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ABSTRACT

A linear shift-invariant image preprocessing technique is

examined which requires no specific knowledge of any parameter

of the original image and which is sufficiently general to allow

the effective radius of the composite imaging system to be arbi-

trarily shaped and reduced, subject primarily to the noise power

constraint. In addition, the size of the point-spread function

of the preprocessing filter can be arbitrarily controlled, thus

minimizing truncation errors.

iii



I. INTRODUCTION

The general problem of image processing has received much

attention within the last decade. The intense interest,in-this

area arises from the need for the highest possible image quality

in the increasing application of the many forms of imagery, from

X-rays in medicine to data collected from satellite-based multi-

spectral optical line scanners for monitoring earth.resources, to

the solution of various related problems in many fields of science

and engineering, made feasible by recent improvements in digital

computer hardware. The general area of image processing may be

divided into three major categories: image preprocessing, effi-

cient .image coding, and pattern recognition. There are several

comprehensive tutorial surveys which cite the significant tech-

niques for handling problems in each of these categories and

which contain extensive references. (1, 12, 23)

Since no image collecting or imaging system will produce a

perfect replica of the original image, some further processing is

usually required. Image preprocessing deals .primarily with the

problem of processing the output of an imaging.system in such a

way that the significant parameters or features of the original

image are, in some sense, enhanced or restored. This processing

may be linear or nonlinear, shift-variant or invariant depending

upon the type of degradation produced by the imaging system.



II. STATEMENT OF PROBLEM

The purpose of this research is the development of a tech-

nique to reduce the effective aperture radius of multispectral

optical line scanners used for remote sensing of earth resources.

The data gathered from such systems is used principally for the

classification of individual resolution elements by pattern recog-

nition techniques. The accuracy of such classification techniques

is usually based upon the supposition that each resolution element

-of the imaging system output exactly represents a sample of a

correspondingly located element of the original image. Because

of the finite aperture size of the scanner, which is not only a

function of the optics of the scanner but also the impulse response
(14)of any analog signal conditioning or recording equipment, a

two-dimensional spatial smearing or blurring of the original image

is produced. This type of imaging degradation essentially maps

many points from the original image into a single resolution ele-

ment. In other words, a single resolution element of the imaging

system output represents a two-dimensional weighted sum of many

points adjacent to the correspondingly located sample of the

original image. Thus» depending upon the density and shape of

the aperture and the spatial and multispectral characteristics

of the original image, serious classification errors may result.

This smearing has been observed to seriously affect classification

accuracy within several aperature diameters of the boundaries of

data classes. In addition, the classification accuracy of any

topographical feature of approximately two aperture diameters or

less; for example, roads, streams, and buildings at an altitude

of 1.5 kilometers or more, is substantially reduced.

It is expected that a reduction of the aperture radius will

decouple the spatial correlation between adjacent resolution ele-

ments of the imaging system output, thus correcting each resolution
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element, so that it more accurately represents a single sample of

a correspondingly located element of the original image and not

a weighted sum of adjacent points. Consequently classification

accuracy of both small topographical features and in the bound-

ary areas of large data classes should be improved, as well as

overall spatial resolution of the imaging system output.
(14)An analysis of the multispectral optical line scanner system

indicates that the imaging system degradation could be assumed to

be linear shift-invariant. ' The proposed preprocessing

technique is based upon this assumption. The principle advantage

in making such an assumption was to reduce the cost of preprocessing.
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III. COMPARISON OF PROPOSED TECHNIQUE TO EXISTING TECHNIQUES

Numerous techniques have been proposed for » ' » ' » '
10, 15, 19, 22, 27)processing iinear shift-invariant degraded

images. The majority of these techniques require some knowledge
(23)of the original image. For example, when the mean-square

error of the processed image is minimized, which incidently is
(23)

not a very effective performance criterion, the resulting

filter requires a knowledge of the power spectral density of the

original image. ' ' ' ' When precise knowledge of

the required parameter of the input signal is not known, the

resulting error produced by the processor may often negate any

possible image improvement. Such techniques must necessarily

require that a different processing filter be used for each

specific image class comprising images having similar "a priori"

statistics.

In view of the potentially large number of image classes

comprising the data processed at LARS, the cost of such a pre-

processing technique requiring a separate "matched" filter for

each specific image class would be prohibitive. The technique

examined in this research does not require specific information

about the original image. Thus a single processing filter for

all image classes would be required. However, it should be noted

that the resulting processing filter is suboptimal in the sense

that "a priori" statistics of the original image are ignored.

The fundamental objectives of this technique are similar to
fO A\ ' ' /O R\ '

those examined by Smith and Stuller. The diagram of

the basic image preprocessing system is shown in Figure 1. The

problem is to determine the optimal preprocessing filter point-

spread function, h (v), which will make the composite imaging

system point-spread function g(v), arbitrarily close to an impulse

function, subject to a constraint on the mean-square noise compon-

ent in the processed image, n_(v).
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Stated more precisely, the problem is to choose the h (v)

that will minimize the functional

w

I w(v) g2(v)dv where v is a two-dimensional vector

and

gR = hb(v)*hr(v)

subject to the constraints

K! - E |n2(v}}

K2 = J g
2(v)dv.

