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SECTION I

,    RODucTIoSAn sUmmBX

Preliminar M parametric studies were performed by GAC t_ _,stab]ish

size, weight and packaging a=rangsments for aerodynamic doe_l_Jr._to*

devices that could be used for recovery of the expended solid pr_peL]imt

rocket motors used in the launch phase of the Spac_ Shuttle Sy._L_u,,

Computations were made using standard engineering analysis tech-

niques. Terminal stage parachute_ ware sized to provide equiSibrlum

descent velocities f_r water entry (VT ---50,100,150 fps) that are

presently thought to ba acceptable without developing loads that could

\ ! exceed the boosters structural integrity.
t

i The performance characteristics of the aerodynamic parachute

decelerator devices considered are based on analysis and prior test

: results for similar configurati,7_s and are assumed to be maintained

I at the scale requirements of the present problem. Weight reSation-

ships have been used which are based on the cube/square law of

structural scaling, configuration geometry, material strength to weight

I ratios and empirical design and construction factors appropriate to

the parachute configurations and operating environments of interest.

Representative base-line designs were selected to assess the re-,

quirements for ancillary equipment weights, bulk and packaging arrange-

i ments.

i The effect of variations in the total system recovery weight al'ld

terminal descent veloc_t_ on the terminal stage parachute weight arei
graphically illustrated.

t.
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I
Preliminary analysis of an orientation system (uprightin_]

I and stabilization) has be.n conducted to establish basic dos[Vn "_%

I end w_Ights. Several inflation system candidates are presented

for relative comparison and evaluation.

I
The requirement for a refurbishment facillty are present_d

and evaluate floor space and associated repair, and repack equip-

ment, and a description of a refurbishment cycle.

Finally a top level program schedule, hardware quantity requi_-_

"_ ments, and cost has been created for a 445 launch operational schedule

! _ and associated Resign Development, Test, and Evaluatlon program.

)

i
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A NA LYS IS

A. Terminal Stage Size Requirements

The aerodynamic performanoe characteristics for parachut_

decelerator devices appropriate to the present problem are

shown in Figures 1, 2 and 3. Determination of the parachute

size is obtained from the equation for equilibrlulLJ desc_-,t at
k

standard sea level condltions which relates to.:al sv_ • ._ _eight0

decelerator size and terminal velocity b7 -.

Where_

D0 is parachute reference (nominal) diameter, feet

VT is system equilibrium descent velocity at sea-_level, fps

WT is total system weight, pounds

N is number of parachutes in a cluster

is an efficiency factor that modifies the performance
of a single parachute when operating in a cluster

CDo is the parachute nominal drag coefficient when operating
as a slngle parachute.

i,
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) For the relatively high canopy loadings (in the range of 3

to 30 psf) in equilibrium descent specified for the present

applications, only ribbon or ring-slot type parachute canopies

exhibit consistency of performance that is insensitive to canopy

loading as shown in Figure i. For this reason the ribbon-type

parachute was selected for analysis.

Figure 2 illustrates the variation of the parachute per-

formance efficiency term (_) as a function of the number of

parachutes in a cluster. Figure 3 presents data indicating that

under the specified canopy loading conditions for the present

problem, the "decreasing factor" will have a value of about

1.0. This factor is of importance in establishing tbe strength

and consequently the weight requirements for the parachute

decelerators. Under lighter canopy-loading conditions, it

accounts foz the deceleration of a system during the inflation

time of the canopy and would generally permit designs that

require much less strength than that required to support a

"steady" load at the initial deployment conditions. This

would not be permitted in the present application as indicated

by the trend of available data as shown in Figure 3. The means

for limiting the magnitude of parachute loads at particular

deployment conditions for the present application will be by

_he technique of reefing.

-4-
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Figure 4 presents a plot of Equation i for the descent

velocities of present interest and for several values for the

numbar of parachutes in a cluster. The data of Figures 1 and

2 were considered in developing Figure 4. As noted on this

figure, as the number of parachutes in a cluster,exceeds 9 and

the size of the parachute exceeds a nominal diameter of 135

feet, a higher technical risk for development must be expected

since such configuration arrangements have not been practically

--_ demonstrated.

B. Parametric Weight Analysis

It can be shown that the weight for any structural device

subjected to aerodynamic pressure loads (where minimum gage

material thickness is not a limiting consideration) is related

to the magnitude of the pressure loading, the cube of a charac-

teristic reference dimension, the strength to weight ratio of

the materials from which the device is manufactured, and the

configuration geometry in relation to supporting the load. In

terms of the several parameters, the weight relationship for

a parachute system is -

= ' (CDo) L KI
% c ll

(0. 335) (C.F) c (C_) (A) 1 (2)ODo

J2Kc

|
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l
i For parametric analyses it is convenient to express

equation (2) in the form of a weight fraction of total

system weight as -

I

WT " DO K +

X R _ CDoS g's

(0'168) (C'F')C _DQ) 1_) 1 (3)

It will be noted that the first bracketed quantity on the

right-hand side of e_uation (3) corresponds to the loading
conditions in terms/g's imparted to the system. _ It zs thus

convenient to relate this quantity in terms of the design

maximum g-loads imparted to the system.

The several factors and coefficients of equations (2) and

(3) are (with representative values appropriate for the

selected ribbon-type parachute configuration) -

WP(N) - weight uf (N) number of parachutes, ibs.

i WT - Total recovered weight, Ibs.

D.F. - Overall design factor including a margin of safety

i of 1.5; = 2.5

! F - Factor to account for overloading of leading chute
in a cluster; = 1.32: or opening shock factor for

drogue parachutes t = I. 5
--6-
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qD Dynamic pressure corresponding to maximum design g

load imparted to system, e.g. at chute deployment,

dls-reef or full-inflation stages.

N - }lumber of parachutes in a cluster.

- Decreasing factor; = 1.0 (see Figure 3)

R - Parachute reefed to full inflated drag area ratio.

- Parachute cluster efficiency factor (See Figure 2).

CDo - Parachute nominal drag coefficient; = 0.5 for main
parachutes, = 0.55 for drogue parachutes (see Figure i).

-k
SO Parachute nominal reference area (= DO ), FT 2

DO - Parachute nominal reference diameter, ft.

__ (C.F.)iConstruction factor for parachute suspension lines; =

1.05.

(1S/Do)Ratio of parachute suspension line length to parachute

nominal diameter_ _ 1.5 for main parachutes, = 2.0 for

drogue parachute

K1 - Suspension-line material strength to weight ratio; = 105 ft.

(C.F.)c Construction factor for parachute canopy accounting for

seam overlaps, thread, re-inforcing, etc.; = 1.3

CPO/CD O - Ratio of local (maximum) canopy pressure coefficient to
nominal drag coefficient; = 2.0

- Ratio of canopy geometric cloth areas to nominal reference

area; = 0.9.

KC - Canopy material strength to weight ratio; = 105 feet

(for ribbon construction)

| ' L
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Evaluating equation (3) for the numerical values indicated

above where -

I

SOxR_cD0 %

There is -

for the main parachutes

\ WPIH) -- 6.5Xi0-5 (4)
WT LG_ (Do'main s

for the drogue parachute

WPd Is_- 9.83x10-[o'ICDO)drogu°

Relationship (4) ks used in conjunction with equation (i)

or Figure 4 to establish the presentation of Figure 5 at a

design load of 4 g's for th_ main parachutes.

Figure 6 illustr_tes the trend of recovery system weight

fraction of total recovered weight as a function of design g-load

for the main parachutes for representative recoverable space-

shuttle booster applications. The ordinate scale has been

adjusted by referencing the designs to their respective weight

fraction value at the level of 4 g's. It can be seen that when
P

a drogue deceleration stage ks used the 4 g-design level for

!
--8-
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i the mains will result in a nearly optimum minimum parachute

i recovery system weight. Some improvement in recovery system

' weight can be realised with a drogue stage and 2-stages of reefing
i
I employed with the main at higher design-g-load. It is implicit,

i of course, that the basic booster (possibly using drag-flaps)

would provide the proper deployment dynamic pressure conditions

for the drogue.

To establish the size requirements for the drogue parachute

it is necessary to determine the acceptable loading conditions

at main parachute deployment. These are established as follows:

MAINS

i AT 4g DESIGN LOAD

VTsL (fps) qT 1 STAGE 2 STAGEMAINS (psf) REEFING REEFING

50 2.975 47.6 190

100 11.89 190 650 (3.78g 's/STAGE)

150 26.8 430 650 (2.5g's/STAGE)

It is appropriate that the drogue plus booster drag area

provide a value for the terminal ballistic parameter that is

at least 0.9 the permiseable main parachute deployment dynamic

pressure, to assure deceleration to the required hand-off con-

ditions within acceptable time and distance scales. The

corresponding drogue deployment g's at a Mach number of 1.2 and

altitude of 20,000 feet (q = 650 psi) are -

-9- ._
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AT DROGUE DEPLOYMENT Wp DROGUE (Eq 5)

1 STAGE 2 STAGE 1 STAGE 2 STAGE
MAIN MAIN MAIN MAI_;

VTMAINS REEFING REEFING REEFING REEFING

50 14.28 3.58 1.40XIO-3w T 3.51XI0-4WTDod
(3.S6-with
1 stage of D

drogue 13  gx10"4wT
reefing) Dod)

100 2.9 Drogue not 2.85XI0-4WT -
Required

150 0.768 Drogue not 0.767XI0"4Wm

Required Do d

For the single booster configuration the calculated drag
\ area is 222 ft2 and for the 3 unit assembly 763 ft2. The rela-

tionship for establishing the drogue parachute diameter is thus -

14_____ WT

= _ - (CDA) (6)
D°d CDoT? qTBooster + Booste

L Drogue

I

Equation (6) can be substituted in relationship (5) and the

drogue parachute weight can thus be determined directly in terms

of the total recovered weight.

A riser line will usually be required to position the drogue
I
I

parachute canopy at a distance aft of the booster base to assure

adequate drag effectiveness. Experience has shown that for

-10-
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drogue diameters equal to or greater than the forebody base dla-

Ineter, a position 6.5 forebody base die,meters aft will be adequate.

The re_atlonship for the riser llne length used for the present I,._

analysis is thus -

iR m 6,5 dB - 2 Dod (7)

#

The riser weight is obtained from -

I m.F.  F)wT [G]. cIR/,<I
Where the terms and values are the same ms those defined for re-

lationships (3) and (5).

Figures 7, 8 and 9 present the combined drogue parachute and

I riser weight versus total recovered weight for the three desired

I terminal descent velocity conditions of interest and various com-

binations of main and drogue parachute reefing.

Figures i0 through 15 present the corresponding weight for

the main parachutes.

I', Using the developed figures, representative recovery system

characteristics are presented in Table I to assess requirements for
ancillary equipments and packaging arrangements.

- f
For reference purposes, terminal velocities of 50, I00 and

150 Ft/Sec will be referenced as A, B, C for Configuration I and I_.

Configuration I1 at 50 F/See has been eliminated from further con-
sideration since parachute size is beyond the state of the art.

-II-
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I C. Pilots, Risers, Mortars

I Along with the drogues and main parachutes, additional comp_
nents are required to deploy these devices into the airstream.

I Previous exper_.ence has shown that the most suitable method for

this application is to utill _ pilot parachutes to deploy th_ dr_u_
and clusters of main parachutes. The pilot parachute will bQ dep]x_yed

_ using a mortar device to eject it into the airstream. The follow_ng

•! sub-sections present the criteria associated with pilot parachute,
riser and mortar design criteria.

PILOJ_

The pilot parachute is sized to provide an extraction force

i which will limit snatch forces of the parachute being deployed.
I Experience has shown that i0 g's acting on the packaging being

. deployed should be used as design criteria. The required extrac-

i tion fo2ce is equated to be:

FEX T = WpACK (G'S) (9)

where:

i FEX T = Extraction Force

i WpACK = Weight of Package
G'S = Extraction Acceleration

-- the parachute size is related to this force by

= qCDA = DO
I FEXT qCD "4" (_0)

where q = free stream dynamic pressure

i CD = Dra_ Coefficient

-13-
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2
A - Reference Area - _/4 D O

DO - Nominal Reference Diameter

, Figure 16 relates pilot D O to the extraction force _:or

a C D = 0.55, 10 g's, and dynamic pressure of 47.6, 190, 430

and 650 PSF that are associated with drogue and main deployment

conditions.

The weight of the pilots i_ given by

\ }
= _;.5 X 10-5(G's) (Wpack)(Do) (from Equation 4)Wp

!. Figure 17 shows pilot weight for raring diameters and

four deploym_nt dynamic pressures.I
Based on weights for the drogue package and main packages,

I
specific pilot size and weights have been defined for the two boo,tat

I and associated terminal velocities. This dataconfigurations

is presented in Table IX.

I
Riser______s

Parachute performance is dictated by two criteria. For single

I or clustered canopies, necessary placeit is to the leading

1 edge (shirt band) at a distance approximately 6.5 times the base
diameter (max diameter) of the payload. For Configuration I and It

the distance is 105 and 234 ft respectively. The riser length

required is

L R - X - Ls (ii)

-14-
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!

t Where LR m riser length (ft ,_

I X _ (6.5) (Base Diameter) (ft)

LS - Suspension Line Length (ft) _ 1.5 Do
p

J The riser length can be obtained directly from Figure 18

when the parachute D O is known.

I
In addition to wake factors, for proper clusterin_ riser

length is dependent upon the number of canopies in the cluster

i and the relative size of the canopies. This criteria has been

summarized in Figure 19 from En_ineerin_Desi@n llandbook - AMCD-

706-130 for cargo delivery systems. For relation to this study,

I the data has been referenced to the nominal parachute diameter

(Do). The riser length required when 1.5 DO suspension lines are

i used can be obtained directly as a percentage of the parachute

i DO. For clusters of 6 and 9, optimistic values of this ratio

are 0.25 and 0.65 respectively.

Riser weight is given by

wR = (D.F.)(X)(Wp)(G's)(XL-_) (12)

_ When D.F. = 2.5 - Design factors

X = 1.1 - Opening Shoak

G's - 10.0

K _ 105 Ft strength to weight ratio for nylon

i -17-
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t
!i wR - 2._5 x lO'4_wl{LR) Cl_

i Riser lengths and weights for the pilot parachutes

i can be founl in Table I_.

• 1 For this main parachute the riser strength is given by

Equation 12 except the X factor will reduce to 1.0 and

! G's = 4.0.

WRains., = 10 -41W) (L) 114)

Riser lengths and weights for both pilots and mains is

i presented in Table _I for the respective sizes specified.

! Mortar

The mortar size and weight is dependent two basicupon

criteria_

I) Mass to be ejected

i 2) Muzzle velocity at mortar exit

The mass dictates the volume requirements and the

mass and veloci_ provide strength requirements when the

ejection energy is considered.

k-

The mortar system de£ined in this report uses the Viking

system mortar as a base of comparison. For its known weight,

dimensions, ejected mass, muzzle velocity and internal pressure,

scaled up criteria has been created for the booster recovery
i

-- } requirements. For a known ejected weight, mortar weight can be

00000001-TSC01



_r

I
RSR-20207-24

obtained direatly from Figure 20 for a muzzle velocity

of 250 ft/sec., factor of safety equal to 20 and a length

to diameter ratio of 3.0. The weight variation associated

with changes in muzzle velocity are reflected in Figure 21

Ii Using these two figures and muzzle, velocities of 105

and 234 ft/sec for Conf I and II respectively, mortar weights

for respective pilot sizes can be found in Table II.

I Mortar size is dependent upon the mass to be ejected.

For an assumed packing density of 35 pounds/ft 3, and an L/D =

3.0. The mortar diameter (Dm) can be shown to be

J_ Dmo_30_-_ _lSl

I and length is

1 °90 ,i07

Mortar sizes have been established for the pilot parachute

systems and is shown in Table II.

%

I
I

I

i -19- A
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D. Orientation System
I

Orientation Device

I The orientation device system is designed to rotate the

booster after it is laying in the water to one of four roll_I
L positions. In each of the four positions a radio beacon and

a flashing light will be visible from any approach direction.

Positioning is accomplished by inflating 4 rows of inflatable

spheres attached to the outside of the booster. The rows are

located 90 degrees apart around the circumference. The locating

_'k beam and light are 180 ° apart from each other. The beacon

and light are 45 ° from two of the rows of spheres, Figure 22.

_- Preliminary calculations indicated the water llne will be

i 2.5 feet up for Configuration I and 4.0 feet up for Configuration

II from the bottom of the cylindrical part of the booster and

the booster will lie nearly level in the water. The minimum

internal pressure necessary to maintain the shape of the spheres

at a nominal depth of 4 feet is determined from the hydraulic head

at the bottom of the sphere when it is underneath the booster,

, Figure 23.

I The number of spheres of various diameters required to

i prevent the booster from rolling over in a sea state 4 condition

with the row of spheres tending to right the booster completely I

I submerged is presented in Figure 24.

-20-
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Figure 25 presents the total weight of all four rows of

sphere as a function of sphere diameter. This weight does not

include the weight of the inflation system.

The results indicate that the 2-foot diameter sphere system

is the llghtest weight system, requiring 13 spheres in each row

for Configuration I and 68 spheres in each row for Configuration II.

i Each row for Configuration IS is 136 ft. long which seems impractical,

i and the larger numbers of spheres require more inflation hardware.

i Thus, it is recommended that two 3.6-foot dia. spheres per row
be used on Configuration I and four 5-foot dia. spheres per row be

I used on Configuration II. The numbers recommended do not include

allowances for damaged spheres.

. Although spheres have 'been indicated in the above discussion,

I attachment considerations may result in modified configurations

! such as short cylinders curved about the booster periphery. Optimum

i longitudinal location of the orientation devices has not been

I determined at this time.

-21-
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Inflation System

The orientation system, main parachute and drogue parachute all

require inflation systems for their flotation bags. The three

systems are essentially the same for Configuration I and II except

they vary in size and weight. The preliminary requirements for the

three systems are:

i
Inflated volume orientation system

Configuration I 49 cuft at four posi%_ons

i Configuration II 262 cuft at four positions

Inflated volume main parachutes

Configuration I 5 cuft for each of six parachutes

II 15 cu ft for each of nine parachutesConfiguration

Inflated volume drogue parachute

Configuration I 11.4 cuft

II 60 cu ftConfiguration

I Inflated pressure 6 psig all units
Inflation initiation

Orientation system - after water impact

Drogue and main parachutes - after parachute deployment

Inflation time - not critical up to 5 mlnuu,,s

Inflated life per cycle - 24 hours

Maximum storage temperature - 065 to 160°F

Maximum temperature in flight - +225°F

Deployment temperature limits

air (ambient) 40° to 95°F

water (ambient} 50° to 80°F

-2_~
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!
There are many candidate inflation systems that would meet the

i above requirements. Representative types are listed in Table Ill
The systems shown in the table are not necessarily designed for the

proposed system but the trends shown in the table are characteristic

J I of each system. With this data and the selection criteria of high
reliability and minimum development cost the possible system types

i

can be reduced to either a gaseous nitrogen or gaseous nitrogen -

carbon dioxide. Since weight is an important factor the potential
system types can be reduced to a simple system, gaseous nitrogen

carbon dioxide. The selection of this system type is tentative and

X 1 must be reviewed in depth as additional design data becomes
available and the selection criteria is specifically defined to

m_et the overall program philosophy.

Each of the gaseous nitrogen - car'on-dioxide systems would include

i 5000 psi gas storage cylinders, initiation valve, check valve on
each bag for multiple bag systems, pressure relief valve, pressure

I regulator valve, recharging valve and associated plumbing. The

i storage cylinders are sized to provide make-up pressure for the 24
hour inflated life of each system.

