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ABSTRACT

Radioisotope measurement techniques and neutron acti-
vation analysis are evaluated for use in identifying and
locating contamination sources in space environment simu-
lation chambers. Methods considered include radioactive
tagging of contaminants, charged particle range variation
and stable isotope tagging. Of the several methods studied,
only the alpha particle range technique offers mass measure-
ment sensitivity capable of competing with the quartz
microbalance presently in use. Although unable to identify
specific contaminants, the alpha range method allows the
determination of total contaminant concentration in vapor
state and condensate state with calculated sensitivities
of 1.9 x 1013 g/cm3 to 1.9 x 10~10 g/cm2 respectively.
These values are applicable to clean dry air or to chamber
air contaminated in any manner. A Cf-252 neutron acti-
vation analysis system for detecting oils and greases
tagged with stable elements is described. While neutron
activation analysis of tagged contaminants offers specificity,
an on-site system would be extremely costly to implement
($520,000 plus) and would provide only marginal detection
sensitivity under even the most favorable conditions. Off-
site reactor neutron activation analysis of tagged samples
would provide adequate measurement sensitivity at moderate
cost but difficulties associated with sample retention
during chamber repressurization would seriously limit the
effectiveness of this approach. Also, a delay of from
one to two days would be required between sample acquisition
and availability of analytical results.
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1.0 INTRODUCTION

The objective of this study was to determine the

feasibility of several nuclear analytical techniques for

the identification and measurement of very small quantities

of contaminants in space environment simulation chambers at

NASA Manned Spacecraft Center. This project was carried

out in two phases; Phase I being directed toward the use

of radioactive isotope techniques while Phase II was con-

cerned with the use of activation analysis. The merits of

a given technique are evaluated on the basis of measurement

sensitivity, ability to identify specific contaminants,

speed of analysis, suitability for real-time operation

either in-chamber or on-site near the chamber, radiological

safety and cost of implementation. In Phase I, many

potential methods were initially considered without regards

for their radiological safety acceptability. Those which

indicated an acceptable sensitivity capability were then

evaluated for radiological safety and design feasibility.

Section 2.0 of this report covers studies of radioisotope

techniques while Section 3.0 reports results of the acti-

vation analysis studies.



2.0 RADIOISOTOPE TECHNIQUES

2.1 SUMMARY OF PRESENT METHODS SENSITIVITIES

A consensus of the reliable sensitivities for some of

the various devices currently in use were not readily avail-

able. From information on tests run (Apollo Telescope Mount

series), a lower detection limit for the Contamination

_Q *j

Control Units (CCU) system would appear to be 1 x 10 g/cm

(Ref. B-l), while average contamination levels during these

— 7 2tests were on the order of 1 x 10 g/cm (Ref. J-l). The

Quartz Crystal Microbalance (QCM) System was quoted as

-9
having a minimum detectable limit of 10 grams (Ref. A-5).

It was decided that any system developed must see at least

this level and preferrably, have a sensitivity less than

- 9 2
10 g/cm .

2.2 TAGGING OF OILS WITH CARBON-14

For purposes of this calculation it was assumed that

-8
7 x 10 % (Ref. C-14) of the oil molecules could be tagged

with one Carbon-14 atom through an isotope exchange process.

The oil so tagged would then be used in its normal function

and the atmosphere of the chamber monitored for any increase

in background activity. Of the detection systems considered,
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high pressure gas detectors, scintillation detectors, and

solid state detectors; two specific detectors were chosen

for incorporation into the study because of their sensitivity

to low energy-beta emitters and suitability with regard to

chamber environmental conditions:

A. An avalanche detector, placed one meter from a
one-meter diameter LN2 cooled plate.

B. A one-meter diameter, radiantly-cooled, solid
plastic scintillator.

The sensitivity determination for each type of detector is
as follows:

A. Avalanche Detector Analysis

A windowless and an aluminized mylar windowed
detector were considered. Assuming that 100
counts per minute above background are necessary
for detection and that through suitable pulse
height discrimination the background can be made
less than 50 cpm, then the necessary activity of the
deposited oil on the plate is:

A = 100/(G • E), where E is the efficiency of the
detector and G is the geometry factor of the system.

G = 0.5 (1 - Cos 9 = sin2(9/2) (Ref. C-10), where 8
is the solid angle between detector and source, 0 =
26.5°, thus G = 0.0528.

The efficiency of the detector is dependent on the
number of particles penetrating both the detector
dead layer and the window. Carbon-14 has a 156 keV
beta particle and one can use the range energy re-
lationship to estimate the percentage of particles
reaching the detector-sensitive volume. Assuming
an average 5 micron dead layer and a 0.00025 inch
aluminized mylar window, the resulting efficiences
are: with the window, E = .72 and without the
window, E = .97. Assumptions made in the analysis



were a negligible dead time correction, absence of
radiation particles scattered by nearby structural
materials, and negligible absorption by the resi-
dual gas atmosphere in the chamber over the one
meter distance. This latter assumption would be
invalid during the initial pump down and final
warmup stages.

Therefore, with window, A = 2.63 x 10 dpm and with-
out window, A = 1.95 x 10 dpm.

To obtain the number of detectable atoms of Carbon-
14, one uses N = A/\, where X, 3.83 x 10~12 sec"1,
is the decay constant for Carbon-14. This results
in N = 1.14 x 1013 with window and N = 8.49 x 1012

without window, where Nsis in atoms of Carbon-14.

But, since a 7 x 10~°% tag has already been assumed,
this leads to N = 1.63 x 1022 oil molecules, with
a detector window and N = 1.21 x 1022 oil molecules,
without a detector window.

By assuming an oil molecular weight of 484 (DC 704)
and the area of a one-meter diameter plate, the
following sensitivities result: M = 1.67 x 10
g/cm2 with window and M = 1.24 x 10~3 g/cm with-
out window.

B. Plastic Scintillator Analysis

Since this analysis allows the oil to deposit dir-
ectly on the scintillator, neither a dead layer
nor a window is appropriate. The geometry factor
would then be one-half and the efficiency would be
one, thus, A = 100/ (G - E) = 100/.5 = 200 dpm.

It is important that the background be minimized
when counting at these low levels and techniques of
cooling the preamplifier and utilization of coinci-
dence circuitry are considered adequate enough to
lower the background to 50 cpm. Thus following the
preceding development, N = A/\ = 8.69 x 10 tagged
molecules of oil, which leads to M = 1.27 x 10
g/cm as a detectable limit.



2.3 TAGGING OF OILS WITH TRITIUM

The tritium tagging analysis parallels that of Carbon-

14. It is again assumed that 7 x 10-8% of the oil molecules

are tagged with one tritium atom per molecule and the same

two detection systems are considered.

A. Avalanche Detector Analysis

The development is the same as for Carbon-14. The
only difference is the reduced efficiency due to
the lower energy beta particles emitted. For the
detector with window, E = 0.067 and without win-
dow, E = 0.617.

This results in A = 2.83 x 104 dpm with detector
window and A = 3.07 x 10 dpm without window.

Using a X for tritium of 1.07 x 10~7 min"1, the
number of molecules of oil, N, for a window is 3.78
x 1020 and that with no window is 4.10 x 1019.
Converting this to grams of oil and dividing by the
area of one-meter diameter plate, gave detectable
amounts of M = 3.86 x 10~5 g/cm2, with a window
and M = 4.19 x 10"̂  g/cm , without a window.

B. Plastic Scintillator

Repeating the above analysis, but with G now equal-
ing one-half and E equaling unity, an activity of 200
disintegrations per minute results. This yields a
value for N of 2,68 x 10-*-° oil molecules and a M of
2.74 x 10"' g/cm on a one-meter diameter plate.

2.4 SODIUM AND BROMINE TAGGING OF VARIOUS OILS

A previous monthly report indicated trace amounts of

Bromine and Sodium in several oils. It was of interest to

determine the detectable amounts of oil that could be found



by tagging these oils.

Assume that one irradiates one gram of oil containing
one part per million of Sodium or Bromine, which re-
sults in 1 x 10~6 grams of Na or Br. Then, Nr =
N 00 (1 - e~^-) where Nr is the number of radio-
active atoms produced and N is the number of atoms
initially present. For a one microgram mass, NQ(Na)
= 2.619 x 1016 atoms and NQ(Br) = 7.534 x IcA

5 atoms.
The thermal neutron (n,y) cross section is repre-
sented by a and the following values were used,
0(23Na) = .4167.x 1024 cm2, and a(79Br) = 2.444 x
10~24 cm2 (Ref. C-12) . The neutron flux, 0, was
assumed to be 5 x 10 n/cm2-sec and the values for
the decay constant, X, were X(Na) = 4.621 x 10~2 hr"1

and \(Br) = 1.568 x 10"1 hr"1. An exposure time,
of one hour was chosen as a compromise between maxi-
mizing induced activation and minimizing radiation
degradation of the oil. Remembering the Br79 is
50.54% of natural Bromine, the following values
of the number of radioactive atoms, Nr, result:
Nr(Na

24) = 2.464 x 103 atoms/|agr Na and Nr (Br
80) ' =

6.753 x 10 atoms/|agr Br. The activity present
then, A = XNr, where A (Na

24) = 2.719 dpm/|_igr Na
and A (Br80) = 17.65 dpm/ngr Br. Assuming the 100
cpm detected with the previously discussed plastic
scintillator to be sufficient for detection, then
one obtains as detectable amounts of Na and Br:
D(Na) = 1.226 x 10~3 g Na/cm2 and D(Br) = 1.727 x
10~4 g Br/cm2.

Table 1 gives the amounts of Na and Br in parts per
million found in several samples of oil.

Table 2-1. PPM of Na and Br in Various Oils

Oil Na Br

DC 705 25 0
DC 11 1106 , 0
Sun Vis 706 43 0
3M-Pt 11 20 39
Hs 1020 50 0
Hs 1055 25 0



Dividing these values into the detectable limits,
gave the amounts of oil in grams/cm^ that could be
detected, Table 2.

Table 2-2. Detectable Limits for
Tagging of Na and Br

Oil Na Tag Br Tag

DC 705 2.94 x 10"3 0
DC 11 6.65 c 10~5 0
Sun Vis 706 1.71 x 10"3 0
3M-PT 11 3.68 x 10~3 2.91 x 10~4

HS 1020' 1.47 x 10~3 0
Hs 1055 2.94 x 10~3 0

2.5 SILICON TAGGING

v
Since most of the oils used in vacuum technology are

silicon based, silicon tagging was considered as a possible

detection method. As the one-meter diameter, cooled, plas-

tic, scintillator detector had offered the best sensitivity

in previous analysis, it was the detection used for silicon

study. It should be noted that the assumption of a decay

time of but one hour is very optimistic and results in the

best sensitivity that can be achieved for this method.

It was assumed that the oil (DC 704) was irradiated
for one hour at a flux of 5 x lO-̂  n/cm -sec. and
inserted in the vacuum system one hour later. As-
suming one kilogram of vacuum oil was irradiated
and the parameters of three silicon atoms per mole-
cule of oil, a cross section of 0.0019 x 10~24 cm
for Silicon-30 (Ref. C-12), and a Silicon-30 natural
abundance of 3.09%, then, the number of atoms of
silicon per kg of oil is given by:



N - 3(1000) (.602 x 1024) (.0309) = j 27 x 1023

° 438

Substituting this value into the activation equation
and using the parameter values given above and a \
value of .265 hr~^ yields:

N = N0 a0(l - ..e~
xtl) e~Xt2 = 2.16 x 109 atoms

30siAg oil.