—oo

The function w(v) is a penalty function designed to force the

composite imaging point-spread function, g(v), to be arbitrarily

duration limited, thus approximating the desired impulse function.

The more rapidly w(v) increases with increasing v, the more

rapidly g(v) will decrease with increasing v. Both Smith and

Stuller chose w(v) = v2, because of resulting mathematical conven-

iences; although a more general formulation allowing for a higher

order penalty function would be desirable. It would provide the

filter designer with an additional parameter for controlling the

degree of resolution improvement.

In practice it is also desirable to have h (v) duration limi-

ted. Ultimately any preprocessing will be performed digitally;

and since only a finite record length of h (v) may be used, serious
(12 21) r

truncation errors may result. ' ' The technique proposed

by Smith did not provide a means for arbitrarily controlling the

duration of h (v). The lack of such a constraint also leads to a

difficulty in obtaining h (v) from the solution of a differential

equation. The technique proposed by Stuller provided for an
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arbitrary control on the duration of h (v) by allowing the

solution for h_(v) to contain only a specified number of data

points.

The technique proposed in this research adds an additional

constraint to the previous two .constraints .

'- f
K3= | s(v)h

2(v)dv
r

— oo

where s(v) is an arbitrary penalty function designed to duration

limit the preprocessing filter point-spread function, h (v). The

addition of this constraint provides a control on the rate of

decay as well as the duration of h (v). In addition the proposed

technique allows for an arbitrary w(v) and obtains a solution

for h (v) by using a different approach from that of Smith or

Stuller, which may be easily adapted to additional constraints.
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IV. ANALYSIS OF PROPOSED PREPROCESSING TECHNIQUE

The block diagram of the basic preprocessing system is

shown in Figure 1. The fundamental design objective is to

choose h (v) so that the functional
o

F = I O)(v)g2(v)dv (1)

is minimized, where the "bar" over a variable indicates that

the variable is a two-dimensional spatial vector and where

hr(i)hb(v - z)dz = hr(v) * hb(v) (2)

where "*" denotes a convolution, subject to the constraints

Kl = < ? v d v (3)

oo

= f s(v
K2 = s v . l - v d v (4)

K3 = E

As stated previously, w(v) is an arbitrary penalty func-

tion designed to influence the solution for h (v) so that

g(v) is duration limited. The more rapidly w (v) increases

with increasing v, the more rapidly g(v) will decrease with

increasing v. Thus by choosing w(v) , g (v) can be made arbitrarily

close to the desired impulse function. Similarly s (v) is an

arbitrary penalty function designed to duration limit h (v) .

Since any preprocessing will be performed digitally, N it is

desirable to duration limit h (v) so that truncation errors

are minimized.
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As a criterion for the degree of resolution improvement

provided by a particular h (v), the effective radius of the

scanner aperture is defined as

|v|2g2(v)dv
1
?

Rr , r
ĝ (v)dv

L —00

Without preprocessing, the effective radius of the scanner

aperture will be similarly defined as
00

(6)

} Iv|2h2(v)dv

dv

1
7

(7)

• - ' • - " ' ' / 7 g )
Lagrange multipliers and the methods of functional analysis ' '

will be used to solve Eq. 1 subject to the constraints of Eq. 3

to. 5. Eq. 1, 3, 4, and 5 may be combined into an augmented func-

tional, It which must be minimized with respect to h (v) ,
00 00 OO

I = j w(v)g2(v)dv + AjJ g2(v)dv + kA s(v)hr(v)dv

—oo
00

hr(G)hb(v - G)dudv
" ' ' " '

hr(5)hb(v - 5)di hr(G)hb(v - a
' ' —oo . •

s(u)6(u •- v)hr(v)hr(u)dudv

oo oo

] n(v - z)hr(2)d2J n(v - u)hr(u)dul (8)
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Eq. 8^ may be written in quadratic functional form as,

oo

| I a2(u,z)hr(z)hr(u)dzdu
— oo
oo

— oo
oo

a4(a,I)hr(5)hr(a)dzdG (9)

where a, (u,z) , a-(u,z), a (u,z) and a. (u,z) are linear opera-
. • * ' '

tors defined a

I wfvjhjjfv •- z)hb(v - u)dv (10)

hb(v - z)hb(v - u")dv (11)

(urz) «'a(S}6-(u.'- z) . (12)

(̂ »̂ ) = EJn(v - z)n(v - u) V (13)

a Wz " u>' for n(i) a
stationary ergodic random
process.

By taking the gradient of Eq. 9 with respect to h (•)
where the adjoint linear operators of Eq. 10 to 13 are

a1
l.(u,J) - Bî .z) (14)

-a-'p,*) -• ajû z) (15)
" £ * . . £ *
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f (u,z) = a(u,i) (16)

and

a4'(u,S) = a4(u,z") (17)

and setting the gradient equal to zero, a homogeneous Fredholm

integral equation of the second kind sometimes referred to as

a Fredholm integral equation of the third kind, is obtained as

. •

A3a4(v,z)]hr(z)d

+ A2s(v)hr(v) =0.

