NERVA TURBOPUMP BEARING RETAINER FABRICATION
NON-METALLIC RETAINER

PROJECT 121
4 APRIL 1972

J. B. Accinelli

APPROVED:
E. R. Bair, Manager
Turbopump Department

CLASSIFICATION CATEGORY
UNCLASSIFIED
4-4-72
CLASSIFYING OFFICER DATE
TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 SUMMARY AND CONCLUSIONS

3.0 TECHNICAL DISCUSSION

 3.1 PROCUREMENT OF RAW MATERIALS

 3.2 RETAINER BILLET PROCUREMENT

 3.2.1 Billet Drawings

 3.2.2 Billet Fabrication Process

 3.2.3 Retainer Billet Testing

 3.3 RETAINER FABRICATION

 3.3.1 Drawings

 3.3.2 Tooling Requirements
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANSC Drawing 1138220</td>
</tr>
<tr>
<td>2</td>
<td>ANSC Drawing 1138288</td>
</tr>
<tr>
<td>3</td>
<td>Typical X-ray of Acceptable Bearing Retainer Test Ring</td>
</tr>
<tr>
<td>4</td>
<td>Typical X-ray of Bearing Retainer Test Ring. Shows Badly Wrinkled Laminations.</td>
</tr>
<tr>
<td>5</td>
<td>Sketch of Setup for Hoop Strength Tensile Tests on Bearing Retainer Test Ring</td>
</tr>
<tr>
<td>6</td>
<td>ANSC Drawing 1139961</td>
</tr>
<tr>
<td>7</td>
<td>ANSC Drawing 1139963</td>
</tr>
<tr>
<td>8</td>
<td>ANSC Drawing 1139964</td>
</tr>
<tr>
<td>9</td>
<td>ANSC Drawing 1138192</td>
</tr>
</tbody>
</table>
ABSTRACT

The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10^9 rads (C) prompted development of non-metallic reinforced polymers of the following types:

a. Polybenzimidazole
b. Polyimide
c. Polyquinoxaline

Retainers were machined from tubular laminates (billets) of the above polymers, including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this "prepreg" over a heated mandrel to form a tube with the required thickness and length.

The PBI/Graphite fabric laminates appeared to be the most desirable provided a repeatable hoop strength of greater than 15,000 psi could be achieved.

Additional process development effort will be required with the PBI/Graphite fabric reinforced material to obtain higher and repeatable hoop strength.
1.0 INTRODUCTION

This report constitutes an addendum to Section 4.4.0, "Bearing Retainer Materials, Design and Testing", Reference 1. The purpose here is to document the status of the fabrication process primarily with the polybenzimidazole (PBI) polymer reinforced with graphite and glass cloth. Also discussed is the polyquinoxaline polymer reinforced with high strength graphite filament. The principal problems appear to be associated with the definition and classification of pertinent polymer quality, polymer preimpregnation process of the reinforcing material, and the fabrication process of the raw tubular laminate (billet) from which bearing retainers are machined.

2.0 SUMMARY AND CONCLUSIONS

a. The need for a non-galling, lightweight, structurally strong bearing retainer having a radiation resistance to 10^9 rads (C) required the use of a non-metallic reinforced polymer material of the polyimide type.

b. Three polymers fit the desired requirements, Polybenzimidazole, Polyimide, and Polyquinoxaline, each reinforced with graphite cloth, graphite filament or glass cloth.

c. Retainers are machined from tubular laminates (billets) of the reinforced polymer. The process starts with hot preimpregnation of the cloth or filament with the polymer followed by wrapping the "prepreg" to a tubular configuration on a heated mandrel to the required wall thickness and tube length.
2.0 (Continued)

d. Billet (laminated tube) quality is determined by hoop tension tests and x-ray inspection of test rings machined from each end of the cured billet. A hoop strength of 15000 psi appears to be the minimum acceptable. PBI/graphite cloth laminates have been in this range and three PQ/graphite filament laminates (PQ/MODMOR I) were in the range from 21000 to 44000 psi. The highest strength is obtained with the glass cloth reinforcing (> 50000 psi).

e. Gamma radiation dose to 4×10^9 Rads (C) did not affect hoop strength of these reinforced polymer laminates.

f. Considerable process development effort is required with the PBI/graphite reinforced material to obtain higher and repeatable hoop strength. The problems seems to be associated with classification of polymer quality, the preimpregnation process of the reinforcing material, and the procedure for wrapping the laminate tube.

