ,ISECT,THICK(5)
COMMON /HtL/ HH(100»loO)
R£AL MACH,MACHSG,»3ETAsQ»dETA
INTEGER PANELS. oc, TYPE
LOGICAL SYM -
LOGICAL THK
DATA THK/. FALSE./
SYf"'=. FALSE. ' . ';".'
DATA PANELS/O/
DATA HALFPI/l.57079633/'PI/3.1i+159265/ ,
CALL IT-NGEOM

IF (THICK(l) .t»T.O.O.OR.THlCK(2).GT.O.O) ,THK=.TRUE.
CALL EVAL CTHKJ '

CALL INVERT (HH.NWINGJ
CALL FORCE
PANELS=O
RETURN
END

SUBROUTINE WNGEOM

COMMON /VEL/ MACH,MACHSQ»BETASQ»BETA»AAM1,AAM2»AAM3
COMMON /PARAMS/ NV,|ING,PANELS»SREF,REFMOM»C8AR»SPAM>OC
COMMON /WNGPMS/ ROOT(t+) »TIP(4) »M»N»TYPE»F(101) »G(l'Ol) »p(101) f

i sH£AR(ioi),iSECT»THicK(2) >PERCHD»ZT»DZDX»CURX . '.
COMMON /FSINGS/ PW(IOO) »ALPHAT(IOO) :
COMMON /PDATA/ xOAR(iuO) rAREA(ioo) »COSTH(,IOO) »SINTH'(IOO).»SYM(IOO)
COMMON /SCRAP/ xdoo»i+) rY(ioo»2) »z(ioo»2) »xcPT(ioi) ,

1 sLOPE(lul) fCHRoOT(20^ ) »CHTIP(202) iZUROOTtlOl') »ZUTlP(i01j) »
2 zLROOTdODrZLTlPdOl ) rSCF( lOl )
COMMON /CURV/ cuRdooj . , .
REAL MACH»MACHSQ»BETASQ»BETA . .
INTEGER PANELS, PANMAX,OC» TYPE
LO&KAL SYM, FIN :

DATA PANI-.AX /iou/ • . ' . ' ' - . .
HEI-L=O. oooooi
IF li'l.LE.O.OR.N.LE.O) RETURN '

F(1)=ROOT(1)
G(1)=TIP(1)
F(N1)=H001 (2)

P(1)=HOOT(3)
P(MD=TIP(3)
SHfcAK(l)=kOOTC+.)
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SH£AK<MD=TIPU)
D|<=RwOT(2)-ROOT( l )
DT=TiP(2)-TlPl l)
SSPAU=TIP(3) -ROOT (3)
PAREA= < DR+L/T ) *SSPAN
sci=i.
SC2=1.
IF (TYPE.EQ.l) GO TO 20
IF (IYPE.EQ.2) GO TO 10
CALL FILL <F,N)
CALL FILL CG.N)

10 IF (TYPE.E0.3) GO TO 20
CALL FILL (P,M>
CALL FILL (sHEAfoM)

20 XX=T1P(3)-ROOT(3)
DO 30 1=1rNl
CH.ROOT(I)=U.
CHTIP«I)=O.
SLOPE(I)=(G(I)-F(I))/xX

30 XCPT(I)=F(I)-ROOT(3)*sLOPE(I)
DO 50 I=1»N
IF (Abr,(DR).LT.HE:LL) (C TO HO
CHROOT<I)=((F<I)+F<I+i))/2•-F(1))/DR

«lO IF (MBS(DT).LT.rtELL) GO TO 50

50 CONTINUE
IF (UT.GT.O.) GO TO 70
t>0 60 1=1 » N

60 CHTIP(I)=CHROOT(I)
70 UO 90 J=1»M

Yl=P(J)