This is equivalent to an activity, A.. = N\, of 9.51
x 10 dpm/kg. As before, 100 cpm was assumed neces-
sary for detection and since G = .5 and E = 1, the
minimum acceptable activity, A2/ is 200 disintegra-
tion/minute.

M = AJ/AJL = 200/9.51 x 105 dpm/dpmAg

M = 2.67 x 10~5 gr/cm2.

2.6 FISSION PRODUCT AND ALPHA RANGE—DESCRIPTION
[

As the results to date had not yielded a detection

method with adequate sensitivity, the scope of the study was

expanded to include any detection method which used stable or

radioactive isotopes. One of the first concepts studied

under this enlarged scope was that of using charged particle

range to determine total organic gas phase contamination. In

order that one may better follow the sensitivity analysis of

the subsequent sections, a brief description of the physical

layout for this system is given below.
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The general design for the range technique consisted of

a source with two tubes extending out from it, a variable ab-

sorber, and two detector systems placed one each at the ends

of the two long tubes, opposite the source. Both detectors

are movable and both track evenly. One tube is open to the

atmosphere of the chamber, whereas, the other tube, filled

with clean air, is sealed and has an exhaust check valve and

a bellows for pressure equalization with the chamber. The

detectors are placed so that the closed tube is at the proper

calibration count point (maximum of dl/dX). The difference

in count rates allows determination of contamination in the

chamber.

2.7 FISSION FRAGMENT RANGE

The differential energy loss, dE/dX, was calculated for

fission fragments by (ref. D-42).

-(dE/dX) = c/dEn/2. Eq. 1

*\

In the above equation, n was calculated from (In (n))/Zz =

-1.6 - .0533Z, where Z is the average atomic number of the

absorbing medium. It is easy to see that for large Z (Z<10)

n approaches zero and -(dE/dX) = c/d; where xra is the total

range, EQ is the energy of the fission fragment energy, d is

the density, and c is a constant, fitted by empirical means.



Integrating the energy spectrum of fission fragments (Ref.

D-43), beam intensity as a function of energy is obtained.

By using equation (1), this energy distribution was con-

verted to a range distribution to get intensity of the

beam of fission fragments as a function of range and also

dl/dX.

The curves given, Figure 2-1, are for CO2/ however, sim-

ilar properties would be obtained for air. The beam strength

entering both tubes was adjusted by addition of absorbers

r\

until its magnitude was .1 IQ and dl/dX was .0438 Io/(mg/cm
/:)

where IQ is the maximum particle intensity and dl/dX is the

rate of decrease in count rate with increasing absorber thick-

ness.

Assuming a pressure of 10~7 torr and a temperature
of 20°C gives a density for pure air of 1.85 x 10"'
mg/cm3. To achieve the high count rate necessary
for the required statistical accuracy, the cal-
culations assumed a 10 milligram ̂ ^Cf source, placed,
at the end of the two tubes, with Si(Li) detectors
at the other end. Since A = NX, 10 mg of 252Cf has
an activity of 1.59 x 10-'-2dpm. For the assumed de-
tector system radius of 5 cm., the geometry factor
is G = sin2(0.5 e) = 6.25 x 10~6. This gave a
fission product beam at the detector of 1.00 x 10
particles per minute.

From Figure 2-1 and previous discussion, .1 Io is
then 1.00 x 10^ counts for one minute. Counting for
10 minutes gave 10" counts. For statistical signif-
icance, it was required that a difference of at
least 1,000 counts exists, or a relative difference
of .001. Based on the above, equation 2 represents
the intensity relationship developed.

10
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(.1 I0 - IDC 704)/-1 I0 = -001 Eq. 2

JDC 704 = -0999 ̂ o)

Since the reference count rate is .1 IQ/ the dif-
ference is AI = 1 x 10~4 I0. Using the maximum
value of Ai/AX, .0438 IQ, the corresponding value
of AX is obtained, Ax = 2.29 x 10~6 g/cm2. This is
equivalent to a maximum sensitivity of 2.29 x 10~9

g/cnr' for a 10 meter tube length.

As the previous development implies, the sensitivity ob-

tained is linearly dependent on tube length. Thus a 5 meter

tube would have a minimum sensitivity of 4.6 x 10~9 g/cm3

rather than 2.3 x 10" 9 g/cm^as calculated for the 10 meter

tube length.

For the situation of molecular flow, it is obvious that

the response of the system would also depend on the orienta-

tion of the system with respect to the flow path. For pur-

poses of the calculations the condition resulting in maximum

sensitivity has been assumed; that the detector was oriented

in the center of the molecular flow path and parallel to it.

2.8 ALPHA RANGE IN A VACUUM

The development for alpha range follows that which was

previously presented for fission fragment range. The source

considered in this case was 24-I-Am and the detector system

remained the same.

11



From Reference C-13, the maximum beam attenuation
of an alpha particle beam occurs at 1 MeV and is

dl = -2.03 I0
dX mg/cm2

Eq. 3

where, Io is in particles per second (Figure 2) .
The density of air at 20° C and 10"? torr is 1.85 x
•10"" 7 mg/cm . Assuming a 10 meter tube gave a Ax
value of 1.85 x 10"4 mg/cm2 and thus, A I value
of (-2.03 I0) (1.85 x 10~

4) = -3.76 x 10"4 Io.

A statistical precision in relative difference of
counts of 0.1% was assumed achievable and used in the
detection limit equations. As the detection sensi-
tivity is linearly dependent on this percentage,
a value of 1% would result in a detection limit a
factor of 10 higher than that calculated below.
It then followed that the minimum AI2 that could
be found was given by Equation 4.

3.76 x IP"4

-3.76 x IO-4 I0

A±2 = -3.76 x ID"
7 I

It was assumed that oil acts in the same manner as
does air in stopping alpha particles and that the
oil was dispersed in dry air, then, the change in
beam intensity due to the oil was Al(oil) = A12 =
AI or Al(oil) = -3.8 x 10~7 IQ. This corresponded
to a minimum detectable absorber limit, AX, of
1.85 x IO-10 g/cm2. It should be noted that this
value is the detectable limit whether dispersed or
plated upon absorber or detector and, if dispersed,
would represent a density of oil in the 10-meter
tube of 1.85 x 10"13 g/cm2.

12
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2.9 NON-RADIOACTIVE ISOTOPE TECHNIQUES

Some consideration was given to using stable isotopes,

namely, Carbon-13 and Deuterium, as a means for determining

the contamination of a particular oil. Two methods of anal-

ysis were considered: Nuclear Magnetic Resonance and Mass

Spectrometry. Information concerning these two methods was

obtained by consulting members of the Texas A&M University

staff currently active in these fields.

A. Nuclear Magnetic Resonance (NMR) (Ref. C-14).

This technique was deemed infeasible due to the fact
that at least 10 mg are necessary for analysis and
that the maximum sensitivity was approximately
10" 3 g of C13 or H2, which if accumulated on a 1m2

*7 O
plate, yields only a sensitivity of 10 g/cm .

B. Mass Spectrometry

This technique proved impractical due to the large
ratio (10% to 20%) of 13C to 12C or 2H to % re-
quired for detection. Again, large, 1 mg samples
would be required and the maximum sensitivity of
approximately 10~4 grams of 13C or 2H limited the
ability of this technique to adequately measure the
contamination levels present.

2.10 RADIOLOGICAL SAFETY CONSIDERATIONS

Since NASA ground rules (Ref. C-15) for the study pre-

cluded the use of isotopes with half-lives greater than 12

hours, Carbon-14 and tritium were now excluded from further

consideration. However, the method is quite valid for use

13



in testing suspect materials in small vacuum systems. The

tritium technique would be the preferred method because of its

greater sensitivity and lower radiological hazard. The smal-

ler chambers would, however, require a reduction in the sur-

face area of the plastic scintillator from 1 meter in diameter

to some more appropriate size and this would reduce the sen-
/

sitivity somewhat, but any such reduction would be in direct

proportion to the ratio of the surface areas between the

considered case and the new one.

Of the systems remaining, only the alpha range has the

necessary sensitivity to warrant consideration. For the pro-

posed source, Am-241 as a sealed alpha source is acceptable

to the NASA Radiological Safety Office and was selected for

use. No unacceptable radiological hazard was anticipated,

as the decay daughter is Np-237, which has a 2 x 106 year

half-life, therefore, the decay chain is essentially non-

radioactive.

2.11 THE ALPHA RANGE APPARATUS

System description; A .73 curie Americium-241 sealed

source, activity required to give the necessary count rate,

is followed by a set of absorbers. This would then lead

to two tubes each 10 meters long and 8 cm in diameter,

14



placed 5° from the normal of the source absorber box (see

Fig. 2-3). One tube would be open and the other sealed with

a release valve and a bellows-assembly for pressure normali-

zation with the chamber. The open tube would be sealed at

the source end to prevent contaminants from reaching the

source box. At the other end of each tube would be a Si(Li)

detector mosaic, which could be adjusted in position to

obtain maximum sensitivity (see Fig. 2-3) 0 The Si(Li) de-

tector was chosen as it allows the flexibility of counting

the number of alphas as well as accurately determining their

energy. A possible substitute would be surface barrier solid

state detectors. The positioning mechanism would be a set of

servos, which would vary source-detector position with the

changing pressure. Preamps connected to the Si(Li) detectors

would lead pulses to an amplifier-multichannel analyzer as-

sembly outside the vacuum chamber walls (Fig. 2-4). All

components within the chamber would be operable at LN~ tem-

peratures, in fact, the cooling of the detectors would have

a beneficial effect on their operations.

S ystem calibration; After assembly, the detectors would

be placed at the source ends of the tubes, and the source

box evacuated. Then, absorbers would be added until the

resultant alpha particle beam had an energy of 1 MeV as

15
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observed on the multichannel analyzer. Air would then be

let into the source box and exact dl/dX determined. Absorbers

are varied until this value becomes a maximum and the open

tube amplifier gain would then be adjusted to give the same

energy calibration as that of the closed tube system.

System operation; The closed tube and source box are

purged with clean, dry air at ambient conditions and the

system checked out. As vacuum is achieved, the closed tube

detector is placed at the point of maximum dl/dX and the open

tube detector at an equal distance from the 24^-Am source.

The multichannel analyzer would be placed on the open tube

and allowed to take sequential readings in a multiscaler
. \ "

mode and the closed tube detector would be placed on the

sealer-timer configuration and run periodically as a control.

The contamination level would then be calculated by:

(Count rate open - count rate closed) = g/cm^ Eq. 5
(dl/dX) (1000)

The simple relation above, Eq. 5, considers only the oil

molecule and neglects the presence of the air molecule in

the comparison chamber which equal pressure requires. The

error resulting this can be approximated by (14/484) 100%

or 2.9%.

16



The pump down and repressurization phases of the chamber

cycle would be the most critical period for this system be-

cause it would require the servo drive system to rapidly

move the detectors over the length of the ten meter tubes

to maintain the detectors at the maximum dl/dX location.