3.0 TECHNICAL DISCUSSION

3.1 PROCUREMENT OF RAW MATERIALS

The most promising retainer materials to meet the requirements of radiation resistance to gamma dose of 10^9 rads (C), high structural strength and lightweight were the polybenzimidazole (PBI), and the polyquinoxaline (PQ) polymers reinforced with glass fabric, graphite fabric or high strength graphite filaments. These polymers are produced and sold by the Whittaker Corp. of San Diego, California. The Type S994 Style 181 glass fabric is available from the J. P. Stevens Co. (glass yarn from Owens-Corning), the WCL (harness weave) graphite fabric from Union Carbide Corporation and the high...
Of the three materials of interest, the most promising material system is the PBI/Graphite Fabric System. The graphite laminate, although structurally weaker, has several advantages over the glass fabric laminate as follows:

- Light Weight
- Good Thermal Conduction
- Non-abrasive

The polyquinoxaline/graphite filament (PQ/Modmor I) system also has these advantages and additionally appears to be structurally stronger. The disadvantages are that this resin is still experimental and thus considerably more costly ($1000/lb versus $150/lb) and appears to be more brittle than the graphite fabric laminate. At this time, it appears that the primary effort should be concentrated on the development of a process for optimizing the structural strength of the PBI/Graphite fabric laminate.
3.2 RETAINER BILLET PROCUREMENT

The bearing retainers are machined from tubular billets fabricated by laminating layers of polymer and reinforcing material under heat and pressure. Billet tube wall thickness is determined by the final retainer thickness with allowance for machining of the I.D. and O.D. to cut away undesirable porous material. Billet tube length is generally not more than 8 inches although better control of material is achieved if billet is not more than 6 inches. After due consideration of the background technical experience, general cooperative attitude, and understanding of final product requirements, the San Rafael Plastics Company of San Rafael, California was chosen to fabricate the PBI/glass cloth and PBI/graphite cloth billets and the final bearing retainers from each. Because of the experimental nature of the polymer, the PQ/Modmor I billets were fabricated by the Whittaker Corp. Three experimental billets were made using a slightly different processing procedure for each resulting in average hoop strength of 21400, 31600 and 36300 psi, respectively. Details of the processes are not known at this time and no additional billets were ordered pending evaluation of the three on hand. The final retainers from these Whittaker PQ/Modmor I billets were machined by the San Rafael Plastics Co. of San Rafael, California.

3.2.1 Billet Drawings

To obtain some degree of quality control and consistency in the fabrication process, two drawings were issued showing dimensions of retainer blanks and test blanks (rings) to be machined from the billet tube. ANSC Drawing 1138220 was set up for the PBI/glass and PBI/graphite billets and ANSC Drawing 1138288 was for the PQ/Modmor I billets. These drawings are
shown in Figures 1 and 2. General and specific notes on each drawing indicate material specifications, general process method, curing, inspection and acceptance criteria. For the PQ/Modmor I material, process and material specifications were requested rather than specified since this experimental material was unknown with respect to optimum process and some material specifications.