The solution of this equation coupled with the constraint

equations, Eq. 3, 4, and 5, would give the required point-

spread function of the preprocessing filter, h (v) . However,

because of the numerical difficulties which may arise in the

general solution of this type of equation and in order to more

conveniently use the results of the multispectral scanner system

analysis , the solution for h (v) will be formulated in the two-

dimensional spatial frequency domain.
(fl)Eq. 9 may be rewritten using inner product notation as

See Appendix A for derivation.
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Eq. 19 may also be written as a quadratic functional in the

spatial frequency domain as

(20)

where ., Hr (••) = 2F-{h_ (•) r and

denotes the Fourier transform

and B., B_, B_, and B. are the spatial frequency linear

operators which are the Fourier transforms of the spatial

domain linear operators a, , a~, a^, and a.. Thus

r°°r .2nfu ,2irvi
B-j^f?,^) = 1 ja^u, zje3 e3 dudz (21a)

which after substituting Eq. 10 into Eq. 21a may be simplified

to

(21b>

where Hb(<>

W(-) »

and H.*(») is the complex conjugate of H, (••).

The adjoint of B,(f,v), defined as B^' (f ,v] , may be written as

B1'(lrv) = Bj^-fv,!) (22a)
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which from Eq. 21b becomes

* HbR
H
b*^

W*(C - *)• <22b)

Similarly,

B2(f,v) = V(f)Hb(v)6(f - v) <23)

(24)

B3(f,v) = S(f - v) (25)

where S (•) = Ws (•) 1 i

B3'(f,v) = S*(v - f) (26)

B4(f,v) = *n*(v) <S(f - v) (27)

where * (•)nn

and B4V(f,v) = *nn(l)6(v - 1)

The gradient of the quadratic functional of Eq. 20 becomes

71 =

r (29a)

which, upon expanding the linear operator notation of Eq. 29a

becomes

2 See Appendix B for a complete derivation of these
spatial frequency linear operators.
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00

I
VI -

Hr(v)dv « 0. (29b)

Substituting Eq. 21b, 22b, 23 , 24, 25, 26, 27, and 28 into

Eq. 29b,

to

VI - j [ Hb*(f)Hb(v) |W(f - v) + W*(v - f)}

|s(f - v) + S*(v - f)|j Hr(v)dv

(f)] Hr(?)+ 2A3*nnf H - 0. (30)

Eq. 30 represents the general expression for the gradient

of Eq. 20 with respect to H (•), which, when combined with the

constraint equations, completely specifies the spatial frequency

spectrum of the preprocessing filter, the constraint equations,

Eq. 3, 4/ and 5, may be rewritten in the spatial frequency domain

a s - . ' . - . ' ' •

Kx = (B2Hr,Hr) (31a)

which after substituting Eq. 23 into 3 la becomes

J {V̂ K̂ r̂

o

J |Hb(f)|
2|Hr(f)|

2df, (31b)
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Hr)- ; (32a)

which after substituting Eq. 25 into 32a becomes . , ... ,

• . ,

fs(f - v)Hr(v)Hr*(f)dvdf,.. (32b)

and

K 3 - (B4Hr,Hr) . . . - . . - ' (33a)

which after substituting Eq. 27 into 33a becomes

K3

Before Eq. 30 can be reduced to a form more suitable for

the evaluation of the spatial frequency spectrum of the pre-

processing filter, the penalty functions w(v) and s(v) in

Eq. 1 and 4 respectively, must be further examined. Since

w(v) is designed to influence the solution of h. (v) so that

the composite imaging system point-spread function, g(v), is

duration limited, a possible choice for w(v) would be

oj(v) =1 for v,. •<_ v <_ v2

= °°, otherwise.

However, such a choice for w(v) would lead to analytical diffi-

culties in Eq. 30, since the Fourier transform of oj(v) does not
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exist. Thus the expression for w(v) must be chosen in such a

manner that it allows enough flexibility to arbitrarily control

the duration as well as the rate of decay of g(v) and, in addi-
(28)tion, to have a Fourier transform1 . Also, because of the form

of Eq. 1, w'(v) must be a positive valued function and also be

convex to insure the existence of a global minimum to Eq. 1.

One function for u>(v) which satisfies all the previous

requirements, written in terms of one variable, is

U)

for

2v - vl - V2

0 < c < 1

2k

+ c (34)

and k a positive integer, as shown in Figure 2. For convenience,

s(v) will also be described by the same type of function.

The following analysis is based upon a rectangular coordinate

system. Eq. 30 may be rewritten in terms of the x- and y- com-

ponents of f and v,

- V

fy '

2A (35)
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I+C

V, V

Figure 2 One-Dimensional Penalty Weighting Function
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For convenience in handling the analysis with respect to a

rectangular coordinate system, both u>(v) and s(v) will be
defined as the product of their x- and y- components, from
Eq. 34,

w (x)wr(y)x y
(36a)

2x - x
2k

wl

Xw2 " xwl

+ c '*y - ywi -
 y

yw2 ~ ywl

2k

+ c

where 0<c < 1
• - • . - X

0 < cy < 1

and for k and k positive integers,wx wy
Similarly,

(36b)

(36c)

sx(x)sy(y)

2x - xgl

Xs2 ~ xsl

(37a)

2k2y••- ysi - ys2r'3y|
yS2 - ysi

(37b)

where 0 < dv < 1
•• • • . .