The tentative weight for each inflation system is given in Table IV

TABLE IV INFLATION S_STEM WEIGHT

CQnfig_ration

Orientation system 120 LB 640 LB
(unit weight X 4 units)

Main Parachute (ea) 15 LB 20 LB

Drogue parachute 18 LB 40 LB

-23-
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E. Sequencing System

A typical logic circuit schematic for a sequencer is presented in

Figure 26 for reference only. This circuit is for an aerlnl re_rJev;i]

type system and starts at a higher altitude than would be need for ,_

the present program. This typical recovery logic circuit consists

of relays, barometric switches, pyrotechnic devices, resistors,

diodes and associated electrical hardware. Two redundant, electrically
I

isolated circuits, are used, although only one is shown in the sketch.

i The circuitry also provides additional reliability by including cross _
!

overs between sequence channels. The recovery system is armed by a

signal from the missile logic circuit, which energizes relays K1 and/1

1 or K2 in the recovery section. Then the signal from the missile logic
i

circuit initiates booster separation and/or removes the. recovery

system cover.

i The drogue chute or drogue pilot is mortared during missile descent

when the barometric switch senses 30,000 feet attitude. The mortar
circuit is initially locked out until the recovery system is armed

and the vehicle is safely above 30,000 feet. The baroswltch is shown

i in the "less than 30,000 feet" position, and the open contact SQ9-3
prevents mortar firing. During vehicle flight above 30,000 feet, the

baroswitch will be in the normally open position; if the recovery system

is armed, pyroswitch SQ9 will be energized, closing contact SQ9-3,

thereby enabling the mortar circuit. Upon descent to 30,000 feet, the

baroswitch re-closes and fires the mortar cartridge initiator doploylng

tile drogue.

-25-

k I i
O0000001-TSC08



RSE-20207-24

After a half-second delay, the cartridge initiator circuit is

cleared when SQII-3 opens. At this time, SQll-4 closes and a

20-second time delay (SQ-13) is energi_ed (20 seconds is an ,_

approximate time for drogue chute operation prior to main chut(_

deployment).

After the time delay, contact S013-3 closes and a heat shield shapede

charge detonator SQ5 is energized. The heat shield is thus severed

from the recovery section. Since the drogue is attached to the heat

shield, which in turn is attached to the main chute deployment bag,

Ii the drag from the drogue parachute thus pulls out the main chute.

The circuit redundancy is illustrated in the sketch b_iow.

Further reliability is achieved by employing cross-overs between

I sequence A and B, as illustrated by the use of contact K2 in sequence
A and contact K1 in sequence B. By cross-over implementation, the

i operation of one sequence will not be completely lost if an early

1 event is not obtained.

Pat .L T_at

..... t'l' .... I'1'.......
F2 1'2

Sl. K.1.

K1 I'2

--IPT-- ...... qt--r....

K? Fl

Sequence A Sequence B -26- i
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Each aequcnce has its own power supply. The choice of batteri_:_

Will be deter:_ined considering the test facility requirements. The

voltage and capacity rating will also be d_termlned at that time an,]

will be based on the recommended fire currents of the pyrotechnic

devices, their resistance, circuit contact resistance, wiring

resistance, currant limiters and internal battery resistance.

The recovery section will contain a test, safe and arm connector as

indicated by Jl on the sketch. Battery leads are also routed through

an internally available connector for charging and checking the

batteries.

To aid in locating the booster when it is in the water two radio beacons

,/ and flashing lights will be located 180 degrees apart on the body of

the booster. The sequencer or mlni-computer initiates the water

retrieval aids system either at the start of recovery or water impact.

The radio beacon can be ordered for the desired frequency. A J_ wave

stub antenna or flush antenna which operates on or near the standard

Mayday frequency (243 MHZ) is typical.

The flashing light emits flashes of 500,000 lumens intensity at the

rate of 20 to 30 per minute and it and the beacon will operate for 36

hours on its own power supply. The duration of operation is a function

of the battery furnished for the system.

-27- i
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I
F. Raoovery System Weight Summary

I Presented in Table V are weights for the Drogue, Main, and ,_

I Orientation Sub-Systems. The weights are not the totals fo_
the complete sub-system package but only those parts whi(_h

I have been defined in the precaeding sub-sections. Component

I weights which have been omitted are described in the foot
notes at the bottom of the table.

]
The total weights which are presented are the assumed maximum

I anticipated and are obtained by applying experience factors

[_ to the weights for the mains and drogues.

I
i More accurate total system weight estimates can be obtained

after additional components have been established.

b_

i
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SECTION III

CONCEI_ DESIGN z_,._

A. G_neral

The parametric analysis as described in the preeeeding _ection

, has provided basic sizes and weights for the primary components of

the parachute recovery system required for proper deceleration to

the desired terminal velocity conditions of 50, i00, and ]50 Ft/Sec

for both the parallel burn Configuration I and series burn Configura-

tion II. Presented in Figures 27 and 28 are dimensional charac-

\ I teristics of Configuration I and In FiSu*'e 29 and 30 those of Conl'il_-

uration II as specified to Goodyear Aerospace Corporation by Thiokol

1
Chemical Corporation. Presented in the following subsections arc

I the deployment sequence for the recovery system and the preliminary

i approach to the packaging and stowage of the parachutes and mortar
portions of the recovery system.

B. Deployment Sequence

, Presented in Figures 31 , 32 , and 33 are a schematic repres_r_t:a-

tion of the a-,tcipated recovery sequence for the Configuration I

booster (2 required per launch) for a i00 Ft/Sec impact velocity.

I Figure 32 depicts the ejection of the drogue/pilot parachute from

, its mortar. The mortar imparts kinetic energy to the packaged

pilot, sufficient to fully extend the pilot and its riser. As the

bag detaches, tile pilot is permitted to In_lste, and in tui'n c,_ti'a_.t

-30-
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!
the drogue parachute from its compartmtmt. As the dro_u_ bag (h,t:_,_h¢):_

' the apex of the dro_/uo, the drogue inflates and do_:e.lcr:ll.¢:._ the,

booster to a condition compatible with main parachute th_pJoym_'nt

Because of tl_e instability of the booster, prior to drogut, d,_p]ey,

i it is assmnod that a throe logged bridle will bc requi.rcd :".o tr_la._'er
I

t load into the booster structure. This method will provide a straight

line pull through the boo_ter centerline.

After a predetermined time on the drogue, (compatible with proper

I deceleration to the main parachute deployment conditions) each leg

t of tire drogue bridle will be severed at the vehicle with a pyrotechnic
release mechanism. The drogue will separate from the booste:'. Shortly

I

,_ I after 2 additional mortars will be simultaneously fired

separation

I and each eject a main/pilot into the airstream(figure 32). These pilots

will inflate and each extract a package containing a cluster o_ thre_'

t main parachutes. As the main bag detaches the canopies apex, t|lc para-

I chutes will inflate to a reefed shape(figure 33), After a prede-

termined time, reefing cutters initiated during the bag stripping phase,

severes the first stage rsefing tim_ and permits the canopies I;o J Rt-

flate to a larger drag are.t. After an additional predetermined £im(_

thisSDcond stage of reefing is also severed, permitting the main

parachute to fully inflate(figure 33) and achieve final decel_)rttJol

to the desired impact velocity. Each cluster of t.hret; parachtlt_):; wl]

have a single attachment point at the periphery of the booster bn:_(_.

00000001-TSC14
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I Although not shown, these main parachutes will disconnect from

the booster at water impact. Flotation balloons inside the

parachutes will inflate and location aid initiated for recovery and

subsequent refurbishment of the main parachutes. A similar event

is anticipated for the drogue.

Additionally, the booster orientation and location system(beacon)

_ will be actuated and properly position the booster for acquisition

and recovery.

A similar sequence of events will occur for the Configuration II

booster as depicted in Figure 34, 35, and 36. The primary basic

difference is that three main/pilots must be deployed to extract the

three clusters of three main parachutes(Figure 35). Each clusler

will attach at the booster base and be 120 ° apart.

C. Packaglng/Stowage

Configuration I

Presented fn Figure 37 is the presently anti_ipated approach

I to packaging of the pilot mortars, drogues, and main parachutes.

In general the base diameter of the booster ltas been it, creased

I_ by approximately thirty inches and this diameter extended forward

t approximately 45 inches. A cone frustum will connect the 156 in_h

basic booster base, to the 225 _nch cylindrical section.
r
!
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This increase in base diameter is required to pro_idc a

straight line extraction of the drogue and main parachute package.

The general sizes depicted for the drogue and main stowage com-

partments is approximately to scale for the weights presented in

, Section II.

Although not shown, the reaction loads of the mortars and

deceleration loads of the parachute will be transferred into the

" basic booster structure through added metal structure.

t It is presently assumed that the inflation system for the
orientation system will be housed within the flare portion of

t the aft skirt.

Shown in Figure 38 is slightly more detail of aft end of

the booster. Drogue bridle stowage and "hard point" load transfer

locations are depicted.

Configuration II
i,
n' Figure 39 presents the general approach for storage el' the

recovery system components. The "Clover Leaf" must be motiii'i_d

t¢,provide stowage volume for the three groups of main para-

chutes, and their pilots and mortars. The drogue parachute

and its pilot and mortar will be placed at the center of the

three nozzles. It is assumed that the nozzles will bc positioned
I

at a zero angle prior to drogue/pilot mortar fire.

i The shapes of the main packages have been established to provide

a minimum increase in base area.

l -33-
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As with Configuration I additional structure will be required

to transfer load from the mortars and parachutes into the

basic booster structure.

Additional volume at the aft end or some other position along

the boosters length can be used for orientation system and inflation

system stowage.

Figure 40 provides more detail of hard point locations and

drogue bridle routing for Configuration II.

"i
I
i

i
i
t
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SECTION IV

b REFURBISILMENT AND TURN AROUND

Confi_u_dtion I-B

A. Introduction

Thisrefurbishment plan is based on the use of 12 each 81 Ft DO

i main chutes; 4 each 20 Ft DO pilot chutes (main)_ 2 each 40 Ft

DO drogue chutes_ 2 each 9 Ft DO pilot chutes (drogue), for

each mission.

i The assumption is made that I0 of the 12 main chutes will be

_ refurbishable; that both drogues will be refurbishable; that all

pilots and deployment bags are expendable.

Additionally it is assumed that all rigging and packing will

be accomplished as part of the refurbishment plan. Thus:

_, i0 Mains refurbish, rig and pack

2 mains new, rig and pack only

I 4 pilot chutes (main) rig a.nd pack only

I, 2 drogue chutes, refurbish, rig and pack

2 pilot chutes (drogue) rig and pack only

1

i The scope of this plan includes off-loading of the recovered

I parachutes on the dock of the refurbishment facility throuqh the

parachute packing cycle and return to inventory awaiting delivery

I to the mls_on vehlole.

I
-35-
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C. Requirements

The facility floor plan and equipment requirements are p_ese_ted

in Figure 41 ,_nd Table VI respectively. Wlth certain notable

exceptions the re_3ired equipment is comprised of "off the shelf"

items. Where these exceptions exist they have been annotated TBD

(To Be Designed)
l

D. Refurbishment Cycle

i The following is a "walk through" in operation sequence from off

loading through parachute packing, describing the planned methods

i and identifying the equipment, used for the main parachutes. This

I cycle is also presented in Schedule format in Figure 43.

i _ i. (a) Remove chutes from transportation containers.
!

(b) Engage hoisting hook through apex bridle.

(c) Remove flotation gear.

(d) Hoist each chute (of a cluster) and separate intoindividual chutes.

_ (e) Untangle and defoul suspension lines
Equipment:

Electrically operated hoist, individually motorized,

tracked to an over head monorail. Monorail will b_ of

closed loop design. Ref. Figure 41. 1 hoist required

per chute.

t

= L.... rl
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TABLE VI FACILITY AND EQUIPMENT REQUIREMENTS

r

Basic Facillty_ ,_,

400 Ft X 420 Ft, 100 Ft high (168,000 Ft 2)

Overhead lighting. 60 Ft candles

Environmental controls. 75 ° _ 10°(F) and 50 _ 20% R.H.
I

I Air and electric outlets. 95 psi, ii0/220/440V

Shop vacuum

Equipmentz

i Fork Lift 1 required

\ I Overhead Monorail systeM. Race track design with individually
motorized0 Electric hoists. 1 hoist required per parachute.

, # Washing containers. Volu_e of approx. 500 ft 3 3 required (TED)

Drying room/ovenz Gas fired, floor ducted, forced air to
maintain 160 u to 180 ° (F). 1 required

! Drop off table 220' x i0' (approx). 1 required

Inspection table 80' x 6' (approx). 1 required per chute
Work table 70' x 18' (approx). 1 required _r chute

Packing table 150' x 6' (approx). 1 required per chute

i Conveyor belt extension 50' x 6' (approx.) 1 required per chut_(TBD)

Electric winch, reversible:capacity(to be determin_d)

1 required per packing table

1 i required per inspection table

I
-37-
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TABLE VI-(Cont)-FACILITY AND EQUIPMENT REQUIREMENTS

I
Sewing Machlnesz

I 2 each heavy duty Singer No. 97-10 _,

I 3 each heavy duty Singer No. 114-204

3 each heavy duty Singer No. 144-204

I 3 each repair table Singer No. IIIW-153

I 3 each repair table Singer No. I07W-3

3 each repair table Singer No. 17W-15

Overhead traveling crane system

i Parachute packing press and fixture

"_ 1 1 required per cluster of main chutes (TBD)
Drogue and pilot chute packing press and fixture

2 required (TBD)

g
Y-Bar, floor stand mounted

2 per table inspection

2 per table packing

I Suspension line combs

I per packing table (TBD)

Tape Recorders

(TBD) To Be Designed

l
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2. (a) Move hoist and chutes into wash area (3 at a time)

(b) Lower chutes into individual washing tanks

(c) Soak in fresh water, air agitated.

Equipment:

Three containers 500 Ft 3 each
approx

Fresh water supply

Water drains

3. (a) Move hoist and chutes into drying room.

Dry in elevated temperature environment
(1609-1a0°F

Equipment:

Forced air, floor ducted, gas furnace
,?

i 4. (a) Move hoist and chutes to drop-off table.

(b) Use electric winch to stretch out and maintain tension o11
canopy and lines.

I (c) Perform and line line Usegore by gore by inspection.
voice recorders for initial documentation of damage;
also flag the damaged areas.

I (d) Transcribe on permanent records (damage report and damage
chart) description and location of damage.

Equipment:

Drop off table 220' x 10 (approx.)

Inspection table 80' x 6' (approx.). 1 per chute.

Electric winch, mounted on flip up, flip down section
of table top. 1 per table.

Y-Bar, mounted on floor stand 65 in. high, 2 pQr table.

-39-
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5. Engineering decisionz
I

Repair or not repairable.

If repair, engineering will furnish direction using a pro-
planned set of repair procedures.

I If not repairable, use traveling crane to move chute to
segregated area.

6. Use traveling crane to move repairable chute to repair area.

1 Equipment_

Traveling crane

I

7. Repair as necessary

Equipment:

1 Work table 70' x 18' (approx.)

--_ Standard Sewing Machines

8. Move repaired chute to ready area by traveling crane, or to

packing table.

9. (a) Rig and install floatetlon

| (b) Install _eefing system!

{ (c) Packing procedure. One cluster packed incrementally
in a single compartmented deployment bag. Pressure

t pack 35 ib/Ft _ (approx.)

I (d Equipments

Packing table 125' x 6' with conveyor
Belt extension 50' x 6' 1 per chute

J and fixture 1 required per clusterPacking press

i Electric winch 1 per table
Y-Bar 2 per table

I0. Move parachute pack assy. to inventory stores. End of eyc1_

i= -4o-
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C0nfi_uratlon I_-R

A. Introduction

This refurbishment plan is based oR the use of 9 each 125 Ft Do

main chutes_ 3 each 38.0 Ft Do pilot cht_tes (main)_ 1 each 74 Ft

DO drogue chute! 1 each 21 Pt DO pilot chute (drogue), for each

mission.

_ The assumption is made that 7 of the 9 main chutes will be
I

zefurbishablet that the drogue will be refurbishablet that all
I

pilots and deployment bags are expendable.

I Additionally it is assumed that all rigging and packing will

be accomplished as part of the refurbishment plan. Thus

7 Mains refurbish, rig and pack

2 mains new, rig and pack only

3 pilot chutes (main) rig and pack only

I drogue chutes, rufirbish, rig and pack

1 pilot chutes (drogue) rig and pack only

I B. Sco_SSp
The scope of this plan includes off-loading ot the recovered

parachutes on the dock of the refurbishment facility through

I the parachute packing cycle and return to inventory awaiting

delivery to the mission vehlcle.

t
I -41-

1

O0000001-TSDIO



|

!

C. Requirements

The faolllty floor pl_n and equipment requlrement_ are presented ,_

in Figure 41 and Table VII respectively. With certain notable

exceptions the required equipment is comprised of "off the _helf"

items. Where exceptions exist they have been annotated TBD

(To Be Designed).

D. Refurbishment Cycle

The following is a "walk through" in operational sequence from

off-l_ading through parachute packing, describing the planned

1 method and identifying the equipment used, for the main parachutes.

This cycle is also presented An schedule format in Figure 44.

!

i. (a) Remove chutes from transportation containers.

I (b) Engage hoisting hook through apex bridle.

(c) Remove gear.
flotation

1 (d) HoiStindividualeaChchutechutes.(ofa cluster) and separate into

i (e) Untangle and defoul suspension lines.

Equipment:

Electrically operated hoist, individually motorized,

tracked to an over head monorail. Monorail will be of

closed loop design. Ref. Figure 41.1 hoist required

per chute.

-42-
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I TABLE VII FACILITY AND EQUIPMENT REQUIREMENTS

Basic Facility_

400 Ft X 350 Ft, i00 Ft high (140,000 Ft 2)

Overhead lighting. 50 Ft candles "_

Envlronmental controls. 75° _ 10°(F) and 50 _ 20% RH

Air and electric outlets - 95 psi, II0/220/440V

Shop vacuum

Equipment:

ForkLift 1 required

I Overhead monorail system. Race track design with individually
motorized, Electric hoists. 1 hoist required per parachute.

_i Washing containers. Volume of approx. 700 Ft 3. Fitted withwater agitation system. 3 required (TED)

Drying.room/oven: gas fired, floor ducted, forced air tomaintain 160 ° to 180O(F). i required

} Drop off table 220' x i0' (approx.). 1 required

Inspection table 80' x 6 (approx.). i required per chute.

i Work table 70 _ x 18', (approx.). 1 required per chute,

Packing table 200' x 6' (approx.). 1 required per chute.

Conveyor belt extension 70' x 6' (approx.) i required per

I chute (TBD)

Electric winch, reversible, capaclty(to be determined)

1 required per packing table

1 required per inspection table

Sewing Machines •

2 ca. heavy duty Singer No. 97-10

3 ca. heavy duty Singer No. 114-204

3 ca. heavy duty Singer No. 144-204

3 ca. repair table Singer No. IIIW-153

3 Ca. repair table Singer No. I07W-3

3 ca. repair table Singer No. 17W-15

-43-
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•ABLE VII -(Cont) - FACILITY AND EQUIPMENT REQUIREMENTS

Overhead traveling crane system

Parachute packing press and fixture. 1 required per cluster
of main chutes (TBD)

Drogue and pilot chute packing press and fixture. 2 required
(TBD)

i Y.-Bar, floor stand mounted

2 per table inspection

I 2 per table packing

I Suspension line combs

i per packing table (TBD

I
Tape Recorders

l

1
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2o (a) Move hoist _nd chutes into wash area (2 at a time).

(b) Lower chutes into individual washing tanks. "_

1 (c) Soak in fresh water, air agitated.

} Equipment:

Three containers approximately 700 Ft 3 each.

I Fresh water supply

I Water drains

3. (a) Move hoist and chutes into drying room.
J

Dry in elevated temperature environment (160 ° - 180°F)

Equipment:

I Forced air, floor ducted, gas fuznace°

_Jl 4. (_) Move hoist and chutes to drop-off table.

(b) Use electric winch to stretch out and maintain tension on

I and lines.canopy

(c) Perform gore by gore and line by line inspection. Use
i voice recorders for initial documentation of damage;

also flag the damaged areas.