3.2.2 Billet Fabrication Process

San Rafael Plastics Co. (SRPCo) was contracted to fabricate the PBI/glass and PBI/graphite retainers. In the early effort with 50mm ball and roller bearing retainers, SRPCo procured the polymer (PBI) preimpregnated reinforcing material (called "prepreg"), glass or graphite cloth, from Whittaker Corp. Some of the PBI/graphite retainers produced were of good or acceptable quality as judged by hoop strength values (about 15000 psi) on test rings from the billet tubes, while others, for no apparent reason, were low in strength (as low as 2000 psi). The PBI/glass retainer also had hoop strength variations but were well above minimum values. It was felt that the PBI/glass billets could be repeatedly processed to acceptable quality while the PBI/graphite billets could not. However, since the PBI polymer is not a very good lubricant and the glass fabric reinforcement presents a metal wear problem because of its abrasive characteristics, the structurally very strong PBI/glass cloth was considered a secondary retainer candidate. In discussions with SRPCo, it was revealed that the lack of consistency in quality with the PBI/graphite laminate was probably associated with the quality of the "prepreg" of the PBI/graphite system which, in turn, could be affected by the quality of the polymer.
A decision was made to concentrate effort on fabricating at least 20 PBI/graphite billets (100 retainers) and testing each billet for hoop strength in an effort to develop a repeatable process to produce billets having hoop strength above 15000 psi and to simultaneously identify and define the desirable polymer characteristics. Whittaker was not enthusiastic about making the necessary PBI/graphite "prepreg" to SRPCo purchase specifications, and SRPCo and Whittaker agreed to an arrangement whereby Whittaker would sell the required quantity of PBI polymer and lease or sell their "prepreg" machine to SRPCo. SRPCo would now have the full responsibility of making the "prepreg", the billets, and the retainers.

In the purchase order to Whittaker Corp. for the PBI polymer, SRPCo asked for melting temperature, viscosity, volatile loss and carbon assay, but was able to get only melting point, volatiles and mesh (particle size). Because the polymer is not in regular production, Whittaker made the required 35 lbs in their research laboratory. The polymer was produced in seven lots of approximately 5 lbs each and each lot was checked only for the properties listed in Table II.
SRPCo checked the melting point of each of the seven samples by running small samples of each lot (simultaneously) through progressive series of oven-maintained temperature steps of half hour duration with intermediate weighings. The lowest test temperature (initial) was at 250°F (121°C) and progressed in 25-30°F increments to 510°F (266°C). Only two batches melted fully and two not at all. Others had only portions melted. Not all discolored the same. The two that melted, did so quickly at 250°F. Others did so at 350°F or 375°F. These melting points were considerably different than those reported by Whittaker and shown in Table II. Discussions with Whittaker indicated that the SRPCo melting process was "staging" the resins so severely in the half hour at 250°F (presumably a high, sub-melting range) causing the reaction to proceed so far that it never would melt. Therefore, Whittaker suggested a simultaneous exposure of all samples to 375°F. SRPCo did this and found that all but 2 resins melted in 6 minutes, and they melted almost completely in 20 minutes. Weight losses were 3.4 to 4.7%.

<table>
<thead>
<tr>
<th>LOT NO.</th>
<th>MELTING POINT, °C</th>
<th>VOLATILES, %</th>
<th>MESH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4338-1</td>
<td>105-118</td>
<td>26.0</td>
<td>100</td>
</tr>
<tr>
<td>4338-II</td>
<td>99-123</td>
<td>26.2</td>
<td>100</td>
</tr>
<tr>
<td>4338-III</td>
<td>95-118</td>
<td>25.6</td>
<td>100</td>
</tr>
<tr>
<td>4338-IV</td>
<td>97-120</td>
<td>25.3</td>
<td>100</td>
</tr>
<tr>
<td>4338-V</td>
<td>98-120</td>
<td>26.6</td>
<td>100</td>
</tr>
<tr>
<td>4338-VI</td>
<td>100-124</td>
<td>25.6</td>
<td>100</td>
</tr>
<tr>
<td>4338-VII</td>
<td>102-118</td>
<td>27.0</td>
<td>100</td>
</tr>
</tbody>
</table>
When these results were reported to Whittaker, they felt that with a good apparatus, SRPCo would get a true melt of all resins at the temperatures reported by Whittaker and that the melt condition proved the ability of the resin to make a good prepreg. SRPCo felt it proved they could not keep the resin soft enough and long enough to make the parts as Whittaker itself had originally recommended: namely, to heat prepreg to 300-350°F forward of nip and keep soft and above 300°F all during wrap and pressure application which had to be within 2 hours of wrap. Whittaker felt the resin lots were normally uniform; SRPCo thought they were demonstrably non-uniform and do not consider that making a well-fused, calendared prepreg is an adequate demonstration that the resin is usable. Whittaker felt the IR (infrared) curves all to be normal, and SRPCo are quite certain Whittaker's melt point data was accurate (low number was first sign of softening; high number was full melt). SRPCo felt 2 and 3 of the resins exhibited the behavior we had seen in 2 previous lots of resin and the successful prepregs. SRPCo decided to prepare to test the 7 lots in a Thiele-Dennis tube in a batch preset to 265° to 270°F, which is higher than each of Whittaker's reported fully melt points, (but still well below the 375°F demonstrated-but-of-no-practical-use). SRPCo acquired the Thiele-Dennis tube apparatus and tested all lots at 280°F. The following comments quoted below were reported by SRPCo regarding the test results in the Thiele-Dennis tube apparatus:
"From all the testing done to date, it is quite apparent that this "melting point" test is misleading in the extreme. All the resins seem to "melt" more or less near the top temperature reported by Whittaker, but with widely different viscosities and with vastly different times to soften (3 seconds to 15 seconds) and vastly different period of continued softness at temperature (4 minutes to 34 minutes at 380°F). The lab test we originally requested, (but Whittaker was unable to provide) the temperature at which a resin would reach a certain viscosity, would have rated these lots in a meaningful practical way. An additional or alternate test of hardening time at 325°F would have provided another meaningful practical test since our "frozen" manufacturing process involves about 20 minutes of holding at 300°-320°F while wrapping and pressurization is complete.