(37c)
0 < dy •< -1

and for k and k positive integers.sx sy

Choosing k_ = 1 = k̂ ,̂ the Fourier transform of Eg. 36bwx
becomes
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w(fx,fy) - wx(fx)wy(fy) (38a)

where

(xw2 - xwl>

6«(f) - j
TT

(38b)

and

(fy)y y
1 2fy , +

t n f £ ) j vfJ,6 (f J - j
TT * TT

6.(f

+ Cyw2 (38c)

A similar expression results from taking the Fourier transform

of Eq. 37b,

sx(fx)sy(fy) (39a)

where

} (39b)
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and

S (f )yl y)

1

fv - y )2
Iys2 ysl'

+ j(y<.i + y~'^ SJ. S*

1 M m f f ^ 2(ysl + ys2)

2
 fi (fy) " j

IT y TT

J2 + fy ^ - y i)2 d Uff }>) wS2 ysl} y) ^ y} • (39c)

If it is assumed, as would usually be the case, that the penalty

functions, <o(x,y) and s(x,y), are centered about the origin,

then

Xwl =~Xw2 " Xu,

ywl ~~yw2 ~ yw

sl

"y*Bl *S2 *S '

Substituting Eq. 39d into 38b, 38c, 39b, and 39c,

":• 1 . • '

w

(39d)

(39e)

(39f)
rw

(39g)

s

(39h)
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Substituting Eq. 39e, 39fy 39g, 39h, 39a, and 38a into Eq. 35,

VI
8rr4x 2

w

'- 4ir x

3

3f

.4 2 2

[2A H
r ( fx' fy> <40a>

which, when expanded in terms of H (f , f ] , becomes. r x



- 22 -

B (fx'fy)]
> 4 H_(f ,f )r v •*' \wJ

x y

3f 3fx3fy

x' y
x y3f 3f 3f 3fx y

3f"x

32H ff ,frv x '

3f

2Aff ,:
3fx 3fy 3f

r(fx ,f J

3f

2AI
3f 3fx y

2Df f ,:
v V '

•x-V
3f 3f

f , , 3Vfx'M
'r.J .* ^T TT

3fx 3fy

32H. ff ,fb*- x' >

3f
"X

•»- E(f ,f )v x' yj

3H. (f ,i •' - H(fx , fy) 0 (40b)
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where

A(f f ) ~ x' (4Qc)
" '

8,4x2y 2
W ^W

, . x v
B(fx'fy) '• ., 4 I t y <40d>,8" xs

C(£x,fy) = 2A1|Hb(fx,fy)| * 2A3»nn(fx,fy) (40e)

w

(40h)

'40i'

'* Vxdy •

Thus Eq. 40 in conjunction with the constraint equations,

Eq. 31b, 32b, and 33b'r .specify the general form of the required

preprocessing filter spatial frequency transform.
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1. Separable Aperture

A large class of physically realizable apertures
may be modelled as separable apertures, where it is
assumed that

(43)

With the assumptions of Eq. 41 to 43, the solution of

Eq. 40 can be considerably simplified by use of the

method of separation of variables. Instead of substi-

stuting Eq. 41, 42, and 43 into Eq. 40 and separating

Eq. 40 into two differential equations, one a function

of f and the other a function of f , a somewhat more* . • ' . • • • • .. y • ' •
fundamental approach will be used.

Taking the inverse two-dimensional Fourier transform

of Eq. 41,

hb(x,y) = hbx(x)hby(y), (44)

Similarly, Eq. 42 and 43 become respectively,

(45)

and

hr(x,y) = hrx(x)hry(y). (46)
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Writing Eq. 1 in:terms of the two spatial dimensions,

oo

F * j L(x,y)g2(x,y)dxdy (47)
•:— eo

. , • *»

where from Eq. 2, , . . . . : . . .

g(x,y) = hr(x,y)**hb(x,y), (48)

Substituting Eq. 44 and 46 into 48 and using the

properties of two-dimensional convolution

g(x,y>.- |hrxCx)hry(y)]**[hbx(x)hby(y)]

where

gx(*)gy(y) (49a)

gx(x) = hrx
(x)*hbx(x) (49b)

gy(Y) •- h^CyJ^yty). (49c)

Substituting Eq. 36a and 49a int&Eq. 47,
00

F = a ) ( x ) g ( x ) d x ^ wy(y)gy(y)dy
— OO * • —00

- F F (50a)
• ** JT . ; .' • • '' • " . " ? ' .
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where Fv = f u (x)g
2(x)dx (50b)

X J X X

Fy = I ajy(y)gy(y)dy . (50c)

Substituting Eq. 49a into Eq. 3,
oo oo

K1-'J

— 00

>KlxKly (51a)

00

where K'IX = [ gx
2(x)dx (51b)

— 00

00

and Kly •» J gy
2(y)dy .