I (d) Transcribe on permanent records (damage report and damagechart) description and location of damage.

I Equipment_

Drop off table 220' x i0' (approx.).

! Inspection table 80' x 6' (approx).l per chute.

i Electric winch, mounted on flip up, flip down section
! of table top. 1 per table.

i Y-Bar, mounted on floor stand 65 in. high. 2 per t_b]e.

-4_ i
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5. Engineering decision:

Repair or not repairable.

If repair, engineering will furnish direction using a pre-
planned set of repair procedures.

If not repairable, use traveling crane to move chute to
segregated area.

#

6. Use traveling crane to move repairable chute to repair area.

Equipment:

Traveling crane

_ 7. Repair as necessary

Equipment:

I Work table 70'x 18' (approx)

Standard Sewing Machines

8. Move repaired chute to ready area by traveling crane, or to
packing table.

J

9. (a) Rig and install flotation gear.

i (b) Install reefing system.
(c) Packing procedure. One cluster packed Incrementa]Iy

in a single cgmpartmented deployment bag. pressure,
pack 35 ib/Ft _ (approx).

Equipment:

Packing table 200' x 6' (approx) with conveyor.

Belt extension 70' x 6'. 1 per chute.

Packing press and fixture. 1 required per cluster.

Electric wlnuh. I per table

Y-Bar

I0. Move parachute pack assy. to inventory stores. End of cycle.

-46-
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SECTION V |_ARDWARE REQUIREMENTS, SCHEDULE AND COSTS

r
Figure 45 Operational Hardware Requirements

The hardware required to support a 445 launch schedule is included

' for both configuration IB and IIB. It is believed that the drogues

parachutes can be refurbished four (4) times and the main parachutes

, refurbished five (5) times before they are discarded. All pilot

i parachutes and associated equipment will be lost. It is planned to

have at least one (i) new parachute for each launch cluster. Spares

are not included.

Figure 46 Schedule

A very preliminary schedule is included. It is comparable to either

i configuration IB or IIB. It indicates that PDR is possible at the

end of 12 months and CDR is possible by the end of 36 months. The

first qualified launch set could be available within 5 years from

contract go-ahead.

Figure 47 Rough Order of Magnitude (ROM) Estimate

The estimated price for furnishing the solid rocket motor recovery

system was arrived at by using actual costs of much smaller but similar

program conducted a; GAC. These costs were than ratioad upward to

accommodate the new weights, sizes, complexity and quantities require:l.

Also, the rates used for establishing the ROM were based upon 1970

actual rates. No attempt was made to escu!ate labor and material

estimates over the proposed program calendar schedule.

-47-
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SOLID ROCKET MOTOR RECOVERY

ROM ESTIMATE

CONFIGURATION IB CONFIGURATION lIB

MILL, DOLLARS MILL. DOLLARS

DDT&E Estimate

I Program Management 8.0 8,0

System Engr. 5.0 7.0

Design, Develop & Test 37.0 45.0

I Customer Components • .
3 0 4 0

Hard_are for Qualification ii. 0 19.0
Logistic Support & Special 7.0 9.0

Test Equipment

_, Orientation and Beacon 4.0 4.0

l Data 5 .___O0 80.0 5 .___0 101.0

t
Operational Estimate

Tooling .9 .9

i Capital Equipment 4.15 4.15
Facilities 17 o35 22.6

Production:

Main Chutes 15.1 21.8
Mortars 16.0 21.4

_Eogues 4.45 3.2

rl Orientation & Beacon 4.0__5 39.6 4.05 50.45
I!

Production Support 4.0 4.2

' Refurbishment_

Main Chutes 20.4 29.1

Drogues 4.3 3.1
Orientation & Beacon 2.3 27.0 93.0 2.3 34.5 116.8

Total ROM Estimate 173.0 217.8

FIGURE47
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_I SUMMARY

The purpose of this study is to make n quantitative ll_SCSSmcllt Of th_

I environmental impact of esh_ust prod_ots omitted by a rocket t_nginc conflguration t.A,_

i consisting of two solid propellant engines .rod one LOX engine durl_g hi_mch (_l_L,r_t-
tlons of tht_ NASA Sp_ce Shuttle fled ]_oo_ler lit Kennedy Space Center. The t_xh|uist

products considered tn the study are llCI, A1203, CO. CO2 and ll20 from the _.lid

, propellant engines and Ii20 from thu LOX engine. Emissions data and oth,_r inf.l"
I

t marion on the performance of th_ booster engines wore suppll_:dby the Thlokcd

Chemical Corporation. Tax!city criteria in the form of 10-minute maximum all.w-

I _ able concentrations of CO, HCI :u_dAI203 wore obtained from a recent NASA report,

f Meteorological data used inthe htvdy were obtained from mean monthly vertical l)_'o_

files of wind speed, wind direction and air temperature for Kennedy Spvcv Ct!ntt,J"

j (Smith and Vaughan. 1961) imd from selected case studies of meteorological strtt(_ttlr_:
at Kennedy Space Center used tn previous hazard studies (Record, _ al., 1970;

I Dumbauld and Bjorklund. 1971) by the GCA Corporation Technology Division.

I In normal launch operations, the booster engines burn for approximately
135 seconds and the maximum altitude of the burn is about 40 kilometers. F,xhat_st

i products are thus emitted in both the troposphere and stratospl_re, the base of

Rtratosphere being about 16 kilometers at Kennedy Space Cent_'_r. Becmtse both the
at_nosphertc processes controlling the tr_msport and dilution of polletants as well :_,_

' t the receptor effects are different in the troposphere and _tratosphcre, these two
regions of the atmosphere have been treated separately. In estimattvg ti_e envlro_)_

'_ mental impact of tropospheric omissions, we have used computerized multilnyer

diffusion modv{s previously developed for NASA by the GCA Corporation Technology

I Division for calculating toxic fuel hazard.,_ (Dumbauld, at n_l., 1970). in evaluatit_.,

I the possible formvtion of acid mist in the: cloud of exhaust products in the lower
troposphere, we have used procedures developed in recent work for Vandenberg Air

I

l i I III
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t
Force Buo (Crm'ner0 oral., 1970). For the stratospheric prnblcm, wv have used

t a very dimple approach btmed prlnelpMly on calculations of th_ time required for tht_
coneentrntlans of vxhoust products to reach ambient levels, If the products are nc_u'-

sally present lit the stratospherc, or levels of the ncrnml trace c(nnstltncuts If th,_ t,_,.

products are not norm_ly prr_sent in strntosphcrh: air. The imlk of the troposphoi'lv

hazard calculations for this study wore made on the UNIVAC ] 108 mn_hlm_ nt th_

l University of Utah using the computer progrnms described flbeve in et_nJtl!l{_t.iOl_ witi_
the requisite emissions and metvorologietd data.

I: The results of the tropospheric hazard calculations arc summarized

t briefly as follower

! • For the three meteorological regimes considered, tht:

ground.-level concentrations of llCl, A1203 anti CO arc nil

below the maximum allowable ]O-minute conct:ntrotion

levels for both tt normal launch and an on-pad abort In whicil

one of the solid propellant engines is completely burned withthe vehicle in a hold-down status

• For a low-level vehicle destruct'at an altitude of 2 kilometers,

the calculations show a stabilized cloud of exhaust product._ te

be formed at an Mtttude of about 4 kilometers with an npprox|_

mate dituncter of 2 kilometers; average consents'aliens of Ct)

(50 ppm) and AI203 (35 mg m "3) within the stabilized cloud

are well below the ground-level toxicity crite1'itt nnd the

corresponding IICI concentration (30 ppm) is equM to the

ground-level limit

i • The formation of an acid mist is possible only in situation.q
where the ambient humidity Is close to 100 percent; the pro-

duction of acid drizzle on"rain that will reach the underlying

i ill

I
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murfnco in significant nm.unts a[qx)ar_ to I_ w_ry unllhcqy,

t although Ih{_ format|on of small wMvr drtlpa wilhit; tht. t_xhltt_l

o]oud with an amid content of I to ,5 pt_rt_qK hy w_dght in likely

If a suffl{dm_t toni)lent mqqfly of wator is awdhil.h_ _....,._

• (:hileltllitlOllH of tho IlllI,Xlil)lllll rT.t|ll¢)vn] (If II(!l I'O'Olll Ilif_ I,xh_nll!tl

(|lOIId by flllllllg lirt_clllltlllhm _hiiw Ihllt lh¢l Illl_Jllllllll qttl'fl!tq,

dOlmSlthm of IlCI r|lllgt_ fl'tllll lille)Ill ,t. 2 to O. 28 lO'q,)_;,_]lt_t'

St'ltlaro motor, dop(mdlng on Iho Umc Ill'tOP Illtllli_h fit whtch Ih_'
iwvolpltnthm starts; I.Ib_attlllil)[_that this {IIIlOUII[ O_IICI i_ di,_"

_t solved In 2.5 mllltmt_tcrr_ of rain, the pll COllttqlt (If the r|lh|

water ranges from 1.35 to _.. 561 although wc m'v aot awar_ of

I (k, tatlod studios of the _:fft:cts of IIC1 achl Oll vcLctatioi_ _'d

\ [ other rcccptors, lht_sv pll vnlttt:s |tl)l)e;Ir to I)t_ pt)tci_ttatly t:tq_-
able of pt'odttctng harmful effects

!
'|'he results of the stratosl)hOric hazard ItSL..'._b._!,,_tlttl:'(L

t
• Concentrations of CO2 and N2 cn.Httod fÂ.olll thc retie.el tmgit_,:'

t fall hi:low mnbiont levels 'is soon as the exbauBt (:Ic a(I :ttt_dn::
I-orlzontal dilnet_sious of a few huadrcd meters; (:hit4 ot_t.qlV8

within It few minutcs nftt, r the pat_sagc of the v(_hit:h:

' t • Coacontratlons of li20 f;ll[ below tlml)lOllt levi!IS llS Soo)I as t}_t_

horizontal direct)siena of the cx]lttttst clotld qro ] of 2 I_i]o--

meters; this Is t,stiln|ttctl to oct|Iv witlfill a few hot|ra |d'to)' the:

passage ¢)f the vehicle

• Because IICI, AI203 _m|l CC) 'u'e not incJtldod it| the Ilt))'|_l:_l
constltucnt._ of stratospheric air, we have reqtli)'t_(] their.

concentrations to roach a_l order of )align;tilde I,_low the level

!
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I

for pc,", _ trace constituents (I0 II molecules per cubic

centimeter); this criterion requires that the horizontal
dimensions of the exhaust cloud be approximately 50 kllo-

I meters in extent, which should be achieved after a couple _,_

i of days of stratospheric residence

• The above criterion for HCf, AI203 and CO is probably too

conservative because there are no established chemical or

photochemical reactions in the stratosphere involving these

products

Tire principal conclusion of the study is that the only environmental hazard

posed by the rocket engine emissions is the tropospheric washout of HCf by falling

precipitation and the consequent surface deposition of acid rain containing from about

I 1 to 0.01 percent HCf by weight. This phenomenon occurs only if the vehicle is either

I launched during rain showers or if such showers occur along the first 100 kilometers
of the downwind trajectory of the elevated ground cloud of exhaust products. If this

I trajectory is over water rather than land, the harmful effects are minimized. For

overland trajectories, the possible harmful effects of acid rain containing the amounts

of HCI indicated above on vegetation and other receptors should be carefully evaluated.

t

1
i

t

t

i v
t
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t SECTION 1

i INTRODUCTION

1.1 PURPOSE "_

The ThLokol Chemical Corporation is proposing the use of two solid propel-

lant engines and one LOX engine for the booster of the NASA Space Shuttle. During a
normal launch at Kennedy Space Center, combustion products will be emitted from

t

i these engines between the launch pad and a maximum height of about 40 kilometers.

The purpose of the proposed study is to make a quantitative assessment of the environ-

mental effects of these emissions. The combustion products of concern are: carbon

monoxide, carbon dioxide, aluminum oxide, nitrogen, water, and hydrochloric acid.
The potential environmental hazards posed by these products fall into three general

_ t categories:

, Ground-level concentrations or dosages that exceed estab-

lished toxicity levels for uncontrolled populations

1
• Possible damage to vegetation or other receptors through

t surface of the material by precipitation removaldeposition

processes

I
• Possible effects of these products on the chemical and physi-

I' cal balance of the stratosphere

1.2 APPROACH

The quantitative assessment of the first two hazard categories was mnde

principally by means of computerized multilayer diffusion modcls_ previously developed

by the GCA Technology Division for NASA and the U. S. Air Force, in con}unction witil

appropriate emissions data and meteorological data. The emissions data wcrc supplied

t x

I

I
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by the Thtekol Chemical Corporation and are given in Figure 1-1 and Table 1-]. We

have provided the necessary meteorological data representative of the area mlrro_nd-

lag Kennedy Space Center which wore available from previous work. Toxicity cri-

teria used in the study, which are in the form of maximum allowable 10-minute ,_

concentrations for CO, HCI, and A1203, arc presented in Table 1-2.

In calculating the possible environmental effects of stratospheric emissions

i (above 45,000 feet), we have u_ed simple diffusion models to calculate the time re_

quired for concentrations of the combustion products to reach levels of insignificmtce
in terms of ambient concentrations of the normal constituents of the stratospherc.

!
I
I
!
t
t

T

t
I
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l

TABLE I-I

i EMISSION RATES OF SELECTED ROCKET ENGINE EXIIAUST PItODLIC'I'S

i , m ....... , ,

Rate (Ibsec-1) Total* _P_'_
Product ....

I 2 Solid Engines LOX Engine (lb)ii ii pN, .,,. ,.

t llCl 3518 4.749 x 105

' i A1203 4936 6. 664 x 105

CO 3909 5.277 x 105

CO2 614 8. 289 x 104

i H20 1529 4615 8.294 x 105

i N 2 1427 1,927 x 105
*For a 135-second engine burn.

I "
TABLE 1-2

I MOLECULAR WEIGIITS AND 10-hlINUTE MAXIMUM ALLOWABLE

CONCENTRATIONS (MAC10) FOR SELECTED ROCKET

I ENGINE COMBUSTION PRODUCTS

Fuel Molecular MAC 10'

Component Wel[.h.t (ppm) ....

,, CO 28.01 1500

ItCI 36.4? 30

l
AI20 3 101.94 50 (ragm -3)

*Taken frontTable 1-1 of NASA Contractor Report NASA C;{-61358 (Dumbauld

t and Bjorkluud, 1971)

t

I
t

[
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SECTION 2

TROPOSPHERIC MATIIEMATICAL MODELS

The generalized multilayer concentration models used in the tropospheric _,_

hazard calculations were taken from a complete sot of computerized multllayer dif-

fusion models developed for use in estimating toxic fuel hazards at Kennedy ,'_pace

Center (Dumbauld, _ el., 1970). Only a brief description of these models is givt_.n

below. A complete description is avatlt_ble in the above-referenced report prepared
?

by the GCA Corporation Tanhnology Division for the Marshall Space Flight Center.

The generalized models are similar in form to the conventional Gaussian plume

! equations described by Sleds (1968, pp. 97-99) and others. However, additional

terms have been added to aecoant for the e_fects of mesoscale factors, such as the

depth of the surface mixir.g layer, vertical wind shear, and precipitation scavenging.

I The models also contain provision for gravitational settling, decay,
and variations

in source dimensions, source emission time, and in meteorological structure along

t the downwind cloud trajectory.

i In using the multilayer models, the troposphere is divided into layers in

which the meteorological structure is approximately homogenous. Major layer

boundaries are placed arbitrarily at the points of major discontinuities in the vertical

l profiles of wind, temperature and humidity. It is assumed that there is no vertical
flux of material across the major layer boundaries cue to turbulent mixing; material

i ' flux across these boundaries can occur only as a result of gravitational settling or
precipitation scavenging. Changes in meteorological structure at some arbitrary

f time or distance from the point of release can also, be accommodated through use
of

special layer-breakdown models previously de,eloped for this purpose in the work

for Marshall Space Flight Center. As explained below, these models were used in

the present study when the surface mixing layer was divided into sublayers to aecom-
:t

modnte the height dependence of the inlU::l vertical distribution of exhaust products.
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The basic formula for the peak concentration In the Kth layer at snmc

p 1 distance x downwind from the source Is given by the expression

QK

I
where

I QK _ source strength in units of mess per unit depth of the
Kth layer

I -- standard deviation of the erosswind concentration distribution
_yK in the Kth layer at distance x

_xK = stavdard deviation of the alongwlnd concentration distribution
in the Kth layer at distance x

Equation (2-1) above is defined as Model 1 in the report by Dumbauld, c._ta_l. (1970),

\ t and the subset of equations defining _yK and CrxKare given on pages 14 through 20

t of the report. Briefly, CryK and _xK are calculated by means of simple power-lawexpressions relating turbulence parameters to cloud growth with dtstanc_e. In this

I layer model, the source extends vertically through the entire layer; the vertical
distribution of the material in the layer is assumed uniform with height and Gausslnn

I alongthecrosswind(y_and alongwind(x)coordinates.The use ofEquation(2-I)

requiresthatmaterialoriginatinginthe Kth layerisconstrainedfrom diffusing

vertically beyond the vertical boundaries of that layer, as mentioned above.

i Inthisstudy,tosimplifythecalculationsofconcentrationswithinthe

stabilizedgrou,Jdcloudofexhaustproducts°themajor meteorologicall:tyerscon-

i
taining the ground cloud were subdivided according to the vertical distribution of i

i material in the ground cloud. Material in the sublaycrs included in the sur_:tce
mixing htycr (see, for examples Figure 3-3) was permitted it> diffuse vertie:dly

I across the sublaycr boundaries. The layer-transition model dt,_seribed as Mo_lel ,5

by Dumbat_ld, c_t a_l. (1970, pp. 31-33) _vas used to make these calculations };_,cnusc

it providers for the requisite vertical mixing and for ldontifyi_g the eoatributitm of

6
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I
! the material contained in each initial sublayer to th,_ compositt] ground-b_wl eoac_n--

tration. In the layer,-transition model, material in the ortgin_d K layers ils t_rmitt¢,,d
to diffuse into a new Lth layer (in th[_ case the surface mixinl- layer) starting :it :_

predetermined time t* which was set equal to 1 second. The pcwk concentration

equation for Model 6 is given by the expression

QK ......
I XPL _ 4_ _LK _XLK

l

- - ,.Oz ..... 2f. z., -'r. -2z ..z,, ,.Iz

i \ /

where

= standard deviation of the vertical coneeatration distribution

i {rzLK in the Lth layer for tl,e source originating in the Kth layer

-- standard deviation of the crosswind conccntr'ation distribution

i _yLK in the Lth layer for the source originating in the Kth layer

' _LK = standard deviation of the alongwlnd concentration distribution
i in the Lth layer for the source originating in the Kth layer

ZTL _- height of the top elf tile Lth layer

z,Bi ' = height of the base of the Lth layer

1
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ZTK = hi, light of the top of the Kth layer

ZBK _ height of the l)_e of the Kth layer

ZL _ height in the L th layer at which the co,mcntratlon is

oaleulated ._,.

t M3ximum surface deposition of IICI due to precipitation aeavcl)ging i)) a

Layer L through wh!eh precipitation is falltr, was calculated by nmaas of a modified
version of Equation (3-3G) in the report by Dumbauld, ct a_l. (1970):

I

!

= _/_ O'yLK QL kUL

i where

] A = fraction of material removed from the exhaust cloud bywashout per unit time

ZTL = height of the top of the L th layer

I ZBL = height of the base of _he L th layer

UL = mean wind speed in the: L th layer
= standard deviation of the crosswind distribution of material

aYL in the I, th layer at a dist.'mcc x L from the source
x L = distm)ee from the source in the L th layer

t 1 = time precipitation begins

The height of the top of the. uppermost layer through which pr(_cipitation is fallil_g

Zli m nmst also be supplied as input to the computer program. In the washout
deposition calculations described in Section 4.4 below, Zli m was set equ_d to (;

kilometers.

