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DETERMINATION OF HYDROGEN IN MILLIGRAM QUANTITIES

OF TITANIUM AND ITS ALLOYS

by Dumas A. Otterson and Robert J. Smith

Lewis Research Center

SUMMARY -

An accurate, versatile, and sensitive method for the determination of hydrogen in
milligram-size titanium samples is presented. It involves extraction of hydrogen at
1070 K while a mercury diffusion pump transfers the evolved gases into the inlet of a
mass spectrometer. All the evolved gases may then be positively identified and deter-
mined. This method can be readily adapted for use with other metals and alloys and for
the study of the slow evolution of hydrogen. Reduction of interferences due to the evolu-
tion of hydrogen by reactions involving vapors such as those of water, acteone, and
vacuum grease is discussed.

INTRODUCTION

In our study of the tensile properties of the titanium (Ti) - hydrogen system, an ac-
curate method for the determination of hydrogen in Ti was needed. Also desirable was
sensitivity to nanogram quantities of hydrogen.

Many methods are available for the determination of hydrogen in metals. Guldner
indicates that the most satisfactory method involves hot extraction of hydrogen with the
sample being added to the extraction system through a vacuum lock (ref. 1). The
National Bureau of Standards (NBS) used hot extraction at 1670 K to establish the certi-
fied values for hydrogen in Ti (ref. 2). Generally, a McLeod gage is used to measure
the extracted hydrogen. Even though this measurement can be accurate in the nanogram
range for pure gases, the problems associated with the separation of gases in this range
are not known at this time. Aspinal (ref. 3) avoids these problems by using a mass
spectrometer to determine the gases evolved during vacuum fusion. However, there
appears to be little discussion of the interfering reactions which liberate hydrogen in the
nanogram range in the presence of reactive metals such as Ti.



This report describes a hot-extraction method which utilizes a mass spectrometer
to determine the extracted hydrogen. The hydrogen is extracted from small samples
(milligram quantities) at 1070 K by using a mercury diffusion pump to maintain a low
pressure over the specimen during extraction and to help define the volume of the ex-
tracted gases in the mass spectrometer. Because of the desired accuracy, the effect of
hydrogen pressure on the volume so defined is studied and reported. This extraction
temperature is lower than those usually used. It results in the formation of less extra-
neous hydrogen than higher temperatures.

This reduced interference also contributes to the success of this method for small
samples. Greater control of the interferences is required for these small samples than
for the much larger samples which are often used in other methods. This control was
developed and tested by using the method to measure the hydrogen found when using
hydrogen-free Ti «0.5 ppm hydrogen). The substances which react with Ti to yield
nanogram amounts of hydrogen are also discussed. The discussion may well aid in the
improvement of other methods for the determination of hydrogen in other reactive metals
as well as in Ti. Moreover, improved control of the interferences is needed to achieve
higher precision in the determination of the ratio of hydrogen isotopes; this control is
readily obtained by this method.

The accuracy of the method was evaluated by determining the hydrogen in Ti NBS
Standard Reference Material 354. Statistical data from our results using thin slices of
this material are compared with those reported for this material in reference 2.

EXPERIMENT

Sample Preparation

One should note that the dimensions of the individual pieces of the sample and its
cleanliness are of utmost importance in this method for the determination of hydrogen
in Ti.

In order to extract the hydrogen quantitatively from Ti in 1/4 hour at 1070 K, at
least one dimension of each piece of the sample should not be much greater than 0.25

' millimeter. If all the dimensions are significantly larger, the specimen may be cut so
that it has a dimension near this size, or a longer extraction period may be used. The
•NBS Standard Reference Material 354 was supplied in the form of pieces with
1-centimeter sides and a 1.4-millimeter thickness (ref. 2). Thin slices were removed
from these pieces by cutting them perpendicular to the large surface with a water-cooled
diamond cutoff wheel. Samples slices to thicknesses between 0.4 and 0.7 millimeter
were analyzed. They weighed between 14 and 28 milligrams. The 0.25-millimeter



wires which were analyzed by us generally weighed about 1 milligram.
Water and organic contaminants were removed from the surface by rinsing with suit-

able solvents. If solvents other than chloroform were used, the sample was subsequently
rinsed twice with reagent grade chloroform. The final chloroform rinse was made im-
mediately prior to the analysis in order to prevent any other organic contaminant from
accompanying the sample into the desorption chamber.