YpER=((Y l+Y2) /2 . -P( l ) ) / (T lP(3) -ROOT(3) )
YptRl=1.0-YPE«
ThCK=ThICM2)*YPER+THlCK(l)*YPERl
DO 90 1=1 »U
PANELS=PANELS+I
IF (PANELS. GT.PANMAX) GO TO 210
X(PAlMELSr l )=XCPT( I )+Yl*SLOPE<I>
x < PAKELS » 2 ) =xcp r ( i j *Y^*SLOPE ( i )
X( PANELS* 3) =XCPT(I-»-l)+Yl*SLOPE(I + l)
X ( PANELS . 4 ) =XCPT ( 1+1 ) +Y2*SLOPE ( 1+1 )

z< PANELS* D=sHEAR(vJ)
Z ( PANELS r 2 ) =bi IEAR ( J+l )
IF (AoS(THCK) .LT.MELL) GO TO 80
PE^CMU=CHTIP(I)*YPER+CHKOOT(I)*YPERl
CALL SECTIN
CuK(PAIiELS)=THCi\*CURX

so ALPHAT (-PANELS) =THCK*DZDX
FIN=. FALSE.
IF (ABS(Yi).LT. HELL. Ar,D.ABS(Y2).LT. HELL) FIN=.TRUE.

90 SY'-i ( PANELS ) = . NOT. FIN
CALCULATIONS OF WING PROFILE
KTMAX=TH1CK(1)*JR

L-0 150 1 = 11 Ml
IF (A3S(KTMAX).LT.HELL.OR.ABS(DR).LT.HELL) GO TO 100
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. PERCHD=(F(I)-F(i))/DR
''"'CALL SECT IN

ZUROOT(I>=ROOTUUZT*KTMAX
ZLKOOT < I ) =ROuT < •+) -ZT**TfoAX
GO TO 110

100 ZUr tOOT( I )=ROOT<<+)
ZLROOT(I)=KOOTm)

110 IF (AbS(TIPNUX) .LT. HELL. OR. ABS(DT).LT. HELL) GO TO 120

CAUL SECTIN
ZUHP(I)=TIP(4)+ZT*TIF>MAX
ZLTlP(I)=TIP(t)-ZT*TIpMAX
Go TO 130

120

130 CONTINUE
210 RETURN

SUBROUTINE FILL UFILL»NFILD

REAL AFILL(H
IF (MFILL.LE.l) RETURN
DELi(AFILL(NFlLL+l>-AFlLL<in/FLOAT<NFILL)
DO 10 I=2.NF1LL

10 AFILL(I)=AFILLU-D+DEL
RETUKN
END

SUBROUTINE SECTIN

COMMON /V»NGPKS/ R O O T C ^ J • TIPC*) tM»N»TYPE»F( io i ) »G<IOD »p(ioi) »
1 SHE«R(101)rISECT»THICKl2) » X » Z » D Z D X » C U R X

DIMENSION X T A B ( 1 9 ) » ZTAai (19) r ZPTAB1(19)» CUTABK19)
c THE FOUR DATA TABLES GIVEN BELOW ARE FOR A RAE 101 PROFILE
C AND THEY REPKEScNT 19 ChORDwISE VALUES FOR THE PROFILE
c X/CHORD STATION TOGETHER IVITH THE THICKNESS » SLOPE AND
c CURVATURE MEASURE RESPECTIVELY AS GIVEN FOR A PROFILE
c THICKNESS RATIO OF out. FOR ARBITRARY' PROFILE INPUT THE
c APPROPRIATE DATA TAaLts fouST BE SUPPLIED BY THE USER.
c IF THE NUMBER OF CHORDWISE STATIONS USED is DIFFERENT
C FROM 19> THE OI,.;ENSIO', STATEMENT ABOVE AND THE THREE
c SEQUENTIAL CALLING STATEMENTS STARTING WITH STATEMENT 100 .
C MUST ALSO BE CHANGED ACCORDINGLY.