Although we feel we can "prepreg" this material in the sense of calendaring the properly metered amount of resin into the cloth, and fusing it there, we can already see there is insufficient "life" in 4-5 of the 7 resin lots to fabricate in our usual way, especially when this "life" is further reduced by the heat input of the hot-melt prepreg system. This input can be minimized in time by using a 350°-375°F temperature followed by pressure, but the reaction rate is so rapid at this temperature that the "prepreg" of 4 lots is almost certain to require different fabrication approaches if there is any chance of getting good billets from it.
In summary: Resin lots do seem to reflect only "state of the art" variations which will recur unless resin supplier can be brought to produce under new and hither to undeveloped inspection test criteria, such as gel time, viscosity index, stepped oven cycles or the like. Whittaker's criterion of whether you can "prepreg" resin is inadequate for our actual fabrication process.

It does seem that the stepped oven cycle SRPCo originally used provides a practical rating means that all the subsequent tests support, to the extent they actually distinguish between the resins. Nevertheless, the resins can be said to "melt" in a fairly uniform temperature range (variations appearing in the melted condition rather than the temperature of melt). There is no apparent basis for rejecting any of these questionable lots, and some to believe that they might work well with changed fabrication.

Suggestions: We think prepreg should be produced from at least the "juiciest" (quite fluid) lot and from a "medium-dry" (quite dry) lot. These should be evaluated as prepregs by some simple lap shear test, and visually, and then committed to the basic or some modification of the basic billet wrapping and curing process, and finally machining into test rings. This leaves at least one "juicy" lot and 2 medium and 2 dry lots to be handled as then seems best: curing during wrap, increasing wrap heat or pressure, blending lots, or wrapping and curing directly "in-line" with prepregging are all options which might save the resins."
In following-up on their suggestion to evaluate in a simple lap shear test prepregs made from the "quite fluid" and "quite dry" resin lot, SRPCo reported the following results and quoted comments:

<table>
<thead>
<tr>
<th>LAP SHEAR STRENGTH</th>
<th>Lot VI (Quite Fluid)</th>
<th>Lot V (Quite Dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>323 psi Ave.</td>
<td>408 psi Ave.</td>
</tr>
</tbody>
</table>

"We think it premature to presume the differences relate solely to resin differences, since there were many and broad fabrication variables: we could prepreg VI much more easily than V. Nevertheless, we conclude:

(1) Both resins are, in fact, true resins worthy of investigation.

(2) Original anxiety about prepreg technique requiring wide modification because melting of "dry" resins is not distinct, is justified and constitutes a major problem.

(3) As already indicated and shown to you, we do not believe the value reported by Whittaker is actually a liquids temperature.