Apparatus

The apparatus consists of a desorption chamber, a manifold, a cold trap, a three-
stage mercury diffusion pump, and a mass spectrometer; these items are joined to-
gether, in the sequence listed, to form a unified vacuum system. Figure 1 is a sche-
matic drawing of the apparatus up to the inlet of the mass spectrometer. Borosilicate
glass is used throughout except for the desorption chamber; this is made from quartz.

The desorption chamber is 15 centimeters long; it has a closed bottom and an inner
joint (standard taper J, 19/38) at the top to connect it with the manifold. The
5-centimeter length nearest the closed end of the extraction chamber has a reduced
diameter (4 mm). Only this part of the desorption chamber is heated. The Ti sample is
held in a gold thimble in the lower part of this chamber during the desorption of hydro-
gen. The gold thimble is closed at its lower end. It has a small enough diameter to
slide into the 4-millimeter section of the quartz tube, but is 6 centimeters long so as to
extend into the unheated part of the desorption chamber. A hook at its open end facili-
tates its removal from the desorption chamber.

An external movable tube furnace, 10 centimeters long, is used to heat the
4-millimeter section of the desorption chamber containing the Ti sample. This furnace
is thermostatically controlled. Heat shields are located between the heated portion of the
desorption chamber and its connecting tapered joint. A stream of air is also used to
help keep the joint near room temperature.

The manifold consists of two standard-taper outer joints (19/38 and 24/40) and three
vacuum stopcocks. The manifold facilitates venting, evacuation, and changing of sam-
ples. It is attached to the cold trap by means of the 24/40 standard-taper joint. This
joint permits direct access to the center part of the cold trap when cleaning is required.
The trap is cooled with liquid nitrogen. Several strips of copper rest on the bottom of
the cold trap and extend up the center part to a point slightly above the highest level of
the liquid nitrogen. This use of the copper is intended to minimize any temperature ef-
fects due to changes in the liquid-nitrogen level.

o
The three-stage mercury diffusion pump has a pumping speed of about 60x10 cubic
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centimeters per second after a forepressure of 10 torr (0.13 N/m ) is reached. Its



rated attainable vacuum is 10 torr (1.3xlO"6 N/m2).
Any mass spectrometer which is designed to do simple gas analysis should be suit-

able for this work. We used a Consolidated Electrodynamics Corporation model 621
spectrometer and were able to achieve 1 percent precision in the determination of hydro-
gen by careful maintenance of the mass spectrometer and by determining its response to
known amounts of hydrogen each day it is used.

The vacuum system is carefully cleaned. All surfaces which are rinsed with ace-
tone or other solvents are subsequently rinsed with chloroform. Only a small amount of
vacuum grease (Spectrovac Stopcock Grease, Type 2) is used in the joint of the desorp-
tion chamber. Any grease that extends beyond the areas of contact of the joint is re-
moved with chloroform.

Calibration of Apparent Volume of Hydrogen

In this apparatus, the hydrogen which is desorbed from the specimen is pumped into
the inlet system of the mass spectrometer by the diffusion pump. Obviously, this hydro-
gen occupies a volume larger than that of the inlet system. The volume of hydrogen also
includes that part of the vacuum system between the inlet of the mass spectrometer and
the pumping interface of the diffusion pump. The apparent volume is determined by use
of Boyle's law because of the difficulty in locating precisely the pumping interface, which
is one of the boundaries of this volume. ' *

The pressure of hydrogen in the known volume of the inlet of the mass spectrometer
is measured before and after expanding to the pumping interface of the diffusion pump.
From these data the apparent volume is readily calculated. By varying the initial pres-
sure, the effect of pressure (after expansion) on the apparent volume is obtained.

Analytical Method

The desorption system was conditioned and tested every day before it was used for
the determination of hydrogen in Ti. To condition the system, the narrow end of the de-
sorption chamber containing the gold thimble and hydrogen-free Ti was heated to 1070 K.
The gases obtained during the first 5 or 10 minutes are discarded. After that, the hy-
drogen collected in 15 minutes is determined. Collections are repeated until a constant
value is obtained; two collections are usually sufficient. This system is considered to
be suitable for use if the amount of hydrogen (the blank) collected is small compared
with the amount expected in the analysis. When the blank is too large, it can be reduced
to as little as 10 nanograms of hydrogen by careful cleaning of the extraction chamber.