DATA XTAtj /0.».G05..Ul25».0250t.Obf ,075».1».15».2».25».3> .«»»
1 .5r ,fa» ,7» .d' .9» .95*1. /
DATAZTAB1 /O. • .0871 » . J369» .1917' .2659» .3191 » .3607* .<*220« .U630»

l.(+6fab».4997».4a01f .t2o7>. 3531 >. 26Q1 ». 1789 ».D89U».OU47» O./
DATA ZPTABI /39.05. a. 685»5.ii65»3. 709*2. ̂62»i«863»i. *»3^>i. ooi»

»-. 6506' -.B058.-.8823»-. 6943 »-.89«*3»
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DATA CUTABI /-7000.0,-420.0,-120.0»-83.1»-32.6,-19.601r-12.35»
1 -B.10ii»-6.9l5,-b.92»-4.988»-3.384fr2.117»-1.173»-0.602» '
2 -0.331»-0.1S2»-0. 150, -0.125 / , . ,
IF (X.LT.O..OH.X.GT.1.) GO TO 130'
IF (iSECT.EQ.O) GO TO 100 !
GO TO (10»30»5Q)» 1SECT , ." .; " '.,

10 z=2.*x*(i.-x) :; . ' . - . . : ' , r : ' :.' " ' ' " ' " ' ' " '

KETUHN
30 IF (X.GT..5) GO TO 40

RETUKN
2=1. -x
OZDX=-1.

RETURN
50 CONTINUE

IF (X.GT.O.OJ GO TO 6u
2=0.0
OZL)X=100.0 ,
CuRX=-5.0
RETUKN

60 Sx=SURT(X)
X2=X*X - , .
2=?.0*(0.2969*SX-0.12b*X-0.3516*X2+
1 0«2643*X2*X-0.1015*Xi;*X2)
DzOX=5. 0*10. 148'tb/SX-u. 126-0. 7032*X+

1 0.8b29*X2-0,40fa*X2*X) .
CuRX=-5.0*(0.07<4225/(SX*X)+0.7032-

RETUKN
100 CALL TAIUT (xTAB»zTABi»x»z»i9»2>

CALL TAINT (XTAU»ZPTArtl*XrDZDXfl9»2)
CALL TAINT (xTAb»cuTAoi'X»cuRx»i9»2)
RETURN!

130 2=0.

CuRx=o.o
RETURN
END
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SUBROUTINE TAINT (XTAb»FTAB,x»FX»N»io

REAL xTAbd>rFTABd)»cdO)»Tdo)
DO 10 1=1 »N
IF U.GT.XTAbd)) GO TO 10
J=I
&0 TO 20

10 CONTINUE

20 J=J-« + l
IF (J.LE.G) J=l

30 MrJ+K
IF U-l.LE.N) fcO TO
J=J-1
GO TO 30

<tO KP1=K + 1
GO TO 50
ENTRY TNT

50 DO 60 L=ltKPl
C(L)=X-XTAB(J)
T(L)=f-TAB(J)

60 J=J+1
DO 80 J=1»K

70 T(I)=(C(J)*T(I)-C(I)*T(J))/(C(J)-C(I»
Irl+1
IF (I.LE.KPl) GO TO ?0

so CONTINUE
Fx=T(KPl)
RETUKN
END

SuBROUTIiMt EVAL

COMMON /VEL/ MACH.MACHSU.3ETASQ»8ETA,AAM;,AAM2fAAM3
COMMON /PAR AWS/ NW ING , PANELS » SREF » REFMOM . CBAR » SPAN* oc
COMMON /POATA/ xbARSdoo) ,AREA(IOO).COSTHS(IOO) »SINTHS(IOO) »
1 SYH(lOO)
COMMON /COWPS/ XPR i ME , YPR i ME » ZPRIME » u » v • v, » B » BTERM • EPS > SUB • BPOS » XPM
IT
COMMON /SCRAP/ x(ioo.o»Ydoor2) »zdoo.2) »xcs(ioo) »ycs(ioo) »

»A(100) »XuAR{100) »XC(100) fYC(lOO) »ZC(100) »
»COSTh(100) »UWT(lOO)

/hEL/ HH(100tli,0)
/HOL/ HHi(ioo»ioo)»HH2(ioo»ioo)