I
1

I
|

O0000002-TSBIO



#

I

I SECTION 3

I DEVELOPMENT OF SOURCE AND METEOROI.OGICAI. INPUTS

I 8.1 ]METEOROLOGICAL DATA _,_

t
The three meteorological situations used for the eonccntr(ttlon (:_l_:t_i:+t_+)ns

i downwind from a normal launch and pad-:_ort arc based on the mean monthly wind
speed, wind dircetlonland temperature profilesfor Kennedy Space Center (KSC.)

pubiishedby Smith and Vaughan (1961)and on the work of Record, et nl, (1970)and

Dumbauld and Bjorklund (1971). Concentrationsat ground levelare primm'ily depca_
i

f ,_ dent on the depth of the surface mixing layer Hm and the vertical distribution 0£

i material in the stabilizedcloud of exhaust products. Study of themean wind speed

and directionprofilesfor KSC showed thatfor wind flow required to transportthe
t combustion product cloud inland, the average surface mixing layer depth is about

100O meters. During the spring on some occasions the surface mixing layer dnpth

I t approaches 2000 meters and during the afternoon sea breeze regime in all seasons,

the average mixing depth is about 300 meters. Figure 3-1 shows the wind direction

t profiles and Figure 3-2 shows the wind speed profiles for the fali, spring and after-

I noon sea-breeze regimes at KSC. Detailsof the temperature profilesin the lowest
B kilometers for these regimes ,'wegiven by Dumbauld and Bjorklund (1971).

3.2 CLOUD RISE CALCULATIONS

i
{ Estimates of maximum cloud rise for the cases of normal launch and pa(l_

t abort wore obt_tlned from an expression due to Briggs (190.9, p. 331 1970):

+r....+,,, (,. ,.,.+,,z Lu _ sI/_" + 2 cosi _T s

I
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where

z _ height of cloud at time t2
r Fm _ w: r°

W0 - initial vortical vvlo_Ity (m ace -I) _
s

I = o (m)r ° radius of area where vcrtlcal velocity equals w

fl _= mona wind spt_cd (m see "1)

t _/ ,'- entraimnont constant whore cloud radius r (z) ,,: TZ

s _ stability pat'ameter = }_ a_O'i' 0z
-2

g _ gravit:ttional acceleration _ 9.8 m soo
T _ ambient air temperature (OK)

t 0.
_--_ = vertical potential temperatare gradient (°Km "1)

\ 1 g oil
o p T
P

I QII _ heat emission due to el'flux of hot gases (col .qec -1)

cp -- specific heat of air (cal g-1 OK-1 )
p = density of air (g m -3)

I t _-" time (see)

[ The abovv f_rmula ylcldscloud riserates thatagree f:tvorablywith the observedi

cloud rlsc rates from the launch of Saturn vehlolcsas described by Susko and

t Kauiman (1971).

According to Briggs (seeSlad_, 1968, p. 199), the formula for calcul'_thlg

the buoyant rise of noztrly-insttmtaneouslygenerated clouds firstgiven by Morteu,

Taylor, and 'l'urncr (19,5(i) can be. written "Is

1 _hl _ 2.00 'i, p o,l,/0z (3-2)

t
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t where

AhI = cloud rise (meters)

Q_ = heat released _alorles)

J
Brlggs compared cloud rises calculated from Equation (3-2) with observed cloud

i rises from nuclear tests and found that the observed rises were about 30 percent

higher. If the formula is adjusted to E,t the observations, the expression for cloud

rise from nearly-instantaneous sources becomes
I

i Ah I = 3.46 CppD¢/az/ (3-3)

i Equation (3-3) also gives results which compare favorably with observatlon_ of cloud

! rise downwind from detonations of high e,xplosives recently reviewed by Church (1969).
f

Equation (3-3) was used to calculate cloud rise for the case in which the booster is

destructed at a height of 2 kilometers.

Input parameters used in the cMculatton of cloud rise are given in Table

3-1. The initial vertical velocity too was calculated from the expression

(t" rE)2
to = V • _ sin_x (3-4)

i o _.w

t where
V = exit velocity from rocket engine (~ 2438 m sec -1)

i r E = radius of rocket engine ('-2 m)
= length of flame trench (137 m)

w = width of flame trench (17.7 m)

= incline mlglc at end of P._me trench (45 deg, 0 dog)

I 13
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i TABLE 3-1

VALUES FOR INPUT PARAMETERS USED TO CALCULATE
BUOYANT CLOUD RISE

Type of Hazard Calculation
Washout

Parameter Normal Pad-Abort Destruct Sur£ace
Launch Deposition

Wo (m see -1) 290;0 290;0 290;0

;t r ° (m) 8.56 8.66 S. 56

p {g m -3) 1190 1190 962 1190

sec "1) 6.25 x 109 2.01 x 109 5.54 x 1011 6.25 x 109QH'QI (eal

i
7 0.50 0.50 O. 35 O. 50

t Cp (cal g-1 OK-1 ) 0.24 0.24 0.24 0.24

T (°K)

t Fall 299 299

Spring 300 300 300

i Sea-Breeze 294 294
34,/8z (°K m -1)

Fall 0. 0044 0. 0044 0. 0046
Spring 0. 0040 0.0040 0.0057 0. 0020
Sea-Breeze O. 0064 0. 0064 0.0062

t
(m sec-1)

Fall 6.0 6. OSpring 7.2 7.2 7.2
Sea-Breeze 4.2 4.2

t I t

| t |
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Values of _ t w, and c_ were obtained for Launch Complex 39A st KSC from the

i paper by Susko and Kaufmau (1971). Estimates of V and rE were obtained from

Thiokol Chemical Corporation. Note that c_ equals 45 degrees at one end of the

flame trench and 0 degrees at the other. Thus. the cloud rise from the two ends of t_,,_

the flame trench proceeds at a different rate with time. ttowever, the final rise from

each end is nearly the same and the results of the cloud rise calculations for both

segments were averaged to obtain the estimate used in the concentration calculations.

i The value of QH shown in Table 3-1 for the normal launch and pad-abort
hazard calculations was calculated from the expression

= - ' (3-5)QH QT + Q1 Q2

where

\
i QT = total amount of heat available from system exhanst

(2 solid engines + liquid fuel engine = 5.58 x 109

eal sec-I)

Q_ = heatrequiredtoheatdelugewaterusedtocooltrenchtoboilingpoint(9.20x 107 colsec-1)

Q_ = heat required to vapori_ deluge water (6.82 x 108

eal sec-I)

1 The values of Q_ and Q2 are based on the assumption that 1.26 x 10:_kg sec -1
(Susko and Kaufman, 1971) of deluge water ,'uccused to cool the fl,'une trench and

that the w,tter is vaporized and entrained into the exhaust cloud. The value of Ql
was determined from the amount of solid propellant remaining in the engine after

reaching :m altitude of 2 kilometers and the assumption that the:heat content of th,_

fuel is 691 calorics per gram. The parameter 7 was set cqual to 0.5 in accordmtcc

with conservative estimates based on work by Dumbauld (1._71) and by Susko and

Kaufman (_971) for the normal and pad-abort cases. For thc destruct case, T w_s

set equal to 0.35 for consistency with the derived constant _.,lit in Equation (3-3).

15
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The geometry of the stabilized cloud of combustion products for each tJf

t the cloud rise calculations was calculated from the expressions

I l - + ;

? (z z° rR/? m

zm'7(z+ zo-rlt/7 _ 200 ; z_ zm

where
z = heightoffinalriseofgroundcloud

: m

t z = reference height at which plume rise begins (14.6 meters
o for all oases except destruct where z = 2 kin)o

reference radius of cloud at to 68.5 metersrR heightZg ZA (equal
U

for all oases except destruct whore rR -- 121 motors)

Note that r{z} is not permitted to be less thtm 200 meters.

\ 1
3.3 SOURCE INPUTS

Source inputsused inthecalculationsofground-levelconcentrationsaud
washoutsurfacedepositionof HCI aregiveninTables3-2 through3-8.

i
Table 3-2 givesheightsoflayerboundariesusediuthenorJmd hmech and

pad-abortcalculations.The divisionof thelowest5 kilometersofthetroposphere

intodistinctlayerswas made on thebasisofthemeteorologicalstructureinthe

troposphere,andthedistributionofmateriM inthest_ilizedgroundcloud. For

cxamplct Figure3-3 shows thegeometryofthestabilizedgroundcloudofcombustion
productsfor'tnormal launchduringthespringregime. Inthefigure,thesolidlines

I show the layer structure dictated by the metoorologym while tht: dashed lines indic:tie

subdivisions of the low,ast 2 kilometers made for the purpose of improvcd d_finition
l

oftheverticaldistributionofmt_tcrial.Tables3-3 and 3-Ipresentv:|lucsofthe

i standard deviations of the lateral _md }on,;ltudinal cloud dimensions for the normal

t
i
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TABLE 3-3

INITIAL LONGITUDINAL (axo) AND LATERAL (_yo) CLOUD I)IIHI,_NSIt'JNSFOR TIlE NORMAL LAUNCH CALC_ILATIONS

Meteorological Itogimo _
Layer (K) Spring Fall _,a ]_rt_'_z_

t _xo(m) = ay0 (m) axe(m) _ flr_0(|n) ()'X(_ (In) _" (Jy(D (111) ....

1 '/V 52 63

2 168 98 ].59

i $ 261 145 319

4 854 191 452

i 5 448 238 352

6 344 460 235

_ _' 7 199 335 93

' ] 8 93 93 93

9 93 93

1 '
/

1,
I

!

t

1

•_ t 18
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TABLE 3-4

r INITIAL LONGITUDINAL (ergo) AND LATERAL (ffyo) CI,OU]} DIMENSIONSFOR TIlE I_AD-ABORT CALCULATIONS

(_xo(K} = ayo{K ) in meters) ,_

i Meteorological Regtmo

Layer Spring , . l_all .... Sca-Brct;ze

(I_ O,xo(m ) = _yo(m) O'xo(m) = O'yo(m) axo(m ) -_ O'yo(m)

' 1 77 52 63

2 168 98 1.59

! 3 261 145 334

4 324 191 233

k t 5 200 238 117
6 95 333 30

l

1

!

"1

19
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I TABLE 3-5

I INITIAL LONt3ITUDINAL (Lrzo) AND I,ATERAL (_yo) CLOtII) I)IMENSIONS
AND LAYER BOUNDARY ItEIGIITS (ZBK, ZTK) l,'()l{ Till':

i WASHOUT SURFACE DEPOSITION CALCULATION,_

Layer (K) • (m) _o (m) ZBK (m) ZTK (m)

t 1 77 77 0 400
2 168 168 400 800

!

i 3 261 261 800 1200

i 4 354 354 1200 1600

ii 5 44V 447 1600 2000
:l

6 556 556 2000 2500

7 415 415 2500 3250

t 8 240 240 3250 4000

I 9 77 '/7 4000 5000

10 0 0 5000 6000

i
l
I
i
i

I 20
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TABLE 3-8

Or •
I VERTICAL SOIfftCE STRENGTi[S (QK) IN GRAMS PElt MI, [ ER FOR

THE WASIIOUT SURFACE DEPOSITION CALCtH,ATIONS

Combustion Product .... ---7 v_
Layer (K) fl

IICI AI_O_ CO

1 5.87 x 101 8.23 x 10 ] 6.52 x 101

2 5. 64x102 7.92x102 6.27 x102

3 3.50 x 103 4.90 x 103 3.88 x 1.03

I • 4 1.32 x 104 1.84 x 104 1.46 x 104

n

i fi 3.01 x 104 4.22 x 104 3.34 x 104

_ 6 5.35 x 104 7.38 x 104 5.85 x 104
t

? 3.47 x 104 4.86 x 104 3.85 x 104

l 8 1.24 x 104 1.74x 164 1.38 x]O 4

i 9 8.37 x103 1.17x104 9.30x103

t

i
! .
i

t

l 23
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FIGU/tF. 3-3. l,ayer [,'cometry of the stabLlt_cd grotmd clm_d of combustion products h)_"
the spring moteorolol;lcal reLime.
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find pad-abort eal_ulutlona. Tlms_ dhnonslons woro dorlw_d _m IIm aaHumption lha!

t at any ht_lght the radius of the stnhllizod cloud equals the 2. l_(r limits for a (;atmsllm

dlatrihutlon. In any layer t)xcopt the layer containing Zm, the dlmclmhms ,arc giw'l;

t by the expression _i)_

) •

) whoro r{Z,rK } ,i rtz_ lll,:')

I
t In the !ayt_r containing Zm) the dlmonsiops are given I)y

r{ zl|l}

\]
'I'abic 3-5 gives the st;mdard deviations of the longitudlaM {rod later:fl cloud dlmt_ll.-

sions and the layer I)oundary heights for the washout surfnce-(lel)ositi(m calt, uintlo)_a.

I 'l'.tbles 3-6, 3-7 and 3-_ show the vertical source strengths in each ]_Lvc_',

respectively, for the normal launch) pad-abort) and washout Sttl.'fttet! dul)osition cal-

l, culfltions. 'the total ,tmount of mflterinl QG contained in th(: gt'otln(i olotid )'o)"4.he

norm:d-launch _|tlfl wtishotlt calculations was calculated from the eXl)t't!.,_sio)_

QG (lb) - It (lb see -I ) t {zm} (:l_!l)

where

t R :,: emission rnte of i)ollutant (from 'l'nhlo 1-I)

i t{z m} time required for the vehicle to roach the altitad(_ o[
mttximttm rise of the ground cloud z m

t{zm} '_ \0"_0.I CI-10)

!

I 'is

i
i i
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t Equation (3-10) was obtained by fitting the vehicle-height eurvt_ in l,'iguvo. I-.] hy a

loa_t-aquuroa procedure, For ilia pod-abaft cnaaa, QG was act t_tlUlll In tlu_ toi.ul i_nli:i
isiaa front it anmplato burn of otto solid-propollnnt at.gino, llac f]'u(_tion _Iill_;,h'ritd in

t tho Kth later t._tmtrlhutod hy tha g-round cloud Fg{K} la thus glvon hy tht_ _xl_J'l_siou

i wher¢l

I_{ZTK } :_, integral of the Gauasiau (normal) probability function
botwco.n mi,ma infinity and tho top of tho Kth layer _"I'K

} ll{Zl3K} = integral of the Gnuat4i_m (normal) probability functionbetween l_tinua infinity and tho bottom of the Kth layer ZBK

t r{--=%)
t e = 2.15

K th layer ]_E{IQ 'The fraction of the rocket cxhaus!: trail in the " " is givon by tho

expression

/l

FE{K } :_ , 1{ _0, 7704 / t{Zm ; ZBK < Zm <'ZTK-.1

L z . 0.4 54._

, Z'FK _0'454'5 " ( "'BI'( _ 1" ;

i R _0.7704 / \ 0. 7704 / J ZTK < zm

_6

l
/

|
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The source strength in the layer QK for use in the model calculations is thus

I given by

Fg{K} + FE{K ) (3-13)
I QK = ZTK - ZBK

The values of QK in Tables 3-6, 3-7 and 3-8 have been converted to units of grams

I per meter.

I

" I 3.4 METEORLOGICAL INPUTS

I Meteorological inputs used in the concentration calculations for the normal

launch and pad-abort cases are given in Table 3-9. Inputs for the washout surface-
deposition calculations are given in Table 3-10.

Values of the mean wind speed 5BK and wind direction 0BK at the base

of the Kth layer in Table 3-9 were determined from the vertical profiles shown in
Figure 3-2. Values of the standard deviation of the wind azimuth angle :tt the

I reference height z.R = 18 meters, for a 10-minute sampling period {_'oK = 600

seconds), were obtained from the expression

Rd

j aABK{7oK = 600;K = 1} =_ "_- (3-1A)

I where R d is the wind directionrange at zR from Figure 2.-11of thc_report by

Record, ctal. (1970). The quantity_A was assumed todecrease with height_cc'ord

ing to the expression

I aA{z' K=I} = _ABK{ Z=ZR 'K=I} (:_- 15)

as suggester[ by Record, e tal. (1970, p. 48).

I 27 :_
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The power-law exponent p in Equation (3-15) is given by the cxpressio,_

f

. \ / C

Note that a reference height of _'li _ 18 meters was usc_u for all meteorological l_:lc:_-

meters Ill the surface mixing layer. In the next higher layer (K = 2), the value of

¢rA w.'va linearly decreased from the value at the top of the surface layer to a v:lluv

of 1.0 degrees at the top of the K _ 2 layer. In all higher layers (K > 2), _A w,_

held constant at 1.0 degrees.

The washout surface-deposition c,'dculations were made using the wind;g

speed profile for the spring meteorological regime strewn in Figure 3-2. The wind
k

t direction profile for the spring meteorological regime was, however, changed
and

the wind direction she:u" with height was reduced to reflect a profile more appropriate

I for a deep layer in which rain showers are occurring. Also, the value of eABK{TO}

and aEB K were increased to reflect the turbulence levels expected in convective activity.

3.5 PIIOI>I_RTIES OF THE STABILIZED CLOUI)

The height, radius, and average exhaust-product concentric(ions for the

t stabilized ground cloud are given in Table 3-11. "£he heights of the ground cloud for

the normsl hunch, pad-abortD and washout eases were calculated from Equation (3_)
and inputs from Table 3-1. For the destruct case, the height of the ground cloud was

i calculated from Equat!on (3-3) using inputs giTcn in Table 3-1. The radius of the

grouad cloud was calculated from Equation (3-6). The avcrsgc exhaust-product con _.

! cnntrations were calculated by dividing ihc total amount of each product contained in

the ground cloud by the volume of the ground cloud.

It should be noted that ground-level concentrations will not ex_ccd tl'tc

average concentration in the ground cloud since the cloud will dilute in mixtn_ to

the ground.

31
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TABLE -q-ll

i IIl':l_ll'l', IIADIUS, AND AVI',IIAGE EXIIAU._T-IqIODIJCT (2()NCI,:N'II(ATItJN_ I,'(Ht. TIlE _TAI_ILIZJ'_I) (|IIOUNI) _I,OUD U,_I'_I)IN 'l'lll'; IIA?,AIII) CAl,l.,'llI,A'J 11.)_-'

CJmo lleglmo (m) (m) (R In_3) (ppm)

Norlnnl Id,mch Spring 1804 003 11('1 1.70 x 10 -g )4.1

AIgO3 2.47 x 10 "_
CO I,90 x 10"_ 20,4

Fall 1858 990 llCI 1.04 x 10"2 13.3

Al3()3 2.30 x 10"$

CO 1.62 x 10 "2 19.2

8oa broozo 1020 971 IICI 1.72 x 10 -2 12.9

Al203 2.42 x I0"2

CO 1.92 x 10"2 20.2

"_ ! Pad-Abort Spring 1200 090 IICI 7.03 x 10 -2 92.0Al203 I.07 x I0"I

CO 0.47 x 10 -2 82.6

Fall 1310 716 IlCi %0! x lO"2 53.0

AI203 9.83 x 10 -2
_ CO 7.78x 10=3 7'1.0

i Sea llrcoze 1316 710 'HCI 0.02 x 10 -2 53.0AI203 9.71 x 10 -2
CO 7, 69 x 10 -2 76.5

Ik,siruct Sprhlg 4770 I005 lIC| 2.88 x 10-2 32.1

j Also 2 1.05 x 10 .2
1 CO 3,20 x 10"2 46,0

Fall 4940 1151 IlCI 2.48 x 10 -2 27.7

t AI203 3.48 x 10 .2
CO 2.70 x 10 _2 40.2

Sea lh'ee zc 4'129 1077 IlCI 3.03 :,_! 0"2 .33.9

AI203 4, 2b .x l0 "'_
CO 3. :t8 x 10 -2 ,;:L2

Washout 2208 1195 liCl I. 1):: x 10 .2 8.0

AI203 1. ,13 x l0 _2

CO 1.1:1 x 10 -2 1'2. ,t

1 32
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SECTION 4

I TROPOSPlIERIC HAZARD CALCUI,ATIONS

The tropospheric hazttrd calculations described In this section principally

consist of model estimates of the peak ground-level eencentratlo_s of llCl, CO, aT_d

AI203 resulting from the emission of rocket engine exhaust products to the stratos-

phere during a normal launch and an on-pad abart of thc proposed space shuttle-

, booster vehicle, llazardcalculationstirealsopresented for a low-leveldestructof

i the space shuttle-boostervehicleand consistof model estimates of the dimensions,

i heightand average concentrationsof HCf, CO and AI203 in the elevatedexhaust-
product cloud resultingfrom the destruct. Ground-level concentrationstu'onot

presented for this ease because it Is evident that the concentrations of any of these

e_heust products thatmay reach thesurface through normal atmospheric diffusion
i and transportprocesses willbe farbelow the applicabletoxicitycriteria. Other

tropospherichazard calculationsdescribed below includethemaximunl surfacei

i ] depositionof llClby precipitation-removalprocesses and the formation of acid mist.