System Components and Cost: Components and associated

costs for the alpha range apparatus are given in Table 2-3.

2.12 SUMMARY OF ISOTOPE VACUUM MEASUREMENTS

Several systems were considered and are listed in Table

2-4 with their estimated detection limits for comparison

with current techniques.
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3.0 ACTIVATION ANALYSIS (PHASE II)

The research objective of this phase of the project is

to evaluate the state-of-the-art and determine the feasibility

of using nuclear activation analysis to identify and locate

sources of contamination in the NASA space environmental

simulation chambers. Several activation analysis alter-

natives were investigated on the basis of technical

feasibility, expected performance and cost. Efforts

were directed primarily at neutron activation analysis

techniques for detection of several oils, greases, and

paint which were suspected as likely contaminants. Charged

particle and high-energy photon activation analysis techniques

were not included in the studies due to the high cost of

particle accelerators and the lack of detailed experimental

data on which to base sensitivity estimates.

The basic approach to the problem of contaminant

identification with neutron activation analysis involves

detecting a specific element or set of elements whose

presence in a sample uniquely identifies a given contaminant

and whose concentration in a sample is directly proportional

to the amount of that contaminant present. Since activation

analysis is an elemental method incapable of determining

compounds or molecular structure, this approach requires

22



that the elemental composition of each possible contaminant

contain a unique set of elements suitable for neutron acti-

vation analysis. This unique "fingerprint" characteristic

may be an inherent property of the material or may be the

result of a process in which certain suitable elements are

placed into the compound for use as "tag" elements.

During this investigation, emphasis was placed on the

following six materials commonly used in the space environ-

mental simulation chamber and which were thought to be

likely contaminants:

Dow Corning 705
Dow Corning 11
Sun Vis 706
3-M Black Velvet Paint
Houghton Safe 1020
Houghton Safe 1055

3.1 BASIC DESCRIPTION OF METHOD

Neutron activation analysis can be generally described

as having three basic steps:

1. sample activation
2. sample cooling
3. gamma ray spectrometry

Sample activation consists of irradiating a material with

a flux of neutrons to produce radioisotopes by means of

nuclear transmutation. Sample cooling is an optional step

which may be used to allow undesirable short lived radio-

23



isotopes to decay to an acceptable activity level before

attempting to measure the activities of the elements of

interest. After suitable cooling period, gamma ray

spectrometry is used to measure the energies and intensities

of the various gamma rays emitted by the activated material.

Using the spectral data, a comparison can be made between

the spectra from an unknown sample and those from a known

standard to provide identification of elemental constituents

and a determination of the elemental concentrations. Under

optimum conditions with high neutron flux densities, over

half of the naturally occurring element's can be detected in

quantities below one microgram (1-14).

3.2 ACTIVATION ANALYSIS OF POTENTIAL CONTAMINANTS

Samples of the six potential contaminants were evalu-

ated on the basis of their elemental composition to determine

their suitability for detection and identification using

neutron activation. The major elements comprising these

materials include carbon, hydrogen, oxygen, silicon and

phosphorus, none of which activate appreciably with thermal

neutrons and only silicon, oxygen and phosphorus activate

well with fast neutrons. Fast neutron activation analysis

was considered as a possible technique but rejected due to

24



lack of a practical means of producing very high fluxes

of fast neutrons required for sub-microgram measurement

sensitivities. Since their major elements could not be

used for "fingerprinting" the potential contaminants,

analyses were carried out on samples of these materials

to determine if minor or trace elements suitable for

thermal neutron activation were present. Analyses were

performed at Texas A&M with the Nuclear Science Center

reactor which produces a usable thermal neutron flux of

1 o • p
5 x 10 n/cm /sec. Gamma ray spectrometry was accomplished

with a Ge(Li) detector and a 4096 channel pulse height

analyzer. Results of these analyses, shown on Table 3-1,

i
revealed no "fingerprint" elements in these samples which

would be sufficiently reliable and unambiguous for use in

contaminant identification. While several samples showed

possible unique trace element patterns, such as hafnium

in Houghton Safe 1020 and tungsten in Sun Vis 706, the low

concentrations (sub-ppm) make detection of microgram amounts

of samples virtually impossible by neutron activation analysis,

25



Table 3-1 Elemental Analyses of Suspected Contaminants

^\Sample

Element ŝ.

Al2

Br

Cl

Cu

I

La

Mn

Na

V

W

Zn

Co

Hf

Concentrations in ppm

SUN VIS
706

25.0

0.49

28.0

2.8

1.9

43.0

0.19

0.11

168

DC DC 3m
705 11 PT.II

537.0 1400.00

0.52 39.0

15.0 35.0 52,000.0

0.32 1.3.0 0.64

0.08

0.90

25.0 1106.0 20.0

0.63

2.4 2.7

0.2 0.16

.

HS
1020

108.0

5.0

118.0

1.2

50.0

1.3

0.39

HS
1055

123.0

1.8

313.0

0.47

0.06

25.0

0.09

Analyses performed using instrumental neutron activation
p Q ^ p

Al data not corrected for Si interference due to Si(n,p) Al.
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3.3 INACTIVE TRACERS <•
l

When a material is inherently free of suitable

"fingerprint" elements, it is often possible to label or

tag the material with an element or set of elements which

can be measured with good sensitivity and specificity.

This method of inactive or stable tracers offers many of

the advantages of radioactive tracers while avoiding the

radiological safety and radioactive contamination problems.

Tagged materials would be used in the chamber in place of

usual materials. Samples of contaminants would then be

collected in the test chamber and analyzed by neutron

activation to determine the identity and amount of each

tag element present.

The sensitivity of this procedure for detecting small

quantities of a tag element depends upon the element's

activation cross section as well as the energy and intensity

of the irradiating neutron flux. Tables 3-2 and 3-3 show

the measurement sensitivities for those elements detectable

by thermal neutron activation and 14 MeV neutron activation

respectively. It should be noted that for reactor thermal

neutron activation analysis under the conditions defined

on Table 3-2, the median detection limit is approximately

10~8 grams whereas 14 MeV N&A provides a median detection
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limit in the range of 10 to 10 grains using a state-

of-the-art Cockcroft-Walton type neutron generator. It

is obvious that for thermal neutron activation, elements

with the best sensitivity (Eu, Dy, Mn, etc.) would be

desirable for use as tags, however, a further requirement

is that the tag element be chemically suitable for in-

clusion in the compound being labeled.

In view of this chemical compatability requirement,

a brief study was undertaken to determine the practicality

»
and reliability of an elemental tagging system. In

reference to the chemical makeup of the expected contaminant

materials, a typical electrophilic aromatic substitution

process (halogenation) was chosen for the tagging mechanics.

The elements best suited for this tagging procedure and

trace activation analysis are chlorine and bromine. The

halogenation is expected to take place on the phenyl

radical common to the proposed DC-11, DC-705, HS-1055,

and HS-1120 contamination materials. The general equation

for this reaction is: ARH + X2 -^wis_Acid> ARX +

where:

AR = phenyl radical
X2 = C12 or Br2
Lewis Acid = FeCl.,, A1C13/ etc.
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3.4 MEASUREMENT SENSITIVITY

A primary measure of the effectiveness of a neutron

activation analysis system for contaminant detection is

the sensitivity with which tag elements can be determined

under given conditions of sample acquisition, irradiation,

and counting. A large number of variables must be con-

sidered in estimating measurement sensitivity, some of

which are set by system design and others determined by

the physical properties of the materials in the sample.

The more important factors which influence system

measurement sensitivity are given on Table 3-4.

In order to assess the feasibility of using bromine,

chlorine and iodine as tag elements to be detected by a

neutron activation analysis system located in or near the

chamber, a set of "best case" conditions were assumed and

detection limits calculated. First, detection limits for

elemental Br, Cl and I were calculated as described in

Appendix B and results shown in Table 3-5. These

detection limits are based upon a one hour irradiation

with a thermal neutron flux of 1.25 x 10 n/cm /sec and

counted with a 3 in. x 3 in. Nal(Tl) detector. Further

assumptions which were made to determine "best case"

performance are as follows:
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1. Tag element is uniformly distributed in the con-
taminant material.

2. Only one contamination source is responsible for
the tagged material deposited on the 3 inch diameter
collection disk.

3. Tag element does not disassociate from the contami-
nant materials.

4. Average contaminant deposition is approximately
10 gin/cm̂ .

5. A non-activable collection medium is used in lieu
of presently used pyrex plate.

Assumptions one through three above are "best case" con-

ditions with respect to the measurement of trace element tags

in chamber contaminant samples. To assure that the first

three assumptions are valid would require further research

beyond the scope of this project; however, it should be

pointed out that variations in any one of these would sig-

nificantly degrade the overall effectiveness of the tagging

approach. Assumption number three (stability of tag element

in the contaminant material) is probably the most uncertain

of all. The effects of extreme temperatures and high vacuum

could cause the release of tag elements from the labelled

material thus defeating the method. A quantitative evaluation

of this factor would require extensive testing of various

tagged contaminants under conditions equivalent to those

present in the test chamber.. Number four assumes a contaminant
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deposition of 1 x 10"̂  g/cm2 which approximates levels ob-

served in previous tests at sampling sites behind the chamber

heat sink panels and directly in front of diffusion pump

ports (J-l) o

Assumption number five suggests the replacement of the

pyrex CCU with a non-activable collection medium. In evalu-

ating pyrex glass (Corning 7740), it is clear that the sodium

and potassium content (3.8% and 0.4% by weight, respectively)

would activate with neutrons to produce radioactivity levels

sufficiently high to mask the expected activity from the tag

elements. The use of an analytical grade paper filter would

be a sufficient substitute for the pyrex plate if adequate

thermal protection is provided.

The last column in Table 3-5 is intended to show the

extent to which the proposed technique would exceed minimum

required performance under "best case" conditions. The re-

liability factor, R, is the ratio of the maximum expected

amount of tag element over the minimum detectable amount

of the tag element and is calculated as follows:

(%Tag) (Den) (Area)
(Det)

where: %Tag = weight % tag element in contaminants

Den = average contaminant density on collection
plate (~ 10~6 gm/cm2)
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Area = area of sample collection plate (45.5 cm

Det = detection limit of tag element in micro-
grams (reference Appendix B)

Examining the "best case* reliability factors and

the validity of the assumptions made, it becomes apparent

that without a substantial increase in neutron flux over

O O
the assumed value of 1.25 x 10 n/cm /sec, system per-

formance would be very marginal.
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3.5 FOUR IRRADIATION ALTERNATIVES FOR NEUTRON
ACTIVATION ANALYSIS

The previous section discussed measurement sensi-

tivities and provided system performance estimates based

on a neutron flux of 1.25x 109 n/cm2/sec. This section

describes four alternatives for a NAA system and summarizes

their important characteristics in Table 3-6.

The on-line monitoring system, which is the major

concern of the next section of this report, is composed

of a shielded isotopic neutron source, sample changer,

and a Nal(Tl) gamma ray spectrometer located inside

NASA Chamber A. The major advantage of this type system

is its ability to offer hourly real-time analysis during

chamber operation. A major consideration in this approach

would be the effect of hostile environmental conditions

(ie. 125°C and 10~ Torr vacuum) inside the chamber during

operation. Precautions must be taken to seal the shield

assembly to prevent outgassing from the hydrogenous source

shield.