Generally, this can be accomplished by removal of extraneous vacuum grease with
chloroform. Occasionally metal deposits should be removed either by rinsing with dilute
hydrofluoric acid or by heating the chamber to 1070 K while exposed to air.

When the desorption chamber is suitably conditioned, the furnace is moved away,
and both it and the desorption chamber are cooled. The chamber is opened without al-
lowing air to enter the cold trap, and the quartz tube is removed from the rest of the
system. Excess vacuum grease is wiped from its open end with lens tissue. A small
funnel is inserted into the quartz tube without contaminating it with grease by sliding it
through a cylinder made of clean weighing paper that is inserted in the open end of the
desorption tube. The gold thimble is removed from the desorption chamber by being
pulled through the funnel. The analyzed sample is dumped out of the gold thimble, and
the next sample to be analyzed is dipped in chloroform, dried in air, and added to the
gold thimble. The thimble and its contents are then added to the extraction chamber
through the funnel. Only grease-free surfaces are permitted to touch the gold thimble
or the sample after it has been rinsed with chloroform. The desorption chamber is re-
assembled, and most of the air is removed by an auxiliary pumping system. The de-
sorption chamber is then evacuated through the mass spectrometer pumping system.
The small end of the quartz tube is heated to 570 K and evacuated for at least 5 minutes.
The collection of gases is started. The temperature is increased to 1070 K. After
15 minutes, both the desorption chamber and the analytical system of the mass spec-
trometer are sealed off from the rest of the system. The gases in the tubing between the
desorption chamber and the analytical system of the mass spectrometer are discarded.
The pressure of the hydrogen in the analytical system is determined mass spectrometri-
cally, and this hydrogen is then discarded. The amount of hydrogen desorbed is calcu-
lated from the gas laws by using the pressure so determined and the apparent volume of
hydrogen. The hydrogen desorbed in the next 15 minutes is determined in the same
manner. Collections and analyses are repeated until the amount found is the same as
that obtained from hydrogen-free Ti. Generally, this level is reached by the second
collection with 0.25-millimeter-diameter Ti wire specimens. With thicker samples,
more time is required for quantitative hydrogen desorption.

RESULTS

Table I contains data obtained in the analysis of nine thin slices of NBS Standard
Reference Material 354. Presented in this table are the thicknesss of the slices, their
weight, and the hydrogen content as determined by this method corrected for the blank.
The corrections amounted to 2 or 3 ppm hydrogen, and in these cases, the blanks are
equal to the amount of hydrogen obtained when consecutive collections were low and con-



stant. Such blanks generally equal those obtained when hydrogen-free Ti (less than
0. 5 ppm hydrogen) samples are analyzed. The statistical analysis data are presented in
table I in the same form as that used to evaluate the results for the certification of
the NBS samples (ref. 2). Virtually all the hydrogen was extracted from these speci-
mens in 45 minutes.

Figure 2 shows how the change in hydrogen pressure affects the apparent volume of
the hydrogen (i.e., the volume of the expansion volume of the mass spectrometer, its
inlet system, and that portion of the desorption system to the pumping interface of the
diffusion pump). The pressures studied cover the pressure range that can be used in the

o

mass spectrometer. At 0.01 torr (1. 33 N/m ) of hydrogen, the apparent volume is
about 1328 square centimeters. Between 0.046 and 0.400 torr (6.1 and 53 N/m ), the
volume varies between 1344 and 1348 cubic centimeters.

Figure 3 shows typical data obtained from 0.25-millimeter-diameter Ti wires
(7700 ppm hydrogen) that had been charged with hydrogen electrolytically. Each data
point shows the amount of hydrogen which was desorbed from the specimen in 15 minutes
as the temperature was raised from that of the previous data point to the temperature

,indicated. The specimen was at the indicated temperature for about three-fourths of the
collection period. These data are plotted as the logarithm of the number of nanograms
of the hydrogen as a function of the temperature. The amount collected at 300 and 570 K
and the second collection at 1070 K was the same as the blank for those temperatures.
Hence, the maximum amount that could have desorbed is equal to the uncertainty of the
blank. The actual amount of hydrogen that would be expected to desorb at the two lower
temperatures might be estimated by extrapolation from the data points at 670 and 770 K
(short-dash line in fig. 3). The values obtained in this manner for 300 and 570 K are far
less than the uncertainty of the measurement.