4. I NOI_.MAL LAUNCH

Figures 4-I through 4-3 show profilesof the calculatedground-level1_ulk

I concentrationsof llCl,CO and AI203 resultingfrom a normal launch ineach of the

three meteorologicalregimes described inSocUon 3. The eonceutr_tionswcrc cal_

1
eulated by using Equations {2-11 and (2-2) In conjunction with the source and n_cteoro-

i logicalinputsIn Tables 3-2, 3-3, 3-6 and 3-9. Because the depth of the surface

mixing l'tyerfor thesea-breeze regime Isonly 300 me_:crs(see Table 3-2), Eqttation

(2-])was used to calculatetheground-levelconcentrations. For the spring ant]f:tll

meteorologic_d rcgimes, the surfane mixing layer was divided In_ snblaycrs andt
! Equation (2-2) was used In the calculations.

1
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The maximum allowable 10-minute nverflga eoneentratitm_ (iMAt,I(]) tthc_wt_

by the horizontal lines nt tlit_ top of the figures ore lflkon from 'l'ahit_ l-2. 'i'llt_ I)otll '. villi--,

reviles coneetttrtltlons plott¢_d In Figures 4-1 through 4-a ur_ th,_ thegr,4ictd nlaxintttm

fyDnt_e||irrntlons that would he experJonflod tit tt fntrtlo, uhu" downwind dist_mt_{: during t%

the passage: of the exhaust-product cloud. 'lqle gVOl'flgt_ I!Oll(-!tHltrlltiOlt lllonl; tht_

cloud centerllno at nny given downwind distance is npl)roxlnmtt.ly six-tenths _0, |i'll

l d' •:_ of the eah:ttltttcd peak centcrltno conecntrntlon. For ,hi, cloud i,rtmsport speod._
J

used in tilt', ouleulntionsf olond l)tlssl|ge times tit dlstmlces of 1 Idi,)n_etcr or It_,qs

:i
I downwind from the launch silo are of the order of a few minutes. At dlstm_co,s ef

10 to 20 kilonletors downwind from file launch site, the corresponding cloud imssngo

times are of tile order of 10 to 20 minutes. It follows from this discussion that the

average 10-minute eoueentratlons indicated by tile lllodol e_fleul_ttions ,it prints ,do_g

i_ the cloud centerltno, located at downwind distances less thtx:t _ kilometer from the

k
t launch sito, uro probably only onv-fourth to one-fifth as large ns the eerr_!sl>m2ding

pork eet,tcrltne concentrations shown in Figures 4-1 through ,t-3. Similarly. tl_c

average predicted ;10-minute concentrations along the cloud cez_ter|lnc, at dow_2wim!

dist,'meesof l0 to20 kilometers, are probably aboutimlf:isl:irgeas the corresponding

peak centcrliue eoneentruttons plotted in the figures.

t As strewn in Figure 4-1. the model estimates of pc_d_ centcrllut; IlCI con-

centratlen arc at least one order of magnitude below the MlliXiI]IuIn allow_thl¢_ 10-
minute limit t_,MAC10,, of 30 ppm neitr the launch site. "rhe .qt_t!Olldtlry 111,tximttn." _s for

i tile fall and spring meteorologicul regimes at respective downwind distastes o!_ t0

m_d 20 kih)meters are almost two orders of magnitude below tl_c MAC10 vahtc.

i
The estimated peak ecnterline Ct) concentrations shown in 1.'igurt_ 4--2 .t't,,(

I al)proximatcly three ordcrq of magnitude below the MAC10 limit of l,_00 |tillS). 'l'hP
t _ t •

p_ak centt_rlluo AI203 concentrations in l,'igurc ,i-3 :ire more Ih,qll |lu el dtt e Ill;let|J-
-3

rude lower time the MAC10 v,'due of 50 mg nl

37
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'rha results of tim grouad-h_vtt! hazard calculatlt)ns ftJr a nornml hmnch

thus show that the prt_diel:cd maximum emmentrtltions of IIC] trod AI203 art_ :it h_tiat

one ordar of magnitude luwar thml the applicable MAt210 Ilmitt_ wlHh: tht_ llr_.llctt.I

t nlflxlnltlm eollccntratioas of CO two about throe orders of mligliiludt_ I.d_w Ihc _

nppllotddo MAC10 limit.

] 4.2 PA1)-AIIO1Ur

The calculated ground-level pctdt conterline eonccntrt_tlons for 1R'.I, C()I

and AI203 rcsalttng from a pad-abort during the three mateoro|oglcal regim(',s _trc

shown in Figares 4-4 through 4-6. 'lllo assumed source configuration for a pad-

abort consisted of a complete barn of one solid-propellant engine with the boostL_r in

a pad hold-down status. As in the corresponding normal launch cal_;alations,Ell|tit_

I lion (2-1) was used for the sen-breeze regime and Equation (2-2) w'ls used for the

other two meteorological regimes. Source and meteorological inl)uts ust_d wlih

those equations are given in Tables 3-2, 3-4, 3-7 and 3-9.

The calculated peak oenterline concentrations for the lind-abort c'_s_s

are aboutfiveto telltimes larger than for the corresponding norm:d launch cast_s.

I 'l'hcheat emlttcd per unittime during a pad-abort is less than during a normal

launch, resulting In lower cloud rise. and the total 'unount of mt_terial in the /._Fotm(|
cloud is greater for tilelind-abortcases. The peak eenterlincounce|lira|lenSart_it|

' I .illcases below the applie:lbloMAC10 levels.

4.3 I)I'_8TRUCT

The calculated buoyallt rise, cloud dllllcnsloas {tnd :iveri|ge exh:ltis/--})rt_dHtq

t eonctmtratious in the stabilized cloud resulting from the dcstr,|ct of the bet_:_{_.,'

vehicle at an altitude of 2 kilometers art_ shown in 'i'al)le 3-11. As might I.. (,xpct_lcd.

i Iht; |ntcas(_ heat from the destruct results ill about a 3-kilenlt,[t:r buoyant clet_d rise

t

1
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10"=3 4 s e i0_ 2 3 4 e e 104 2 a 4 e e i0_

I DISTANCE(meters)

HGURI'; 4-6. Peak ee.nterline eoncentr:_LIon of AI203 at the mwf_ce dowt_wiud froma pad-abor t,
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i after destruct. The final height above the surface of the stabilized cloud is calculated

I to be 4.5 to 5 kilometers. The average CO and AI203 concentrations in the stabiliz_cd

cloud are below the corresponding MAC10 levels and the avcragc HC1 concentrations

t are approximately equal to the value. Any atmospheric transport- diffusionMACIo

processes acting to bring the cloud to the surface wot_ld result in ground-level con-

i cent'rations much lower than the average concentrations in'the stabilized elevated

t cloud. For this reason, ground-level concentrations were not calculated. It is evi-

dent, however, that they would be well below the MAC10 levels.

4.4 WASHOUT SURFACE - DEPOSITION OF IiCl
!

r
Scavenging by precipitation is the primary process by which gaseous and

particulate pollutants are removed from the troposphere. The scavenging process

] is usually described mathematically by simple exponential decay expressions of
the form

i 1 X = X o exp [-A (tl)]

The deposition on the ground attributable to scavenging is mathematically described

by Equation (2-2). As noted in Section 2, a full "description of the multilayer mathe-
matical model used to calculate the amount of material deposited on the s,._rfacc by

precipitation washout is contained Section a report prepared
in 3 O_ for NASA-

Huntsville (Dumbauld, et el_., 1970) by GCA Technology Division.

The meteorological parameters used in calculating estimates of surface

t deposition of ltC1 due to rain scavenging are given in Table 3-10 of Section 3. 'rhc

t mcteorolegic:d parameters for this case arc based on structure in the lowest 6 kilo-
meters of the atmosphere typical of structure in rain shower %tivity. Values of h

arc not well established. Engelmann (see Sladc, 1968, pp. 208-221) cites values of

A r_mginb_ from 10 -3 to 10 -5 sec "1 for various precipitation rates and other condi-

tions. Makhou'ko (1967) gives values of A varying between 11_"4 and }t}-_ st_c _1

i
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For the present calculations, a wduc of A equal to 10-3 see -1 was selected to

provide estimates of maximum expected deposition of IICI due. to w_mhout.

I According to calculations described in Section 4.5 helow, IlCI is absorbed
very rapidly by water drops. A residence time of a few minutes in the IIC1 cxhatl_t

i sufficient for cloud drops to absorb the HCI. It fellows that precipi-cloud appears

tation scavenging is efficient in removing HC1 from the exhaust cloud.

The results of using the meteorological inputs given in Table 3-10 and the

source inputs in Tables 3-5 and 3-8 in the computer progranl containing the deposition

model axe graphically presented in Figure 4-7. In the figure, the deposition

profiles shown by the dashed lines were obtained assuming that rain begins to

l fall at, respectively from left to right in the figure, 9, 18, 35, 71, 141 and 283

minutes after launch. The peak deposition value in each profile is the deposition

! expected on the surface beneath the cloud centcrline as the ..-loud passes over a

given point downwind from the launch site. The solid line in Figure 4-7 thus repre-

sentsthemaximum washoutsurfacedepositionof IIClthatisexpectedtooccur

from precipitationscavengingdownwindfrom the launchsltcnLJer thespecified
meteorologicalconditions.

To estimatet_ lIClcontentofrainwater atthesurfaceduc towashout,

thetotalprecipitationaccumulatedatthe surfacemust l_eknown. For thispurpose,
we have assumed totalprecipltatlo.namountsof5 and2.5 millimetersofrainper

i square meter of surface. Table 4-1 gives the acid content of rain calculated using

these amounts of rainfall and the maximum surface deposition of tiCI at various

I distances selected from Figure 4-7. For convenience, the acid content of rain

water isshown inTable4-I as HCf contentinpercentby weightof water and in
pH units.

1
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I
TABLE 4-1

I ESTIMATEDACIDCONTENT OF RAINWATER RESIH,TINC_I"IIOMTill':COMPLETE WASHOUT OF HCl FROM THE GROUND CLOUD

] Maximum HCf Acld conte.nt , *_

Distance Washout Surface Percent IICI hy Weight pll

I (krn) Doposltion Total Rainfall Total Rnlnfifll
(gm "2)

5ram 2. Smm 5ram 2.5ram

5 4.17 8.3 x 10 -2 1.6 x 10 "1 1.04 1.35

10 2.48 5.0 xl0 -2 9.8x10 "2 1.87 1.57

20 1.25 2.5x10 -2 4.9x 10 "2 2.16 1.87

• 50 0.51 0.1 x 10-2 2.0 x 10 -2 2.55 2.20

_ 100 0.26 5. 1 x 10-3 1.0 x 10 -2 2.85 2.56

i ]
¢

I

I
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4.5 ACID MIST FORMATION

1
One of the potential environmental hazards associated wlth the emlssluns

j of IlCI and water during the burn of the rocket engines is the formation of an _Id
mist in the stabilized ground cloud of combustion products. Assuming that liquid

water droplets are present in the ground cloud, these droplets will very quickly

absorb any ltCl as long as the acid content of the drops does not exceed 5 or 10 per-

cent. For example, Denbigh (1966, p. 228 and p. 238) cites experimental evidence

that the partial pressure of HC1 is approximately proportional te the square of the

mole fraction or concentration of HCI in very dilute tlCl solutions. This relation,

which is attributed to the fact that the HCI in solution is almost entirely in ionized

--" form (H+ and CI-), holds for molar HCf concentrations -_ 0.05. Tile equilibrium

partial pressure of an 0.05 molar HCI solution at a temperature of 15 C is approxi-

_ mutely 1 dyne cm -2 (see Figure 4-8). As long a_ the partial pressure of HCI gas in

the ground cloud exceeds this value, practically all of the HCI will be absorbed by the
i

l liquid water drops as long as the acid content of the drops does not exceed 5 or 10

_ i percent. Fukuta, et al. (1970) reached a similar conclusion in their analysis of the

! IICI/H20 problem in the atmosphere of Venus. They point out that a cloud containing

i liquid water drops serves as a very effective HCf filter because of the negligible
partial pressure of HCI at low solute concentrations. The tinge required for almost

L.

i complete "lbsorption of the HCI by the water drops is not known _vith certainty. It

appear_ from the laboratory studies, of Terraglio and Manganclli (1967) of the "tbsorp-

i tion of sulfur dioxide in water, that the m_uximum time required for almost complete

HCI absorption is of the order of a few minutes.

The average properties of the ground cloud gencrat_:d during a normal

! launch are given in Table 4-2, The average concentrations of ItCI and 1120 were

calculated undel" the assumption that _,cro concentration levels of these products

existed in the .'unbient air. The total HC1 ,'tad II20 contents in the table represent

the. total rocket engine emissions -ttlring the first 40 seconds of engine burn. The

l
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I TABLE 4-2

I AVERAGE PROPI'_RTIES OF TIIE GROUND CLOUD GENEItATED
DURING A NORMAL LAUNCII

Cloud Volume 3, 7 x 109 m

I Total IICI Content 6.8 x 10 7 g

Avcrngc ttCI Concentration 2 x 10 -2 g m "3

I Partial Pressure of ltC1 _. 3 x 101 dynes cm -2

' I Total lI20 Content 1.15 x 108 g
Average I120 Concentration 3.1 x 10-2 g m "3

Cloud Temperature 15 C

TABLE 4-3

PROPERTIES OF A CU_,_ULUS CONGESTUS CLOUD

Average Drop Diameter 20 microns

Average Settling Velocity 1.2 cm sec -1
Range of Drop Diameter 7 microns - 65 microns

t (Log-Normal Distribution)Liquid Water Content 1.0 g m -3

Drop Concentration 4 x 107 drops m -3
Cloud Temperature 15 C

Water Vapor Density 1.28 x 101 g m "3

Partial Pressure of Water Vapor 1.71 x 104 dynes cm -2

t

I
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[ -3
average ][120 concentration of 3.1 x 10 -2 g m thus calculated far the ground cl_md

[ is approximately throe orders of magnitude holow the saturation vMtu_, for lfi C. It
follows that the ambient humidity content must approach I O0 ptn't_,cnt bcfer_ tlm forma-

tlon of acid mist can occur in the ground cloud.

t We will now consider the possibility of acid mist and acid rain form_Ltion

under the assumption that the rocket engine omissions during the first 40 seconds of

engine burn arc injected into a cumulus congcstus cloud from which no precipitation

' t is occurring. The assumed properties of the cumulus cloud are shown in Table 4-3
,'tad wore obtained from data presented on pages 7-6 and 7-7 of the USAF ltandbook

of Geophysics (1960). The specific question to be answered is whether ltCl absorp-
tion by the water drops in *,he hypothetical cloud, as an isolated process, is capable

t of producing precipitatmn from the cloud.

! Whether or not precipitation will result is largely dependent upon the drop's

fall speed. Table 4-4 gives the terminal velocities for drops of various diameters.

t This table shows timt an 80- to 100-micron drop can be e,xpectcd to fall out of the

cloud as drizzle (the cloud is assumed stable for drops of 7 microns to 65 microns)
taking 5 minutes to 10 minutes to fall 100 meters.

The water drops in the cloud will grow if a vapor pressure gradient is

! created toward the drops. The gradient can be c,'dculated using t_aoult's I,aw in
Physical Chemistry (see, 6. g., Lango, 1952) which states that the vapor pressure

t of an aqueous solution is reduced in proportion to the molar concentration of the

solute, if MH < < Mw, this law may be approximated by

e s MH

j _ _ I- M (4_])*Co w

where c s is the saturation vapor pressure of water at the surface of the drop, co is

the ,'unbicnt s:tturated vapor pressure of pure water, and MII/M w is the mole fractionl

1 4g
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TABLE 4-4

TERMINAL VELOCITIES FOR FALLING ltAINI_ILOI_S
I (After Johnsonj 1954)

Diemotcr F_dl Speed

i (microns) (cm see "1)

i 20 1.24
q

' t ,50 7.72
80 20.0

200 72

! 400 162

\t ....

t
l

1
1
i

I

t 60

t
i i

00000002-TSE10



t

d ¸

I of IK]I In tlolution, The asterisk following tho equation ntmd_(_r indic_h_s tlmt tht_

derivation of the equation is discussed in Appendix A.

I 'l_oquantityos wills_ppronch_n cqtfllihPium,,,_dut__f as .IIIht_ii(;lis _t._,

absorbed toldthe drop grows, The qu_mtltycf may _dsohe,c_dculatcdiI_dynt,spL_r

I square ccntlmotcr from the equation

t of ;_ o° - G (a 3 - ao 3) (4-t:)
i

I

whr, v_ {he second term on _,l_crigilt rcpresc,tts the water wiper used by a drop in

i growing from diameter a0 to a. The factor G, used for siml)licity, is dc.fin_!d i,i
' Appendix A, Combining Equations (4-1) m_d (4-2)and solvingfor a (assnn_Ing

s 3a << ) resultsin the expression
_' O.

1 where n is the number of drops Ix_rcubic centimeter. Using the cloud properties

i listedin Table ,i-_,thiscxpresslon yields a = 29 microns, of _ 0.97 Co, ,'_nd
M H =_0.0,1IHw (4percent by weight 13Clsolution).

1 Equation (4-3) shows the drop dian_etcr to bc insensitive to l.qrgc ¢,ha _gt.,t # r _jt_

in Co, MII, .'rod n, forcing the conclusion that precipitation cam_ot actor without
water vapor replenishment. It is interesting to note that if nil tile water vapor pry-

,, sent in the cloud were to condense ml the initial number of cloud drops (n _ 40), the

resulting drops would be about 92 microns in diameter, or the siz_e of drizz, le drops.

This iml)licsthatonly _l)outthe s,'unomnount of water v:q)oras originallycxlsted

t nmst be supplied to the cloud for the HCI to induce drizzle.

We will now consider the growth of cloud drops if a plentiful supply of

i • , , , ) r(_ J_ Hillswatcx v.q)(r is avaihtblc;i.e., the ambic'ntsaturatedvapor pressure co

I constnnt(h_rLngthe growth process. In order to isol:_tctheel'f_ctof IICInhsori,tion,

51
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wa shall usa a simplified version of tim equation describing drop growtl_ hy ,_t)lld,'imll

i lion together with Raaalt's Law. The equation for drop growth may he written aa

(i.I ° ao.,-%
]

f. whcro iq is a coefl_lolallt lnvorflt_ly dependent ulloe _]nl_eralul'/_ lind

o Mll
e M

[ o w

i is ltaoulPs Law (a rearrangement of Equation (4-1)). I,

A simplifted expression for drop diamet_:r _ a hmction of time t era) bc

! del;ivcd by sttbstituting l']quation (4-5) into Equation (4-4:) 'rod b) assuming th'.tt a

\I fraction f of the IICi is absorbed at a rate sefficient to produce the most rapid drop
t

growth. These steps yield

[ 5r'T"
40 _f_ (4-61'a

f
[

from which Table 4-5 is cunstructod showing drop growth for two values of f in an

onvironmcat in which the supply of water vapor is constantly being replenished.