At present, then, we feel the problems remain as before, but we now have definite reason to pursue the dry resins in a separate manner from the wet resins. This is because prepreg technique is quite different and end properties might be quite different, but primarily because the fabrication "working life" of each prepreg will definitely demand large changes in our billet fabrication approach if the heat input to the prepreg is to be uniformly controlled."
Based on the above findings and SRPCo conclusions, it was decided that SRPCo attack the problem as follows:

a. Select second lowest melting resin lot and prepare WCL graphite cloth prepreg for a single billet.

b. Fabricate billet per best process from prepreg prepared in item a. above and provide hoop strength results.

c. Select third highest melting resin lot and prepare prepreg WCL graphite cloth for a single billet.

d. Fabricate billet per best process from prepreg prepared in item c. above and provide hoop strength results.

e. Prepare fabrication plan for all remaining billets with necessary process adjustments to provide for individual resin lot characteristics and submit for approval by ANSC Engineering and Quality Assurance.

f. Upon ANSC Engineering and QA approval, complete fabrication of billets and testing in accordance with ANSC P. O. No. 1364, Change 1.
Before the above plan could be implemented, termination of the NERVA Engine Program at ANSC resulted in cancellation of all effort under P. O. 1364-01. It is believed that the development work outlined would have resulted in PBI/graphite retainer billets of significantly improved quality, as well as identification of the effect of resin characteristics on prepregging and billet fabrication.

3.2.3 Retainer Billet Testing

Billet quality presently has been determined by testing blanks from each end of the billet tubes after machining to remove porous materials from ends, I.D. and O.D. the test blanks are first inspected by x-ray to reveal delaminations, cracks, porosity, inclusions, and waviness (wrinkling) of laminations. ANSC Drawing 1138220 gives applicable acceptance criteria for these discrepancies. Figure 3 shows a print of a typical x-ray of an acceptable PBI/graphite test ring. For reference, a print of an x-ray of test ring showing badly wrinkled laminations is shown in Figure 4.

Hoop strength tensile tests on test rings are performed on tensile machine at 0.1 inches/min. cross-head speed until ring is ruptured. The test ring holding fixture consists of two half cylinders which fit the ID of the test ring. The sketch in Figure 5 shows the set up for the hoop strength tensile tests.
Typical room temperature hoop strength tensile test values for the various materials for which retainers were fabricated are shown in Table III below:

TABLE III

SUMMARY OF HOOP STRENGTH RESULTS FROM TEST BLANKS (RINGS) FROM THREE RETAINER MATERIALS

<table>
<thead>
<tr>
<th>HOOP STRENGTH VALUES, KSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETAINER MATERIAL</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>PBI/Glass</td>
</tr>
<tr>
<td>PBI/Graphite</td>
</tr>
<tr>
<td>PQ/Modmor I</td>
</tr>
</tbody>
</table>

*Only samples of this material tested both non-irradiated and irradiated.

It is encouraging to note that in all cases exposure to gamma radiation in the range to 4.9 x 10^9 Rad (C) increased the hoop strength. The PBI/Graphite material has shown the lowest strength value, well below the minimum acceptable. However, the low values of the PBI/graphite test rings are from early processing attempts. Since this early experience, the lower end of the hoop strength range has been increased to about 12 ksi and it is believed additional development of the type outlined will bring the minimum value well above the 15 ksi now specified.
3.3 RETAINER FABRICATION

3.3.1 Drawings

The final 65mm ball bearing retainer configurations are fabricated in accordance with ANSC Drawings 1139961, 1139963, and 1139964 (Figures 6, 7, and 8). Early 65mm ball bearing retainers were fabricated per ANSC Drawing 1138192 (Figure 9). Drawings 1139961, 1139963 and 1139964 are primarily updated versions of Drawing 1138192 with additional configurations, including application of MoS₂ dry film lubricant, if desired.

3.3.2 Tooling Requirements

The retainers are machined using a conventional machine lathe and are made from the retainer blanks of Drawings 1138220-1 (PBI/Glass), -2 (PBI/Graphite), and 1138288-1 (PQ/Modmor I). The ball pockets are bored on a milling machine using a hardened steel machining fixture. The steel fixture holds the machined retainer blank firmly and provides proper indexing of the pockets.