The data above 570 K show that hydrogen desorption is first detected at 670 K. Most
of it is desorbed at 870 K. Some is still desorbed at 970 and 1070 K. However, the
amount desorbed in the second collection at 1070 K is negligibly small.

VALIDITY OF METHOD

The results presented in table I for NBS Standard Reference Material 354 show that
the method is essentially as accurate as and has as good precision as the method used to
establish the certified value of the hydrogen content. The average value obtained by our
method from the nine slices which were cut from three pieces was 216 ppm hydrogen.
The standard deviation for these results is 4.9 ppm, and the coefficient of variation is
2.3 percent. The 95-percent confidence level for our method is 216±4 ppm. The certi-
fied value for this standard sample is 215±6 ppm hydrogen with a 95-percent confidence
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level of 214.9±5.2 ppm (ref. 2). These values are based on results obtained from six
laboratories that reported standard deviations as great as 5.9 ppm and as low as 3 ppm
and coefficients of variation ranging between 2.9 and 1.4 percent. Our average value is
slightly greater than the certified value, which was obtained by desorption at tempera-
tures ranging from 1620 to 2170 K; this indicates that the lower desorption temperature
is adequate for the desorption of hydrogen from 15- to 30-milligram samples. Our •
standard deviation and coefficient of variation are within the range of those samples used
to establish the certified value. Hence, the method presented in this report can be said
to be essentially as accurate and precise for these small slices as the method used to
certify the much larger NBS specimens.

However, the precision and accuracy may not be as good for the milligram samples
of the tensile specimens that were of interest to us. This can readily be seen when one
notes that a variation in the blank of 4 to 6 nanograms of hydrogen corresponds to an
error of 4 to 6 ppm for milligram samples but not over 0.6 ppm for a 10-milligram
sample.

DISCUSS ION OF METHOD

<.
This method for the determination of hydrogen in Ti has several unusual featues.

The sample should be thin and may weigh as little as 1 milligram, the extraction tem-
perature is only 1070 K, and a mercury diffusion pump is used to help contain the gases
during the determination of hydrogen.

The thinness of the specimen permits the extraction of hydrogen to be carried out in
a reasonably short time at 1070 K. Thus, gold may be used to hold the Ti at 1070 K in-
stead of graphite or molybdenum, which is generally used. Gold does not react with in-
terfering agents, and only a little treatment is required to eliminate adsorbed substances
which may interfere. The daily conditioning for the desorption system is most likely
required because of the water which is adsorbed on the quartz and glass in the desorp-
tion chamber. Studies have shown that water is apparently adsorbed only on the quartz
and glass in the desorption chamber and that water is apparently adsorbed on the quartz
only at sites which contain chemisorbed hydroxyl groups. These sites can be removed
by heating. If the chamber is heated above 670 K, rehydration does not readily occur
(ref. 4). The high blanks that were observed occasionally when the desorption chamber
was not conditioned by being heated to 1070 K probably resulted from rehydration of the
quartz by water which desorbed from the unheated parts of the desorption chamber.

Our use of the mercury diffusion pump removes the gases as they are formed in the
extraction chamber. Hydrogen extraction is faster, and smaller amounts of other gases
remain in the extraction chamber to react with Ti to liberate hydrogen. Some of these



improvements will be discussed in more detail in the section Desorption of Hydrogen
From Titanium.

Volume Variation With Hydrogen Pressure

The data of figure 2 show that the apparent volume of hydrogen does vary a little
with its pressure, so we must infer that the pumping interface of the diffusion pump is
affected by the pressure. This inference is in accord with Alexander's data (ref. 5).
His data show that the pumping interface (the layer in which the pressure increases from
that of the pump inlet to that of its exit) moves toward the gas exit of the pump as the
.pressure decreases. Our data indicate that in general the error is small enough to be
ignored in the present work. Between 0.05 and 0.400 torr (6.5 and 53 N/m ) of hydro-
gen the variation is less than 5 cubic centimeters in a volume greater than 1300 cubic
centimeters. Thus, the error due to this source is less than 0. 5 percent. Below 0.05
torr (6.5 N/m ), the volume decreases by about 20 cubic centimeters, or less than
2 percent. If this error cannot be tolerated, a correction can readily be made for this
decrease in apparent volume. Inasmuch as mercury diffusion pumps are often not as
effective with hydrogen as with heavier gases (ref. 5, p. 195), one should find less
variation in the apparent volume of other gases because of differences in their pressure.