The second alternative, a variation of the previous

approach, involves the use of a subcritical multiplier

system which employs a centrally located neutron source in

a 233-U-H O or 235-U-H2O solution. Such a system, as

suggested by Currie, McCrosson and Parks (G-17), could
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enhance the neutron flux by factors of 6.4 and 4.8

respectively. However, to achieve these useful flux en-

hancement factors the assembly must be operated so near

criticality that safety procedures and regulations may

preclude practical application of this approach. Due to

the complexity and size of this system, it would most

likely be located outside the chamber, offering only

daily analysis. This technique is mentioned only for

comparison purposes here but will be discussed in more

detail in the next section of this report.

The third alternative uses a 14 MeV neutron generator

as the source of neutrons. A system of this type would

provide a peak thermal neutron flux of approximately

7 24 x 10 n/cm /sec, which is insufficient to provide

sensitivities required. This technique is mentioned, as

in the previous case, only for comparison purpose.

The last technique proposed involves using the

nuclear reactor at Texas A&M University. Although the

return time analysis is several days, the available

1 ? 2thermal neutron flux of 4.3 x 10 n/cm /sec offers the

best sensitivity and reliability for contaminant identi-

fication.

In evaluating the above approaches, one should
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compare the costs, analysis speed, and measurement

sensitivity to determine the applicability to a given

problem.

3.6 SYSTEM CONFIGURATION

The development of a neutron activation system

for contaminant identification depends first on tagging

the contaminant or contaminants with suitable elemental

tags, and second, on a reliable means of detecting and

identifying these tags in collected contamination

samples. This section describes a system for accomplishing

in-chamber sample collection and analysis by means of

an automatic sampling arrangement, an isotopic neutron

source, and a scintillation detector. The operation of

this system, shown schematically in Figure 3-1, involves

a three-arm rotating sample handler which positions sample

collection disks in proper position for acquisition,

irradiation, counting or changing on a programmed basis.

The first position of rest is the collection position

where the collection disk is exposed to the chamber

atmosphere for an hour. Then a 120 degree counterclockwise

rotation places this collection disk under a uniform

Q 2

neutron flux of 1.25 x 10 n/cm /sec for an hour irradiation.
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Fig. 3-1. 252Cf ON LINE SYSTEM

COLLECTION
POSITION

SOURCE
(IRRADIATION
POSITION)

SAMPLE
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ROTATION
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(COUNT POSITION)

TOP VIEW

252cf
SOURCE

FRONT VIEW
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Upon completion of this phase, the collection disk is

rotated another 120 degrees to the Nal detector position

where a one-hour gamma spectral analysis is made to

determine the type and amount of tag elements present

on the collection disk. From this position, the

collection disk is rotated 60 degrees where it is

replaced with a clean collection disk by the sample

changer. Another 60 degree rotation places the new

disk in the original position and the process is

repeated in 60 degree steps. Having a collection disk

at each position provides an hourly analysis of chamber

contamination after the initial 2 hour start-up time.

Each of these positions will be discussed in greater

detail below.

Of prime importance in the design of an in-site

neutron activation system is the selection of a suitable

neutron source. The neutron source represents the

limiting factor relative to overall measurement sensi-

tivity and is the most expensive single item in the

system by a vast margin; therefore, its selection must

be done carefully. After a comparative analysis of

several isotopic neutron sources, Californium-252 was

chosen. The distinguishable characteristics of Cf-252
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can be summarized in the following two properties:

1. Cf-252 emits a large number of neutrons by
spontaneous fission (2.34 x 10 n/sec/gm)

2. Cf-252 half-life is reasonably long (2.65 years)

The main advantage that a Cf-252 source has over

conventional neutron sources, such as Po-Be, Am-Be

238or Pu-Be is its significantly smaller dimensions. Not

only is the active source volume smaller in Cf-252, but

it also requires less space to accomodate decay helium

and does not require the extensive heat-dissipating

surfaces required by some (cif*1) sources. Therefore, the

portability of this source is only limited by its

shielding requirements. A summary of the neutron source

analysis is presented in Table 3-7.

The cost of neutron sources with a total neutron

output rate of 5 x 10 n/sec (needed in activation

analysis) are compared in Table 3-8. At an estimated

cost of $1,000,000 per gram for Cf-252, this source

offers the most favorable combination of initial in-

vestment plus yearly replenishment costs of any isotopic

neutron source. As larger quantities of Cf-252 are

produced to meet the demand, the price is expected to

drop according to the following production level and
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Table 3-8. ISOTOPIC NEUTRON SOURCE COST ANALYSIS3

Source

~ 242Cn,-Be

21°Po-Be

252cf

124Sb-B.e

244Cm-Be

238Pu-Be

241Am-Be

Cost per
5 x 1010 n/sec

(Dollars)

10,000

20,000

20,000

25,000

280,000

310,000

1,500,000

(a) Based on (G-l)
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price trends:

Mid 70 's Lato 70 's Early 80 ' s

Avg. Quantity 5-10 20-50 40-250
(gm/yr)

Price 5-7 2-3 0.5-1.5
gm)

It is clear that small microgram quantities of

Cf-252 will not provide adequate neutron activation

for low yield samples. In order to achieve a neutron

flux of 1.25 x 109 n/cmVsec, a 50 milligram Cf-252

source is required. In view of the relatively short

lifetime (~ 10 years) of Cf-252, upkeep of sources of

this magnitude will be extremely costly even with the

projected decrease in Cf-252 prices over the next 10

years. One method of increasing the available neutron

flux for a given source strength is to use a subcritical

neutron multiplier. With this method, multiplications

ranging from 10 to 200 are possible with safe, simple

and relatively inexpensive devices. Therefore, by

spending half the source budget for Cf-252 and half for

a multiplier system, the annual upkeep expenditure is

reduced by ^ while the available flux is increased by a

factor of 5 to 100 than if the entire budget was used

for the purchase of Cf-252. The major drawback of this
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system is that it would require an impractical size for

on-line analysis in the chamber. It should also be

pointed out that more work on optimizing the output

and on demonstrating the inherent safety is required

before inexpensive licensing of this method is a reality.

Miller and Kunze (G-16) have designed an optimum neutron

multiplier system shown in Figure 3-2 which should be

considered as an alternative in the design of an

activation analysis system using Cf-252.

The next area of interest was the design of a source

matrix which would optimize the activation of a 3 inch

diamter collection disk. Several source arrangements

were investigated to determine an adequate activation

method. The 5 individual 10 milligram sources in a

cluster design, Figure 3-3, provides a high average

9 2flux density of 1.08 x 10 n/sec/cm . This arrangement

was obtained by observing the thermal neutron flux

distribution of Cf-252 in water, which shows that the

peak thermal flux is about 0.5 inches from the surface

of the source (G-18). Although the flux distribution

is not a constant over the entire contaminant collection

disk, the slightly centrally peaked flux distribution

as shown in Figure 3-3 will provide efficient sample
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(Based on G-16)
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Fig. 3-3. SOURCE MATRIX DESIGN
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irradiation.

Since the portability of any isotopic neutron source

is only limited by its shielding requirements, a compre-

hensive shielding study was made. To obtain reliable

estimates the neutron source configuration was assumed

to be a point source of 50 milligrams. The radiations

emitted by a Cf-252 source are listed and evaluated

under the four groupings below.

Fast neutrons: Most of the fast neutrons result

from the spontaneous fission of Cf-252 with lesser amounts

coming from (a,n) reactions on low atomic number elements.

These fast neutrons are distributed according to a typical

fission spectrum up to 13 MeV in energy. The most

effective shielding of fast neutrons is a hydrogenous

mixture.

Thermal neutrons; Thermal neutrons result primarily

from the slowing down of the fast neutrons. The most

effective shield in this case is a material with a high

thermal cross-section such as boron or lithium.

Primary gammas: The primary gamma rays are a result

of spontaneous fission, alpha decay of Cf-252 and fission

product decay. The most effective shielding for this

type of radiation is a high density material such as

50



iron or lead.

Secondary gammas: Secondary gammas are created as a

result of the capture of thermal neutrons by hydrogen

nuclei. This radiation can be minimized by adding boron

or lithium to the hydrogenous shield.

In arriving at a optimal shielding design, several

generalizations and assumptions were made:

1. Thermal neutrons will contribute a relatively
small portion of the overall dose.

2. The primary gamma radiation may be eliminated
by relatively small amounts of lead or iron.

3. The fast neutron and secondary gamma provide
the major portion of the radiation dose at the
outside of the shield.

4. The Cf-252 source is dispersed in a 1 cm
aluminum capsule at the center of the shielding.

5. The shielding can be protected against chamber
environment.

From the above conditions and assumptions, it is

concluded that the most effective shielding will consist

of a borated polyethylene and lead composition. Several

comparative shielding design proposals are presented in

Table 3-9. These estimates are based on data from AEC

Research and Development Report (G-15). These shielding

designs offer a combined neutron and gamma dose rate

at the shield surface of less than 10 mrem/hr or
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1 mrem/hr. The weight and volume information was

obtained by considering a spherical shield design which

results in minimum system weight. Using the 0.8 mrem/hr

surface dose rate as a design criteria, the area outside

the chamber would satisfy radiation safety requirements

for an uncontrolled area with a calculated dose rate level of

0.21 mrem/hr. Shielding calculations are given in Appendix B.

A brief description of the instrumentation and

electronics of the proposed detection system will be

provided to complete the system description. The main

component of the radiation counting system is a 512

channel pulse height analyzer coupled to a 3 in. x 3 in.

Nal(Tl) scintillation detector. Gamma ray spectra will

be read out from the analyzer via a printer and x-y plotter.

A block diagram of this gamma ray spectrometer analyzer

system is shown in Figure 3-4.

An estimate of the cost for the Cf-252 on-line

monitoring system is given in Table 3-10. The total of

$525,000 includes all system components but does hot

include the additional costs associated with tagging

potential contaminant materials. It should be pointed

out that the $500,000 cost figure for 50 mg of Cf-252

is based on the current AEC price of $10 per microgram,
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Table 3-10. Cf ON-LINE SYSTEM PRICE LIST

Manufacturer Type

USAEC Savannah
River Laboratories

USAEC Savannah
River Laboratories

Harshaw Chemical Co. 12S12L

Name

50 mg 252Cf

Price
(Dollars)

500,000

Cf Packing & Handling 8,000

3x3 Nal(Tl) Crystal,
Phototube

850

Tennelec, Inc.

Tennelec, Inc.

Tennelec, Inc.

Tennelec, Inc.

TB-3/TC911

TC940

TC155A

TC202BLR

Northern Scientific, NS-102
Inc.

Northern Scientific, NS-606
Inc.

Hewlett Packard

Reactor Experi-
ments, Inc.