REFERENCES

A supplier of blanks shall randomly sample the lot and provide evidence of Dry Resin Solids Content Analysis on "prepreg" prior to fabrication of billets. A report shall be furnished with each billet.

All blanks shall be post cured in a free position after parting from billet and prior to final machining at 607°F for 30 hours. A minimum cooling rate shall be 1°F per hour above 300°F. At no stage in the processing shall these parts be exposed to air at temperatures in excess of 550°F. No more than 8 blanks of -1 or -2 shall be cut from one billet.

All blanks shall be post cured in a free position.

Assign a lot number to each billet. Maintain traceability as to location of all blanks.

Surface roughness should be noted.

Visually inspect parts using 8X magnification. The following acceptance criteria is applicable:

A. No cracks allowed, a crack is defined as a break across a ply of fabric.

B. No delaminations allowed, a delamination is defined as a discontinuity in the resin phase lying between adjacent plies which is at least 25 long and essentially free of resin.

C. There shall be no continuous porosity or protruding fibers 0.004 in. in length along the ply. Observed bubbles shall not exceed 0.05 in. in a radial plane nor shall any bubble exceed 0.025 in. when measured diagnostically. Porosity is defined as an inclusion of bubbles in the resin phase.

D. No voids allowed, a void is defined as any bubble which exceeds 0.025 in. in diameter.

Radiographic inspect using Eastman X film equivalent and no screens. The X shall not exceed 0.05 in. thickness to be located on axes of ring at distance of 60 inches. Sensitivity in viewing area to be 30 to 50 nueter and diffused. The following acceptance criteria is applicable:

A. Inclusions of high density indications - 2.00 maximum per part allowed.

B. Inclusions of low density indications - 0.50 maximum per part allowed.

C. Wrinkles or waves of a width in excess of three reinforcement layers and a circumferential distance of less than 20° shall be cause for rejection. A minimum of 55 of reinforcement layers shall be continuous.

11. Record all other discontinuities per record only.
12. Cleanliness per AGS-150-350 levels.
13. Package per fabrication order instructions.

FIGURE 1
1. Document the following:
 a. File TYPE
 b. Identification of base material and specification
 c. Physical and chemical properties
 d. Resin
 e. Specific gravity
 f. Resin solid content
 g. Filler content
 h. Cell size and temperature
 i. Resin identification number
 j. Prepare filament
 k. Resin content
 l. Volume content
 m. Flow

2. Infrared polarization test report

3. Photograph

4. Cure cycle

5. Density

6. Perform all tests and observations (I) shall be cut from one billet. For test purposes, a test blank shall be made from each end blank. Design a lot number to each billet. Assign control numbers to blanks from end of billet.

7. Mark per illustration using "0008-005008" and applicable control number and when manufactured outside of airbus-geneva corp., the manufacturer's lot identification number, fabricated or heri-proofed with "0002" assigned decimal numbers and repair lot number.

8. Surface roughness (2.5 unless otherwise noted).

9. Visually inspect parts using X-ray specification. The following acceptance criteria is applicable:
 a. No cracks allowed. A crack is defined as a break across a ply of filament.
 b. No delaminations allowed. A delamination is defined as a discontinuity in the resin phase lying between adjacent filaments and essentially free of resin. No more than 5 areas of up to 2.5 sq. in. in two areas in the billet plane.
 c. No holes allowed. A hole is defined as any feature which exceeds .02 in diameter.

10. Radiographic test for information only. Use estimate a film on equipment and no screen. The RX shall not exceed 0.5 target to be located on axes of ring at distance of 60 inches,
 a. Inclusions of high density indications - .050 maximum and 3 max/min per part allowed.
 b. Inclusions of low density indications - .050 maximum and 3 max/min per part allowed.
 c. Unlacquered or unexposed at 0.125 max/min and 3 max/min per part allowed.