Desorption of Hydrogen From Titanium

In this work, desorption can be considered to be quantitative when the hydrogen con-
tent is reduced to about 1 ppm. In addition, no other reaction should occur that could
either add an appreciable amount of hydrogen to that extracted from the specimen or
remove an appreciable amount of hydrogen.

Desorption temperature. - The contention that hydrogen can be quantitatively ex-
tracted from small specimens at 1070 K is supported by calculations of hydrogen solu-
bility and by much experimental evidence .

The solubility of hydrogen in Ti under the conditions of this determination can be
estimated by using the following equation

log i n— = -- 0.285 for SI units10

or
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Iog10 _A_ = fJdfii - 0.723 for the units of reference 6

P

where S is the solubility in ppm, p is the hydrogen pressure, and T is the absolute
—8temperature. Inasmuch as the attainable vacuum of the diffusion pump is 10 torr

(1.3X10"6 N/m2), the hydrogen pressure should not be over 10"6 torr (1.3xiO~4 N/m2)
at the end of the collection. Hence, the amount of hydrogen in Ti at 1070 K should not be
over 0.5 ppm when the desorption stops.

The data of figure 3 indicate temperatures which may be used to remove interfering
substances as well as to achieve quantitative extraction of hydrogen. From the figure we
note that Ti can be heated to 570 K for almost 15 minutes without measurable loss of hy-

drogen. This fact permits us to heat the specimen prior to the collection of desorbed
hydrogen so as to remove as much as possible other adsorbed substances that might in-

terfere . Indeed, our subsequent experience shows that this preheating of the desorption
system permits us to open the desorption chamber prior to the determination of hydrogen

in each specimen without the loss of much time. Thus, analyses can be carried out as
the samples are prepared rather than only when a number are ready to be analyzed.

The fact that virtually no hydrogen is desorbed in the second collection at 1070 K
(see fig. 3) indicates that hydrogen can be quantitatively desorbed from electrolytically
charged Ti samples in 15 minutes at 1070 K in our system. This is confirmed upon
examination of the results obtained from over 50 electrolytically charged specimens
(some with and some without thermal homogenization). That is, over 99 percent of the

extractable hydrogen is found to be in the first 15-minute collection, in which the tem-
perature is raised to and kept at 1070 K. A small error in the blank could account for
most of the cases in which this is not so. In addition, data obtained with NBS specimens

also indicate that virtually all the hydrogen can be extracted at 1070 K in a relatively
short time. However, these specimens are larger, so more than 15 minutes are re-
quired for quantitative desorption.

Effect of sample dimensions. - The need for longer desorption times by larger

specimens is consistent with the work of Albrecht and Mallett (ref. 6), who found that
the rate of hydrogen desorption from Ti was affected by specimen size and the presence

of oxide films. In the present work, the dependence of time needed for complete de-
sorption is observed with 0.25-, 0.50-, and 1.25-millimeter-diameter wires and with

NBS samples. As noted in the previous section, over 99 percent of the hydrogen is de-

sorbed from most of the smallest specimens during the first desorption period at 1070 K.

The 0.50-millimeter Ti specimen requires 30 minutes and the 1.25-millimeter Ti speci-
men 45 minutes for extraction of 99 percent of the hydrogen.

Complete extraction is generally accomplished in 45 minutes with slices of the NBS
pieces ranging in thickness from about 0.40 to 0.78 millimeter. Extraction from un-



sliced specimens (14 mm thick) which were sandpapered to remove the dark surface
layer also appears to be complete in 45 minutes. However, for these unsliced pieces no
result is over 209 ppm. These apparently low results might be due to either incomplete
desorption or loss of hydrogen-rich material when the dark surface layer was removed
If the dark surface layer is not removed from this type of sample, hydrogen extraction
is still incomplete after 2 hours. Presumably this layer acts as a barrier (ref. 6). In
view of the difficulties and the limited amount of work with the large specimens, we can
not recommend this method for specimens without at least one dimension that is less
than 0,7 millimeter.