N/A

7034A

Power bin (NIM type) 526

High Voltage Supply 426

Pre-Amp 151

Linear-Amp 401

Teletype Series 33 1,050

512 Channel Analyzer 4,950

X-Y Recorder 1,195

Shielding 1,050

Fabrication Costs 6,401

Total $525,000

(a) Estimated cost in dollars
(b) Prices subject to change

Note: This is not a recommendation of any specific manufacturer or
an endorsement of his products but is intended for information
purposes only.
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which has been established from a rather short production

and sales history. As a government agency, NASA may be

able to negotiate with the AEC to obtain a more favorable

pricing arrangement for a 50 mg source. If AEC projections

of Cf-252 price for the mid-1970's is accurate, a total

system cost of approximately $125,000 could be expected

(based on Cf-252 costs of $2 per microgram). Table 3-6

shows a cost comparison of this system with three alter-

native approaches.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The methods which have been considered and their

characteristics are reviewed in Table 4-1. Of those

considered, only the alpha range technique has the

required sensitivity and meets the radiological safety

requirements. However, this technique will not determine
_x

the source of the contamination, but like the quartz

microbalance presently in use, functions only as a gross

contamination detector. It does have the unique capability

of detecting noncondensable contaminates in the chamber

atmosphere. These would seem to be of less importance

than condensable ones, but when used in conjunction with

a quartz microbalance, the two systems would yield total

and condensable contaminant levels from noncondensable

levels could be estimated.

The strong directional dependence of the alpha range

system may be either an asset or a liability depending on

the use invisioned for the system. This dependence should

be kept in mind as well as the requirement that the

detector track over a considerable length of the tubes
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during the pump down and repressurization stages of the

chamber cycle.

The equipment selected for use in the alpha system

is notable only in that the detector selected is a ruggedized

light tight version with an aluminum plated window. Thus,

chamber light conditions will have no effect on the detectors.

The tritium method is the most sensitive of the

tagging techniques and is suggested for testing of suspect

agents in a small chamber dedicated to this purpose. The

ability to tag a suspect agent will depend upon its

—8chemical compound; however, the 7 x 10 % tag is thought

to be a conservative estimate.

While neutron activation analysis is well known as

a highly sensitive trace analytical technique, it must

also be recognized that ultimate sensitivities are

achievable only under favorable conditions. This study

has shown that conditions are very unfavorable for the

on-site detection and identification of microgram

quantities of space environmental chamber contaminants

by neutron activation analysis techniques as summarized

in Table 4-2. Additional factors supporting this con-

clusion are given below:

Lack of Inherent Contaminant "Fingerprint": Con-
taminant materials studied are composed of elements which
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do not have suitable properties for neutron activation.
Experimental results indicated no unique neutron acti-
vation products useful for contaminant identification.

Contaminant Tagging Stability; Evaluation of
chemical stability of proposed tagged compounds under
high vacuum and temperature conditions would be required.

Neutron Source Replacement Cost: Cf-252 (2.6 year
half-life) would require periodic replenishment at an
average annual cost of approximately 20 to 25% of the
original source cost.

Reliability Factor: Under "best case" conditions,
the expected performance of the in-chamber system can
be rated only marginal (Table 3-5). Since the probability
of achieving "best case" conditions in actual test
operations is unlikely, the in-chamber system would not
be a reliable solution.

4.2 RECOMMENDATIONS

The alpha range system is the only practical radio-

isotope technique with sufficient sensitivity to detect

the impurity levels presently being measured in the space

simulation chambers. Should it be desirable to independ-

ently confirm the quartz microbalance results or determine

the gas phase contaminant level, it is recommended that

this system be given serious consideration.

In view of the marginal measurement sensitivity

achievable with an on-site isotopic neutron activation

analysis system, the high cost of the neutron source and

the requirement for further research on the chemistry of

tagging potential contaminant materials, it is clear that
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this approach to contamination identification and monitoring

in the NASA space environmental simulation chambers is not

feasible.
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APPENDIX B: SAMPLE CALCULATIONS

TAG LEVEL: (BROMINE)

First, one must determine the average percent by weight of
bromine that can be placed in the oils as tags. (Only valid
if assumptions 1-4, page 3^ are good).

For DC-11, MW = 546.0

By replacing 5Br with 5H, the MW becomes 941 of which
a MW of 400 is associated with Bromine.

Therefore, 400 MW = .42 or 42% Br in DC-11.
941 MW.

Similar calculations involving the other oils will also
produce an average concentration around 38%.

C*. • O

Assuming average contamination of 10~ gm/cm (J-l) and a
collection disk area of 45.58 cm , the tag limit can be de-
fined as:

C. L. = (Fraction Br in Contaminant) ( Avg. Contaminant)
(Area)

That is, C. L. = (.38) (10~6 gm/cm2) (45.58 cm2) =
17.29 x 10~6 gm.
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APPENDIX B: SAMPLE CALCULATIONS

DETECTION LIMIT: (BROMINE)

D. L. = PA/YIELD

where PA = Minimal peak area of tag element, and
YIELD = Tag element yield in cpm/gm.

Background Definition obtained from Appendix C:
+10% variance from .62 MeV gamma is equal to 13 channels
Therefore, background average over 13 channel interval

is approximately 103.9 counts/channel/hour.

PA = 2 (BASE) 12

where BASE = (103.9 c/ch/hr) (13 ch) „„ c,— .— _ 2.2.. b 1 c pm.
60 min/hr

Therefore, PA = 9.48 cpm.

To determine YIELD, tabular values of photopenk yield
(in cpm/gm) for a thermal flux of 4.3 x 10 n/sec/cm

Q O
(1-14) were corrected to values of 1.25 x 10 n/sec/cm ;
the thermal flux from a 50 mg po.i nt source of Cf-252.

9 2Correction Factor = 1.25 x 10 n/sec/cm „ , ,̂ -4
•—1-5 ~ = 2.9 x 10

4.3 x 10LZ n/sec/cm2

Therefore, the corrected photopcak yjcld for Broniin<- is,

(1.4 x 1010 cpm/gm) (2.9 x 10~4) = 4.06 x 106 cpm/gm.

Thus, the detection limit is,

D. L. = PA/YIELD = 9.48 cpm _ _ . .-6tt-7 = 2.3 x 10 D gm.
4.06 x 10 cpm/gm
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APPENDIX B: SAMPLE CALCULATIONS

RELIABILITY FACTOR: (BROMINE)

R = (%Tag)(Den)(Area)
(Det)

where,
%Tag - Maximum % tag element in contaminants
Den = Average contamination density on collection

disk
Det = Detection limit of the tag element in |jgms.
Area = Area of 3 inch diameter collection disk

(45.58 cm2)

Therefore,

R = Contamination Limit
Detection Limit

R = 17.29 x 10~6gm-— _ 7_4
2.3 x 10 ^m
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APPENDIX B: SAMPLE CALCULATIONS

SHIELDING CALCULATIONS: (.8 mrem/hr design)

40" Paraffin, 3" Lead, 2 mg/cc10B Composition.
Source = 5 x 10~2 gms Cf-252.

Estimation from E. I. Du Pont de Nemours & Company by H. E.
Hootman (G-15).

Neutron Dose Rate: (From figure 2)

NDR = .5 mrem/hr

This is the neutron dose rate at the surface of the shield.
To obtain the neutron dose rate outside the chamber, the
following neutron attenuation formula was used:

where,
on = pN0/A = (7.83 gm/cc) (6.02 x 10 mol"

1) (2.5 b)
26

* .45 cm"1

for an estimated chamber wall (steel) thickness of 1 inch.

I = I0 (.31) = (.5 mrem/hr) (.31) = .158 mrem/hr.

Total Gamma Dose Rate: (from Fig. 3, 5, & 7 respectively)
GDR = (8 x 10~3) (10 ) (7.5 x 10~ ) = 6 x 10~6 mrem/hr/
jj.gm, or .3 mrem/hr

This is the total gamma dose rate at the surface of the
proposed shield. .Using a similar analysis, the total dose
rate outside the chamber can be obtained using the following
formula :

where, p is the linear absorption coefficient. The linear
absorption coefficient was found to be .72 cm (using
the average secondary gamma ray to be .48 MeV) .

Therefore,
I = I0 (.16) = .3 mrem/hr (.16) = 0.48 mrem/hr
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SHIELDING CALCULATIONS: (CONTINUED)

The combined total gamma and neutron dose rate is .158
mrem/hr plus .048 mrem/hr which equals .206 mrem/hr.

This quantity is less than the I. C. R. P. recommendation
of .25mr/hr.* for the population at large.

*Rees, D. J. , Health Physics, MIT Press, 1967, pp. 130.
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APPENDIX C: BACKGROUND DEFINITION

Background is defined as the gamma ray spectra
obtained from a one hour count on a shielded Nal 400
channel gamma ray spectrometer. The bracketed sections
indicate the background in that region of the spectrum
associated with each tag element.

1 - 40 41- HI- 120 121- 16U 161- 200

1
2
3
4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
J5
36
37
38
39
40

J. 1 147.-
0. 135.-

313. + 123.-
215*+ 138.-
185,- 122. +
144.- I 130.+
129.- 131. *
142.* 141.*
174,* 146'.*
159.* | 165.*
154.* 174.-
180.* 168.-
177.* 123.-
201.* 106.-
224.* 127. +
237.* 1 1 27.*
265.* 136.-
257.* 119.-
256.+ 124.-
276.+ 113.-
298.+ 112.-
260.- Br 101.-
278.- 35.-
235.- 94.-
245.- 96.-
244.- 81.-
25C.- 82.-
209.- J 3.6.-
209.- 72.-
193.- 82.-

202.- 75.-
195.- 84.-
170.- 63.-
194.- 63.-
167.- 64.-
155.- 7 7 . +
165.- 74.+
153.- 67.*
155.- 70.-
140.- 73.*

74 .+
65.-
80.-
70.-
69.-
66.-
71.*
60.+
67.+
78. +
73.-
74.-
71.-
57.-
53.-
60. -
71.*
55. *
61.-
59.-
74.-
43.-
54.-
58.-
62.*
58.*
44.-
57.-
61.*
56.*

55.-
62.-
59.-
51.-
50.-
59.-
49.-
42.-
31.-
42.-

40.- 39.-
4 ] . + 23.-
45.+ 36.+
47.+ 36.+
37. Z 25.+
46.+ 3:9.+
46.- 33.+
42.- Ci 37.+
39.* 38.+
48 .+ 38.-
40.* = 45.*
40.* 29.+
46 .+ 33.+
50.+ 40.+
5? .+ 42 .+
45. + 41. +
4^.* 35.+
49.+ 38.-
67 .+ 39.-
52 .+ 1 40. +
46.- 39.+
58.- 36.+
48.- 40.+
49.- 47.+
39.- 33.+
38.- 39.+
39.- 48.+
38.- 49.+
32.- 50.+
32.- 48.+

32.- 47.-
31.- 41.+
23.- 54.+
24 .+ 49.+
36.+ 41.+
32 .+ 56.+
2 8 . + 54.+
45.- 47.+
29.- 47.+
23.+ 72.+
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APPENDIX D
DOT REGULATIONS

Excerpts from

Tariff No. 23 - Hazardous Materials Regulations of

the Department of Transportation

Brackets apply specifically to californium.

5 173.389 Radioactive materials; definitions. For the uurposc
of Parts 170-1S9: P '

(a) "Fissile radioactive material" mean? the following, material:
PlutmiiuiM-MS, plntflniiim-239, pliitnniiim-2-ll, ur.inium-23:i, or
ur»nium-235. or any nmterial containing any of the foregoing
materials. Sec § 173.390 (a) for exclusions. Fissile radioactive
material packages arc classified socordiiig to the controls needed
to provide nuclear' criticality rafetv during transportation as
follows:

(1) Fissile Class I. Packages which may be trans;>ortcd in
unlimited numbers and in any arrangement, and which require no
ouclcar critical'ity safely controls during transportation. For pur-
poses of nuclear criticaiily saft-ty control, .1 tran.iiiorl index is not
assigned to Fi.-sile Class I pac!;u[;«:s. However, the external radia-
tion levels ruay require a transport index number.