11. Record all other discontinuities for record only.

12. Package per fabrication order instructions.

13. General material specifications:
 - Document the following:
 a. File Type
 b. Identification of base material and specification
 c. Physical and chemical properties
 d. Resin
 e. Specific gravity
 f. Resin solid content
 g. Filler content
 h. Cell size and temperature
 i. Resin identification number
 j. Prepare filament
 k. Resin content
 l. Volume content
 m. Flow

14. Infrared polarization test report

15. Photograph

16. Cure cycle

17. Density

18. Perform all tests and observations (I) shall be cut from one billet. For test purposes, a test blank shall be made from each end blank. Design a lot number to each billet. Assign control numbers to blanks from end of billet.

19. Mark per illustration using "0008-005008" and applicable control number and when manufactured outside of airbus-geneva corp., the manufacturer's lot identification number, fabricated or heri-proofed with "0002" assigned decimal numbers and repair lot number.

20. Surface roughness (2.5 unless otherwise noted).

21. Visually inspect parts using X-ray specification. The following acceptance criteria is applicable:
 a. No cracks allowed. A crack is defined as a break across a ply of filament.
 b. No delaminations allowed. A delamination is defined as a discontinuity in the resin phase lying between adjacent filaments and essentially free of resin. No more than 5 areas of up to 2.5 sq. in. in two areas in the billet plane.
 c. No holes allowed. A hole is defined as any feature which exceeds .02 in diameter.

22. Radiographic test for information only. Use estimate a film on equipment and no screen. The RX shall not exceed 0.5 target to be located on axes of ring at distance of 60 inches,
 a. Inclusions of high density indications - .050 maximum and 3 max/min per part allowed.
 b. Inclusions of low density indications - .050 maximum and 3 max/min per part allowed.
 c. Unlacquered or unexposed at 0.125 max/min and 3 max/min per part allowed.

23. Record all other discontinuities for record only.

24. Package per fabrication order instructions.

FIGURE 2
Figure 3. Typical X-ray of acceptable bearing retainer test ring. PBI/Graphite
Figure 4. Typical X-ray of bearing retainer test ring. Shows badly wrinkled laminations.
FIGURE 5 - SET-UP FOR HOOP STRENGTH TENSILE TESTS ON BEARING RETAINER TEST RING.
1. Interpret drawings per MIL-D-1060 Form B and usage ESAF.
2. Remove all laps and sharp edges equivalent to .080 in.
3. Unless otherwise noted.
4. Surface treatments: (a) unless otherwise noted.
5. Visual defects for laps using AS identification, no cracks or delaminations allowed as defined in J-1339A-60.
6. May be acceptable for laps using "YIP-31-50" and applicable data number and when manufactured outside of Aircraft-Gen Corp, the manufacturer's data identification number, preceding or name prefixed with "MK" shall be shown serial number.
7. Cleanliness per class B-31-3-2500 level 2.
8. Package per fabrication level inspections, includes protective coating.

10. Radiographic inspection using EASTMAN 6 film or equivalent and no screens. The KV shall not exceed 55. Distance to film in 2D with surface located on axis of ring. Density in reading area to be 2.0 to 2.5. Register and reexamine acceptance criteria No delamination or cracking as judged on JD-1339A-60.
11. Where required by parts list salt. Coat all areas of required per the following procedures:
 1. Prior to spraying the part, the operator shall establish the distance from nozzle to work by spraying a sheet of bond paper. Adjust distance from nozzle to panel so that the resin arrives still wet on the surface without running off or splattering. Distance shall not be greater than 10 feet.
 2. Adequate mixing of spray should be made to assure that resin arrives partially cured. The distance limits as established by spraying the parts shall be used when spraying the part.
 3. Spray parts and allow to air dry for 10 (ten) minutes.
 4. Polish by hand with soft cloth and applying light, weight of hand, pressure.
 5. Remove any soft cloth (ECM) fibers with clean dry 65% isopropanol.
 6. Spray parts with a second coat of luminous and allow to air dry for 30 (thirty) minutes.
 7. Repeat (4) and (5) above.
 8. After 1000°F (AA) bake, visually inspect using AS identification for complete coating continuity.
 9. Any surface discontinuities as evidenced by the absence of a gloss in a localized site extending across any one direction of the part shall be cause for rejection. Repeatable to repeat B thru F.