Interfering Reactions

Many substances can react with hydrogen to cause low results. One example of such
a substance which might be added to the system under normal circumstances is a Ti
film. The evaporation of Ti must be avoided because freshly formed Ti films can absorb
hydrogen even at room temperature (ref. 7). One reason to select as low an extraction
temperature as practical is to minimize Ti evaporation. The gold thimble is longer than
the heated portion of the desorption chamber so that, if Ti does evaporate, it will not
contact hot quartz. A black film has been formed several times during the development
of the method. This film yields high blanks in ensuing work. Presumably hydrogen is
absorbed when the film is formed and is slowly lost later.

It is difficult to exclude all the substances that yield hydrogen under these condi-
tions. Not all are known, and water, the best known of these substances, is almost
omnipresent. A good example of a substance that is not generally known to yield hydro-
gen under these conditions is acetone. Our experience shows that acetone can cause
high blanks. Yet acetone has been recommended as a degreasing agent for Ti specimens
prior to the determination of hydrogen (ref. 4). We believe that the large samples which
are analyzed by this method yield so much hydrogen that any error due to acetone would
not readily be observed.

In our work, high blanks were noted when acetone was detected in the mass spec-
trometer . They were obtained when only acetone had been used to clean the specimen or
the vacuum system near the extraction chamber. These problems were avoided by using
chloroform as a final rinse for the glassware and the specimens.

Other organic compounds also yield hydrogen by a reaction with hot Ti. High blanks
may be caused by such varied things as vapors from vacuum grease and lint from paper
towels. Large blanks are noted when certain vacuum greases are used in the joint and
the stopcocks nearest the desorption chamber, when the joint becomes warm, and when
any of the greases moves into the vacuum system from the area of contact between the
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inner and outer portion of the joint. Low blanks are generally attained by keeping the
temperature of the joint as low as possible by the use of heat shields and a stream of
cool air and by the use of Spectrovac Stopcock Grease, Type 2. When paper towels or
lens tissues that could lose fibers easily are used to clean the joint, high blanks may
occasionally be observed. When microscope slide lens tissue is used, this type of blank
is not noted.

The reaction between water and Ti to produce hydrogen is well known. Low- and
constant-hydrogen blanks can be attained only by the proper control of the water in the
vacuum system. Water from the walls of the vacuum system and from the cold trap can
contribute to the hydrogen blank. The conditions that yield a negligibly small contribu-
tion from the quartz were established in an early modification of this method (ref. 8).
They are

(1) Heating as little of the quartz as possible
(2) Heating the same amount of quartz during each analysis
(3) Daily heating of the quartz to 1070 K while the system is evacuated prior to doing

any analysis
(4) Evacuating and heating the desorption chamber and its contents to 570 K for

5 minutes after the introduction of a sample
(5) Preventing direct contact between Ti and hot quartz by use of a gold thimble
Several observations show that water from the cold trap contributes to the blank.

First, the blank is much greater if a dry ice (195 K) bath is used in the cold trap instead
of liquid nitrogen (78 K). Second, the magnitude of the blank increases as the level of
liquid nitrogen drops. Third, if a lot of air passes through the cold trap, ensuing blanks
are high. To achieve low and constant blanks, several things may be done. After the
sample is added to the desorption chamber, most of the air should be removed by a
pumping system which bypasses the liquid-nitrogen-cooled cold trap. Fluctuations in the
blank due to changes in the level of liquid nitrogen can be controlled by the use of strips
of a nonreactive metal such as copper. These strips are placed in the center of the cold
trap. They extend from the bottom to a point slightly above the highest possible level of
the liquid nitrogen. Thus, water is trapped on a surface that is always close to 78 K
rather than on the walls, whose temperature increases as the level of the liquid nitrogen
drops.

Application of Method to Other Systems

The general method and special techniques described in this report are applicable to
the determination of hydrogen and/or deuterium in many materials. These include
metals, alloys, and even nonmetallic solids. For some systems, modification may be

11



needed to achieve accurate results. To show that the method does yield accurate re-
sults, one merely needs to demonstrate that the extraction of hydrogen is quantitative
under the conditions (temperature, pressure, etc.) used for the material being analyzed.
Temperatures up to the softening point of quartz (about 1450 K) may be used if the inter-
fering reactions are controlled. Data such as those presented in figure 2 (hydrogen loss
as a function of temperature) are a great aid in establishing the proper conditions for
quantitative extraction. Knowledge of the diffusion constants and solubility of hydrogen
in the material involved are helpful but not essential. Of course, the accuracy of the
method should be evaluated by using it to analyze similar materials of known hydrogen
content if at all possible.