(2) Fissile Class II. -I'lickuges which nmy be transported to-
gether in any arrangement but. in numbers which do not exceed
an ^aggregate trnnsiKirt index of 50. For purjKtst^ of nuclear criti-
cality safety control, individual packaged may have a transport
index of not less than 0.1 and uot more than 10. However, the
external radiation levels may require a higl'T tr.insjiorl index
Dumber but not to exceed 10. Such shipment;- require no nnolcar
criticnlity safety control by the shipper during transportation.

(3) Fissile Class III. Shipments of pac!cngC!< which do not meet
the requirements of Fissile Class 1 or II and v. liich are controlled to
provide nuclear criticality safely in transportation by special
arrangements between the shipper and the carrier.

NOTE 1: Urnmura-?35 e.ii.its only in combination with various prrMii t f tpf? of
uraoium-231 and uranium-233. "Fif.nilc- rudifiadive material" as applied to
uraciun>*?3j refers to tlV amouat o/ uraaturc-23,) aTttuUy coutaiuol in the torn)
quantity of uranium being transported.
NOTE 2: Radioactive material may cousitt of mitturc* of fij:-Ue and hun-fiiailp

ndionuclidea. "Kiystle radioactive material" rc'era to the riniount of plutoniuni-
238. plutonium-239. plutoniuin-241. urynium-?a3. uranium-?:i,0. or any combi-
nation thereof ac!-j«IJy return?.! in th*. miTtnrr . Th.- "radioactivity" of the
minure cnaMita of the tolM activity of UnL the 6«ile an-t nonnMile rndiynurlidcB.
All mixtures containtag "fiMJle material" aball be aubject lo I 173.3QC.

(b) "Large quantity radioactive materials" means a quantity
the aggregate radioactivity of which exceeds that specified as
follows:

(1) Groups I or II (see paragraph (h) of this section) radio-
nuclides: 20 curies.

(2) Groups III or IV radiouuclidcs: 200 curies.
(?) Group V rao!ionuclides: 5,000 curies.
(4) Groups VI or VII radionuclidcs: 50,000 curies.
(6) Special form material: 5,000 curies.

(e) "Low specific activity material" means miy of the following:
(1) Uranium or thorium o.es and physical or chemictil concen-

trates of those ores;
(2) Unirradiated natural or depicted uranium or unirradiated

natural thorium;
(3) Tritium oxide in aqueous solutions provided the concentra-

tion does not excr«xl 5 millirtn-ies per millilitcr;
^(4) Material in which the activity is essentially uniformly dis-

tributed and in uhich the estimated average concentration per
gram of contents does not'exceed:

(i) 0.0001 mi'.licuncs of Group I (sec 5 173.3S9 (h)) radio-
nuclides; or

(ii) 0.005 millicuries of Group II radionuclidcs; or
(iii) 0.3 millicuriu of Groups III or IV radionuclides.

N^*:: Thii h.rlude*. but is no' lir.iltti to. matert.il* «.' Jon1 radioactivity ton-

buildup lubUe. n-c:?l. wooj. and fabric pcrnp. clanawarc. paper and cardboard:
ao..d or liquid |.iant waato, kitidcra. aiij ai>br^.

^(6) Objects of nonr.:dioactivc materltl externally contaminated
with radioactive nrntvTi:i!, provided that the radioactive material
is not readily diF^-rsible and the surface contamination wl 'en
averaged over an area of 1 square mi-ter. does not exce«d C.POOi
millicuric (220,000 disintc^raticiis per minute) per squar= ceiiti-
nieter of Group 1 radionuclides or 0.001 millicuriu (2,'201,GCO dis-
integrations per minute) per square centimeter of other radio-
ouchdes.

(d) "Normal form radioactive materials" means those which
are not special form udioactive materials. Normal form radio-
active materials f>re grouped into transport groups (see paragraph
00 of this section).

(e) "Hndioaclive material" mer.ns any rnaterisl or combination
of niaterials, which simultaneously emits ionizing radiation. Ma-
terials in which the estimated specific activity is not greater than
0.002 microcuries per gram of material, and in whicn the radio-
activity is essentially uniformly distributed, are not considered
to be radio active materials.

(f) "Removable radioactive contamination" means radioactive
contamination which can be readily removed in measurable
quantities by wiping the contaminated surface with an absorbent
material. The measurable, quantities shall be considered as being
uot significant if they do not exceed the limits specified in {• 173.397.

(R) "Special form radioactive materials" means those which, if
released from a package, might present some direct radiation
hazard but would present little hazard due to radiotoxicity and
little, possibility of contamination. This may be the result of in-
herent properties of the material (such as metals or alloys), or
acquired characteristics, as through encapsulation. The criteria
for determining whether a material meets the definition of special
form are prescribed in 5 173.398 (a).

(h) "Transport, group" means any one of seven groups into which
normal form radionuclides are classified according to tlicir radio-
toxicity and their relative potential hazard in transportation, and
as listed in § 173.390.

0) "Transport index" means the number placed on a package
to designate the degree of control to be exercised by the carrier
during transjiortatinn. The transport index to be assigned to a
package of radioactive materials shall be determined by cither
subparagraph (1) or (2)'of this paragraph, whichever H larger.
The number expressing the transport index shall be rounded up to
the next highest, tenth; e.g., 1.01 Decomes 1.1.

(1) The highest radiation dose rate, in millirem per hour sT
three feet from any accessible external surface, of the package; or

(2) Fot Fispi'.e Class II packages only, the transport index
-lumber calculated by dividing the number "50" by the number
)f similar packages which may be transported together (see
£ 173.390), as determined by the procedures prescribed in thft
•cgulations of the V. S. Atomic Energy Commission, Title 10,
2ode of Federal Regulations, Part 71.

(k) "Type B packaging" menus packaging which meets the
tandards for Type A packaL'inc,, and, in addition, meets the staad-
irds for hyputhetical accident conditions of transportation a*
>rcscribcd in § 173.39S (c).

0) "^ypc A quantity" and "Type B quantity'* radioactive
imteriais means a quantity the aggregate radioactivity of which
'oes not exceed tliat specified as follows:

Transport group
(see I 173J69(b»

I
II
HI
iv' ..
V
VI and VII

T,j»A
quantity

(in cares)

0.001
O.Oi
3

20
20

1 000
20

T7P«B
tjaAntity

(in ean«)

20
20
200
200

5.000
50000
5.000
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173.390

{ 173.390 Transport groups of radionuclidcs. (a) List of
rbdionuclidcs:

Element1

Artini'?"" (Ra>

Americium (95)

Antimony (51)

Arion (18)

Arienic (33)

Ailatine (85)
Barium (50)

BerLclium (97)
Beryllium (<)
Bumutb (811)

Bromine (3J)
Cadmium (48)

Calcium (?0)

Californium (&8)

Caibon (6)
Cerium (5S)

Cerium (55)

Coloring (17)

Chromium (24)

Copper (29)

Dyaprcaium (66)

Erbium (08)

Fluorine (9)
Gadolinium (04)

Gallium (31)

Germanium (32)
Gold(7»>

Hafnium (72)

Hydrogen (1)
Indium (49)

Iodine (53)

Ifidium (77)

Iron (28)

Radionucuo'e1

Ac-?27
Ar-2'.!8
Am-241
Am-'-'43

Sb-124

Ar-37
Ar-41
Ar-ll

(uncompressed)'. .
A.-73
A«-74
A«-7G
Ai-77
At-211
Ha-131
IlK-133

-Ha-140 _ .

Bc.7
BWOG
lli-1'07
Bi-210
Bi-212
Br-82
Cd-10'.i
Cd-115m
Cd-115
Ca-45
Ca-47
Cf-249
CI-250
Cf-252
C-14
Ce-141
Cc-143
Ce-144
Ce-131
C«-134m

C.-135
Ca-136
Ca-137
Cl-36

Cr-51
Co- 56
Co-57
Co-S8m

Cu-64
Cni-242
Cm- 243
Cni-244
Cnj-245
Cm-240
r>y-lM
Dy-lG5
Py-100
Er-100
Kr-171

Eu-162m
Eu-152

Eu-lii
F-18
Cd-li.1
Gd-159
Ga-67
Ga-72
Ce-71..:
Au-193
Au-194
Au-195
Au-196
Au-198
Att-199
HMS1
Ho-I60

9-3 (sec tritium) .
In-113m
In-lHin

In-115
1-124
1-125
1-126
I-I2S
1-131
|.»32

1-13 1
1-135
Ir-190
lr-19-'

Fe-55
F*-S3

Trcoipofl group

-i
X
X
X
X

X
X
X

X
X
X
X
A

u

X

x'

X

>'

JII

' if 'x

X

X

X

X

x'

X

'x'
Y

X
X

X

X

x'

V
X

X

X

X

X

X
X
X
X
X

X

x'

IV

'Y'
X
X
X

'x

'x'
X

X
X

X
Xx

X
X

X

X

X

X
X

X

X
X
X
X

X

X

X
X

x'
X

X
X
X
X
X

Y

X
X

x'
X
X
X

X
X
X

V

X

VI

X

VII

Elco;-=t'

Lanthtnum (57)
Lead (82)

Lutecium (71) •

NURrifsiurn (12)

Mercury (80)

Mneil Kiwiion Produrlv . . .
Mnlyhdei .um (42)

Neptunium (93)

Nickel (28)

Niobium (41)

Oemium (7G)

Palladium (46)

Pbufphorua (If.)
f la'.inufti (7o)

Plutonium (94)

Polonium (84)

Pronetbium (01)

Radium (83)

Radon (86)

Rhenium (75)

Rboilium (45)

Rubidium (37)

Ruthenium (44)

Saniarium (62)

Scandium (21)

Selenium (34)
Silicon (14)

Sodium (11J

Strontium (3S)

Sulphur (Ifi)
Tftnttlvm (73)

N • d ion u elide1

Kr-8.>ni

Kr-SS
Kr-8i

Kr-S7
Kr-87

(uncompressed)1..
La-UO
Pb-203
Pb-210

Lu-172
Lu-177
Mr-28
Mn-52
Mn-54 . . . . . . . .
Mn-SG
H*-197n>
HR-197
}lr.'M3
MK-P
Mo 99
Kd-147
Nd-149
Np-?:i7
NV-'JO.
Mi-Mi
KJ..W
Ni f>3
Ni-65
Nb-'::im
NU9o
NU97
OS-1S5

or,-i9i
OS-1B3
Pd-103
PJ-100
P-32
Pt-191
Pl-193
Pt-19'im
Pt-l!>7ra

Pu-?38'
Pu-239'

Pu-241'
Pu-212
Po-2IO

K-43
Pr-H!
Pr-113
Pm-147
Pm-149
P.-230
Pa-231
Pa-233
R.-2M
Ra-22:

Ra-2?S
Kn-r'.'UKn-?;;
Rr-18<

Re-!Sr
Re-IKS
He N«U:r»l
Rb-103m
Rb-105

Rb-87
Rb Natural.. . .
Ru-97
Ru-103
Ru-101)
Ru-lOi
Em-145
Sm-147
Sro-151
Sm-153
Sc-46
PC -47
Sc-48
Se-75
Si-31

Ag-llOm
Ae-111
Na-22
Na-24
Sr-8om

6t-89

Sr-fn

S-3.i
T»-18J

Tc-5ti
Tc-97m
Tc-97
Tc-59oi
Tc-98

Tranftptt't (toup

I

X
X

X

x
X

X

'x
X

X
X

u

X

'x'

X

X
Y
X

x'

Y

HI

Y

X

X

X

X

X

X
X

X

X

X

X

X

X

rv

X

X

x'
X
X
X
X
X

X
X

X
X

X
X

X
X

X
X

'-
 '• 

'• 
>

X
X
X
X
X

\
X
X
Y

V
X
Xx
X

X

X
Y
Y
X
Y
X

x
X
X
X
X
X

X
X

X
X
X
X

X

XX
Y

X
X

Y
X
X
X

X

v

X

X

n

x

VJ

. . .