100) »ZV(1UO)
REAL MACH»HACHSU»BETASQ»BETA
REAL LE
INTEGER HAIV.ELS»UC
LOGICAL SUb»bPOS»BNEG, BINES* B2NE6»DIAG» WING, THICK » TwING
LOGICAL
DATA
DATA PI<+/7.9577t7163t-2/»Pl6/3.978b735aiE-2/
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STOTAL=0.
BNEG=. FALSE.
DO 10 I=1»PAUELS
CR=X(If 3)-X(If 1)

QELZ=Z( I»2) -Z< I»1)
SPN=SaRT(OELY*OELY+DELZ*DELZ)
C T = A ( I » 4 ) - X ( I t 2 )
AREA(I )=(CH+CT) *SPN/2.
STOTAL=ST07 AL+AKEA ( I )
YPfc.R=ll.+CT/lCfUCT) )/3.
YPER1=1.-YPER
L£=YPER*X(1.2)+YPERl*x(I' l)
TE=YP£R*X( I»4)+YPERl*xU»3)
XCS(I)=.95*TE+.05*LE
XCd)=XCS(I ) /bETA
XBARS(I)=(Lc*TE)/2.
X V ( I ) = X B A R S ( I )
XBAR ( i ) =XBA«S (. I ) /BETA
YCS(I)=Y(1»1)*YPERH-Y(I»2)*YPER
2 V H ) = Y C S ( I )
Y C < D = Y C S ( I )
2CS ( I ) =Z ( I r 1 ) *YPER1+Z 1 1 » 2) *YPER

SINTHS(I)=DELZ/SPN
SlNTH(I)=SIinHS(I)
CoSTH5(I)=DELY/iPN

10
STC]AL=STGTAL*2.
IF (SREF.LT.O.) SREF=sTOTAL
IF (CBAR.LT.O.) CBAR=SUHT (5REF)
EpS=AMAXKSPANfCBAR) / iOOOO.
IF (BETASO)

30 SUB=.TRUE.

UCON=PI8
UTCON=PI2/BETA
V|*CON=BETA*PI3
VWTCON=PI2
GO TO 50

i+O SU&=. FALSE.

50'DO 2bO I=l»PANEuS
CoST=COSTH(I)
SlM=bINTH(I)
WING=.TRUE.

Y2=Y(I»2)
Zl=Z(I»l)
Z2=Z(I»2)
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DELTA Y=(Y2-Yi)*COST+(z2-ZD*SINT
Bl=(X2-Xl)/DELTAY

t3lNEo=31.LT.Q.
B2NEt>=B2.LT.O.
Bl=Ao5(31)

DO 2sU J=l»PANEi_S

Xw=SlNT*C05TH(J) . .
Xx=C05T*bINTH(J)
XY=COST*COSTH(J)
XZ=SlM.*bINTHCJ>
SINTK=XV;-XX
CoSTH=XY+XZ
SINTL=XA'+XX
CoSTL=XY-XZ
BEGIIM THE EIGHT SEPARATE SET-UPS FOR COMP AND TCOMP
BpOS=.NOT.BlNEG
B=B1
BTERMzBTLRMl
SETUP 1
DELTAY=YC(J)-Y1
DE»-T«Z=ZC(J)-Z1
XPRIME=XC(J)-X1
YpRJS£=DELTAY*COST+DELTAZ*SINT
YP3."YPRIME
IF (B1NE&) YPRIHE=-YPRlME
ZPRIWE=DLLTAZ*CUST-OELTAY*SINT
2PJ=ZPKIME
CALL COMP
AAVR=V

IF (DIAG) GO TO 60
UU=U
GO TO 70

60 UU=0.
70 IF (.NOT.TwlNG) GO TO 90

XpMT=XbAr<(J)-Xl
CALL TCOMP
UT=U
IF (LJlAG) bO TO 80
AAVRT=V

GO TO 90
80 AAVRT=0.

A AWR 1=0.