Substituting Eq. 37a and 46 into Eq. 4,

K2 ".. sx (x) hrx (x) dx sy (^ h (y) dy

(51c)

= K2xK2y (52a)

oo

where K2x = j sx(x)hrx2(x)dx (52b)

— 00 ' .

and K
2y

 = j Sy(y)hry2(y)dy ' (52c)

• —oo
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Substituting Eg. 42 and 43 :into Eq. 33b,,

K3:=

• K3xK3y ;,- --:
 (53a>

where K, - .# n v(f j | H- ( f - J | df
J^» I &HIJ* J* L J^ «* JV <

= J <53c>

where * mv(f ) is the power spectral density of the
l\l \ J* «v *t - . -

x-component noise in the processed image, and since
the noise is assumed to be a sample function from a
stationary ergodic random process,

K 3x= E { n Tx 2 ( x >}. <53d>

Similarly,
OO

' - (54a)

EJnTy
2(y)j (54b)

Thus, the problem of determining the optimum prepro-
cessing filter point-spread function, h (x,y), reduces
to finding the h (x) that will minimize Eq. 50b

••• «»
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subject to the constraints of Eq. 51b, 52b, and 53d,

and to finding the h (y) that will minimize Eq. 50c

subject to the constraints of Eq. 51c, 52c, and 54b.

The original two-dimensional preprocessing problem

reduces to two one-dimensional processes which have

similar equations. From the proceeding vector nota-

tional analysis used in Eq. 1 to 34 and Eq. 36 to 39,

the system of equations necessary to solve for h (x)
- • JT X

and hr (y) may be formulated.

To solve for h_ (x) , the augmented quadratic
* X •

functional of the form of Eq. 8 determined by Eq. 50b,

51b, 52b, and 53d becomes

CO

A2x Sx<x>hrx""ax + A3xE Kx2'*'},
— 00

which may be written as a quadratic functional in

the spatial frequency domain from Eq. 20 as,

(56)

where from Eq. 21b,

(57)
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from Eq.. 22b, ; ; • : . " - ' ; •; ;

Bix (fx'vx) -;̂ (>)̂ fx)ylvx.- fx) (58)

from Eq. 23 ,

B2x(fx'VJ =Hbx*(fJHbxK)6(fx- VJ (59)

from Eq. 24,

B2x(VV"%(vx^*^>'^x--fx) (60)

from Eq. 25,

:B3x.(fx'vx) = Sxffx -,>),' (61>

from Eq. 26,

B3x(fx'°x) * Sx*K * fj ^ (62)

from Eq. 27,

and from Eq. 28,

<64>
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The gradient of Eg. 56 may be written in the

form of Eg. 29a

VIx " (Blx + "ix.'Kx + Alx(B2x + B2x')Hrx

+ A2x(B3x + B3x'Kx + A3x(B4x + B4x'Kx '
 (65)

which may be expanded to the form of Eg. 30,
00 . •

VI = I \H, *(f )H, fv ) (w ff - v • ) ' - • + W *(v - f 1x J [_ bx v x} bxl x} \ xv x x-* x ^ x x/
"

A2x

2A3x*nnx(fx)]Hrx(fx) ' ° • <66'

Substituting Eg. 39e and 39g into Eg. 66, the following

differential eguation arises

0. (67

For derivation see Appendix C.
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From Eq. 31 and 51,

KIx

and from Eq. 32, 39g, and 52

K2x TH" (f JH f f . - jI rrx1 xj rrx1- x}

df (69a)'

where Hrx(fJ = H jH r ix(fx) (69b)

and where H ( f ) is tne real part and Hr.̂ v(fv,) ir r x x

the imaginary part of H (f ) .
£̂ «C 3t

Restating Eq. 53b,

rixv x j s

K3x x ' (53b)

Thus the simultaneous solution of the differential

equation Eq. 67, and the constraint equations,

Eq. 68, 69, and 53b, specify the form of the x-compon-

ent of the spatial frequency transform, or equivalently

For derivation see Appendix D.
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the point-spread function, of the preprocessing

filter.

In a similar manner it is possible to solve

for h (y) by forming an augmented.quadratic func-

tional of the form of Eq. 8 determined by Eq. 50c, 51c

52c, and 54b,

2 f 2J
v
 = "v̂ ŷ .. (y)dy + A1v g.. (y)dyy j y y iy j y

— 00 , _OB

s
y
(y)hry2(y)dy + A3 y

E n ( y )' (70)

By following an analogous procedure to that used for

determining h v(x) in Eq. 55-69, the equations which
jTX

specify 'h (y) may be formulated. Only the results

will be stated since the derivation of the equations

for.'h. (y) is identical in form to that given for

h (x) with the appropriate change in variables from
L Jt

x- to y- dependency.

The differential equation specifying the form

of H (f ) becomes,

„ (f

2 ["by* ̂ <Ct,3 - « « . * i y "by
y

0 9

0, (71)
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while the constraint equations become,

oo .

+ H". ff )H . ff ) df + d f |H ff )|2 df (73)riyV yj riy1 y'J y y J ' ry*- y; ' y
• • • - —oo

00 . •

and ' K '•« f $ ff )IH ff )I2 df . (54a)3y J nny*- yj ' ry*- yj ' y
— CO '

Thus the simultaneous solution of Eq. 71, 72, 73, and

54a will specify the y-component of the preprocessing

filter.