{•173.300—§173.391

Element1

Tellurium (W) ...

Terbium WS)
Thallium (81)

Thulium (09)

TtD (SO)

Tritium (1)

Uranium (02)

Vanadium (73) .

Yttrium (39)

Zio4 (30)

Zirconium (40)

Rarlioauctide*

Te-t2;m.
Te-127m. ...
Te-127
Te-12'Jm
T«-129
Te-13lm
Te-I3i
Tb-lftO
TI.JOO
TI-201
TI-202
TI-204
Th-227
Th-228
Th-230
Th-231
Th-232
Th-234
Tb Natural. . . .
Tni-168
Tm-170
Tm-171
So-113
Sn-117tn
Sn-121
8n-l»
H-3
H-3 (as a ea$. a'

uniinoun paint, or
absorbed on aolul
matrrul).

W-181.. . .
W-18.->. .
W-187
U-MO

U-233*
U-231
U-M31

U-2:ia .
U-2J8 .
U Natural
U Krrirheu*. . .
V Depleted....
V-(8
V--IO
Xc-lIA
Xe*nim
Xe-13lm

Ainconipreaeed)'. .
Xe-133
Xe-133

'uneontprewed)1. .
Xe-135
Xe-135

Yb- 175
Y-88
Y-90
Y-Olm
Y-81
Y-82
Y-93
Zn-6.1

Zn-C9
Zr-93
Zr.Si
Zr-97

Traniport croup

I

X
X
y

A

11

X

X

X

v
V

V

X

111

X

X

X

X

v
X
X
X

X
X

X

y
X
X
X

X
X
X

X

X

X
X

X

IV

Y
V
X

X

X

\
v
X

X
V

X
X

X
X
X

X

X

X

X
X
X
y
X
V

X

V

y

X

VI

X

VII

'x

1 Atomic number eliown in parenlricaca.
' UncotnpreMed mMtia at a pressure not esceeiiiiiK 11.7 p.fl.i. (al«olute).
B Atomio weight shown after tlic rmlionuclwie symbol.
' Fiaaile radioactive niaterial.

(b) Any radionucliiie not listed in the above table shall be as-
•igDerl to ooe of the groups in accordance with the f ( i l lo \v in^ tal>lt'i

Atomic nunibrr 1-81
Atomic nuniWr H'J an>l over. .

» 1,000
dayi

Croup Ml
Cnnii- I

1.000 ,Uv: to
10 * > « - 4 i s

O.cr
10 'year*

(-,,.,,,. Ill
Pu

NOTE 1: No unti^tt't rnlioourli-U t ph«ll be un>:;:n'.<l to OfL.u|in [V. V. VI,
at VII .

(c) For mixtures of radionuclidrs the following sh:ill apply:

(1) If the identity anil respiylivc activity of earh radionufli ' lc
are knotvn, the pcrmi.^iible attii-ily of <?:irh r:i<!ii>imc!i-l>! ."lull IK;
auch that the stun, for all groups prc.<unt, of the rat i t t t>i-twecn thf
total activity for e.*v%h firoup ti) the jierruir-.-il 'le :ict!vity for eacli
group will not bo greater than uni ty .

(3) If the group.; of the r;ifli.n.ur|i,lf5 urn I ' rui" n Imt the aniuui . t
L- each group cannot be n-asMnably t i f ' e r i i . i i iuJ . the mix tu re shall1

be assigned to the moat rest i ic t iVL- jirnu;) prc.-oiil.

(3) If the identity of all or some of the radionuclides cannot be
reasonably det'.-rmined, each of those unidentified rfidionuclides
ehjill be coinMiTud as belonging to the tuoat restrictive group
which cittiti 'tt be iwsitively excluded.

(4) Mixtures consisting of a single radioactive decixy chaiD1

where the nutionui.'liik-s are in the uaiurally occurrinK proportions
shall be considered as consisting of a single radionuclide. The
group and activity s!r;ll he that of the first member present in the
chain, except if a raiiionudide "x" h.ta a half-l ife longer than that
fir.^t membor an-,1 an activity grc-atfr than that of srjy other mem-
ber including the first at any time during transportation; in that
case, the transport group of the nuclide "x" and the activity of
the mixture shall be the maximum activity of thut nuclide "x"
during transportation.

§ 173.391 Small quantities of radioactive materials and radio-
active devices, (a) Radioactive materials in normal form not
exceeding 0.01 millirurie of Group I radionuclides; 0.1 millicurie
of Group II radioaunlidcs; 1 millirurie of Groups III, IV, V, or VI
radionuelideo; 25 curies of Group VII radionuclides; tritium oxide
in aqueous solution ivith a concentration not exceeding 0.5 milli-
curies per nriilliliter and with a total activity per package of not
more thnn 3 curies; or 1 ruillicurie of radioactive material in special
form; and not containing more than 15 grams of uranium-235 are
exempt from specification packaging, markinp, £nd labeling, and
are exempt from the provisions of § 173.393, if the following con-
ditions are met:

(1) The materials are packaged in strong tight packages such
that there will be no leakage of radioactive materials under con-
ditions normally incident, to transportation.

(2) The package must be such that the radiation dose rate at
any point on the external surface of the package docs not exceed
0.5 nii l l i r t ' in per hour.

(3) There must be no significant removable radioactive surface
contaminat ion on tlu: exterior of the package (sec § 173.397).

(4) The outside of the inner container must bear the marking
"llailioactive."

(b) Manufactured articles such as instruments, clocks, electronic
tubes or apparatus, or other siniihr dericoj, having radioactive
materials (other than liquids) in a nondispcrsiblc form as a com-
ponent part, are exempt from specification packaging, marking,
and labeling, and are exempt from the provisions of § 173.393, if
the following conditions are met:

NOTE 1: For radioactive ease*, the reauireoicnt for the radioactive material
to be in a ooarlisperaible form doc3 Dot apply.

(1) Radioactive materials are securely coutaincd v/ithin the
devices, or are securely pw.knRcJ in strong, tight packages, ao
that there will be no leakage of radioactive materials under con-
ditions normally incident to tr;tn.:ix>rtation.

(2) The radiation (!ose rat'' at fuur inc.hoj from any unpackaged
device does not exceed 10 mil l i reni per hour.

(3) The radiation dose rate at uny poiut ou the exteiual surface
of the outside container does not exceed 0.5 millireni per hour.•
However, for carload or truckload lots only, the ratliatiou at the
external surface of the package or the item ru;iy exceed 0.5 tniUirem
per hour, but must not exceed 2 millireni per hour.

(1) There must be no significant removable radioactive surface
contamination on the exterior of the package (5ec § 173.397).

(6) Tin: total radioactivity content of a package containing
mili i tact ive devices must not exceed the quantities shown in the
following table:

Transport group

1 . . .
If
I I I . . . . . . .
IV .
V or VI
V I I
Spei'iAl form

Quantity in curies

Per
device

00001
0.001
0.01
0.03

23
0.005

Per
packaie

0.00 1
O.O5
3

1
200

20

(6) No jin;:knge may contain more than 15 grama of fissile
muti'ri.il.

(c) Mantif . 'xtuiVi. art Me.*, other than reactor fuel elements, ia
which t!if suit: radioactive matcriM is natural or depleted uranium,
are exiMi.pt from spcoificaliuu packaging, marking, and
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anil are exempt from the provisions of 5 173.39:t, if the following
conditions arc met:

(1) The radiation dose rate nt any |»iinl on thn external surface
of the outside container docs not exceed 0.5 in i l l i rcrn per hour;

(2) There must lie no <]ctccl:ililii radioac'.ivc surface contami-
nation on the exterior of the package, (see § 173.397).

(3) The total radioactivity content of each article must not
exceed 3 curies.

(4) The outer surface of the uranium is enclosed iu an inactive
metallic sheet.

NOTE: Such Articles may be packaging* for the transportation of radioactive
materials.

(d) Shipments made under this section for transportation by
motor carriers are exempt from Part 177, except § 177.817.

J 173.392 lev specific activity materials, (a) Jxm- specific
activity materials, when transported on transport vehicles other
than those assigned for thi; sole use of the consignor, are exempt
from the provisions of § 173.:t'.)3 (11) through (g); however, tlicy
must he packaged in ncronlunrc with the requirements of §173.VX>,
and must be marked and labeled as required in §§ 173.4U1 and
173.402.

(b) Ion- specific ectivity ni.iteri:>h wh ich are transported in
transport vehicles (except aircnift) assi|;niM for tlie sole use of that
consignor are exempt from specification packaging, marking, mid
labeling provided trie frhipmonts meet the requirements of prim-
graph (c) or (d) of Ihia section.

(c) PacVaged shipments of low specific activity materials trans-
ported in transport vehicles (except aircraft) assigned for the sole
use of that consignor mutt comply with the following:

(1) Materials must be packaged in strong, tight packages so
that there will be no leakage of radioactive material under con-
ditions normally incident to transportation.

(2) Packages must not have any signulcaut removable surface
contamination (see J" 173.397).

(3) External radiation levels must comply with § 173.303 (j).
(4) Shipments must be loaded by consignor and unloaded by

consignee from the transport vehicle in which originally loaded.
(6) There must be DO loose radioactive material in the car or

vehicle.
(6) Shipment must be braced so as to prevent leakage or shif t

of lading under conditions normally incident to transportation.
(7) Except for shipments of uranium or thorium ores, uncon-

centrated, the transport vehicle rfiust he placarded with the plac-
ards prescribed in accordance with { 174.541 (b) or § 177.S23 as
appropriate.

(8) The outside of each outside package must be stencilled or
otherwise marked "lladioactive—I.SA."

(d) Unpnrkaged (bulk) shipments of lou specific activity ma-
terials transported in closed transport, vehicles (ovocnt a i rcraf t )
assigned for the sole use of tliat consignor must comply wi th the
following:

(1) Authorized materials arc limited to the following:
(i) Uranium or thorium ores and physical or chemical con-

centrates of those ores.
(ii) Uranium metsl or natural thorium metal, or alloys of

these materials; or
(iii) Materials of low radioactive concentration, if the avenge

estimated radioactivity concentration does not exceed
0.001 millicurie per gram and the contribution from
Group I material c-es not exceed oue percent of the total
radioactivity.