SETUP 2
90 DELTAY=-YC(J)-Y1

YPRIME=DLLTAY*COST*OELTAZ*SINT

IF (tilCJEG) YPRIME=-YPRIME
ZpRIME=Dc-LTAZ*Co5T-OELTAY*SINT

CALL COMP
AAVL=V
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AAML=W
UIPUU+U
IF ( .NOT.TWING) GO TO 100
CALL TCOMP
UT=UJ>U
AAVLT=\ /
AA*vLT=;V
SETUP 3

100 D £ L T A Y = Y C ( J ) - Y 2
D£LTAZ=ZC(J)-Z2
XPR1ME=XC(J)-X2
YPRIML=QELTAY*COST+DELTAZ*SINT

IF idlNEG) YPRL-iE=-YPRlME
ZPRI.«iE=OELTAZ*COST-QELTAY*SINT
ZP<+=ZPRIME
CALL COMP
A A V R = A A V R - V

IF (L»IAG) GO TO 110
UU=UU-U

110 IF (.NOT.TrflNG) GO TO 130
XPMT=XBAK(J)-X2
CALL TCOKP
UT=UT-U
IF ( O I A G ) GO TO 120
A A V R T = A A v / R T - V

GO TO 130
120 ABN=ABN-V

c SETUP «*
130 D£LTAY=-YC(J ) -Y2

YpRI,'l£=DELTAY*COST+DELTAZ*SINT

IF (blNEG) YPRI.'iE=-YPKlME
ZpRIME=DELTAZ*COST-DELTAY*SINT

CALL COMP
AAVL=AAVL-V
AAViL=AAw'L-W
UU=Uu-U
IF c .NOT.Tw iNG) GO TO mo
CALL TCOMP
UT=UT-U
A A V L T = A A V L T - V
AA«LT=AA,vLT-W

B=B2
BTERM=BTERM2
SETUP s

YpRli-iE=YP3
IF

CALL CCHP

IF (O IAG) 00 TO 150
UU=UU-U
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150 IF (.NOT.TWING) GO TO 170
XRMT=XbAR(J)-X3
CALL TCCMP
UT=UT-U
IF (ulAG) GO TO 160
AAVRT=AAVRT-V

GO TO 170
160 ABN=ABN-V

c SETUP 6
170 YPRIME=YP3N

IF (d2NE6) YPRI.-.E=-YPRIME
ZPRIME=ZP3N
CALL COMP
AAVL=AA\/L-V
AA*'L=AA«fL-W
uu=uu-u
IF (.NOT.TWING) GO TO 180
CALL TCOMP
UT=UT-U
AAVLT=AAVLT-V

c SETUP 7
180

IF (U2MEG) YPRIME=-YPKlME
ZPRIM£=ZPt|
CA'-L COMP

AAWR=AAWR+W
IF (UIAG) GO TO 190
UU=UU+U

190 IF (.WOT.TWING) GO TO 210
XPMT=X3AR(J)-A4
CALL TCOMP
UT=UT+U
IF (UIAG) GO TO 200
AAVRT=AAVRT+V

GO TO 210
200 A6N=M

C SETUP 8
210 YPRIIM

IF (bdNECj) YPRlwE=-YPfvIME

CALL
AAVL=AAVL+V

UU=UU-»-U
IF (.NOT.TwlNG) GO TO 220
CALL TCO>-.P
UT=UT+U

220
A(J)=(AAVR*SINTR+AAVL*SINTL+AAWR*COSTR+AAWL*COSTL)*VWCON
UI-,P»/AL=UU*UCOM
IF (.NOT.TrtING) GO TO 2UO
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Go TO
2UO UAT(J)=0.