! Since the behavior of IIC1 at low concentration is m_ch that nc[u'ly all of the

IICI will dissolve in the initial cloud drops, drops of the order of 80 microns may be:

expected to form within 20 minutes after launch. Approximately 1.5 hours would be

i required for drops of this size to fall to the ground from a height of I kilometer. If
I

the air below the ground cloud is unsaturated, the drops would evaporate before

1 reaching the grotmd.

It is onlphasizcd that Equation (4-6) is also insensitive to large changes i1_

the assumed values of the cumulus cloud mid exhaust cloud parameters and, thus,

t 52
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i TABLI_ 4- 5

DROP GROWTll BY CONDENSATION AF'I"I'2R IICI AI_S()ItlS'I'ION

Drop Concontratlon I_*_l"em 3 t_,

Absorption of Time 40 I)rol m 100 !}v.p:t

l Avnilnhh_ IlCI (minutvs) ...... Drop ])iamt:t_r (microns)

r

I f _ 1.0 10 G7 57

j 100 105 90

t f _ O. 1 10 44 35

100 69 55

" I
TABLE 4-6

I I)I_OP SIZE FROM CONDENSATION AFTER HCf ABSORPTION

I ,L
Initial Drop l)itune, tcr (microns) Diameter After 250 Seconds (microns)

10 9O

t 20 92
50 102

I
t
I

{
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tile formation of acid dt'izzle is extremely unlikely, llow_wer, flit, cloud drop_ will

probably contain from 1 to 5 i_creont IIC1 for the lifcttmv of tim <:loud.

I In addition to drop growth by condonsptton, drop size may also be increased _i
as the result of coalescence. This latter process is important in the formatio_ of rain.

I For drop growth by coalescence to occur, a ].argo drop with a high terminal velocity

must fall through a volume containing sm.-lll drops with a low terminal velocity. The

larger drop captures a certain poreentaga of the smaller drops contained in the air

t volume swept out in descent, thus increasing the di,'mmter of the large drop.

i From the c',oud properties given in Table 4-3, assuming a log-normal
dro_ size distribution, the drops may be roughly sepm-ated into three size categories:

• 10 drops of 10 microns diameter per cubic centimeter

• 20 drops of 20 microns diazneter per cubic centimeter.t

t • 10 drops of 50 microns diameter per cubic centimeter

We will first calculate the drop size distribution produced by condensation resulting

from HCI absorption. Using Equation (4-4) for Mtl/M w ---0.01 and ric o = 2600 gives

:i 2 2
a = a + 26t (4-7)

! o

t for the drop di,'mmter produced by condensation. Table 4-6 sho_ s the drop diamctecsestimated from Equation (4-7) for t = 250 seconds, resulting from IICI absorption I)y

t the three drop size categories. It can be seen that very little difference in drol, size
exists after 250 seconds. The relative difference of drop terminal velocities in the

hypothetical cloud is therefore not ,T,lequate to produce precipitation I)y ('o:descen(',(_.

However, if it is assumed that some new drops are forlllcd ifl |h(! CUII_HIHs (.letlf]_ el'i

! Ihat some (ff the original drops are unaffected by the gruw[h process, _m estimate oi

t growth by coalescence can be made for a cumulus cloud i00 meter's deel_.

i
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The equation describing coalescence growth is (Johnson, 1954, p. 221)

a2 - a1 -- _-ff (zz - z9 (4-9)

where z2 - z 1, the fall distance, is considered a positive number; E is the collection

it efficiency; is the liquid water content of the cloud; and D is the density of the

drop. The maximum drop size expected by coalescence can be calculated from Equa-

l tlon (4-10) by letting a 100 micron drop fall through the entire 400-meter depth of a

t cloud of 20 micron drops. The result is a drop di_xneter of 200 microns. Thus,
even for a moderately higher water content, the contribution of coalescence to drop

ti grm.vth within the cloud appears to be minor, except for drops falling from the top of

the cloud.

A more appropriate model where the drops are nearly the same size is a

one as by Berry (1967). produces _ growth
stochastic such described This mode]

rate comparable to the coalescence process but t, ansfers mere water to the larger

drops. It appem's that for the ]ow water content of the cumulus elo_d, this proee_s

will also be unimport,'ult. The computations arc lengthy ,'rod were not performed for

this report.

O0000002-TSF01



k,

d

t
I SECTION 5

I STRATOSPHERIC HAZARD C._LCULATIONS

The fate of the rocket engine emissions released in the stratosphere,

which is defined for present purposes as the altitude range between

meters, is determined by three esseutiaUy distinct processes:

t • Gravitational Settling

i • Diffusion

• Photochemical Interactions

These processes are first discussed separately and their relative effectiveness is

I then assessed in the discussion below.

5.1 GRAVITATIONAL SETTLING

I It is our understanding that aluminum oxide (A1203) is released in particu-?
I late form• Thus, gravitational settling tu all probability determines the ultimate fatc

+ •
of the aluminum oxide emitted. The fall velocity of particles is given by J,mge (1963).

w = m s g(1-p/ps) a'/(6 _"_ r s) (.5-I)+
where

i m = particle masss

i g = gravitational acceleration
p = air density

i Ps = particle density

a = 1 + flP/r s (Cunningham's slip corrccthm factor)

_ : 1.26 + 0.40 exp (-1.10 rs/;)

? - nm,'m free path

I

I

I
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t

i
r -- particle radius

S

_ = dynamic viscosity of the air

Fall velocities for four different Al203 particle sizes were calculated from this
formula in the altitude range of 15 to 35 kilometers. The results are shown in

i Figure 5-1. The fall velocity increases essentially exponentially with altitude for

t all particle sizes, and at a given altitude increases very rapidly with particle size.
A more informative aspect of the calculation is presented in Table 5-1, which lists

#

the residence time as a function of height for AI203 particles of 0.1 micron and

1.0 microns. In the present context, the residence time is defined as the time

i required by a particle of given size to travel from the specified altitude to the bottom

of the stratosphere (15 kilometers). It is evident from Table 5-1 that residence

times for the smaller particles (0.1 microns) are more than an order of magnitude

\ i larger than the corresponding residence times for the larger particles (1.0 microns).
Further, the time required to traverse the lowest 5 kilometers (20 to 15) is several

I times the time required to traverse the top 5 kilometers (35 to 30). Thus, the

mechanics of gravitational settling tend to result In an accumulation of particles of

I all st_es in the lower altitude region, although of course the rate of accumulation

i varies with particle size. In this region, the particles will bc transported into thetroposphere by injection into cyclonic storms, as described by Dm_iclsen (1968).

I The effect on AI203 of gravitational settling will be compared with other

t redistributing mechanisms at the end ot this section. None of the rc.'unining rockier
engine emission productS is in p:_rticulatc form, and hence, they are pot subject tu

gravitation_d settling.

I 5.2 DIFFUSION

To assess properly the importance of diffusion in dispensing rocket engine

emissiotls in the stratosphere, one faust first c_.lm_c the _,'_.mnt of dih_tinn required

t
57

I
I
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TABLE 5-1

t RESIDENCE TIMES FOR A1203 PARTICLES IN TItE ST]_ATOSI_llERE

I Altitude (kin) Radius = 0.1 micron Radius = 1.0 micron

t
20 2.43 years i.82 months

i 25 3.62 years 2.90 months

- t 30 4.17 years 3.48 months

i 35 4.43 years 3.78 months

\i

I
t
t
t
t

1

I

1 r,q

I

I ....... ___
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to reduce emission concentration to harmless values. For thi,_ ptH'post_, the t_mi_-

I sions will be assumed harmless when their concentrations fall below the correspond-
ing normal ambient levels or, for products not usually found in the stratosphere,

t when their concentrations are at least an order of magnitude less than those of trace _

elements normally found in the stratosphere.

Figure 5-2, taken from the USAF Handbook of Geophysics (1960, p. 8-:3)

i shows the vertical distribution of the number density of atmospheric constituents.

Table 5-2 lists atmospheric composition by percent. Xenon is a very minor consti-

tuent at about 25 kilometers and has a number density of 1011 molecules cm -3.

Therefore, a number density of 1010 cm -3 for the rocket engine emissions appearst

to be a very conservative hazard criterion.

The amount of dilutionof theemissions required to reach a number density
of 1010 cm -3 is shown in Table 5-3. The firsttwo eolunms listtheproducts and the

emission rates ingrams per meter as suppliedby Thiokol. In the thirdcolumn, forA

!, calculationpurposes, the listedlineardensitywas calculatedby assuming the particles

_ tobe released in an infinitelythinverticalcolumn. Thus, diffusionoccurs only in a

horizontalplane. {AlthoughAl203 is released in particulateform, itwillbe treated

i here as ifitwere released inmolecular form, in order to unifythediscussion.)

The next column liststhe number densityof the exhaust products in the initial

! stabilized cloud for a cloud radius of 200 meters. By compm'isen with Figure 5-2,

it can be seen that N2 vmd CO 2 number densities are iasignificent compared tot
,'m_bient v_]lues and that H20 reaches an_bient values when the cloud h:_-sexpanded to

i a radius of about one kiloL.eter. These exhaust products will therefore be eliminated
from future consideration. "r}._ last three columns of Table 5-3 interpret the number

_i density in terms of the _adius to which the cloud must expand to reach values of 1011 ,
! -3

1010 and 109 particles c'm Thest_ values were obtained by uniformly mixing cm;h

product throughout the volume, l,'r_.m those figures, it is reasonable to select a

value of 50 kilometers ms the required radius of dilution,

no

t
!
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In order to estimate the time required for the material to reach tills

dilution radius, we adopt a simple diffusion model to illustrate what is known ab/mt
stratospheric diffusion coefficients, which are commonly monsure, d by measuring

the dispersion of smoke trails, lumineus trails resulting from rot;kets or of nmt_or

tr all s.

The simple case of one-dtmel_sioual now with constant diffusivity I), is

described by the equation

' I _a _}2n5i --D

which has the solution

coast

i It _ exp [- r2/4Dt] (5-3)

\i Equation (5-3)gives the mean-square dispersion r2 = 2Dt, althoughexperimental

J data on cloud expansion for various conditionsresultin values ranging from r2 ~t
to r"-_ ~t 3.

t However, we shall use only the term exp [- r2/4Dt ] to demonstrate the

t meaning of the value assigned to D since a reasonable value for r was estimated to
be 50 kilometers. Typically. this me,ms that the number density at this distauee is

10 percent of the central value. Therefore. r /4Dt = 2.3 (exp [-2.3] = 0.1), or

solving for t for r = 50 kilometers gives t = 2.7 x 1012/D, where t is in scco_lds

! and D is in cm 2 sec -1

i The time required to achieve the required dilution Is shown in Table 5-,!

for various values of D. Values of the vertical diffusion coefficient in the stratosphere,
range from 103 to 104 cm 2 sec -1 Values far the horizontal coefficient are much

i larger than this and are a function of time.

t

I
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I TABLE 5-,4

[_TRATOSPlIEI{.IC INTERPRETATION OF DIFFUSION COEi 1I(II N l_
r

])iffusion Coefficient Time toAchievea _
lem2 sea-I) 50-kinD.i.luti()nRadh,s

104 8.? years

ii I05 i0.4months

., 106 1.04month

107 3.1 days

108 7.5 hours

1

i

J

!

I

I
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I The results of tile previously-nmntioned measurement progr:mls, r,q,rc.-

seated on a time seMe from minutes to hoursp are shown ill Figul'_; .5-3. The et_atl_r
in the data is primarily due to the inherent varit_bllity of meteorological conditions

t as well as differences in measurement time scales. Figure 5-4 is more pertinent t_

to the present problem and shows that, for diffusion tirnes on the order of 100 hours,

the diffusion coefficient increases by two orders of m'ignttude despite the bro:td

scatter of the observations. Thus, considering the sketchy information avatlable

:1 and the preceding discussion, there appears to be no hazard problem in the stratos-
I

t phere caused by the rocket emissions--at least after a couple of days.

:t 5.3 CHEMISTRY

AS mentioned above, itappears superfluoustoconsider the chemistry of

_ water vapor, molecular nitrogen and carbon dioxide in connection with the rocket
t

engine emissions under consideration,since the ambient concentrationsof these con-

stituents far exceed the contribution of the rocket engine. Of the remaining emission

constituents, Al203 is a stable oxide, insoluble in water, and emitted in particulate

form. We are not aware of any stratospheric chemical reactions affecting it.

'i Most of what littleisknown about llClis containedin thereport
't _r_li m -

in,tryAir PollutionSurvey of Hydrochloric Acid" (U. S. Department of llealth,

Education and Welfare, NationM Air Pollution Control Adlninistration Publication

t No. APTD 69-36, October 1969). To quote from tim report, "No information I_us
been found on environmental air concentrations of hydrochloric acid." In particular,

no observations of HC1 in the stratosphere exist, and no information exists as to

possible ehcmic'd reactions in the stratosphere.

Almost as little is known about the atmospheric chemistry of carbon

i monoxide (CO). In particular, tlle reactions

!

1 G6

t

I
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I
2C0 + 0 2 o 2C0 2

I
co �02- c02_0

I co+.2o. co2+H2
| co �%° co2+o2
!

have been found to be much too slow to appreciably affect the CO concentration

("Air Quality Criteria for Carbon Monoxide," U. S. Department of Health, Education

and Welfare, Nationr_ Air Pollution Control Administration Publication No. AP-62,
March 1970). There are possible reactions with NO2, OH, and 1tO2, but no dcfini-

I tive observational or theoretical evldenct,, exists as to their effectiveness. To quote
from the aforementioned report, "It must be concluded that no gaseous reactions

il have been shown to be important scavengers of CO in the atmosphere."

I 5.4 COMPARISON OF CHEMICAL, DIFFUSIVE AND GItAVITA'FIONAL
EFFECTS

!
An initial comparison of the relative imuortance of chemical, difhmive,

and gravitatl.mal effects can bc obtained from the following considerations. Let N

be the concentration of a constituent of interest, for which the continuity equ,qtion is

I _N 8

I a'_ + _Z (WN) - DV2N _ - crN (5-41
where

D _ coefficient of diffu_;ion

w = fall velocity

a _ a chemieal rat(, coefficient

I

I _9

I
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Using the simple models for diffusion and gravitational settling, we may define

F D is 1 (aNlat)diffusive = 7 4--_ - 1 (5-5)

i F 1 1 a _v (5-6)
i w ffi _ (aN/0t)gravitational -- _ 0-'z (wN) _ 0"-z

, 1

"'c = --N (aN/at)chemical = - ot (5-7)

If the relevant parameters are known, a comparison of the relative importance of the

three processes can be obtained by comparing the qu.'mtitios Fly Fw, and Fe. For

example, intilecase of AI203, we can compute _,./Vz quitereadily. For I .micron

! particles 0w/Sz _ 7 x 10 -8 sec -1 at 15 kilometers

[,s I _ 1 x 10 -6 sec "1 at 35 kilometers
P

i [ aw indicates that gravih_tional settlin_ bc-
i

The ratio Fw/F D (r = 0) = t az

107
I comes important at t =_ seconds at 15 kilometers and at t _" 106 seconds ,'tt 35

kilometers. This in turn indicates that the 1-micron AI203 l)Ol,ulation h,.us bt+e_ si_-

nifieantly diluted before gravitational settling becomes the dominant process.

The preceding discussion indicates that some of the essential i_ +'or_}_tio_t

is currently unavailable, where_s in othc_" respects relial)le calculations can hu ;n_.'h,

I about the effects of rocket engine emissions. It appem's from the dlseussior_ ,*m4if_

t fusion that no credible problem exists in the stratosphere due to the low ccnccmtration
of emission products relative to rb'nbient trace constituents _fter a couple of ,htvs

! following launch.

I
I 70
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APPE_IDIX A

DERIVATION OF EQUATIONS FOR THE HCl ACID MIST PROBLEM
(Section 4.5)

A. 1 LIST OF SYMBOLS

A summary of symbols used in Section 4.5 and in the derivations of the

equations which follow is given in Table A-1.

A. 2 DERIVATION OF EQUATIONS

Equation (4-1)t RaoulP s Law

For application to clGud physics problems, it is convenient to write

Raoult's Law as

os i Mii/m H (A-l)
I - e i MH/mtl + Mw/m w

where i is van_t lioff's factor (McDonald, 1953). For the IICI acid drop problem,

since the molecular weight of IICI is twice the molt:cular weigh, of water and i is

approximately g. Equation (A-l) may Im ,.educed to

t
e
2 1

i e _ 17 MHiM w (A-2)

i For weak acid solutions, MII/M w is a small positive number and Equation (A-2)

I may be expanded by the binomial series to give

t MH
e M

w

1

i
A-I

t
I
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TABLE A-1

i. LIST OF SY._LBOLS

'i a = drop diameter in microns

D = density of liquid water = 1 g cm

t e = ambient vapor pressure pure water = 1.7 x 104 dynes cm -2
of

e = saturation vapor pressure at the surface of the drop containing
s the HC1

i = van't Hoff's factor

| m H = molecular weight of HC1 = 36.5

mw -- molecular weight of H20 = 18.06

MH = mass of HCI per cubic centimeter = 2 x 10 .8 g cm "3

1_I = mass of liquid water per cubic centimeter (gcm )
W

n = number of water drops per cubic centimeter = 40

: t R* = gas constant = 8.31 x 107 erg mole -1 K-1

t _ time

i T _- absolute temperature = 28_ K

i /_ : 10-4 cm

Pw = ambient water vapor density = 12.8 g m

I _- saturated water vapor density at th_ tcmper_lturc of the dropPew
surface

2 _1

i K diffusivity of water vapor in air _, 0. 25 em ,see

• The subscript o refers to t ,_0 (iI_itial condition)

(

1

l A-2

I
I
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1 Equation (4-3)

, I
Equation (4-3) provides a means of estimating the final drop size that

would result from a known concentration of HCI if the amount of water vapor is

not replenished. We begin with Equation (4-1); let ef be the final equilibrium

value of the saturation vapor pressure; and express the mass of liquid water per

cubic centimeter at final equilibrium M as n s a 3 , where a is the dropW
3

diameter and s = _ .
6

"I_ese substitutions yield

e o MH

(of- %)= - -_-_.,,_- (A-_)

\ However, the term(ef - %) is also the amount of water vapor used in increasing

the drop size from a to a. Therefore, we may write
0

I I

1 (el-%)--,n.(a3-ao') ,_-4,
where, for convenience, R'T° has been set _- T.

1 mw
3 3

I << a , Equations (A-3) ,%1_(1(A-4', moy beIf it is assumed that a °

combined to yield

I a6 - 1 (e°MH_ (A-5)

0£

i

i
I

A-3

I

i i
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Equation (4-4)

f
We begin with the equation descL'ibing cloud drop growth as written by

Johnson (1954):

2 8_K
a = a +/,t -2

o D (Pw - Pow) t (A-G)

This equation may be changed to

a 2
= ao2 + /3e 1- t (4.41

by using the simplified form of Raoult's Law given by Equation (4-1) and letting

/_-2 m 8K
W

k _ffi DR*T

I For the present problem, we may let T : 288 degrees Kelvin, and e =- 1.71 x _04

dynes per square centimeter. The resulting value of 2600 for _c is corr(,ct
within a factor of 2 for the range of paramcters expected within the cloud.

Equation (4-6)

This equation is derived by fir._t substituting Equation (.t-5) i_1

2<< a 2toobtainEquation ([-4) and then assuming a°

/M. \

I
t

A,,I

I
!
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Using the fact that

J M - Dn_# 3 a3 (A-8)
w 6

and substituting Equation (A-8) into Equation (A-7) gives

1
i a ffi 3 (A-9)
! D_r#

where the _antities outside the parentheses are held constant. Letting f

(0.1 < f -< 1) represent the fraction of gaseous HCI absorbed by the liquid

water and solving for a yields

_16_e°Mit (_) = 40 _ (4-6)

J where fle ° = 2600 and MH ffi2 x 10 -8 gcm -3.

t
i

I
A-:'_

I
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[
I I. INTRODUCTION -_

NASA_B office of Manned Space Flight is currently studying

two booster concepts for the space shuttle system: (i) the pump-
fed ballistic recoverable booster with an expendable pressure-

fed booster and (2) the solid-propellant recoverable (or expend-

able) booster as "thrust augmenter" for the orbiter. The Thiokol

i Chemical Corporation, Wasatch Division, is developing solid-

J propellant propulsion systems that can be used in either of two

I modes:

i. Series Burn Mode: The booster consists of a cluster of either

iI_ five or six 120-in.-diameter motors or three 156-in.-diameter

\ i motors. These motors are arranged as shown in Fig. i. Thebooster engines fire simultaneously; the orbiter takes over at

i llf_off and ascent, until after separation.
2. Parallel Burn Mode: Four 120-in. diameter or two 156-in.