(iv) Objects of nonradioactive material externally contam-
inated with radioactive maltri:1.!, if the radioactive ma-
terial is not readily di.-pcrsible and the surface contami-
nation, whcu averaged over one square meter, does not
exceed 0.0001 millirurie per square centimeter of Group
I radionuclides or O.IHI1 millicurie per square centimeter
of other rulionuclides. Such objects must be suitably'
wrapped or enclosed.

(2) Bulk liquids must be transported in the following:
(i) Spec. lOSC-W (5| 179.200, 179.201, and 170.202) tank

cars. Bottom fittings and valves are not authorised.

(ii) Sj."C. MC H10, MO 311, MO 312, or MC 331 (5 178.330,
§ 178.331, § 17S.:«7, t.r § I7S.343) carpi tanks. Autfco--
i/c"l only where the r t - f i . X ' i v t i v i t y con.-'.-ntrat'oii dues not
exceed 10 pen.Tnl of the spi-oiliod low spt-rifii; activity
levels (sre§ 173.3S'.'(<:)). Thercquircii ientsof § 173.393(g)
do not apply to these cargo Links. Bottom fjltitigs and
valves are not nui lmrizcd. Trailcr-ori-fhl-car service ;a
not authorized.

(3) External radiation levels must comply with subparagraphs
(2), (3), end (4) of § 1V3.393Q.

(4) Shipments must be loaded by the consignor, and unloaded
by the consignee from the transport vehicles in which originally
loaded.

(6) Except for shipments of uranium or thorium ores, uncon-
centrated, the transport vehicle must be placarded with the plac-
ards prescribed in accordance with § 174.511 (b) or 5 177.823, as
appropriate.

(6) There must be ao leakage of radioactive materials from the
vehicle.

173.393 General packaging requirements. {») Unless other-
wise specified, all shipments of radioactive materials must meet all
retruireiiirtils of this section, and must be packaged as prescribed
in §§ 173.391 through 173.3'JC.

(1>) The outside of each package must incorporate a feature
such us a seal, which is not. rcndily breakable and which, while
intact, will be evidence that the package has not Been illicitly
opened.

(c) The smallest outside dimension of any package must be 4
inches or greater.

(d) Radioactive materials m\>st be packaged in packagings
which have been designed to maintain shielding efficiencyand leak
tightne.-s, -so that, um.ler conditions normally incident to trans-
portation, there will be no release of radioactive material. If
necessary, additional suitable inside packaging must be used. Each
packhpc must be capuMe of meeting the standards in | 173.398 (b)
(see nl»o § 173.24). Specification containers listed.as authorized
for radioactive materials shipments may be assumed to meet those
standards, provided the packages do not exceed the gross weight
limits prescribed for those containers in Part 178.

(1) Internal bracing or cushioning, where used, must be ade-
quate to assure that, under the conditions normally incident to
transportation, the distance from the inner container or radio-
active material to the outside wall of the package remains within
the limits for which the package design was based, and the radia-
tion dose rate external to the package docs not exceed the trans-
port index number shown on the label. Inner shield closures must
he positively secured tt> prevent loss of. the contents.

(e) The packaging must be so designed, constructed, «nd loaded
that, when transporting lar^e quanti t ies of radioactive material:

(1) The heat gmcratrd w i t h i n I he package because of the radio-
active materials pjVM-nt w i l l i u t t , at any t ime during transporta-
tion, nffrr t the rllirienry of the package under the conditions
normally incident to traiisjwrtation, and

(2) The temperature of the accessible external surfaces of the
pac.kap.f will not exceed 122" )•'. in the shade when fully loaded.
assuming stil l air at ambient, temperature. If the package is trans-
ported in a transport vehicle consigned for the sole use of the con-
signor, the maximum accessible external surface temperature shall
be ISO1 F. '

(f) Pyropboric materials, in addition to the packaging pre-
scribed In this subpart. must also meet the packaging requirements
of j 173.131 or § 173.154. Vyrophoric radioactive liquids may not
be shipped by air.

(g) - iquid radioactive material must be packaged in or within
a leak-re*ibtant and corrosion-resistant inner container. In addi-
tion—

(1) The packaging must be adequate to prevent loss or disperse!
of the radioactive contents from the inner container, if the pack-
age were subject to the 30-foot drop test prescribed in { 173.398 (c)

. - provii
least twice the volume of the radioactive liquid contents. The
absorbent material may be located ouUirle the radiation shield
only if it can be shown that if the radioactive liquid contents were
takeu up by the abrurtont material the resultant dose rate at the
surface of the package would not exceed 1,000 millirem per hour
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(h) There must be no significant removable radioactive surface
contamination on the exterior of the package (see § 173.397).

(i) Except for shipments de.-cribcd in paragraph (j) of this
section, all radioactive materu:!.; must be packaged in suitable
packaging (shielded, if necessary) so that ;it any time during the
normal conditions incident to transportation the radiation dose
rate does not exceed 200 millirum per hour at any point on the
external surface of the package, ana the transport index does not

.exceed 10. •

(j) Packages for which .the radiation dose rate exceeds the limits
specified in paragraph (i) of tin's section, but does not exceed at
any time during transportation any of the limits specified in sub-
paragraphs (1) throug'i (4) of this paragraph, may be transported
1Q a transport vehicle (except aircraft; assigned for the sole use
of that consignor, and unloaded by the consignee from the trans-
port vehicle in which originally loaded.

(1) 1,000 millirem per hour at 3 feet from the external surface
of the package (closed transport vehicle only'/;

(2) 200 millirem per hour at auy point on the external surface
of the car or vehicle (closed transport vehicle only);

(3) 10 millirem per hour at 0 feet from the external surface of
the car or vehicle; and

(4) 2 mjllircm per hour in any normally occupied position in the
car or vehicle, except that this provision does not apply to private
motor carriers.

E(k) When radioactive materials are loaded by the shipper into
transport vehicle assigned for the sol.: use of thai shipper, the
ippcr must observe all applicable requir'jmcnU of I'nrt. 174, 175,
177, as appropriate. • . "

I ^1) Packages consigned for export are al.*> subject to the rctju-
I lotion* of tho foreign governments involved in the shipment. See
|_|} 173.8 and 173.9. _

{ 173.394 Radioactive material in special form, (a) Type A
quantities of special form radioactive materials must be packaged
as follows:

(1) Spec. 5B, 5D, 6A, 6B, 6C, 6J, 6K, GL, CM, 17C, 17H, 42B,
or42C (§§ 178.82, 178.S4, 17S.97, 178.9S, 178.99, 178.100, 178.101,
178.103, 178.104, 178.107, 178.108, 178.115, and 17S.118) metal
drums.

(2) Spec. 21C (5 178.22-t) fiber drums.

(3) Spec. 14, ISA, 15B, 15C, 15P, 19A, or 19B <&§ 178.168,
178.169, 178.170, 178.171, 178.190, and 178.191) wooden boxes.

(4) Any Spec. 12 series (}§ 17S.205 through 178.212) fiberboard
boxes, 200-pound test minimum, or Spec. 23F or 23H (§ 178.214 or
{ 178.219) fiberboard boxes.

(5) Spec. 55 (§ 178.250) metal-encased shielded container. Addi-
tionally authorized for not more than 300 curies per package, for
domestic shipments only.

(6) Spec. 7A (} 178.350) Type A general package.

00 Foreign-made packagings which boar the symbol "Type A"
may be used for transportation of radioactive materials from the
point of entry in tlie United Slates to their destinationi in the Uriite.1
States or through the United Stat'.-.s en route to a point of destina-
tion outaidc of the United States. . •

• (b) Type B quantities of special form radioactive materials
must be packaged a? follows:

(1) Spec. 55 (§ 178.250) metal-encased shielded container. Au-
thorized only for not more than 300 curies per package. Author-
ized for domestic shipments only (see al.su § 178-39-1 (a) (5).

(8) Spec. 6M (} 178.304) metal packaging.

(3) Any Type B packaging specifically approved for such use
by the Department.

(c) I<erge quantities of radioactive materials in special form must
be packaged as follows:

(1) Spec. 6M (§ 178.101) metal packaging. Ilndionctive ther-
mal decay energy must not exceed 10 watts.

(2) Any Type B packaging which meets the standards in the
regulations of the U. S. Atomic Knergy Commission (Title 10,
Cole of Federal Regulations, Part 71), or the 19G7 regulations of
the International Atomic Energy Agency, anil which has been

ages tor largu quantities ot radioactive materials 10 on utea ui
shipments by the U. S. Atomic Energy Commission, or one of its
contractors or licensees, a copy of the license amendment or other
approval issued by that Commission will be accepted in place of
the package structural integrity evaluation.

J 173.395 Radioactive material in normal form, (a) Type A
quantities of normal form radioactive materials must be packaged
as follows:

(1) Spec. SB, 5D, 6A, 6B, GC, 6J, 6K, 6L, 6M, 17C, 17H, 42B,
or 42C (§§ 17S.82, 178.81, 178.97, 178.9S, 178.99, 178.100, 17S.101,
178.103, 178.104, 178.107, 178.103, 178.115, and 178.118) metal
drums.

(2) Spec. 21C (§ 178.224) fiber drums.
(3) Spec. 14, ISA, 15B, 15C, 15D, 19.\, or 19B (§§ 178.165,

178.108, 178.169, 178.170, 178.171, 178.190, and 178.191) wooden
boxes.

(4) Any Spec. 12 series (§§ 178.205 through 178.212) fiberboard
boxes, 200-pound test minimum; or Spec. 23P or 23H (§ 17S.2U
or § 178.219) fiberboard boxes.

(6) Any Spec. 3 or 4 scries (§§ 178.36 through 178.44 or §J 178.47
through 178.58) cylinders.

(6) Spec. 55 (§ 178.250) metal-encased shielded container.

(7) Spec. 7A (§ 178.350) Type A general package.

(8) Foreign-made packagings which bear the symbol "Type A"
may bo used for transportation of radioactive materials from their
point of entry in the United States to tlieir destination iu the
United States or through the United States en route to a point of
destination outside of the United State.).

(b) Type B quantities of radio:;ctive materials in normal form
must be packaged as follows:

(1) Spec. 6M (§ 178.104) metul packaging. Authorized only for
solid or gaseous radioactive materials which will not decompose at
temperatures up to 250° F.

(2) Any Type B packaging specifically approved, for such use
by the Department.

(c) Large quantities of radioactive materials in normal form
must be packaged as follows: .. ,

(1) Spec. 6M (§ 17S.104) metal packaging. Authorized only for
solid or gaseous radioactive materials which will not decompose at
temperatures up to 250° F. Radioactive thermal decay energy
must not exceed 10 watts.

(2) Any Type B packaging which meets the standards pre-
scribed in the regulations of the U. S. Atomic Energy Commission
(Title 10. Code of Federal Regulations, Part 71) or the 1967 regu-
lations of the International Atomic Energy Agency, and which has
been specifically authorized for such use by the Department under
Part 170. In applying for Departmental authorization of package
for large quantities of radioactive materials to be used in ship-
ments by the U. S. Atomic Energy Commission, or one of its con-
tractors or licensees, a copy of the license amendment or other
approval issued by that Commission will be accepted in place of
the package structural integrity evaluation.
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