2. Radially Symmetric Aperture

Probably the most common type of aperture, because
of the physical ease in construction, is the radially

symmetric aperture. For this case it is assumed that

) (74)

rJ (75)

and Hr(fx,fy) = Hrr(fr) (76)

where f 2 + f 2 = f 2 (77)x y r
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The solution to Eg. 40 is analogous to the

solution for h (x) where all variables dependent
UH

upon x are replaced by corresponding variables

dependent upon r. From Eq. 36a,

(r)

2r " rwl " rw2

rw2 ~ rwl

2kwr

for kwr a positive integer and

r 2=x 2

(78a)

(78b)

From Eq. 37a,

•s(v-). s

2r - rsl - rs2

rs2 ' rsl

2ksr
(79)

for k a positive integer.
'

Choosing wr
ksr and

rwl = ~rw2 ~ rw (80)

rsl = -rs2 = rs'
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the Fourier transforms of.. Eq. 78a ;and 79 become

'•''' • •"'. : ." '" 1

w

1 ••«•*'. .-•<
To solve for h (r), the augmented quadratic

functional of the form of Eq. 8 which must be mini-

mized with respect to h (r) becomes,

wr(r)gr
2(r)dr + Alr gr

2(r)dr

A2r

+ A3r E n ( r ) (83)

By following an analogous procedure to that used

for determining h (x) in Eq. 55-69, the equations
JL X . -

which specify h (r) may be formulated. Again, only

the results will be stated since the derivation of

the equations for h (r) is identical in form to that

given for h (x) with the appropriate change in
2TX

variables.

The differential equation specifying the form

of H__(fr) becomes,
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n;r(fr) + —-——
r
2
 br

2
 r s—5- irr(f

A rA2rrw

V (f rKr (f r) "4' V{Alr ' "br ('gi I ̂ arW (f r ) }]'

8 —°

and

f *nnr (fr)lHrr^I' dfr 'K3r = | $ lfJlH__(fjr df. . (86)

— O9

„ ff

- 0 , (83)

while the constraint equations become,

(84,

dfr (85)

Thus the simultaneous solution of Eq. 83, 84, 85, and

86 will give the spatial frequency spectrum of the

required preprocessing filter.
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V. NUMERICAL SOLUTION TECHNIQUE FOR .PREPROCESSING; FILTER

Since the form of the differential equations specifying

the shape of h (x) , Eq. 67, h(y) , Eq. 71, and h (r) , Eq. 83,
iX *• Jr '

is the same, a single method of solution is applicable. In this

discussion specific reference will be made to the solution of

Eq. 67, 68, 69, and 53b for H (f ) . :
1TX X

Eq. 67 may be written in the form,

. f . . . . .,88,
, 2

s 2x wHK If x + x*>

Bf£ )

and

x s I ii (f 1 I 2., 2 j_ A x 2
w

It should be noted that H (f ) , A(f ) and B(f ) are complex.
2TX X X X

Defining

. - . . • ' - . - (90)

and ' . • - •'' • ' ' . . . . • . . - . . - • •

as the sum of real and imaginary components, then by substituting

Eq. 69b, 90, arid 91 into Eq. 87,

(92>
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or by collecting the real and imaginary components,

Hrrx( fx) + M fJHirx( fJ.- MfxKix(fx) + Br (fx

- Bi (f x) Hrix (f x) + * [Hrix (f x^ + Ai ̂  Hrrx

+ A ff ) H ' . ff ) + B. (f )H ff ) 4- B . ' f f )H . (f )]= o.r1- x; rix1- x.' i *• xj rrx*- x; r-^ x; rix1- x'J

(93)

Eq. 93 may be separated into two differential equations formed

by the real and imaginary components of Eq. 93 ,

Br

- °' ( 9 4>

and

Thus, the original complex second order differential equation,

Eq. 87, has been reduced to a system of second order differential

equations, Eq. 94, 95.

To make use of the many subprograms available for handling

systems of first order differential equations, Eq. 94 and 95 may

be reduced to a system of first-order differential equations

by introducing the variables,
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By substituting Eg.96 into 94 and 95, the following system of

first-order differential equations is formed. • -•••>•

Hi<f
x> ^vy , :";/.:,"."" .'

H2 (fx> = - Vfx> Hl(fx>. - W H2(fx> + .%<V: VV

+ A i ( fx j H 4 ( f x >

H 3 ( f x> - H 4 ( f x > / ;? •

H I / f \ TJ / f \ TT ff \ _ j\ If \ " I I If \ _ is: /'« \ II / f \A \1 J = — B. ti J H. ir ^ — A. \L i n~ \TL ) — rJ vl / n-j'tl )
ft ^^ T V 1 ' V T ^^ s ^f V ^^ ^ - V^ V̂ JL W J- V̂ J. Ŵ £• A, J_ . ̂ V •—* **

- A (f ) H.(f ) . (97)
JL A *l A.