HH(J»I)=MJ)

Hh2(I»J)=UriT(J)
250 CONTINUE
260 CQNTlNUc

IF (.NOT. THICK) WRITE <6r3?0)
RETUHN

370 FoRMHT U9HOWIUG THICKNESS MATRIX CALCULATION WAS SUPPRESSED)
END

SUBROUTINE COMP

COMMON /COWPS/ A » Y » Z » u » V f »
LOGICAL SUU.BPOS
DATA PI/3.lU159^65/rHALFPI/1.57079633/
DATA Pi32/"+.7i2389/»ZLRO/o./» ONE/I./
D2=0.0

10 CONTINUE
IF (A3S(B).LT.1.0E-8) GO TO 150
X2=X*X
Y2=Y*Y
IF (ABS(Z).LT.EPS) GO TO 120

BR2=b*R2

W=BTtRM+F2-Y*F6-B*ALOb(ABS( (X+D) *RPRIME/BR2)
Go TO 190

120 A=X-o*Y

D=SQKT(X24-Y2)
F2=0.0

. IF (AbS(b*X4-Y+BTERM*D) .LT.l.OE-8) GO TO 121
F2=ALOG(ABS( (b*x+Y+UT£RM*D)/AA))

121 CONTINUE
U=HALPPI
IF (A.LT.ZERO) GO TO 110
IF (Y.GT.ZfRO) 00 70 130
U=-HALFPI
60 TO mo

130 U=PI52
140 V=-B*U

W=l3TtRyi*F2-(X+D)/Y-B*«LOG(ABS( (X + D> *AA/B/Y2)
t>G TO 19U

150 IF (A3S(Z) .LT.EP.S) GO TO 160

Z2=Z*Z
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R2=Y2+Z2
U=SQHT(Xc+R2)

Fb=(X+u)/R2

«=ALOG(AdS( (Y+D)/SGRT(X2+Z2) ) )-Y*F6
60 Tu 190

160 0=SGiKT(X*X+Y*Y)
U=HALFPI
IF (A.UT.ZERO) GO TO i80 '
IF (Y.sr.ztRO) io TO i?o
U=-HALFPI
60 TO ISO

170 U=PI.J2
180 V=ZEKO

WrALOG ( ABS ( ( Y+D ) /ABS ( x ) ) ) - ( X+D ) /Y
185 CONTINUE
190 IF (dPOS) RETURis!

RETURN
ENTRY TCOMP
X2=XT*XT
Y2=Y*Y
A=XT-3*Y
IF (ABS(Z).LT.EPS) GO TO 270

R=SQHT(R2)
D=SQRT(X2+R2)
RpRIME=SviRT(A*A+BTERM*BTERM*Z2)
F2=ALOG(ABS( (d*xT+Y*BTEHM*D)/RPRlME) )/BTERM

W=ATAN2(Z*D»8*R2-XT*Y) . . ? - - • .
RETURN

270 D=SQRT(X2+Y2)
F2=0.0 ' . . . - . . ;
IF (A3S(b*XT+Y+tiTERM*D).LT.1.0E-8) GO T0\2?l
F2=ALOG(ABS( (3*xT<-Y+STERM*D) /ABS( A ) ) ) /BTERM

271 CONTINUE > •
«/=ZERO • .
IF (A*Y.GT.ZERO) W=PI ' .
Uz-F2 - .
V=B*F2-ALOG(ABS( (XT+0) /ABS(Y) ) ) :
RETUKN
END
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SUBROUTINE INVERT UA,NN)

REAL AAUOO.IOO)

DO 30 1=1 ,NN
ITEST=I
PIVOT=AA(I»I)

DO 10 L=1»NN
LTESI=L
ATEST=AA(I»L)

10 AA(J»L)=AA(1»L)/PIVOT
DO 30 H=liNN

IF (N.EQ.I) GO TO 30
TT=AA(M.I)
AA(M»1)=0.
DO 20 L=1»NN

20 AA<M'L)=AA(M,L)-AA(I»L>*TT
30 CONTINUE

RETURN
END

SUBROUTINE FORCE
c
C THIS SUBROUTINE INCLUDES THE NAMELlST /LIFT/
C WHICH SPECIFIES THE Gi_CbAL ANGLE OF ATTACK (IN DEGREES)
C OF THE WING PLANFORM AND THE CAMBER OR LOCAL ANSLE
C OF ATTACK (IN RADIANS) OF EACH dlNG PANEL.
C