I diameter motors are mounted syrm_,etrlcally on the sides of the
orbiter propellant tank (Fig. 2). The booster motors and el'-

biter engines fire simultaneously.

In either case, the orbiter engine uses liquid hydrogen/o×ygen

as pro_ellant_ The booster units are driven by a solid propel-

lant whose exhaust product contains COl, C02, IIC£, II O, If2, and

N in gaseous form, and A£20 _ in either li_uld or sol_d for_.

l
One important consideration in the solid-propellant L"r'_'ul-

sion concept is the noise generated. In _he following, we I_r'__ii,_t

both the. nearfield and the farfleld noise produced in both th__

,'erles and the parallel burn modes.

I
I

I
I
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i
I II. JET AND ROCKET NOISE PREDICTION

A. Rocket-Exhaust Flow

In general, the rocket-exhaust characteristics that influence

I the radiated sound are determined primarily by the rocket engine
configuration, the dynamics of combustion and flow within the

I engine, and the ambient conditions. Rocket-exhaust character-istics vary over the flight regime of a launch vehicle: When

I the rocket engine fires on the launch pad and immediately sub-
sequent to llft-off, the exhaust Jet contracts in response to

I an ambient pressure that is higher than the pressure in the
exit plane of the rocket engine. As illustrated in Fig. 3a,

i this overexpanded nozzle condition (or, equivalently, under-
expanded Jet condition) creates - within the flow - shock cell_

I that continue to repeat in the downstream direction. Viscous

effects modify this flow, slowing it to a subsonic turbulent

I Jet. During this process, shock-dependent noise-producing
mechanisms are present.

I As the rocket gains altitude, the engine design condition

is reached -- i.e., ambient and exit plane pressures are sub-
' st_ntlally identical (see Fig. 3b). The flow is essentially

shock-free (very weak shocks may actually be present becauseof second-order effects), and the mechanisms of noise genera-

I tion dependent on shock interactions essentially vanish.

As the launch vehicle climbs and passes into a region for

which the entwine nozzle is underexpanded, the ambient pressure

cont_nue_; to decrease. As shown in Fig. 3c, the exhaust Jet

I expand_ _mmodiately downstream of the nozzle exit plane and

i

I

i i
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generates a shock cell structure in a manner similar to the

over-expanded nozzle condltio1_s. Again, the shock-dependent _

noise-producing mechanisms are present.

The exhaust continues to expand with increasing altitude

and such phenomena occur as a shock wave detached from the

exhaust and attached to the vehicle. However, for these condi-

tions, vehicle speed is typically supersonic and the atmosphere

is quite ratified; therefore, this regime is unimportant with

regard to sonic excitation.

B. Noi_e-Generatin9 Mechanisms
The aerodynamic properties of a rocket-exhaust Jet are

intimately related to its acoustic behavior. A subsonic Jet

consists of three distinct flow regimes (Fig. 4): a mixin_

region (with a potential core and a highly intense, surround-

Ing, shear layer), a transition region, and a fully developed

region. The process of the turbulent mixing of the hlgh-speed

exhaust with the surrounding medium represents the dominant

noise source of subsonic jets.

A supersonic Jet has a complex flow field, provldin_ a

multitude of noise sources. Figure 5 schematically _llus-

trates - in more detail than Fig. 3 --the flow field of a

super::onic Jet. The most important distinction between sub-

sonic and supersonic jet flow is bhe occurrence of oblique

and normal shock waves in the supersonic flow. Figure 5

lllu;_trates an underexpanded Jet condition, such as existz

at lift-off.
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I
IPI_,UZ'O 6 l. llu_tr .t-._ '_evePal well-k,iown noI_o , cmt(_,, It1I ir(}eket exllau_t llowd:

I ],. i[nc;1;L%billtle;;If,th(_ combustion i)roc(,:h_hla.VPOIHllt in ;t
i']uctu;_tin[_mau_ flow through the [,ozzlc of the onl",J,l](_.'J'h;I:_

I monopo_¢, type of noise :}ourco bohave:l Inuch as if the entlr_:
exit pl:_ne of the nozzle w,,x'ea pi_';tonwhich moves back _nd

forth rapidly.

2. Lip noise is generated when vortices or intense turbuleuc(_

passes through the nozzle and interacts w:Ith the nozzle lip,

generating fluctuating forces on this nozzle lip; this mechan-

ism is a depose source of noise.

3. The subsonic mixing region of slightly super._onlc Jets is
the most important mechanism of noise generation. This source

F: of noise Is as_eciated with the fluctuating velocities created

when the Jet mixes with the ambient air. As most of the energy

of a supe1._onlc Jet is lost in the subsonic mixing region,

this noise source may be dominant even in supersonic Jets.

4. Mach wave radiation, which results because the air in the

Jet is moving supersonically with respect to the mnbient air,

is completely analogous to the shock waves which are a char-

aeterlstie of a supersonically moving body. Math waves may

I be important _ound generators, particularly in hot Jets.

I 5. Shock-turbulence interaction noise i_ the last source ofnoise gone_,ation. The normal shocks associated with an under

I or overexpanded supersonic Jet are normally very stable and
do not zon_rate sound. However, noise may be generated when

II a dcnslty o_ temperature fluctuation associated with turbulence
pa.':'(,rt;hrou_h the pressure discontinuities associated with tb(_

I

I 4 ,
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I
stationary uhoek_, (Thin dlnousslon exelude_; "j_t ,4ere(_ch".no,, ._t.wh.teh in a vel,y ;_I|gular llnd distinct type of _., ro_It;t'_,'

frolll a uevero Irmtahllity. )
Figure 7 _;how';the radiation efficiency of the var[ou_;

i nu;I:;e:;ource,_;illustrated in Fig. 6, plotted again:_t jet M:J(;h
number. The radiation efficiency in proportional to the.

I fir_t power of the Math number for fluctuating mass flow
noise, to the third power for llp noise, to the fifth power

for subsonic mixin_ noise, and independent of Mach number for
Math wave radiation.

I Mach wave radiation is the dominant source of noise for

i large rocket_; where the exhaust is highly supersonic and very
hot. The shock-turbulence noise source has been studied very

I little and it'_ radiation efficiency is not known.

i It should be noted that implicit in Fig. ? is the well-known dependence of the acoustic power of monopole (fluctuat-

Jng mass flow), dipole (flow/rlgld body interactlcn), andquadropole (turbulent mixing) sources upon the fourth, sixth

t and eighth power, respectively, of the flow speed V. Sincethe Mach number contains a V-term, multiplication of thi_

number by V _ from the Jet kinetic energy term [I/2pV3A] yle]d:_

I the stated dependences.

t As evident from Fig. 7, subsonic mixing noise (for a _;ul)er-

:_on:tc exhaust jet) is the dominant noise source for exhau_,t

Maeh number:_ of 1 to 3, in which range the sound produclng

turbulent eddies are still convected at subsonic speed.?,.

l Above a Math number of 3, these eddies are oonvected at suI)e]'_

:;on:It cpecd", and tim Mach wave radiation becomes the dominant

I
i "I
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[
The et'.t'leIL_ncio_'_(ratio of acou.'t.£c to mc,chanleal j_t l)Ow_,r)

_fl_ownin l,'IL',,7, hay c_ been _ubstantlated (.xper.tment,_]..ly. For

I larl;e I,ock(;t ()nF,I.ne_ it ha:; been found that up to 1% of th(_
J(.t ,, klnctic (mergy is radiated a_, sound.

I The above di,_cu,'_ion illustrates the complexity of sup(_r-

, sonic Jet noi.'_e5eneratlon and radiation, For this reason,

I attempts at predicting supersonic Jot noise on a purely theo-

retical basis have not been very fruitful, and corresl)ondin(_

i empirical or semi-emplrlcal prediction schemes have been

deve loped.

1 C. Empirical Prediction Schemes
FarfleZd ,_oise

j We consider here only the noise from large supersonic rocket

exhausts. Empirical prediction schemes are based on data from

I mea,'_urementu taken over the last 15 years.

It has been found that for modern large-scale rocket-exhaust
flow_ a fraction of the kinetic energy is converted and radiated

as acoustic energy. The ratio of the acoustic to kinetic
nergy -- i.e., the acoustic ef_ieienetj -- depends basically on

the exhaust '_peed, as qualitatively indicated in Fig. 7.
Modern large boosters convert up to 1% of their mechan:Ical

energy into acoustic energy.

To determine the overall sound power radiated from a rocket
exhaust flow, one simply calculates its kinetic energy Wm

q Wm = 0.676 T V , (i)

I
I

I [
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I
where Win = kinetic energy (watt), T = thrust (ib), and V =
exhau_:t velocity (ft/aee). Then, one asm_me:_ an acou(;t_c

efficic_neY n, which for large boosters - such as tho_qe coli-

templated for the shuttle - is between 0.5 and i%.

llence, the overall acoustic power Wa is calculated

I Wa = n Wm (2)

The acoustic power level Lw is defined as

I WaLw - i0 log- (3)lO-n

I with Wa in watts.

I The spectral distribution of acoustic power can be pre-

sented in nondimensional form by plotting the power in each

octave band, referenced to the overall power level, as a func-

tion of a nondimensional Strouhal frequency

S - f D/V (4)

{ where f = octave band center frequency, Hz_ D = nozzle exit
diameter (ft), and V = exit velocity (ft/sec). A nondlmensional

_l" The sound power spectrum is converted into a sound pre_.:_ure
power spectra is shown in Fig. 8.

spectrum at a distance R by assuming spherical spreading of
I acoustic energy. If both observer (at distance R) and _ound

source are located on the _round, then radiation occurs into
a halt sphere, with an area

I A = 2_R 2 .

I

I
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I
If the source is at altitude h, then r,'_d.i.ai,.tonoccu],'_into a

I spherical space, with a cut-off segment; It_ area .£_g.lv,_nby

A = 2_R(li+h) ,

as illustrated in F:t_. 9. The sound pre_;:_urelevel (._I_) :U_:_tH_m

" relates to the sound power level (PWL) _pectrum as

SPL (f) = PWL (f) - i0 log A + 10.5 (5)

i where SPL (f) = octave band sound pressure level at center fre-

quency f, dB, PWL (f) - octave band sound power level at center

frequency f, dB, and A = area (ft2), as defined above.

I As evident from Eq. 5, sound pressure decreases as I/R_ -
i.e., with 6 dB per doubling of distance. However there is

additional attenuation due to atmosph,_,rlcabsorption. This

attenuation is frequency dependent, and can be obtained from

Table I.

TABLE I. EXCESS ATTENUATION DUE TO ATMOSPHERIC ABSORPTION IN
dB PER 1000 FT DISTANCE

I
Frequency, Hz Attenuation, dB/lOOO ft

_', 1 O.02
5 0.05

I I0 0.08
50 0.15

i00 0.3

500 0.8

i lOOO 1.0

i
I

,

i i
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I
Jet and rocket exhau:;t flow n(_l.s_,i_; hi_gLty (IIre(L:1._vo, lrJ _%general, mo,_Jtof the enerl;y will be concentrat(_,d Jn thc) ;;I_a(;.

hetw(-'en 50 ° and 70 ° from the exhaust flow conterllno,

(
The effect of dlroctlvity can be expresse.d in nondlmen::lolv, l

I form as a "direct_vlty index" vs th(: ant_'teto the exhau.'t {'.]()w

dlrc;(:tlon (Fig. 10). Each frequency, normallzed with tl,(.ratio

i of exhaust diameter and flow speed, ha[_ its own dlreotlvlty

curve. The dlrectlvity index, in dB, is then added to the

i space-averaged value of the sound pressure level at the _Iven

location. It should be noted that the angle e under whleh the

observer sees the source is complementary to the angle 0

(used in Fig. 9), the dlrectlvity angle of interest w_th

I respect to the exhaust flow.

I The frequency of the acoustic signal for a distant observer
differs from the original frequency due to the Doppler effect.

I Simple geometrlc considerations show that the frequency at the

observer fp must be corrected with the forward speed of the

vehicle U, and the angle O between the exhaust flow direction
and the observer; thus,

fu _ f0 (c + U COS0)

Nearfia_d Nolee

I The most practical general method for predicting the noh;e

field near rockets is the source location method, summarized Ir_

Ref. _[ for :_traight exhaur_t flows, and applied to deflected

I f'low_ in Ref. 2. This method considers that the source ofrocket exhau,';t noise in a given frequency band Is confined to

I
I

I
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I
I _..l.:lmll.,od rol_igt| uf the, exrlaust fltroam, ;i[ltl &zl:ll_z, il,,I }Jo_ltl_n|:_

tl.ll(| _Lr{)nl_Llll; to _h(2 '_ourcet_ in t_PlIl_ of thc'_.r dilllen;;lurllt.,.':' _'_

t Strendla] I'z'o.qu(._llcy on the ba_Is of empJ.rlcal data.

l{efcrenee,_2 and 3 present plot,' o£ the ratio x/l) w;J,:;u;:.t.'I)/V wh¢_re x Is the d_.qtanfle of the nolt_e source aft of th(_

' 1 (;x:l.t plane (along the flow axis), b i:; the effect.rye nozzle
cxlt diamotc,r,* f i'_ the center frequency of the band of

j int(,rest, and V is the exit velocity of the flow. Such plot;_

I - may be u:_ed to predict the source locations.

I

Similarly, one may obtain estimates of the strengths of

these sources from plots of the dimensionless spect_,um function

GV/pcWmD ve_,su:_fD/V, such as appear in Ref. 3 and (in somewhat
different form) in Refs. 2 and 4. Here, G(f) is the spectrum

' [, function (which is proportional to the acoustic power radiatedby the source per unit bandwidth), p is the density of the

ambient air, c is the velocity of sound in that air, and Wm

is the mechanical power of the exhaust flow (which one may

readily determine from the thrust and mass flow rate, or from

| related information).

One one has determined the source locations and strength:_,

one may readily estimate the acoustic pressures any [_iven
at

point by taking account of the appropriate geometry and a,_sumlnl,;

that the mean-square sound pressure varies inversely as the

square of the distance from the source.

*For sintr,le nozzles, the effective diameter is equal to the

actual dia_,eter. For multiple nozzles, the effective d_amcte_•is that of a sin[_le no_le that would pass the total flows.

I
I

i0 ,

i
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I
']filedlmon;_.t(_lll(_z'._uouree-loeat:ton and spt:et_,unll'un(:tlo_l

plot_ Elven In I{(_'f_,2-;I a_,e ba'._ed on rath,_r, old data, wh:l,d, _,

we;'e obtained £I,om rockets that ape sma.l] by euPp_rlt .[aun(:hv(_h.te.]e':tandar(h%, Fortunately, MSI,'Cha_ reeent.Ly ur,dc_vtal.;,.i_

an _n*.Ky,,l,,Of ,_l.l.available Satul,n V dat:_, and ha_ dev(f.|oI,_.(i,1(,. I,vorl,o,':pondll]_/lourse-lo_.atlon and spectPuIl| f.'unction.,;. '_

' 1 (;alculat:[on;_ have '_hown that use of tho'm new functlon_ p(i:_,ml.t_;one to calculate sound pressul_e.'_tl_at aKree rather well with

i eorre_pondlng experimental data, These new functions [I],extrapolated toward lower Strouhal frequencies in accord%no(;

with trends illustrated in ]_efs. 2-tl, s.x,eused fo_' the present

I pred:lct lens.

\ j
I
i

i
i
(
I
I

I
I

n
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f
III. IIIIOKOL ENGINE NOIS_ PREDICTION

A, Shuttle Confluuratlons

For the ;;{_P:],l_.,l b_II'n _nd tlme pI_ri_]lu], l)urll (]f)llfi|_|,ll':Ll, IcJll;',

:fl,ownin FI(::_,it.,m[ ,' c 2 the fol],owin;_pred]ctlon;_ w't',[]be

I" _*.(;_;tr:tctedto the 15G-in. diameter enr::tne:,.

In predlct;Inl;noise fl,om a narrowly :;paced
O.lu,'%tor of

c;w,:l.ncs,one must consider the olustered engines as _ne en_tI.nc,

I with an effective nozzle diameter

I Deff = /_ • Di ,

\ i whe_'e n is the number of (closely spaced) engines and Di the
nozzle diameter of each engine.

I Thus, in the parallel burn situation, we have treated the

I four orbiter engines as one engine of twice the diameter of the
indlw[dual engines, while the booster engines -being separated

by about 50 ft - were considered as radiating independently.In the serie_ burn s.ltuation, the three booster engines were

treated as one of 1.7 times the diameter of the Individual
engines. These assumptions are considered valid fox' farficld

_, noise predictions where the sound from all engines "merge".

I B, Engine Parameters

The following parameters were used for the calculatiom;:

I
Booster Orbiter

Nozzle ,x1_ Diameter (ft) 12.4 6.42

WeiF,ht Flow (Ib/see) 8889 115;ILxh,_u,,t ,,peed (ft/sec) 8000 9500

'l'hrtmt(Ib) 2.2 x i0_ 0.2 x I0_

II_.., __ ......L_
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I
C. Farfleld Noise

i fJ t_,,_.I'_. 0,I JlHY'n

ficheine(;h1|ii.1(_a],l_owo]_ ()f 3 elusLer, od bo(_sl,(;l,(:Ill'_l(]_i;:

, j,Wm = 3.)./ x i09 watt .
t

l,'o_an aFq}umed ,%oot_:)tleefficiency of

n - 0.65 ,

the overall acou;;tlc power is

\ I w_c= 215_ l0_ watt

j 11owever, since ]/3 of the exhaust flow has condensed by the tII11¢
it leaves the nozzle, one can assume that only 2/3 of the exhaust

J f].ow Is actually partlolpatlnz in the noise fluetuatlon i)roce:5:_.
Hence, the aeoustlo power must be reduced by 1/3, yieldlnz

W --143 x i0s watt
ae

{)r, in terms of :_ound power level

I Lw : 201.5 dB re ].0-'2 watt

(
The octave band sound power level spectrum Is shown in FI[_. I].

An effective dlameter of 21.5 ft wm_ used for the c]u, tc

of three en{_Ines. For purposes of compa_tsen, the spectrum
from a sln(_le en[;ine is also shown in FiF,. ll. Fli]ure ]2

J p_'esent;_ the sound pres:_ure level spectra for the follew:tnF,(;olld,[ t _Orl;_.

!
I 13 ,
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OimPl'ver dl_all_.e qhutt 1_-_

I lit grobllld level 10] I i_llt A It,,I 1.11dr lqlilt_
(IIIt !eli ) ( l'o(>L )

t 1 1 100 1,o ]()0()

2 5 100 to ICil)(i

3 1 _1,0_000

t 4 5 i0,000

I
Soure.(: di_,(;ct_v;Ity and lltmo_pherto ',d)sorl)ti(mwere ;tceoimt(,d

I for, A freqm:ncy shift due to the Doppler effect I:; negllgibl,_
for flight altitudes up to i000 ft. At ]0,000 ft altltude

I (vehicle speed about 500 ft/sec), frequencies change for /l
ground-located observer by a factor of 0.73 at a 1-mile l_round

I level distance and by 0.88 at a 5-1n;tle ground leve] distance.