After specifying initial conditions for H,(O), H_(O), H_(0)

and H.. (O) , H (f ) may be obtained as4 rx x

Hrx(fx) = H..(f ) + j H (f ) . (98)
JL ̂ W Jx JL xS. . -J •"-

In order to solve for H (f), the system of differential
JL *t yt

equations, Eq. 97, plus the constraint equations, Eq. 67, 69,

and 53b, must be solved simultaneously. The constraint equations

may be considered to be a system of non-linear equations where

the unknown parameters are A, , A2 , and A., . For a given value

of these parameters, Eq.97 may be used to determine H (f )

and the constraint equations checked to determine if they are

satisfied. If the constraint equations are not satisfied,

appropriate pertubations in A, , A^v' anc* ̂ 3x can ^e ma(^e an<^ a

new value of H (f ) computed. This procedure would be repeated
JL X X •

until the constraint equations are satisfied. A program for

solving a system of non-linear equations has been developed and

could be used for determining A, , A2 , and A~ .

Two possible problems which might prevent obtaining a solu-

tion for H (f ) using the procedure described above must be
i X X

considered. One problem would be the possibility of obtaining
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a solution which would represent a local minimum to Eq. 55 but

not necessarily the best solution which would represent a

global minimum. This problem should not arise because of the

choice of the functionals in Eq. 50b, 51b, 52b, and 53d. Since

all of these functionals are convex, a global minimum is assured* '

The second problem that could arise is related to the

solution of the system of differential equations, Eq. 97. Is

it possible for a given set of A, , A_ , and A3 that either no

solution or several solutions to,Eq. 97 exists? A theorem in

Section 7 of *26) states that as long as B.(f ), B. (f ) , A (f ),
.L .X J. J\. JL 3C

and A. (f ) are continuous functions, then for a given set of
•L ** - - .

initial conditions one and only one set of solutions exist.
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VI. CONCLUSIONS.

The proceeding analysis was based upon k = k = k = k = 1 ,
; wx, . wy . sx sy '

or for k = k = 1, as a convenience for formulating the equations
• Vr3T SIT . , ... . . - . . , - . , . . - . , , . » "

specifying the required preprocessing filter. The larger the

integer value of k or k , the greater the reduction in the ef fee-
• y* s • • _ • •• _ . . • -

tive scanner radius of the composite imagery system. However,

the size of the system of differential equations increases and

results in a system of 4k linear differential equations , where
TudX . . . . .

kmax is the Iar9est integer value of k^ k^, kgx, kgy, or

k . For example/ ifk = 3 , k = 2, k =k =1, then a system ofsr f ' wx ' wy ' sx sy ' 7

differential equations similar to equation 97 will result composed

of 12 simultaneous linear differential equations. However,

one of the major advantages of this proposed technique for image,

preprocessing is that it is sufficiently general to allow for

any integer value of k and k and thus allows the effectivew s
scanner radius of the composite imaging system to be arbitrarily

reduced, subject primarily to the noise constraint.

Although Equation 40 in conjunction with Equation 31b, 32b,

and 33b, specify the general form of the spatial frequency trans-

form of any preprocessing filter, it was shown that in the case

of a separable aperture or a radially symmetric aperture the solu-

tion can be considerable simplified. These two classes represent

the most common types of apertures used for data collection.

There exist many functions which are separable in the sense

that the function can be expressed as the product of its x- and

y- components. By appropriately choosing such a function, many

types of asymmetric apertures may be approximated as symmetric,

separable apertures. For example, by properly selecting the para-

meters of a two-dimensional Gaussian function, an elliptical aper-

ture of uniform density could be approximated. By using a two-

dimensional Gaussian function, it is also possible to approximate

a radially symmetric aperture as a separable aperture. The
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principal advantage for choosing a separable aperture is that

two-dimensional convolutions with such an aperture is equivalent

to two one-dimensional convolutions along each orthogonal axis.

Thus preprocessing time for a given data set can be significantly

reduced by using a separable aperture.

The preprocessing filter theory presented in this paper,

and in particular the filters described in Equations 67, 71, and

83, will be applied to the multispectral scanner data at LARS to

determine the best set of parameters for reducing the effective

scanner aperture and the effect of such a reduction on classifi-

cation accuracy.
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APPENDIX A - DERIVATION OF EQUATION 18

The gradient of Eq. 9 may be written as

= f Ta1 (u,. z) -t- a| (u, z) ] hr (z) dz

.j^ j [a2 (u, z) + a£ (u, z)] hr (z) dz
~oo

oo

A2 I [a3 (u, z) + a^ (u, z) ] hr (z) dz
' ~OO' ' ' •

00

f -
A3 'I .[a-4 .(u,. z), .+ aj (u, z) ] hr (z) dz . (Al)

Substituting Eq.- 12, 14, 15, 16, and 17 with Eq. Al,
oo

'. f . : ' . _ _ ' - . • ' ' _ _ • •
VI = I [a- (u, z) + A^ a2 (u, z) + A3 a^ (u, z)] hr (z) dz

•oo
oo

+ A2 I s(G) 6(u - z) Hr (z) dz
—oo

oo

(u, z) + A a (u, z) + A a (u, z)] h (z) dz

s(u) hr(u) = 0 . (A2)
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APPENDIX B - DERIVATION OF EQUATIONS 2Ib,

23, 25, and 27

Substituting Eq. 10 into 21a,

CO ... ' . : ' . • . • .-

w(v) h f a(v - z) hb(v - u) dv e"j2irfu
 e

j27rVz du dz. (Bl)

Introducing a change of variable in Eq'. Bl where

v - u = oi .' ; . . . - • .. - (B2)
CO

f f f ' o ^ / ™" — \ "'**
Bl ( ? '^ ) = 11] W(v^ hb (v ~ z ) hb (5) e D 2 7 r f ( v ~ a ) , eD 2 7 r V z dv

= Hb* (f) Jf w ( v ) hb(v - z) ij27r1^ ,ej2ir.^. dv dz

= Hb*(f) Hb(v) w(v) i - dv

= Hb*(f) Hb(v) W(f - v),

Following a similar development

(B3)

and introducing another change of variable in Eq. B3 where .

v - z = 6 (B4)
. . .' oo ' '• - ' • .