COMMON /VEL/ MACH»MAChSU»BETASa»BETA.AAMl.AA.vi2»AAM3 .
COMMON /HARAMS/ NWING,PANELS»SREF,REFMOM»CDAR»SPAN»oc
COMMON /PSINGS/ p^dot) »ALPHATIIOO)
COMMON /PDATA/ xBARdoo) FAREA(IOO) »COSTH(.IOO) »SINTH(IOO) »SYM(IOO)
COMMON /SCRAP/ uwuoo)fOUMMY(2oo)fCAMBER(IOO)»ALPHA(IOO)»cp(ioo)»
1 A»10U)fLMlOO)fCPUllOu)'CPL(IOO)»DELCP(1UO)»UWT(100)
COMMON /HEL/ HH(ioo'»ico)
COMMON /HOL/ HHidoonOO) »HH2( ioo» ioo)
COMMON /PRNQTL/ UPG(IOO) »iLiFT»NreuN»sYMF
REAL MACHfMACHSO»eETASQ»BETA ' -
INTEGER PANELS. oc .. '
DATA RAD/57.2957795/»MLFA/0.0/
NAMELIST /LIFT/ ILIFT,CAMBER.ALFA.
IF (NRUN.GT.O) GO TO 50
READ (5»LiFT>
f tR lTc. (6»LIFT)

50 ArjGLL=ALFA/RAD
ARADtG=ALFA .
*'RlT£ (6»200) ARADEG
IF (N-VIN«.L3.0) GO TO 80 -
DO 60 I=1»NWING

60 Pw(D=0.
DO 70 J=1»N'«IING
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AXX=-CAMBER ( j ) -ANGUE*COSTH ( j)
DO 70 I=I»NWING

70 P\ft(I)=Pft'(I)+HH(IiJ)*AxX
ao CONTINUE

DO 90 I=I»PANELS
UwT{I)=0.0

90 UW(D=O.O
DO 1UU J=l»N',VlNo
PWTJ=ALPHAT(J)
C1_J=PW(J)
DO luO .I=l»PANEi_S

I ) =UW ( I ) +HH1 ( J, I ) *CLJ
100 CONTINUE

DO I'+O I = l » N w I N 6
Ux=Urf ( I ) +UWT ( I ) +PW (
UPG(A)=UX
IF (ILIFT.EQ.O) GO TO
Ux=Uw ( I ) +UwT ( I ) -PW ( I
U = I+NwlNG
UpG(II)=UX

mo CONTINUE
RETURN

200 FORMAT UXOIH CONFIGURATION ANGLE OF ATTACK=»F7.3»sH DEGREES)
END
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APPENDIX C - SAMPLE INPUT AND PRINTOUT

• • . . • • .
The subject computer program is dimensioned for a total of 100 panels to represent the

wing planform and this limits the number of panels which-can be used for the lifting case to
50. A symmetrical nonlifting wing, however, can be represented by a maximum of TOO
panels. The storage requirement is approximately 145,000 in octal. The input data which
defines the wing geometry and its relative position to the oncoming flow of given strength
are arranged in the following sequence of namelists. These namelists are read in from the
main program except the namelist LIFT which is read in from subroutine FORCE.

Note: The given numbers in the input data correspond to the sample calculation case
shown in the printout. Namelist $ SHOCK is only used for the output of the
calculated locations of the shock and sonic lines in connection with METHOD = 3.

IWING =0

INFLU = 1

METHOD -

ISECT = 3

LX = 10

SWING . . .

Type of wing, i.e., arbitrary input (0), rectangular planform with
parabolic arc cross-section (1), triangular planform with .parabolic
arc cross-section (2). '

Note: An arbitrary half-wing.planform is defined as a trapezoidal
planform with the two parallel sides in the direction of the axis
of symmetry (i.e., the x-axis). The coordinates of the four
corner points is the required input, see ROOT(i) and TIP(i),
together with the two thickness ratios THICK(l) and THICK(2).

Type of influence matrix to be used, i.e., semi two-directional
(1), complete planar (2). INFLU = 0 for linearized solution only.