ParaZ_oZ Burn

Followlng steps similar to those do,:cilbed above glve'_ !,he

i sound power Jevel spectra for the two separated booster cnglnc_J,

and the four clustered orbiter engines ,<_hownin ]4[g. ]3. :{ound

i pressure level spectra are "_hown - again for fotlr dlffez,elit

di..,tanee,_ in Fig. 14.

i,

Shi_ttlc Configur, ation on Launch Pad at l'gnltion

i
JTwo addit:tonal effects must be considered for the ,A,ultlt,

on the ,Liunch pad. First, the exhau.'_t flow imp]ndes on either

a flame _pllttcr or an exhaust deflector. In the former calm,

th(; exhaust flow Is divided evenly into two portions, streamln">
hor:Iv, onl;a]ly In two opposite directions, In the ],aLter c'_se,

I the entire, i ow i:; deflected in one horizontal di_'eetlon, 'l'h,_

I
I 14 I
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#
f Cat, t,e c L.! ()1_1j, I I I: _._

1)1 ;_l.:H|i_(_ I' i'Ol]l

I J,IILII](!)I['IL(I ] lll_].e !i IIiiI_",;

t l,:xh:ul;M, I"]_Y_; -:1_ + '[ = -5 ' '[

, AW_'Iy J_')J_ Dof,'lc'c;t_:d

" ..... - - "_ - ! 5
],xholhA, ]"lOW -12 'lm -]9 -[I '[

i
I J,'IgL|i'e'416 and 17 _l_ow the sound h.v,..] aI(.etla_' " ' _" '" fo_' the

i _;hutt](: oli tllt_ 1_lll_h ])ild ;it the In_tLL[It U? il_nltJ, on_ fol, [_P{)Llllddl,A,nce.• ', '," of ',l and 5 mllc:_, facing and away' fro,,,' _',':_ de ,'le,:tc I

_ ,'l,_,,.'_,m. _[t shuuld be _e-Olilphaslzed th',_tthl_ data i,: ',_x','Idonly
!

for the uhllttle on the launch pad, As seen ,_ the _, .''..,,c_,

I clca_,_ the tow_?]', the affect of exhou,_, d._'} ,,'blon ,,n."g_,cu,_
attenuatlon d,[sappears,and levels,, _, 0_,_,ved f:,om a dlsta_c,.,,

I will qu:Itu ,mddc.nly increase to those present¢;d in I,'ign. 12and ]4.

¶['he",ein an Irldi¢;ation that exhaust def..corer, dcceea:;()

the total :_cout_tJ.cpower of a rocket exhau,_t flow by abe:d; 5 (ll_

at the spect%'al peak and by an much an i0 dB one decmlc below

the _pect]:,al peak. Due to the uncertainty of the a.,t,u,_.I(lei'l e-tot configuration, the levels in Fig_. ].6 and 17 were not

adJu,,t_ 1 for this effect.

The accuracy of the farfl(;Id noise, data for the ,butt... on

the .laun(,h pad is estimated to be no better that + !0 t.o ]5 dl_,

dilL? _0 tllC lllall_"Ullk_.owns that affect l'le:ll*-i_roll[l(t pro]E)fll_:Lbloll.

(
I
I

I

I
| 1
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.I
! O. Nearfteld Notse
!

Fi/;ure_ ].8and 19 show the re'_ult_qof nea_,fleld t)_ed_tloz_

_ calculations for the serie,q and pamallol-burn modes, r_;spo_-
tlvely. Fox' both of these cases, the boo:_ter nozzle exit plane

. wa:,; a:;sumed to be 87 ft above a flame splitter (wedge-shaped
flame deflector), approximating the Saturn V launch confi_ura-

tion at NASA/KSC Launch Complex 39. For each of the two modes,
calculations were carried out for two locations on the orbiter-

at the crew compartment location (near the orbiter's nose) and
at the cargo compartment location (near the midpoint of the

't orbiter's upper surface). For each of the two modes, two flight
conditions were considered: The full-thrust condition Just

I_ prior to lift-off, where the exhaust impinges on the flame
splitter, and a condition where the vehicle has risen high

I enough above the launch pad so that the exhaust essentially ex-

_ tends straight out behind the vehicle.

! For the series burn mode, in which only the solid-propellant

I engines fire, the flame splitter was assumed to split the exhau_t
into two oppositely directed horizontal streams of equal size.

i_ For' the parallel burn mode, the flame splitter was assumed to
direct the orbiter engine exhaust in one dlrection (horizontally,

in the direction of the orbiter fin) and the solid-propellant
motor exhaust in the other.

As evident from Figs. 18 and 19, the acoustic environment:_

i of the cargo and crew compartments are similar, because theirdistances from the noise sources do not differ by significant

ll facter_. Only at the highest frequencies, for which the no.i_;c._;ource:_are located very near the nozzle exit planes, Is there

I any noticeable effect.
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t
Slmllar]yj the dlffer.eneo;Ibctwc,on i;ht_"(>IAp:_(l";_nd t,ho

! "_,ftt:p lif't-of'f" ec_r_d;itlr)n;_ are ln:;,IEn.lfilcant, Th(_ lr,'r'(-"tl;L'::t tt_;.t

(l'..ffol,eI-lO.eI3 hero o(;cur liI,(Jtlnd the illid(l]¢) of thE, PFtlll_(' ].ll(llr_ctl.t)d

:l.n tl,e fJ.l_Jl_'e, Th(._ .l.owe.,t reequency _,oul(.(._ a_e , o _'a_' away

l l.om the (:xit p,l.gtne thttt the ttlrrlirlg o{' the exhqu'It $11,i,o.alll IHL:I'(:'I,V

J af,fect';their d:l.'itance,'_ from the ob'_erv;lt:[ollpolnt._ on th(_

' vehJ.¢;le:_urface. The highest frequency sou%,ce';,on the othc':e

hand, "_re :_onear the exlt plane that they are still in the un-.

deflected exhaust stream; thus, the location of these ,_ource_.,,

with respect to the vehicle, does not change as the vehicle li_i,.

off.

. Chan_e,'_in the effective frequencies and sound propagation
distances occur as the vehicle gains speed, llowever, for vehicl(:

Mach numbers that do not exceed 0.2, these changes are neg]ig,lb].(,'.

I
I

I

l
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APPENDIX A- EFFECT OF SOME GEOMETRIC AND GAS DYNAMIC PARAMETERSON ROCKET NOISE GENERATION AND RADIATION

In rclatln_ a sound power to a mechan:I.calpower (of thu

exhau:_t stream), one avoids the need to consider individual

I and of the rocket engine,i_as dy,,amic geometric parameters

, although these undoubtedly affect the exhaust flow. In the

i following, we will briefly discuss the pressureeffect of ral;io

and temperature on Jet noise.

ii I. Nozzle geometry and pressure ratios --A nozzle is designed

to operate optimally at a particular pressure ratio. In this

case a certain exhaust Mach number will occur, which

(together with the weight flow) determines the thrust of the

rocket motor. The thrust together with the exhaust speed

determines the kinetic energy, a fraction of which is radiated

as acoustic energy.

_D I If the nozzle geometry (i.e., the ratio of the thrust to

the exit area) is not correct for a given pressure ratio, or

if a nozzle is operated at a nondesign pressureequivalently,

r:_tlo the Jet will either under or over-expand" whereby shock

waves occur, which in conjunction with turbulence generate

sound. Shock waves by themselves, which are quasi-stationary,

_, noise. It should be noted that a (slight)
would not generate

off-design operation of rocket-englne nozzles is the rule,

rather than the exception, pressure
since the ambient for

an ascending rocket changes continually.

I 2. F,xhaust temperature -The empirical prediction scheme

adw_tnce,iin the bulk of this report was based on data from

exi:;ting larvae boosters. Exhaust temperatures of such t)oostcrv,

are ulways of the same order, and, within the possible accuracy

I
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t
I o£ noise predictlon it I_ unnece_'_saryto ,_onnJ,do_, t_:mDrn,;_tln,(, ._._.

e£1"oots for this ola_z of boosters.

I Model te_'tJ on subsonic and supersonic J(:l;_, eonduct(_d hy

G}:':several year_ ago,indloa_e that for eormtant thru::t and

I velocity the total acoustic power emitted from the jet bolnF,

, independent for temperatures between 450°II and 3000°I_.
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I APPENDIX II - SRM STAGE RECOVERY t_

J This suppnrthag technology plan is presented in three parts.

| 1. Free Flight Dynamics[
2. Water Impactt

It

3. Environmental and Cyclic Effects

These three elements of the total recovery sequence which includes staging,
free flight, captive flight, water intpact (entry-submergence-rebeund-elap-flotation),

recovery, and refurbishment are considered the most critical to the SRM Stagedevelopment program scheduling. The indicated programs are required to establish
the design requirements and/or constraints on the captive flight reentry system and

| the motor ease. Because of interaction between the design of these two items, long
! lead time for the case, and significant development testing fer the reentry system,

the design requirements, concepts and materials must tm defined at an early date.

I
1.0 SRM STAGE tlECOVERY-FREE FLIGHT DYNAMICS

1.1 STATUS

The anticipated mode of SRM reentry is to force the body into an autorotation
flat spin motion. No physical testing of cylindrical models in the supersonic regions

t has been performed to date. The dynamics of spinning bodies at large angles
of

attack have been theoretically analyzed by J. E. Brunk of the Advanced Technology

I Division, Electronic Communication, Inc., Santa Barbara, California, for the Air• Force Office of Scientific Research, Office of Aerospace Research, llolloman Air
Force Base, New Mexico, under Contracts AF 24(600)-2936, Project No. 7856,

t °'Task No. 78535, and AF 99(638)-1158, Project No. 7856, Task 78o6-01. The aero-
dynamic characteristics of a cone-cylinder-frustrum of cone with autorotation spin

fins at high angles of attack at supersonic spends must be evaluated. In addition,

the free-free dynamics of such a body must be analyzed, testcd and evaluated.

I.2 JUSTIFICATK)N

This test program is intended to develop the data required for selection el the

I for initiation and maintenance of the autorotational mode ofsystem design concepts

free flight.

t

!
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I _ 1.3 TI,_'CIlNK:AL pLAN

1.3.1 ObJ_ctlves _%

This progrilm should nvalaatv the complete aerr dynamic 'lnd dyntllh' ehara,'-

I terlstics of the SRM configuration, aerodynamic imrameters such as z_xlal
}|ed lh_l'Mlll

force eoeffieinnts, pitch, yaw, and roll moment coefficients, aml damping cla_fftch.nt_

J need to be evaluated.
, Those t:ocffietonts should be evaluated G)r body angles of attack from 0 t,,

1HOdog, roll attitude angles of 0 to 180 dog for various tin sizes, fin dihedral angles,
and radial and longitudinal fin location for Maeh numbers of I thru 6. It is further
desired to evaluate the body external ballistic dominant tumble modes and spin rates|

| for reentry conditions.

1.3.2 Technical Approach

To characterize the body autorotatlon dynamics, detailed theoretical analysis
J of the aerodynamic configuration must be performed. Verification or rejection of

this analysis must be accomplished by model testing. Anticipated is a three phase

testing program. The first phase would evaluate the static aerodynamic characteris-tics in a supersonic wind tunnel. A static balance model with forward, normal at
projected center-of-gravity, and aft mounted sting attachments will be required.

The test configuration should be capable of varying the angle of attack and roll attitudeand should be capable of varying the angle of attack and roll attitude orientation.

After the first phase static testing is complete are analyzed,and the data

the second phase testing could be initiated. This phase would involve the supersonic
| wind ttmnel testing of a spin model gimbaled and sting mounted at the configuration
} center-of-gravity. This test would evaluate the aerodynamic damping coefficients,

and the dynamic spin modes at high angles of attack. The third phase would test

the free fall dynamics by use of a scale model boosted to speed and altitude with useof a sounding rocket.

To assess the test results, the model must contain: (1) a beacon for use iu
radar tracking, (2) rate gyro to sense spin rates, (3) pressure transducers to

evaluate altitude and dynamic pressure, and (4) a telemetry system to transmit thecollected data.

If a 1/25 scale model were used, its size would be 63 in. long, 6-1/4 in. in
diameter a_.d weigh 240 lb.

I
I

I
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1.4 IRESOURCE8REQUI_I,:Mk'N'rS

i 1.4.1 M_npowor

Menhottr_

l ------Analysis•- 3 men I year (;, 240

I Balance model wind tunnel tcstlng
5 men I month

!

Spin model wind tunnel testing - t,ll;75 men 1 month

Sounding rocket testing - 5 men 1 month 8(;7
_,_41

1,.4.2 Specialized Facilities

I Supersonic wind tulmcl - AF,DC

Rocket test range - White Sands MTR

1.4.3 Funding

Dlrcc_ labor charge $135,000

l!,'quipment and materialsWind tunnel models (2) 100,000

Sounding rocket (3) 1,50,000
' Sounding rocket test payloads 30,000

models (31
1.4.4 Factlit4es I

I

AEI)C supersonic wind tunnel j

48 hr at 4K/hr 192,000
Missile range time

8 hr at 5K/hr 40,000

[ Total $fl47,000

I
t
I
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2.0 SRM STAGE RECOVERY - WATER IMPACT
I

, m

2.1 STATUS

and experimental techniques are available that are applicable, inAnalytical
general, to the evaluation of hydrodynamic loading and structural response of an

SRM Stage during the water impact phase at recovery. However, the adaptation of• particular analytical techniques must be verified by model or subscale experiments.
, Then through analysis and from experimental data the requirements and/or constraints

will be developed for the selection of structural design and reentry system conceptsand materials selection.

2.2 JUSTIFICATION

Sincetherecoverabilityand number ofreusesoftheSRM Stagehasa sig-nificantimpacton program cost,thecriticalconditionofwater impactoncomponent

survival must be studied in depth. Both the case and reentry system (chutes and,
if required,energyabsorbingor decelerationtechniques)are longleadtimedevelop-ment items. Hydrodynamicloadingsfrom impactthroughsubmergence,rebound,

slap,and flotationwillbe developedasa functionofreentryflightdynamics.

Structuralresponseandfailurecriteriawillbe developedand evaluatedrelative
to

design concepts, materials, and constraints or requirements for reentry.

Substantial bodies of literature are available on the water entry of various
geometries and the response of stiffened and nonstiffened shells to hydrodynamic

loads. Sophisticated analytical techniques have been developed for the evaluationof blast effects on similar structures and should be adaptable to the subject problem.
However, as was identified in the NASA report (NAS7-394, April 1967, National

Engineering Science Co) on "Recovery of Boosters at Sea, the particular problem
I!

has not been studied in depth and significant experimental verification is required.

It is understood that MSFC and some system contractors have initiated experimentalprograms of this nature.

2.3 TECHNICAL PLAN

2.3.1 Objectives
The objective of this program is to define the design requirements and/or

constraints for the SRM Stage structure (case, nose cone, attach hardware, aft skirt)and/or the recovery system (initial conditions of water impact). Failure criteria
for the stage structure will be established as a function of initial conditions so that

the indicated trade study between stage and recovery system component design con-
c_pts and requirements can be performed. Inherent in this work will be the selection
of requisite analytical and design techniques.

I

5
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2.3.2 Technical Approach

Because of the nature of the application, the objectives of this program mustbe developed on a subscale or structurally and dynamically simulated model basis.
The validity or accuracy of analytic and design techniques will be verified through

model test such that they can be applied with confidence in the definition of require-
ments and constraints for and the design of the full scale c_mponents and systems.

I The program is planned _ four major tasks: (1) analytical techniques;
(2) subscale experiments; (3) evaluation and definition of requirements; and (4) pro-?

gram support, data, and reporting.

Only the adaptation of existing analytical techniques and codes will be required.Current planning envisions the adaptation of blast effects codes such as SABRE for
loads and elastic response predictions and the use of NASTRAN. However, other

i current and applicable work will be surveyed and evaluated. Significant consultantservice by experts in particular aspects of the problem is planned.

\ _ The experimental program would be conducted in two parts. Two dynamically
simulated models and approximately 50 tests will be required to define the various

hydrodynamic loads as a function of initial impact conditions. The application ofinstrumentation must be studied in detail to minimize a possible interaction with
results; telemetry techniques are a possible solution. One can also postulate and

should evaluate that the prediction of rigid body dynamics will validate the analytic• techniques and, thus, the prediction of dynamic leads and their distribution.

response testing will require structurally
Structural simulated models and

15 replacement components to perform approximately 50 tests. Again, instrumen-

tation interaction may be a problem; however, the test conditions can be planned toclose on the fixture conditions. In this manner, the limiting criteria can be
reasonably defined. No static tests are planned since a wealth of applicable structural

stability data exists.

The experimental program will use existing drop tank facilities and experi-

mental capabilities such as those as MSFC.

Experimental results will be evaluated and the most applicable analyticaltechniques for the prediction of hydrodynamic loadingn and structural response
will be selected. Those techniques and experimental data will be used to evaluate

the interaction between requirements and/or constraints to be applied to the desig_
of stage structure and the reentry system. In turn, recommendations can be made

on the selection of stage structure design concepts and materials,

I
2
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2.4 RESOURCES REQUIREMENTS

2.4.1 Manpower

The program will require 6.8 man-years of effort over fiscal year 1974.
1

2.4.2 Specialized Facilities

The program will require the use of an experimental drop tank facility such
, as that at MSFC.

i
2.4.3 Funding

p- _ Direct labor $155,000

!_ Equipment and materials $130,000

t Facilities --
Other - Computer usage $ 10,000

I Consultants $50,000

_ Total $345,000

- I
I
1
t
I
I
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3.0 SRM STAGE RECOVERY - ]'2NVIRONMENTAL AND CYCLIC F.I,'FI,:CTS

3.1 STATUS

While the materials under consideration for the SRM recoverable componentsare state-of-the-art0 they have not, in totalD been evaluated for the particular proees_
and short term cyclic and environmental requirements. The test results will be used

to select materials and, thus, in a context, system cencepts.
somewhat removed design

i

3.2 JUSTIFICATION
The recoverability and reuse of SRM components has a significant impact on

program cost. Development program lead time constraints, particularly for the case,
require predetermination of materials. To avoid undue design conservation the
material characteristics for the particular conditions must be established. The

subject materials are continually evaluated in support of various programs, but not
necessarily for the particular conditions.

I _°3 TECHNICAL PLAN

3.3.1 Objectives

The objective of this program is to establish the effects of the particular

SRM Stage recovery environment and reuse (short term cyclic) history on critical
material design characteristics and then recommend the best material for each

component. The planned goal is a minimum of 10 uses and the necessity or reprool_testing must be established.

3.3.2 Technical Approach

i The program will initiate with an indepth survey of applicable data on thecandidate materials. Current plmming includes three case materials [D6AC (200 ksi),
I SNi (200 ksi), HY-140] and three stage structural materials (6061-1'6 aluminum, a

| standard structural steel, HY-140). The primary factors of evaluation will be cot-
! rosive mechanisms, the effect on strength and toughness, and requirement for and

typos of protection. The variables to be studied are time of exposure, component

l temperature during exposure, residual stresses, refurbishment techniques, cyclic
effects, and inherent initial fabrication constraints,

The testing will be so planned that the materials arc evaluated for the antici-
pated value of the variable and at s value toward either extreme. Baseline parent

and welded material data will be established relative to the applicable processes.
Exploratory testing will be performed relative to the mechanism and rate of material
degradation and the value of various protective techniques. Based on the results of

I the survey, and exploratory tests, a detailed parametric test matrix will be planned
and implemented,

|

00000003-TSD05



t
I

r The test results will be used to recommend the m_t suitable materials for
the motor case, nose cone, stage attachment hardware, _zd aft skirt. The require-

meats or constraints on recovery and refurbishment te_,hniques, protective coatings
i or techniques, and component retest relative to the materl_ds studied will hc deter-

mined.

I
3.4 RESOURCES REQUIREMENTS

.'_.4.1 Manpower

I The program will require 4.5 man-years of direct effort.

3.4.2 Specialized Facilities

1
No special facilities are required.

3.4.3 Funding

\
Direct labor $135,000

Equipment and materials $ 75,000

_ Facilities
Other - -

Total $170,000

I
I
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