B 1 ( f , v ) = H b *( f ) U w ( v ) h b (6 )

B 2 ( f , v) = a 2 ( G , z) i e du dz (B6a)
— oo

which after substituting Eq. 11 into B6a becomes
O O . ' . - • : . ' '

B2(f,v) = [[[ hb(v - z).hb(v- Gj i
j27r?U ej2-vz dv du.dz . .(B6b)
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B2(f,v) = hb.(v - z) hb(a)

= Hb*(f) . hb(v - z)

Introducing the change of variable of Eq. B2 into B6b,
.

dv da dz

dv dz

and introducing the change of variable of Eq. B4 into B7,

B2(f,v) = Hb*(f) hb(3) dv d3

= .Hb*(f) Hb(v)

= Hb*(f) Hb(v) 6'(f -v).

dv

B . (f, V) =

Substituting Eq. 12 into B9,

du

, v) = s (u ) 6(u - z) i
— oo ••

s (z )

- j2Trlu j du dz

B 4 ( f , v) =

Substituting Eq. 13 into Bll,

oo . .

B 4 ( f , v) = R n n (z - u) i^

du dz.

du dz.

(B7)

(B8)

(B9)

.(BIO)

(Bll)

(B12)
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Introducing the change of. variable ,\ , • - •: - .: :

i - u. = a . ' (B13).

into Eq. B12,
O

u + a) - ~ . ,B4(f, v) = Rnn(a)

= *nn*(v) . eJ'"UVJ: Vl du

- v) . . (B14)
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APPENDIX C - DERIVATION OF EQUATION 67

Substituting Eq. 39e and 39g into Eq.- 66'-,

VI — 5 " ( f - v ) + c 6 ( f - v )
2 X X X X X

W

47T

2x I dir2v-
" (f '

s

d x 6 ( f x -" V
X X

4lT2X 2

8

6"

["Ix rx x ) = 0, (CD

or

VI
Hbx* ( fx>

2 T T 2 Xw

d2

dfxJ

2c Hrx (V

Hrx ( fxn

V2x d2

-=2— —2- H (f ) + 2d H (f )
' 2 #f 2 rx x- x rx x

s xO . Ai .

2A 3x H rx ( f x>
(C2)
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or,

VI
H bx* ( f x>

27T 2 X 2

W

tHbx" ( fx> H rx ( fx> 2 Hbx I ( fx }

Hbx ( fx} H x-rDX X iX

Hrx'£x' • •"• (C3)

VI
A2x

w 27T 2 X _,s

Hrx" ( fx>

H r x ' ( f x >

Hbx* ( fx> Hbx" (V
lx)|Hbx(fx)

2A3x *nnx ( fx> + 2dx Hrx ( fx> = ° ' (C4)

VI
x

H
"

2 x 2
Xs

2TT 2 X 2 Xw s
" (£x'

Hbx t ( fx' Hbx' ( fx'
H rx ' ( f x>

-[•bx*' fx> H bx" (fx' Alx' nnx x x

2lT2X 2

w

Hrx'V =° ' (C5)
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or in normalized form,

2Hbx*(fx> Hbx'(fx) xs2VI = H " (f ) + ———r-2 — — -— H ' (f )
x rx x' (f )I2 x 2 + \" x 2 rx x

irx;' s + A2xxw

[Hbx*(f> H " ( f ) x 2x b x x s

A2xXw2

Hrx(fx) = 0 . - (C6)
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APPENDIX D - DERIVATION OF EQUATION 69

From Eg. 32, 39g, and 52, . :

* V*> Hrx*<fx>-«rx<V
s —°°

oo

rx x rx x

uu

I I",

Hrix ( fx>

- HJix ( fx>

d £ x ' - ' • " • " • • ' - <D2)

From Eq. 69b,

Hrx (V -

a n d ' • ' • ' : ' . ' ' . • ' . .

Hrx* ( fx> ' H r rx ( f x> ' ^ • Hrix(V ' , (D4)

From Eq. D3 and D4,

Hrx (V Hrx* ( fx> - H
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Substituting Eq. D5 into D2,

1
K2x

4TT 2 X 2

s
«x ( fx j Hrrx ( fx> + Hrix ( fx} H r ix ( fx>} dfx

HJix ( fx> Hrrx ( fx> ~ HJtx:(fx> df.

OO

nH rx ( f x ' l dfx '
(D6)

Since h v(x) is assumed to be a real function, then3TX • • .

H" (f ) is an even function

and

H". (f ) is an odd function.
3T1X X

Thus, the second integral in Eq. D6 is zero, and

K
2x

4lT2X

w

^ I "rrx'V
s

df

df (D7)