Note: It is recommended to use the option INFLU = 1 unless the
program has been modified to account for a large number of wing
panels, i.e., N = 200-300.

Method of calculation, i.e., Newton (1), parametric differentia-
tion (2), method of steepest descent (3).

Note: METHOD = 1 should be preferred for purely subsonic flows
whereas METHOD = 2 applies to slightly supercritical flows. For
the calculation of discontinuous flow the option METHOD = 3 is
the only one applicable.

Type of wing section, i .e., arbitrary input (0), parabolic arc (1),
double wedge (2), NACA OOXX (3).

Note: The guidelines for arbitrary section input is described in
Appendix B under subprogram name SECTIN .

Number of panel division in the chordwise direction.
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12 = 5

ROOT (1) =0.0

ROOT (2) = 1.0

ROOT (3) =0.0

ROOT (4) =0.0

TIP (1) =0.0

TIP (2) = 1.0

TIP (3) = 3.5

TIP (4) = 0.0

THICK (1) =0.12

THICK (2) =0.12

SPAN =N.A.

TAD =N.A.

MACH =0.72

DELM = 0.0

NDELM = 0

ILIFT = 0

CAMBER = 100* 0.0

Number of panel division in the spanwise direction,

x-coordinate of the leading edge at the root,

x-coordinate of the trailing edge at the root,

z-coordinate of the root section,

/-coordinate of the root section.

x-coordinate of the leading edge at the tip.

x-coordinate of the trailing edge at the tip.

Not
required
for
IWING = 1,2

z-coordinate of the tip section.

y-coordinate of the tip section.

Thickness ratio of the root section.

Thickness ratio of the tip section .

Span to root-chord ratio for the cases of IWING = 1,2.

Thickness ratio for the cases of IWING = 1,2.

$ FLOW

Initial freestream Mach number (M ).
OO

Desired increment of the freestream Mach number.

Number of increments desired of DELM.

Note: The options DELM and NDELM are introduced for the
convenience of the user to reduce the number of input data cards
for the case where only a change in Mach number is desired.

$ LIFT (required only for IWING = 0)

Type of flow considered i.e., none ire ulatory (0), circulatory (1).

Local slope of each planar panel element which defines a cambered
wing (in radians).

Note: The subscripted quantity CAMBER (i) is read in as an array
of index i = (m - 1)LX + m where 1 £ n £ LZ and 1 s m fi LX and
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ALFA =0.0

the indexing starts with the panel located at the leading edge of
the root section . The input can be simplified by use of the notation
shown for the sample case.

Angle of attack (in degrees).

The printout lists these namelists for each calculation case. The results from a flow
calculation are written Out in two rows for each chordwise calculation point. The upper
row refers to the final nonlinear solution, whereas the lower row refers to the linearized or
Prandtl-Glauert solution. The calculation points are located at the centeroid of each wing
panel and results are given for each spanwise station in the following notation:

I Chordwise sequential number of wing panel

X/CHORD

U

Chordwise location of panel centeroid with reference to local

chordlength

u - u
Normalized perturbation velocity,

U+ 1

U (RED)

CP

CP (RED)

P/PO

M

Normalized velocity,
' u

2
(H+ 1)M u -u

00 OC

Reduced perturbation velocity, = «—
1 -M

u

Pressure coefficient, -
KM

Reduced pressure coefficient, =

_
Pressure ratio, = ^H M c +1

' 2 o o n

Machnumber, -M —

, 2xlH/(H-l)
5(*-i>M.(i"z

\ u
CO

-1/2

- 1

M (STAR)

Note:
CP(STAR)

Critical Machnumber, = M*

The critical value of the pressure coefficient (C*) is evaluated
from the exact relation.
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APPROXIMATE (TWO-DIRECTIONAL)
INTEGRATION PATTERN

FIGURE 3 - Geometric division of an arbitrary planform into a number of
trapezoidal panels.
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I = 1

FIGURE 5 - Integration points for the definition of the influence measure from an
elementary panel.
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