Experience at the Lewis Research Center shows that our method or a modification
of it can be used to determine deuterium or hydrogen in palladium (Pd) (refs. 9 and 10),
Pd-silver (Ag) alloys, titanium - 8-percent-aluminum - 1-per cent-molybdenum -
1-percent-vanadium (Ti-8Al-lMo-lV) alloy, niobium (Nb), and X-irradiated hypophos-
phites. In some cases, specific properties of the system require modifications of the
method. For instance, Pd with 7000 ppm hydrogen tends to lose hydrogen even at room
temperature. Thus, Pd specimens must be stored in liquid nitrogen, and the evacuation
of air from the extraction chamber prior to gas collection should be done in as short a
period of time as possible. Fortunately, enough air can be removed in a few minutes for
our purpose inasmuch as complete removal of all components is not required. Palla-
dium does not react with any component of the air to yield hydrogen at its extraction
temperature (570 K) (ref. 10). In contrast, the Ti alloy and Nb behave more like Ti in
their extraction and reactivity characteristics. Our tests show that the method requires
no modification for these materials.

Hydrogen-producing reactions that occur at room temperature or below may also be
studied. For example, we have found that amalgamated Al can react with water near
liquid-nitrogen temperatures. About 4 nanograms of hydrogen is liberated in 15 minutes
from an Al surface of which less than 12 square centimeters appears to be amalgamated.
Prior to amalgamation none was detected. Experience also shows that the Hydrogen can
be extracted from X-irradiated granules of hypophosphites in about 8 hours at room tem-
perature . Elevated temperatures cannot be used because of the chemical instability of
the salts.

Furthermore, one should note that this use of the mass spectrometer permits the
simultaneous determination of several gases, even inert ones, that can be extracted
from a solid by a modification of the method. Indeed, the method is especially suitable
for the determination of hydrogen-deuterium ratios. We have applied the method to de-
termining hydrogen contamination of deuterated Pd (ref. 9) and Ti. In the latter case,
careful attention to the control of interfering agents is required to prevent high results
for the degree of hydrogen contamination.
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SUMMARY OF RESULTS

An accurate and sensitive method for the determination of hydrogen in milligram
quantities of titanium is presented. The method involves the extraction of hydrogen at
1070 K while it is pumped into a mass spectrometer, where virtually all extracted gases
can be positively identified and determined. A mercury diffusion pump is used not only
to maintain a low pressure in the extraction chamber but also to help confine the extrac-
ted gases.

The versatility and sensitivity of the method and this equipment are indicated by
several observations. First, the method is applicable to virtually any metal-hydrogen
system with suitable properties. Second, it may be used to determine any other gas
that can be extracted. The method produces reliable results in studies of the hydrogen
contamination of deuterated palladium (NASA TN D-4970) and titanium. Third, very
slow reactions that produce hydrogen can be detected and studied.

The small size of the sample (1 to 30 mg) used in this method permits an accurate
and fairly rapid analysis when the amount of specimen is severely limited. An obvious
application is the study of the distribution of hydrogen in metals.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 30, 1973,
502-01.
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TABLE I. - HYDROGEN FOUND BY METHOD OF THIS

REPORT IN NBS STANDARD REFERENCE

MATERIAL 354

[Certified hydrogen content, 215±6 ppm. ]

Thickness,
mm

0.77
.44
.46
.41
.42
.48
.45
.48
.46

Weight,
mg

26.8
16.2
17.5
13.9
14.5
16.1
17.8
16.8
16.1

Hydrogen content,
ppm
(a)

218
214
218
214
211
223
225
213
210

*Mean = x = 216.

Value which is accepted as being correct = x = 215.

Standard deviation = S = =4 .9 .
n - 1

Coefficient of variation (percent) = -x 100 = —x 100 = 2.3.
x 216

Accuracy = x ~ x x 100 = 0.5 percent.
x

95 Percent confidence limit = x± 2'306 S = 216±4.
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Figure L - Schematic drawing of desorption chamber and pumping system.
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